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ABSTRACT: The quantum mechanics/molecular mechanics (QM/MM)
approach is an essential and well-established tool in computational chemistry
that has been widely applied in a myriad of biomolecular problems in the
literature. In this publication, we report the integration of the QUantum
Interaction Computational Kernel (QUICK) program as an engine to perform
electronic structure calculations in QM/MM simulations with AMBER. This
integration is available through either a file-based interface (FBI) or an
application programming interface (API). Since QUICK is an open-source GPU-
accelerated code with multi-GPU parallelization, users can take advantage of
“free of charge” GPU-acceleration in their QM/MM simulations. In this work,
we discuss implementation details and give usage examples. We also investigate
energy conservation in typical QM/MM simulations performed at the
microcanonical ensemble. Finally, benchmark results for two representative
systems in bulk water, the N-methylacetamide (NMA) molecule and the photoactive yellow protein (PYP), show the performance of
QM/MM simulations with QUICK and AMBER using a varying number of CPU cores and GPUs. Our results highlight the
acceleration obtained from a single or multiple GPUs; we observed speedups of up to 53× between a single GPU vs a single CPU
core and of up to 2.6× when comparing four GPUs to a single GPU. Results also reveal speedups of up to 3.5× when the API is used
instead of FBI.

■ INTRODUCTION
Quantum mechanics/molecular mechanics (QM/MM) simu-
lations have been extensively employed to address problems
encompassing a wide range of fields, such as enzymatic reactions,
photochemistry, charge transfer, drug design, and material
science.1−11 The use of quantum mechanical (QM) electronic
structure calculations is necessary for the study of problems in
which significant rearrangement of electron density occurs, such
as in chemical reactions or electron transfers processes.
However, the use of QM methods becomes increasingly
expensive for larger systems, which often makes their practical
use prohibitive. QM/MM is a multiscale approach that leverages
the outstanding computational efficiency of molecular mechan-
ics (MM) methods. The system is partitioned into a QM region
containing the chemically relevant region and a MM region
consisting of the surroundings, generally described with a MM
force field. Even with this approximation and the reduction of
the system treated quantum mechanically, the computational
cost in the QM/MM approach is still dominated by the
representation of the QM region, especially when ab initio
methods are employed.
Significant progress has been made in accelerating QM

calculations, such as the use of novel methodologies (e.g., the
fast multipole method12,13 and density fitting approaches14−18)
and exploiting rapidly evolving hardware.19,20 During the past
decade graphics processing unit (GPU) acceleration has

revolutionized the performance of computational chemistry
applications, outperforming central processing unit (CPU)
implementations. Examples of that can be found in ab initio
electronic structure calculations21−44 but also in other areas such
as classical molecular dynamics (MD).45−53 One software in the
first category is theQUantum InteractionComputational Kernel
(QUICK) program.33,35,40,43 QUICK is an open-source GPU-
accelerated application capable of obtaining Hartree−Fock
(HF) and density functional theory (DFT) energies and
gradients and has a recently implemented multi-GPU
functionality.43 The GPU- and multi-GPU-acceleration imple-
mentations in QUICK apply during the computation of the
electronic repulsion integrals (ERIs) and exchange-correlation
potential in the case of DFT and their derivatives since these are
the most computationally intensive computations. It has been
shown that the multi-GPU implementation has good load
balancing coupled with high parallel efficiency.43 Another
strategy used in QUICK is to perform the GPU computations
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asynchronously from the remaining operations, such as the one-
electron integrals which are computed on the CPUs hosting the
GPU cards. This strategy further speeds up the calculations.
QM/MM features are freely available as part of AMBER54

using various electronic structure software55 (e.g., Gaussian,56

Orca,57,58 TeraChem,26 and others). However, there are two
major drawbacks with these implementations. First, the
integration between AMBER and the external electronic
structure software takes place through a file-based interface,
which, as will be discussed herein, suffers from performance
penalties. Second, because the electronic structure software
packages are from third-party developers, they may require a
license fee and are generally not open-source. These drawbacks
make it more of a challenge to develop important QM/MM
improvements, such as methods that account for long-range
QM/MM electrostatics.59,60

