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Abstract—The natural histories of parasites and their hosts are
intertwined, and intensity of parasitism depends on parasite abundance and host
behavior, as well as potential effects of sex/age. To characterize potential effects
of parasite abundance and host sex/age on chigger mite (Eutrombicula
alfreddugesi) ectoparasitism on Eastern Fence Lizards (Sceloporus undulatus),
we measured (1) the abundance of mites in the environment as well as mite load
and prevalence on lizards throughout the activity season; (2) sex- and age-
specific patterns of ectoparasitism; and (3) week-to-week consistency of mite
loads on lizards. Environmental mite abundance varied seasonally in close
association with mean monthly temperatures and was the main driver of
pronounced seasonal variation in mite loads on lizards. Mite loads were almost
always higher on yearlings than adults and, somewhat unexpectedly, were never
higher on adult males than any of the other age-sex classes. As adults, females
had higher mite loads than males in June—July, but as yearlings, males had
higher mite loads than females in July—September. Despite considerable week-
to-week variation, rank-ordering of lizard mite loads was highly consistent. These
findings indicate that (1) consistent age-specific sex biases are superimposed on
strong seasonal variation in mite loads and (2) detrimental effects of mites are

expected to be consistently stronger in some individuals than others.

Key words: Chiggers; Ectoparasites; Seasonality; Testosterone; Trombicula
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Parasites have negative and positive effects within ecosystems (Hatcher
et al., 2012) and can force substantial life-history trade-offs within hosts, such as
decreased hematocrit, growth, and reproductive success (Salvador et al., 1996;
Uller and Olsson, 2003; Gooderham and Schulte-Hostedde, 2011). In any host-
parasite relationship, parasite infections depend on ecological, demographic, and
physiological factors, including environmental abundance and life-stage of
parasites, as well as sex, age, body size, and testosterone levels of hosts (Veiga
et al., 1998; Pollock et al., 2012; Dudek et al., 2016). Thus, the natural histories
of both parasites and their hosts must be taken into account to understand host-
parasite relationships in natural communities.

In many host species, males are often more heavily parasitized than
females (Zuk and McKean, 1996; Klein, 2004; Krasnov et al., 2005; Heredia et
al., 2014), and this male-biased parasitism is often associated with sex
differences in plasma testosterone (T) (Zuk and McKean, 1996; Grear et al.,
2009). In free-ranging Striped Plateau Lizards (Sceloporus virgatus), for
example, ectoparasitic mites are more abundant on males than females, and in
experimental manipulations, parasite load is decreased by castration and
restored by T replacement (Cox and John-Alder, 2007). Results of other studies
are mixed, but two recent meta-analyses found administration of exogenous T
causes an overall increase in parasitism (Roberts et al., 2004; Foo et al., 2017),
although parasitism is not usually correlated with T in unmanipulated animals
(Foo et al., 2017). Testosterone is thought to increase physiological susceptibility

to parasitism through immunosuppression (Olsson et al., 2000; Poiani et al.,
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2000; Hughes and Randolph, 2001; Foo et al., 2017), and T may also increase
ecological exposure to parasitism (Zippel et al., 1996; Bulté et al., 2009; Rubio
and Simonetti, 2009). Males, however, are not always more heavily parasitized
than females. Female-biased parasitism has been documented in several taxa
(McAlpine, 1997; Christe et al., 2007; Pandit et al., 2011), whereas parasitism is
apparently not sex-biased in others (Reardon and Norbury, 2004; de Carvalho et
al., 2006; Halliday et al., 2014; Knapp et al., 2019).

Previous reports of sex-biased parasitism must be interpreted cautiously
because of discrepancies among studies, including between, on a single host
species (compare Klukowski and Nelson, 2001; Klukowski, 2004; Cox et al.,
2005). Discrepancies can arise when a host species is studied in different
locations or seasons, as well as from differences in the species of parasite at
issue. For example, tick loads were higher on male than female Western Fence
Lizards (Sceloporus occidentalis) during spring breeding months, but chigger
mite loads were higher on females than males during fall months (Lumbad et al.,
2011). Similarly, most studies have been conducted over limited time frames
(e.g., Klukowski and Nelson, 2001; Cox and John-Alder, 2007; Pollock et al.,
2012). As such, these studies fail to account for age-dependent seasonal
variation in circulating T (Cox et al., 2005; John-Alder et al. 2009) and seasonal
changes in environmental abundance of parasites (Clopton and Gold, 1993;
Eisen et al., 2002). A failure to account for seasonality in abundance of parasites,
coupled with potential sex- and age-related differences in host susceptibility, may

