

JOURNAL OF HERPETOLOGY

Sex- and age-specific effects are superimposed on seasonal variation in mite parasitism in Eastern Fence Lizards (*Sceloporus undulatus*)

NICHOLAS B. POLLOCK^{1,3,4} and HENRY B. JOHN-ALDER^{1,2}

10

11

12

14 *¹Graduate Program in Ecology and Evolution, Rutgers University, New*
15 *Brunswick, New Jersey, USA 08901*

*16 ²Department of Ecology, Evolution, and Natural Resources, Rutgers University,
17 New Brunswick, New Jersey, USA 08901*

18 ³Present address: *Department of Biology, University of Texas Arlington,*
19 *Arlington, Texas, USA 76019*

20 ⁴Corresponding author. E-mail: nicholas.pollock@uta.edu

21

22 LRH: N.B. Pollock and H.B. John-Alder

23 RRH: Seasonality of Mites

Abstract.—The natural histories of parasites and their hosts are intertwined, and intensity of parasitism depends on parasite abundance and host behavior, as well as potential effects of sex/age. To characterize potential effects of parasite abundance and host sex/age on chigger mite (*Eutrombicula alfreddugesi*) ectoparasitism on Eastern Fence Lizards (*Sceloporus undulatus*), we measured (1) the abundance of mites in the environment as well as mite load and prevalence on lizards throughout the activity season; (2) sex- and age-specific patterns of ectoparasitism; and (3) week-to-week consistency of mite loads on lizards. Environmental mite abundance varied seasonally in close association with mean monthly temperatures and was the main driver of pronounced seasonal variation in mite loads on lizards. Mite loads were almost always higher on yearlings than adults and, somewhat unexpectedly, were never higher on adult males than any of the other age-sex classes. As adults, females had higher mite loads than males in June–July, but as yearlings, males had higher mite loads than females in July–September. Despite considerable week-to-week variation, rank-ordering of lizard mite loads was highly consistent. These findings indicate that (1) consistent age-specific sex biases are superimposed on strong seasonal variation in mite loads and (2) detrimental effects of mites are expected to be consistently stronger in some individuals than others.

44 **Key words:** Chiggers; Ectoparasites; Seasonality; Testosterone; *Trombicula*

45 Parasites have negative and positive effects within ecosystems (Hatcher
46 et al., 2012) and can force substantial life-history trade-offs within hosts, such as
47 decreased hematocrit, growth, and reproductive success (Salvador et al., 1996;
48 Uller and Olsson, 2003; Gooderham and Schulte-Hostedde, 2011). In any host-
49 parasite relationship, parasite infections depend on ecological, demographic, and
50 physiological factors, including environmental abundance and life-stage of
51 parasites, as well as sex, age, body size, and testosterone levels of hosts (Veiga
52 et al., 1998; Pollock et al., 2012; Dudek et al., 2016). Thus, the natural histories
53 of both parasites and their hosts must be taken into account to understand host-
54 parasite relationships in natural communities.

55 In many host species, males are often more heavily parasitized than
56 females (Zuk and McKean, 1996; Klein, 2004; Krasnov et al., 2005; Heredia et
57 al., 2014), and this male-biased parasitism is often associated with sex
58 differences in plasma testosterone (T) (Zuk and McKean, 1996; Gear et al.,
59 2009). In free-ranging Striped Plateau Lizards (*Sceloporus virgatus*), for
60 example, ectoparasitic mites are more abundant on males than females, and in
61 experimental manipulations, parasite load is decreased by castration and
62 restored by T replacement (Cox and John-Alder, 2007). Results of other studies
63 are mixed, but two recent meta-analyses found administration of exogenous T
64 causes an overall increase in parasitism (Roberts et al., 2004; Foo et al., 2017),
65 although parasitism is not usually correlated with T in unmanipulated animals
66 (Foo et al., 2017). Testosterone is thought to increase physiological susceptibility
67 to parasitism through immunosuppression (Olsson et al., 2000; Poiani et al.,

68 2000; Hughes and Randolph, 2001; Foo et al., 2017), and T may also increase
69 ecological exposure to parasitism (Zippel et al., 1996; Bulté et al., 2009; Rubio
70 and Simonetti, 2009). Males, however, are not always more heavily parasitized
71 than females. Female-biased parasitism has been documented in several taxa
72 (McAlpine, 1997; Christe et al., 2007; Pandit et al., 2011), whereas parasitism is
73 apparently not sex-biased in others (Reardon and Norbury, 2004; de Carvalho et
74 al., 2006; Halliday et al., 2014; Knapp et al., 2019).