In this work, we present the integration of QUICK as the
driver responsible for QM calculations in QM/MM simulations
performed with AMBER.54 This integration is available in two
options: either through a file-based interface (FBI) that prepares
input files, executes the calculation, and parses the output results
or through an application programming interface (API) that
accesses QUICK directly using a library. The latest version of
QUICK as a stand-alone application will be part of the
upcoming AmberTools suite version 21 release, also bringing
the QM/MM integration discussed in this work. Since
AmberTools is open-source and general-purpose GPUs are
available at a relatively low cost, users can take advantage of “free
of charge” GPU-accelerated QM/MM simulations on hardware
ranging from desktop computers to supercomputing clusters.

■ QM/MM APPROACH
In the QM/MM approach, the total energy of the system is
expressed as follows:

= + +E E E EQM MM QM/MM (1)

Where, EQM and EMM describe, respectively, the isolated QM
and MM regions, and EQM/MM is the coupling term describing
the interactions between the QM and MM regions.
When performing QM/MM calculations, in addition to

specifying the models to be used to represent the QM and MM
regions, the form of the EQM/MM term must be specified. The
most straightforward representation is called mechanical
embedding (ME), where the EQM/MM term is treated at the
MM level using van der Waals and electrostatic nonbonded
interactions. ME might use point charges that are fixed or
derived on-the-fly from the electronic structure calculation in
the QM region at each simulation step. In another
representation, called electrostatic embedding (EE), the
quantum electronic density is explicitly exposed to the MM
region’s surrounding point charges during the electronic
calculation for the QM region. In EE, van der Waals interactions
are computed in the sameway as inME. Further technical details
about the QM/MM approach in a beginner-friendly format can
be found elsewhere.55,61

■ INTEGRATION WORKFLOW
The QUICK integration uses the SANDER MD engine, which
supports QM/MM functionality in AMBER54 and the present
integration takes advantage of the existing QM/MM infra-
structure. Therefore, the QM/MM setup, including the
identification of atoms in the QM region, follows the same

scheme already present in SANDER.55,62 If the QM/MM region
crosses covalent bonds, the existing QM/MMmodule automati-
cally sets up the link atoms.55,62 Using our QUICK integration,
users can utilize existing SANDER features, including geometry
optimization and enhanced sampling schemes (e.g., umbrella
sampling or replica exchange MD).
Figure 1 illustrates a QM/MM simulation using SANDER

coupled with QUICK. Users must choose one of two options for

the entire simulation: the application programming interface
(API) or file-based interface (FBI). The FBI follows the QM/
MM implementation55 already in SANDER to perform QM/
MM simulations with other electronic structure software
packages including Gaussian,56 Orca,57,58 and TeraChem.26 At
each MD step, FBI takes care of preparing an input file,
executing the QM calculation by calling the QUICK executable,
and reading the output file. In contrast, the API implementation
is a new addition to SANDER and has been specially designed
for QUICK. In the API, there is a direct communication
between SANDER and QUICK through a library, without the
need for any I/O operations. The API is expected to save time by
executing the QM calculation setup only once during the entire
QM/MM simulation, contrary to FBI, where this setup step is
done at every MD step when the QUICK executable is called.
The API also enables MPI parallel calculations in which both
SANDER and QUICK execute in parallel fashion, with the
capability of utilizing CPU cores and GPUs across multiple
compute nodes. This is not possible through the FBI due to
restrictions of systems calls from within an MPI parallel
program.

■ USAGE
Usage details for the API and FBI QUICK integrations are
available in the Supporting Information. Further information
can be accessed in the upcoming AmberTools version 21 user
manual. The input files for all QM/MM simulations with

Figure 1. Flowchart illustrating a QM/MM simulation with SANDER
using QUICK for the electronic structure calculations. Users must
choose to use either the application programming interface (API) or
file-based interface (FBI) during the entire simulation.
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QUICK performed in this work are also provided as Supporting
Information and can be taken as usage examples.