contribute to discrepancies among studies. To clarify some of the discrepancies,
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we report ectoparasitism by chigger mites (Eutrombicula alfreddugesi) on adult
and yearling male and female Eastern Fence Lizards (Sceloporus undulatus)
throughout two-and-a-half activity seasons in the New Jersey pinelands. We
hypothesized: (1) males have higher mite loads than females, regardless of age,

and (2) adults have higher mite loads than yearlings, regardless of sex.

MATERIALS AND METHODS

Seasonal Variation in Mite Loads.—Studies were conducted May to
September of 2014 and 2015 and in June and July 2016 at Colliers Mills Wildlife
Management Area (40.1° N, 74.4° W), an area of pinelands in Burlington County,
New Jersey, USA. Colliers Mills is heavily managed for hunting and is
characterized by edge habitat separating open fields from forested tracts of oak
and pine (Fig. 1). Its forests tend to have relatively open canopy, sparse
understory due to controlled burns, and a forest floor littered with abundant fallen
trees and branches.

We captured adult and yearling lizards at monthly (2014, 2015) or weekly
(2016) intervals by noosing or by hand. Upon capture, we measured snout-vent
length (SVL, mm) and body mass (g) using a ruler and Pesola spring scale. Sex
was determined by presence (male) or absence (female) of enlarged post-cloacal
scales. Mites infesting each lizard (mite load) were counted by one investigator
(NBP) using a 10x hand lens. We assessed accuracy of mite load counts by
performing five repeated mite counts for 10 different lizards (mite loads ranging

10-129) and calculating a Pearson correlation coefficient (r) for each lizard. The
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repeated counts of mite load within individuals were highly correlated (mean
correlation across all individuals = 0.996, SD = 2.10). We marked and identified
lizards with unique toe-clip numbers and paint marks, allowing visual
identification from a distance, facilitatiing recaptures and quantification of
variation in ectoparasitism.

Seasonal Variation in Environmental Mite Abundance.—To quantify
environmental mite abundance, we used a variation of the plate method
described by Williams (1946) and modified by Klukowski (2004) and Scholer et
al. (2006). Sampling was done at exact sites where lizards were captured during
the 2015 activity season. We sampled between 0800-1240 h, because this time
range was used in previous studies (Reed, 1977; Klukowski, 2004) and before
high afternoon temperatures, which may reduce mite activity (Clopton and Gold,
1993). At each sampling site, we firmly placed nine black ceramic tiles (15x15
cm; Daltile, Cranbury, USA) on the substrate in a 3x3 grid format with
approximately 1 cm between tiles. For 90 seconds, we counted mites as they
crossed over the tiles and removed them with a small paintbrush. We used this
methodology to estimate environmental mite abundance once per month in 2015.

Consistency of Mite Loads Among Lizards.—We investigated the
consistency of mite loads among individuals by recapturing marked adult and
yearling lizards at weekly intervals from 9 June to 14 July 2016 (6 wk).
Methodology was the same as prior years, but the emphasis in 2016 was to
maximize recaptures within a limited area (~3.5 ha) rather than to maximize all

captures across a much broader area (~11.9 ha). The aim was to determine
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week-to-week consistency of absolute and ranked mite loads on individual
lizards.

Statistical Analyses.—We combined data from 2014-2015 to provide sex-
and age-specific mite loads throughout the activity season. This was done
because: (1) sampling effort and the number of lizards captured between years
was uneven and (2) after applying a Dunn-Sidak correction to control for the
familywise error rate, we found no significant differences between 2014 and 2015
mite loads for any sex/age class in any month. We evaluated seasonal variation
in environmental mite abundance and mite load by calculating mean
environmental mite abundance, mite load, and mite prevalence (% lizards
hosting = 1 mite) for each month (May—September). For 2015 only, we used
Spearman correlation (rs) to determine if mite loads on individual lizards were
correlated with environmental mite abundances at the sites of lizard capture (i.e.,
correlating a lizard’s monthly mite load with the environmental mite abundance at
the specific site of lizard capture).