75 Previous reports of sex-biased parasitism must be interpreted cautiously
76 because of discrepancies among studies, including between, on a single host
77 species (compare Klukowski and Nelson, 2001; Klukowski, 2004; Cox et al.,
78 2005). Discrepancies can arise when a host species is studied in different
79 locations or seasons, as well as from differences in the species of parasite at
80 issue. For example, tick loads were higher on male than female Western Fence
81 Lizards (*Sceloporus occidentalis*) during spring breeding months, but chigger
82 mite loads were higher on females than males during fall months (Lumbad et al.,
83 2011). Similarly, most studies have been conducted over limited time frames
84 (e.g., Klukowski and Nelson, 2001; Cox and John-Alder, 2007; Pollock et al.,
85 2012). As such, these studies fail to account for age-dependent seasonal
86 variation in circulating T (Cox et al., 2005; John-Alder et al. 2009) and seasonal
87 changes in environmental abundance of parasites (Clopton and Gold, 1993;
88 Eisen et al., 2002). A failure to account for seasonality in abundance of parasites,
89 coupled with potential sex- and age-related differences in host susceptibility, may
90 contribute to discrepancies among studies. To clarify some of the discrepancies,

91 we report ectoparasitism by chigger mites (*Eutrombicula alfreddugesi*) on adult
92 and yearling male and female Eastern Fence Lizards (*Sceloporus undulatus*)
93 throughout two-and-a-half activity seasons in the New Jersey pinelands. We
94 hypothesized: (1) males have higher mite loads than females, regardless of age,
95 and (2) adults have higher mite loads than yearlings, regardless of sex.

96

97 MATERIALS AND METHODS

98 *Seasonal Variation in Mite Loads.*—Studies were conducted May to
99 September of 2014 and 2015 and in June and July 2016 at Colliers Mills Wildlife
100 Management Area (40.1° N, 74.4° W), an area of pinelands in Burlington County,
101 New Jersey, USA. Colliers Mills is heavily managed for hunting and is
102 characterized by edge habitat separating open fields from forested tracts of oak
103 and pine (Fig. 1). Its forests tend to have relatively open canopy, sparse
104 understory due to controlled burns, and a forest floor littered with abundant fallen
105 trees and branches.

106 We captured adult and yearling lizards at monthly (2014, 2015) or weekly
107 (2016) intervals by noosing or by hand. Upon capture, we measured snout-vent
108 length (SVL, mm) and body mass (g) using a ruler and Pesola spring scale. Sex
109 was determined by presence (male) or absence (female) of enlarged post-cloacal
110 scales. Mites infesting each lizard (mite load) were counted by one investigator
111 (NBP) using a 10x hand lens. We assessed accuracy of mite load counts by
112 performing five repeated mite counts for 10 different lizards (mite loads ranging
113 10–129) and calculating a Pearson correlation coefficient (r) for each lizard. The

114 repeated counts of mite load within individuals were highly correlated (mean
115 correlation across all individuals = 0.996, SD = 2.10). We marked and identified
116 lizards with unique toe-clip numbers and paint marks, allowing visual
117 identification from a distance, facilitating recaptures and quantification of
118 variation in ectoparasitism.

119 *Seasonal Variation in Environmental Mite Abundance.*—To quantify
120 environmental mite abundance, we used a variation of the plate method
121 described by Williams (1946) and modified by Klukowski (2004) and Schöler et
122 al. (2006). Sampling was done at exact sites where lizards were captured during
123 the 2015 activity season. We sampled between 0800–1240 h, because this time
124 range was used in previous studies (Reed, 1977; Klukowski, 2004) and before
125 high afternoon temperatures, which may reduce mite activity (Clopton and Gold,
126 1993). At each sampling site, we firmly placed nine black ceramic tiles (15x15
127 cm; Daltile, Cranbury, USA) on the substrate in a 3x3 grid format with
128 approximately 1 cm between tiles. For 90 seconds, we counted mites as they
129 crossed over the tiles and removed them with a small paintbrush. We used this
130 methodology to estimate environmental mite abundance once per month in 2015.