■ BENCHMARKS
This section presents benchmark results of typical QM/MM
simulations of two different systems in bulk water. The
simulations were executed on the Expanse cluster, part of the
San Diego supercomputer center (SDSC), on a node that
contains four NVIDIA Volta V100-SXM2 type GPUs and Intel
Xeon (R) Gold 6248 (2.50 GHz) CPUs. The two systems
chosen were the N-methylacetamide (NMA) molecule and the
photoactive yellow protein (PYP), which has been previously
studied using QM/MM.63 For the first system, the full NMA
molecule with 12 atoms encompassed the QM region, and the
511 water molecules present in the simulation box as the MM
region, described by the SPC/Fw force field.64 For the second
system, two different QM regions were considered.63 QM region

1 contains the p-coumaric acid chromophore and the S−C bond
from CYS-69, giving a total of 22 atoms and a charge of −1.63
QM region 2 contains the same atoms as in QM region 1 with
the addition of the side chains of GLH-46 and TYR-42, yielding
a total of 49 atoms and a charge of −1.63 Excluding the selected
QM region, the protein is represented by the ff99SB force field,65

the chromophore by the GAFF force field,66 and the 10758
water molecules in the simulation box by SPC/Fw.64 The atoms
in the QM regions of the NMA and PYP simulations are shown
in Figure 2.
All simulations used a time step of 0.5 fs, a QM/MM cutoff of

8 Å, and the B3LYP functional in the QM calculations. Table 1
presents the computational efficiencies for varying numbers of
CPU cores and GPUs. The table shows results for both
electrostatic embedding and mechanical embedding, two typical
basis sets (6-31G* and def2-SVP), and simulations with
QUICK’s API and FBI integrations. The number of basis

Figure 2. QM regions of (a) NMA and (b) PYP simulations in bulk water. Atoms highlighted in green for PYP are only present in QM region 2.

Table 1. Computational Performance (ps/day) of QM/MM Simulations Executed with QUICK and AMBERa

NMA PYP (QM region 1) PYP (QM region 2)

6-31G* def2-SVP 6-31G* def2-SVP 6-31G* def2-SVP

QM/MM type no. of CPUs no. of GPUs API FBI API FBI API FBI API FBI API FBI API FBI

EE 1 0 2.71 2.38 1.76 1.65 0.29 0.28 0.22 0.22 0.07 0.07 0.05 0.05
1 1 19.43 7.66 17.16 7.71 4.53 2.52 4.52 3.17 1.80 1.34 1.55 1.30
2 0 4.64 3.61 3.21 2.74 0.55 0.51 0.41 0.40 0.14 0.13 0.10 0.09
2 2 25.38 7.79 22.83 8.06 6.56 2.93 6.86 3.92 2.98 1.87 2.62 1.96
4 0 6.30 4.54 5.12 3.99 0.93 0.81 0.67 0.64 0.25 0.24 0.16 0.15
4 4 27.00 7.59 25.45 7.93 8.81 3.24 9.89 4.62 4.50 2.31 3.98 2.57
8 0 10.23 6.20 7.45 5.30 1.46 1.18 1.12 1.03 0.41 0.38 0.28 0.27
16 0 14.39 7.35 11.86 7.03 2.17 1.58 1.90 1.63 0.73 0.64 0.46 0.44

ME 1 0 2.80 2.45 1.82 1.70 0.29 0.28 0.22 0.22 0.07 0.07 0.05 0.05
1 1 23.80 8.26 21.80 8.55 5.92 2.93 6.74 4.08 2.65 1.77 2.66 2.05
2 0 4.78 3.71 3.30 2.81 0.55 0.50 0.42 0.40 0.13 0.12 0.10 0.10
2 2 27.87 8.00 26.24 8.49 7.90 3.18 9.25 4.62 4.17 2.27 4.32 2.79
4 0 6.43 4.62 5.21 4.07 0.92 0.80 0.67 0.64 0.23 0.23 0.16 0.16
4 4 28.95 7.69 27.95 8.20 10.09 3.41 12.41 5.12 5.75 2.59 6.15 3.39
8 0 10.56 6.31 7.68 5.40 1.45 1.16 1.12 1.02 0.38 0.36 0.28 0.27
16 0 14.76 7.46 12.14 7.13 2.16 1.57 1.90 1.62 0.68 0.60 0.47 0.45