In 2014-2015, we recorded 1342 mite loads recorded from 677 different
lizards. For analyses of the effects of month, sex, and age (and interactions) in
2014-2015, we used a Poisson generalized linear mixed model with individual
lizard as a random effect (SPSS, Armonk, USA). To compare monthly mite loads
of adults versus yearlings within each sex and males versus females within each
age class, comparisons were carried out using Dunn-Sidak corrections to
account for multiple comparisons and to control for the familywise error rate (i.e.,

probability of making at least one Type | error).
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In 2016, we recorded 733 mite loads from 198 different lizards. Mite load
data from 2016 were used for a finer-grained analysis of sex and age differences
in mite load and to analyze interindividual repeatability as a measure of the
consistency of mite loads on individual lizards. We excluded the first week of the
study (6—10 June 2016) because prevalence of mite parasitism was only 59%,
and many lizards carried < 1 mite. Individual consistency of mite loads was
analyzed using Kendall’s coefficient of concordance. To analyze effects of week,
sex, and age (and interactions), we used a Poisson generalized linear mixed
model with individual lizard as a random effect (SPSS, Armonk, USA). To
compare weekly mite loads of adults versus yearlings within each sex and males
versus females within each age class, comparisons were carried out using Dunn-
Sidak corrections to account for multiple comparisons and to control for the
familywise error rate (i.e., probability of making at least one Type | error). All
Dunn-Sidak corrections and P values were considered significant at the o =

0.002 level.

RESULTS
Mite Abundance, Mite Loads, and Prevalence of Mites.—Environmental
mite abundance, mite loads, and mite prevalence exhibited pronounced seasonal
variation (Table 1). Environmental mite abundance (measured in 2015) was low
in May, high in June and July, and low in August and September (F4,737 = 33.82,
P < 0.001). Mite prevalence was low in May (27%), but high thereafter (June:

91%; July: 99%; August: 99%; September: 98%). Mite loads increased from the
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lowest point in May to peak in July, and declined through August to an
intermediate point in September (Wald X2 = 15748.48; P < 0.001).

In 2014-2015, mite loads on lizards in July were positively correlated with
environmental mite abundance in June (rs = 0.24; P = 0.015) and July (rs = 0.27;
P < 0.001). Mite loads in August were positively correlated with mite abundance
in July (rs = 0.18; P = 0.050) and August (rs = 0.14; P = 0.046). Correlations
between mite load and environmental mite abundance were not significant for
other months (May:May: rs = 0.06; P = 0.5957; June:May: rs = 0.03; P = 0.833;
June:June: rs = 0.03; P = 0.680; September:August: rs = 0.00; P = 0.991;
September:September: rs = 0.12; P = 0.246).

Mite loads in 2016 weekly samples followed patterns similar to previous
seasons (Table 2). Mite loads increased markedly from an overall average of 3.5
mites per lizard and 59% mite prevalence (similar in all age-sex classes) in early
June to an average of 122 mites per lizard and 100% prevalence in mid-July.
Individual loads were as high as 300 mites per lizard.

Sex- and Age-Biased Seasonal Variation in Mite Loads.—Despite the
importance of month as a determinant of mite load in 2014—2015 (Wald X? =
15748.48; P < 0.001), interaction effects of month x age (Wald X2 = 355.03; P <
0.001), month x sex (Wald X2 = 321.47; P < 0.001), sex x age (Wald X? = 23.23;
P <0.001), and month x sex x age (Wald X2 = 95.31; P <0.001) resulted in
significant monthly differences between age-sex classes. In females (Fig. 2A;
Table 1), mite loads were higher on adults than yearlings in June (SE = 0.78; P <

0.001), but higher on yearlings than adults in July (SE = 1.46; P = 0.003), August
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(SE =1.20; P <0.001), and September (SE = 0.90; P < 0.001). In males (Fig. 2B;
Table 1), however, mite loads were higher on yearlings than adults in June (SE =
0.78; P <0.001), July (SE = 1.63; P < 0.001), August (SE = 1.41; P <0.001), and
September (SE = 0.94; P < 0.001). In adults (Fig. 3A; Table 1), mite loads were
higher on females than males in June (SE = 0.81; P < 0.001) and July (SE =
1.62; P <0.001). In yearlings (Fig. 3B; Table 1), however, mite loads were higher
on males than females in July (SE = 1.47; P <0.001), August (SE =1.27; P <
0.001), and September (SE = 0.94; P < 0.001).

Based on weekly data of 2016, mite loads were influenced most
significantly by week (Wald X2 = 2315.75; P < 0.001). Age was also statistically
significant (Wald X2 = 86.65; P < 0.001 ), as were the interactions of sex x age
(Wald X2 =115.56; P < 0.001), week x age (Wald X2 = 81.70; P < 0.001), week x
sex (Wald X2 = 26.60; P < 0.001), and week x sex x age (Wald X? = 83.40; P <
0.001). In females, mite loads were higher on yearlings than adults during the
last week of June (week 4: SE = 4.62; P < 0.001; Table 2), but higher on adults
than yearlings during the first two weeks of July (week 5: SE = 5.39; P < 0.001;
week 6: SE = 6.09; P = 0.005; Table 2). In males, mite loads were significantly
higher on yearlings than adults during the last two weeks of June (week 3: SE =
3.35; P<0.001; week 4: SE = 3.94; P < 0.001; Table 2) and during the first two
weeks of July (week 5: SE = 4.03; P < 0.001; week 6: SE =4.44; P <0.001;
Table 2). In adults, mite loads were significantly higher on females than males
during the first two weeks of July (week 5: SE = 5.73; P < 0.001; week 6: SE =

6.37; P <0.001; Table 2). In yearlings the opposite occurred: mite loads were

10
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higher on males than females during the fourth week of June (week 3: SE = 2.85;
P < 0.001; Table 2) and during the first two weeks of July (week 5: SE = 3.54; P
< 0.001; week 6: SE =4.04; P <0.001; Table 2).

Individual Consistency of Mite Loads.—Individual rankings of mite loads
were fairly consistent week-to-week in 2016 (Fig. 4; Kendall's W = 0.485, X2 =
106.72, P < 0.0001). Lizards were categorized into quintiles based on average
mite loads calculated across the final five sampling points, and they tended to

remain within those quintiles every week.

DiSCUSSION

Our results indicate significant seasonality in mite load and environmental
mite abundance in Eastern Fence Lizards, in addition to significant sex- and age-
specific differences in mite load. Previous studies have documented seasonal
variation in ectoparasite load (Goldberg and Bursey, 1991; Schall et al., 2000;
Godfrey et al., 2008; Lumbad et al., 2011) or environmental ectoparasite
abundance (Clopton and Gold, 1993; MacDonald and Briggs, 2016), but ours is
one of the few to investigate seasonal variation in both ectoparasite load and
abundance. We found a temporal association between mite load and
environmental mite abundance across months. Furthermore, mite loads on
lizards in July and August were correlated with environmental mite abundances
measured at the specific localities where lizards were captured. These findings,
along with strong significant effects of month and week, suggest abundance of

mites in the environment is the primary determinant of host lizard mite load.
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However, further studies are necessary to clarify relationships between host
ectoparasite load and environmental ectoparasite abundance.

Two other studies on lizards have investigated seasonal variation in
ectoparasite load and environmental abundance. In Collared Lizards
(Crotaphytus collaris), Curtis and Baird (2008) found that seasonal variation in
mite parasitism and environmental abundance were temporally dissociated,
probably because abundance of nonparasitic adult mites was monitored instead
of parasitic larval mites. Larval mites parasitized lizards after adult mites
disappeared in early June, suggesting that adult mites descend into soil to
oviposit in May, after which parasitic larvae emerge in June to feed on lizard
hosts (Curtis and Baird, 2008). This could similarly explain the low mite loads and
low environmental mite abundances we observed during May and early June.
However, further investigations of the phenology of mite life cycles are needed
(Shatrov and Kudryashova, 2006).

In contrast, Klukowski (2004) found an associated pattern similar to ours
in his study of S. undulatus in Tennessee, where mite loads were low in May and
August when environmental mite abundance was low, but high in June and July
when abundance was high. However, environmental mite abundances, as well
as mite loads, were high earlier and for a longer period of time in Tennessee than
New Jersey. Differences in phenology of mite parasitism and environmental mite
abundances can be attributed to geographical differences in climate. In south
Texas, for example, Mather (1979) reported high mite loads and 100% infestation

prevalence on S. undulatus in October and November, in sharp contrast to what

12
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has been found in California (Goldberg and Bursey, 1991; Lumbad, 2011),
Tennessee (Klukowski, 2004), and New Jersey studies.