aSimulations for NMA or PYP in bulk water using a time step of 0.5 fs and a QM/MM cutoff of 8 Å. QM calculations used the B3LYP functional
with either the 6-31G* or def2-SVP basis set. EE = electrostatic embedding, ME = mechanical embedding, API = application programming
interface, FBI = file-based interface.
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functions for NMA and PYPQM regions 1 and 2 is, respectively,
89, 217, and 440 for 6-31G* and 110, 244, and 509 for def2-SVP.
Computational efficiencies for the 6-31G** basis set, which has
the same number of basis functions as def2-SVP, are presented
in the Supporting Information.
As expected, simulations with the API are faster than with the

FBI. Speedups of up to 3.5× are observed for the smallest QM
size evaluated and up to 2.2× for the largest QM size. The
computational efficiency systematically improves with the
number of CPU cores or GPUs considered. The power of
GPU-acceleration can be inferred from Table 1. The perform-
ance gain from a single GPU exceeds that of 16 CPU cores. This
observation is consistent with the previously documented DFT
performance for QUICK serial GPU and MPI parallel
versions.40 Mechanical embedding simulations with a single
GPU using the API are up to 12× and 53× faster than using only
a single CPU core for, respectively, the smallest and largest QM
region sizes considered. Table 1 also highlights further
acceleration that can be obtained from multiple GPUs.
Simulations with four GPUs are up to 1.5× and 2.6× faster
than with a single GPU, respectively, for the smallest and largest
QM region sizes considered.
Aiming at further investigating the contributions of different

tasks to the total computational time in QUICK, Table S2
dissects the time spent during one-electron integrals (OEIs),
electron repulsion integrals (ERIs, two-electron integrals), and
exchange-correlation (XC) quadrature and their gradients for
one MD step of the QM/MM simulations shown in Table 1
using the API with 1 CPU and 1 GPU. Table S2 shows that, as
expected, one electron operations are the only ones affected by
external point charges in the QM calculation.When electrostatic
embedding is employed, the costliest computation is the one-
electron gradients. This observation is not true whenmechanical
embedding is used. As discussed in the next section, the
performance in the one-electron operations is an area that can be
improved in future versions of QUICK.
Additionally, in the simulations performed to construct Table

S2 it has been also evaluated how much of the QM/MM
simulation time is spent with QUICK. For all system sizes and
for both mechanical and electrostatic embedding, it has been
observed that QUICK consumes more than 97% of the total
simulation time. This is in line with the expectation that the
computational cost of QM/MM should be dominated by the
description of the QM region.
As documented previously,40 the single GPU version of

QUICK is capable of performing HF and DFT gradient
calculations several times faster than the single GPU version
of GAMESS27,30,67,68 when external point charges are not
present. Since the cost of QM/MM is dominated by the
computation of energies and forces of the QM region, the
QUICK/AMBERAPI and FBI implementations are expected to
perform faster mechanical embedding QM/MM simulations
than the GAMESS/AMBER FBI implementation. Since the
GAMESS/AMBER integration is currently unable to perform
electrostatic embedding QM/MM simulations,55 we have not
compared QUICK and GAMESS in the current study.

■ CONCLUSIONS AND FUTURE DIRECTIONS
We have presented and discussed the integration of QUICK as
the driver responsible for ab initio electronic structure
calculations in QM/MM simulations performed with AMBER.
Users can access this integration in two ways. First, through a
file-based interface that follows the same approach currently

used in AMBER to perform QM/MM simulations with other
quantum chemistry software. Second, through a novel
implementation that uses an application programming interface
for direct communication with QUICK. The API has advantages
over FBI, such as the absence of I/O operations and a reduced
computation cost to setup the QM calculations. With the API,
the QM setup is done only once at the beginning of the QM/
MM simulation, in contrast with the FBI that needs to perform
this operation at every MD step. Even though our API
implementation has been designed specifically for QUICK,
other electronic structure software packages with compatible
functionalities (i.e., whose features can be accessed through a
library) can now make use of this novel architecture for faster
QM/MM simulations in AMBER. Hence, the API can be readily
exploited to seamlessly integrate QUICK with other MM
software packages. Both the FBI and API QM/MM integrations
can take advantage of useful features available in AMBER, such
as geometry optimization and enhanced sampling approaches.
The API and FBI QM/MM integrations can perform