Geographic variation in patterns of seasonal mite loads is likely the result
of climate differences between regions and subsequent impacts on abundance of
mites in the environment. Environmental mite abundances are highest in areas
with high humidity and moderate temperatures (Zippel et al., 1996), and mite
activity is determined by a combination of temperature and humidity, rather than
by either of these variables alone (Clopton and Gold, 1993). In New Jersey,
variation in mean monthly temperatures recorded at the Rutgers Pinelands Field
Station (RPFS, 2015) is closely associated with monthly environmental mite
abundances. Environmental mite abundance is low during months in which mean
monthly temperatures are less than 20 °C, but high during months in which mean
monthly temperatures are greater than 20 °C.

Seasonal variation in mite abundance is likely an overarching cause of
variation in mite load, but superimposed on this are consistent differences in mite
load among sex and age classes. Based on commonly observed sex effects and
previously reported relationships between T and parasitism, and because plasma
T is always higher in males than in females of S. undulatus (Cox et al., 2005;
John-Alder et al., 2009), we predicted mite loads would be higher on males than
females and would show an association with seasonal variation in plasma T.
However, our findings only partially support these predictions. Although mite
loads were consistently higher on yearling males than other age/sex classes

during the latter half of the activity season, loads in adult males were never
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highest and were often lowest among all classes. Furthermore, the majority of
studies investigating effects of age on parasitism in reptiles have found higher
parasite loads on older individuals (Amo et al., 2004; Reardon and Norbury,
2004; Dudek et al., 2016), but this was not the case in the present study.

The absence of mites in the environment can explain why mite loads on
adult males are lower in May than at other times of year (Fig. 5), despite this
being the time of high plasma T and peak investment in reproductive activity.
Even if T and high activity cause males to be highly susceptible to parasitism,
ecological exposure is simply too low for mites to be of any consequence. By the
time mites become abundant in the environment, reproductive activity and
plasma T have declined in adult males. Generational differences in the
seasonality of activity and plasma T (Fig. 5) may help to explain why mite loads
are lower on adult than yearling males during the latter half of the activity season,
when environmental mite abundance is high. In yearling males, plasma T
reaches its seasonal peak in July as they approach sexual maturity and begin to
expand their home ranges. In effect, yearling males behave and have high
plasma T in July and August much as adults do in the spring. Differences in mite
load between adult and yearling males can be attributed to the difference in
phenology between these age classes and associated differences in exposure
and susceptibility to mites.

Similarly, phenological differences in activity may help to explain the
unexpected result of higher mite loads on adult females rather than males. Adult

males have much larger home range areas than females (Haenel et al., 2003;
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Cox et al., 2005), and if home range size is positively associated with exposure
to mites, then adult males would be expected to have greater mite loads than
females. However, in European Common Lizards (Zootoca, formerly Lacerta,
vivipara), parasite loads are negatively correlated with activity (Clobert et al.,
2000). Furthermore, ectoparasites exhibit preferences for particular habitats
depending on temperature, humidity, and precipitation (Clopton and Gold, 1993
Eisen et al., 2002; Zippel et al., 1996), and we have shown that mite load is
correlated with mite abundance at the lizard capture site. Thus, despite being
less active than adult males, females could be spending more time in
microhabitats preferred by mites (Rubio and Simonetti, 2009). This behavior of
females, coupled with heightened susceptibility as a result of reproductive
investment, could help to explain the higher mite loads of adult females in
comparison to adult males.

In yearlings, we found no clear differences in mite loads between males
and females until July, when plasma T in males and environmental mite
abundance are high (Fig. 4; Cox et al., 2005). This male-biased pattern of
parasitism is in accordance with other studies on lizards (Salkeld and
Schwarzkopf, 2005; Cox and John-Alder, 2007; Heredia et al., 2014; Dudek et
al., 2016). As yearlings approach reproductive maturity during the latter half of
the activity season in New Jersey, males but not females expand their home
range areas and daily movement distances (John-Alder, pers. obs.). The male

bias in yearling mite loads from July—September may be a result of sex
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differences in microhabitat use and yearling males expanding their home ranges
and taking up residence in microhabitats abundant with mites.

Alternatively, high plasma T in yearling males may increase physiological
susceptibility through immunosuppression (Duffy et al., 2000; Belliure et al.,
2004; Tripathi and Singh, 2014), allowing more mites to feed and survive (Veiga
et al., 1998; Poiani et al., 2000; Hughes and Randolph, 2001). However, several
studies have failed to find a suppressive effect of T alone on immune function
(Hasselquist et al., 1999; Greenman et al., 2005; Ruiz et al., 2010; Roved et al.,
2017), and natural seasonal elevations in T are not generally associated with
immunosuppression (Foo et al., 2017). Further studies are required to examine
the interplay between T and immune response with ectoparasites of reptiles.

A final point of discussion concerns the relative consistency in the rank
ordering of mite loads on S. undulatus. Even while mite loads increased
dramatically and exhibited considerable week-to-week variation, individual lizards
held fairly consistent ranks in terms of mite loads relative to other lizards. Some
of this consistency may reflect week-to-week autocorrelation due to continuing
residence of individual mites. We do not know residence time for mites on S.
undulatus, but residence times of 7-52 days have been reported for mites on
other species of Sceloporus (Goldberg and Bursey, 1993). Thus, it is likely that
some portion of mites were counted in consecutive weeks in the present study.
However, given the consistent rank-ordering of lizards, even while mite loads
increased through June, whether the mechanisms of inter-individual variation

involve differences in exposure or differences in susceptibility, the differences
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among lizards are fairly consistent. This suggests that detrimental effects of
mites are expected to be stronger in some individuals than others. For example,
Knapp et al. (2019) found that consistently high tick loads were associated with
decreased body condition and leukocyte counts in large-bodied iguanas, but not
in small-bodied iguanas. Any inter-individual differences in detrimental effects of
mites may depend on host susceptibility to ectoparasites and age-acquired
immunity (Holland et al., 2007; Jackson et al., 2014).

In summary, sex biases in mite parasitism are dependent upon age and
time of year in S. undulatus. Age biases in mite parasitism are dependent upon
sex and time of year. The overriding determinant of mite load in yearlings and
adults is seasonal variation in environmental mite abundance. Future studies
should focus on detailed analyses of the physiological and behavioral
mechanisms giving rise to seasonal patterns of male and female biased
ectoparasite loads. Studies should also investigate direct and indirect effects of T
and reproductive effort on immune function and activities and behaviors that may
increase exposure to ectoparasites. Lastly, studies are needed to describe local
population dynamics of mites and abiotic factors mediating local environmental

mite abundance and mite prevalence on hosts.
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Table 1. Mean (+ 1 SEM) mite loads (# of mites) for each S. undulatus age-sex

class and environmental mite abundances (# of mites/90 sec) for the 2014-15

activity seasons at Colliers Mills. For mite loads, sample size (n), median mite

load (Mdn), and prevalence of infestation (% of lizards with at least 1 mite) are

given in parentheses (n, Mdn, %). For mite abundances, sample size (n) is the

number of mite abundance sampling localities. See text for statistical analyses.