calculations with electrostatic embedding or mechanical
embedding. As previously discussed, EE QM/MM simulations
with ab initio calculations in AMBER currently suffer from the
lack of a treatment for long-range electrostatic interactions
between the QM and MM region and of the QM region with its
periodic images when periodic boundary conditions are
employed. One possible solution for this would be implement-
ing particle mesh Ewald (PME) type methods69,70 to properly
capture the physics inherent to the long-range QM/MM
electrostatics. Such an approach has been previously pre-
sented.59 In a recent publication, alternative approaches for
describing long-range electrostatic interactions in ab initioQM/
MM calculations were presented.60 Since AMBER already has a
PME based implementation for QM/MM long-range electro-
statics compatible with semiempirical and density functional
tight binding (DFTB) Hamiltonians, the implementation of
long-range corrections for ab initiomethods following one of the
approaches highlighted above could benefit from this existing
infrastructure. Such an implementation is planned and would be
expedited in the API QM/MM integration since it allows direct
data transfer between AMBER and QUICK.
In this work we have performed QM/MM simulations for the

N-methylacetamide (NMA) molecule and the photoactive
yellow protein (PYP) inside a water droplet or in bulk water.
For the simulations in a water droplet, presented in the
Supporting Information, the QM/MM cutoff was extended
beyond the limits of the system to ensure that all interactions are
taken into consideration, and it has been shown that the default
SCF convergence criterion used in QUICK is satisfactory to
ensure energy conservation in microcanonical ensemble
simulations. Energy conservation was also observed in longer
QM/MM simulations performed for NMA (see the Supporting
Information). Benchmark simulations using a varying number of
CPU cores and GPUs have been conducted in bulk water. The
benchmarks highlight the GPU-acceleration speedup and show
that an improved performance is obtained when multiple GPUs
are employed. As expected, the benchmarks indicate that the
API integration has a better computational efficiency than the
FBI integration.
QUICK’s GPU-acceleration acts on the computation of the

most expensive parts of the electronic structure calculation:
electron repulsion integrals (ERI), numerical quadrature of the
exchange-correlation (XC) energy in the case DFT is used, and
their derivatives. The one-electron integrals and gradients are
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asynchronously computed on the CPU during the ERI and XC
computations to maximize the overall efficiency. In general, one
electron computations are significantly faster than the ERI and
XC computations. However, since the ERI and XC operations
are GPU-accelerated, the cost of one electron tasks may
significantly increase or even surpass that of the ERI and XC in
extreme cases, such as when many point charges are present
around the QM region, as has been observed in this work. In the
current QUICK implementation, the Coulomb attraction
integral/gradient computation, which dominates the one-
electron integral/gradient times, is performed considering all
pairwise interactions between electrons and individual point
charges. The cost of such tasks can be drastically reduced by
using, for example, the fast multipole method (FMM).12,13

Therefore, there is room for improvement in QUICK’s one-
electron operations, currently computed on the CPU. These
tasks will benefit from implementation of the FMM method
combined with GPU-acceleration in future versions of QUICK.
Another direction of interest that can be exploited within the

context of our QM/MM integration is the implementation of
extended Lagrangian Born−Oppenheimer molecular dynam-
ics.71−75 This methodology allows a reduced number of SCF
cycles to be used, which effectively increases the overall
computational performance. We plan to explore approaches to
accelerate the SCF convergence in our QM/MM simulations in
future versions of QUICK.
Data and Software Availability. Any data generated and

analyzed for this study that are not included in this article and its
Supporting Information are available from the authors upon
request. AmberTools is publicly available free of charge at
https://ambermd.org. QUICK will be released as part of
AmberTools starting with the upcoming 2021 version. The
latest development version of QUICK can be accessed for free
from GitHub https://github.com/merzlab/QUICK.
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Input files for the QM/MM simulations performed in this
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