May June July August September
Yearling 0.29 £ 0.1 28.5+2.9 117.4+6.3 86.0+ 5.0 30.0+27
male (50, 0, 20%) (102, 19, 85%) (93, 101, 100%) (102, 79, 100%) (60, 25, 98%)
Yearling 0.32+ 0.1 294 +28 924 +5.1 73.3+4.3 17.5+1.8
female (74, 0, 11%) (111, 21,94%) (103, 86, 100%) (95, 71, 99%) (47,19, 98%)
Adult 1.0+0.3 19.8+ 3.5 70.6 £8.3 50.0+4.8 145+22
male (51, 0, 31%) (62, 11, 89%) (51, 51, 98%) (44, 42, 100%) (37,12, 97%)
Adult 1.8+04 344 +3.7 86.3+6.6 46.8 £ 3.9 11.9+1.6
female (60, 0, 42%) (102, 20, 93%) (70, 83, 99%) (69, 41, 97%) (27, 12, 100%)
Overall 0.8+0.1 289+1.6 949+ 3.3 68.3+25 204 +1.3
mite load (235, 0,27%) (377,18,91%) (317, 87,99%) (310, 63, 99%) (171, 15, 98%)
Mite 1.1+0.2 10.2+1.1 9.2+1.0 1.9+0.3 0.1+£0.04
abundance (112) (160) (160) (189) (121)
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598 Table 2. Mean (+ 1 SEM) mite load (# of mites) for each S. undulatus age-sex
599 class and for all combined in 2016 at Colliers Mills. Sample size (n), median mite
600 load (Mdn), and prevalence of infestation (% of lizards with at least 1 mite) are
601  given in parentheses (n, Mdn, %). See text for statistical analyses.
602
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6
June 9-10 June 14-15 June 22-24 June 29-30 July 6-7 July 13-14
Yearling 2.2+0.8 15.3+ 1.0 75.1 2.1 110.9.8 +2.6 115.5+6.5 148.6 +2.9
male (41,1,56%) (35,13,91%) (55,60, 100%) (50, 83, 100%) (44,98, 100%) (36, 130, 100%)
Yearling 2.6+ 0.6 10.3+0.8 59.2+1.9 121.9+2.8 91.5+2.4 122.0+2.8
female  (21,3,57%) (31,13,84%) (41,62,100%) (43,86, 100%) (42, 86,100%) (36, 102, 100%)
Adult 42+1.1 12.3+1.3 47.7+ 2.6 62.9+ 3.0 66.1+ 3.1 77.0+3.3
male (15, 4, 75%) (22, 3, 82%) (26, 35, 100%) (22, 54, 100%) (23, 38, 100%) (18, 92, 100%)
Adult 71+35 134+ 1.6 62.4+3.5 68.6 + 3.7 117.0+4.8 147.6 +5.4
female  (17,2,53%) (18,3.5,72%) (26,58,100%)  (22,76,100%) (23, 96,100%) (18, 133, 100%)
All 35+0.8 12.7+ 0.6 60.3+ 1.4 87.4+1.7 95.1+1.7 119.8 +1.9
(94,1,59%) (18,3.5,72%) (148,56, 100%) (138,82, 100%) (136, 85, 100%) (111, 84, 100%)
603
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Fig. 1. Survey areas of S. undulatus (outlined in white) at Colliers Mills Wildlife
Management Area, an area of pinelands in Burlington County, New Jersey. The
survey areas were selected due to the relatively open canopy and forest floor,

abundant with fallen trees and branches.

Fig. 2. Mite loads recorded on female (A: red = adults, pink = yearlings) and male
(B: dark blue = adults, light blue = yearlings) S. undulatus during the 2014 and
2015 activity seasons at Colliers Mills. Circles represent mite loads of individual
lizards. Horizontal bars represent mean monthly mite loads. Environmental mite
abundances are shown in orange, with circles representing individual localities
and horizontal bars representing mean monthly abundances. See text for

statistical analyses.
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Fig. 3. Mite loads recorded on adult (A: red = females, blue = males) and yearling
(B: red = females, blue: males) S. undulatus during the 2014 and 2015 activity
seasons at Colliers Mills. Circles represent mite loads of individual lizards.
Horizontal bars represent mean monthly mite loads. Environmental mite
abundances are shown in orange, with circles representing individual localities
and horizontal bars representing mean monthly abundances. See text for

statistical analyses.

Fig. 4. Mite loads recorded on individual S. undulatus at weekly intervals from 13
June to 14 July 2016 at Colliers Mills. Each line connects an individual lizard’s
mite loads for each of these 5 wks. Lines are color-coded by categories of overall
mite ranks based on the mean mite count of each lizard over the 5-wk period.
Mite loads exhibited a consistent rank order throughout the weeks of study. This
consistency is evident in the segregation of colors in the figure. See text for

statistical analyses.
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Fig. 5. Asynchronous seasonality between S. undulatus males and chigger mites
at Colliers Mills. The solid line (dark blue circles) represents plasma T in adult
males (John-Alder et al., 2009), and the dashed line (light blue circles)
represents plasma T in yearling males (Cox and John-Alder, 2005). For adults,
100% = 53 ng/ml; for yearlings, 100% = 33 ng/ml. The orange shaded region
represents the period when mites infested lizards during the 2014-2016 activity
seasons. The thick black-to-gray horizontal bar represents the activity season of

S. undulatus in New Jersey.
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