131 *Consistency of Mite Loads Among Lizards.*—We investigated the
132 consistency of mite loads among individuals by recapturing marked adult and
133 yearling lizards at weekly intervals from 9 June to 14 July 2016 (6 wk).
134 Methodology was the same as prior years, but the emphasis in 2016 was to
135 maximize recaptures within a limited area (~3.5 ha) rather than to maximize all
136 captures across a much broader area (~11.9 ha). The aim was to determine

137 week-to-week consistency of absolute and ranked mite loads on individual
138 lizards.

139 *Statistical Analyses.*—We combined data from 2014–2015 to provide sex-
140 and age-specific mite loads throughout the activity season. This was done
141 because: (1) sampling effort and the number of lizards captured between years
142 was uneven and (2) after applying a Dunn-Sidak correction to control for the
143 familywise error rate, we found no significant differences between 2014 and 2015
144 mite loads for any sex/age class in any month. We evaluated seasonal variation
145 in environmental mite abundance and mite load by calculating mean
146 environmental mite abundance, mite load, and mite prevalence (% lizards
147 hosting ≥ 1 mite) for each month (May–September). For 2015 only, we used
148 Spearman correlation (r_s) to determine if mite loads on individual lizards were
149 correlated with environmental mite abundances at the sites of lizard capture (i.e.,
150 correlating a lizard's monthly mite load with the environmental mite abundance at
151 the specific site of lizard capture).

152 In 2014–2015, we recorded 1342 mite loads recorded from 677 different
153 lizards. For analyses of the effects of month, sex, and age (and interactions) in
154 2014–2015, we used a Poisson generalized linear mixed model with individual
155 lizard as a random effect (SPSS, Armonk, USA). To compare monthly mite loads
156 of adults versus yearlings within each sex and males versus females within each
157 age class, comparisons were carried out using Dunn-Sidak corrections to
158 account for multiple comparisons and to control for the familywise error rate (i.e.,
159 probability of making at least one Type I error).

In 2016, we recorded 733 mite loads from 198 different lizards. Mite load data from 2016 were used for a finer-grained analysis of sex and age differences in mite load and to analyze interindividual repeatability as a measure of the consistency of mite loads on individual lizards. We excluded the first week of the study (6–10 June 2016) because prevalence of mite parasitism was only 59%, and many lizards carried ≤ 1 mite. Individual consistency of mite loads was analyzed using Kendall's coefficient of concordance. To analyze effects of week, sex, and age (and interactions), we used a Poisson generalized linear mixed model with individual lizard as a random effect (SPSS, Armonk, USA). To compare weekly mite loads of adults versus yearlings within each sex and males versus females within each age class, comparisons were carried out using Dunn-Sidak corrections to account for multiple comparisons and to control for the familywise error rate (i.e., probability of making at least one Type I error). All Dunn-Sidak corrections and P values were considered significant at the $\alpha = 0.002$ level.

175

RESULTS

177 *Mite Abundance, Mite Loads, and Prevalence of Mites*.—Environmental
178 mite abundance, mite loads, and mite prevalence exhibited pronounced seasonal
179 variation (Table 1). Environmental mite abundance (measured in 2015) was low
180 in May, high in June and July, and low in August and September ($F_{4,737} = 33.82$,
181 $P < 0.001$). Mite prevalence was low in May (27%), but high thereafter (June:
182 91%; July: 99%; August: 99%; September: 98%). Mite loads increased from the

183 lowest point in May to peak in July, and declined through August to an
184 intermediate point in September (Wald $X^2 = 15748.48$; $P < 0.001$).

185 In 2014–2015, mite loads on lizards in July were positively correlated with
186 environmental mite abundance in June ($r_s = 0.24$; $P = 0.015$) and July ($r_s = 0.27$;
187 $P < 0.001$). Mite loads in August were positively correlated with mite abundance
188 in July ($r_s = 0.18$; $P = 0.050$) and August ($r_s = 0.14$; $P = 0.046$). Correlations
189 between mite load and environmental mite abundance were not significant for
190 other months (May:May: $r_s = 0.06$; $P = 0.5957$; June:May: $r_s = 0.03$; $P = 0.833$;
191 June:June: $r_s = 0.03$; $P = 0.680$; September:August: $r_s = 0.00$; $P = 0.991$;
192 September:September: $r_s = 0.12$; $P = 0.246$).

193 Mite loads in 2016 weekly samples followed patterns similar to previous
194 seasons (Table 2). Mite loads increased markedly from an overall average of 3.5
195 mites per lizard and 59% mite prevalence (similar in all age-sex classes) in early
196 June to an average of 122 mites per lizard and 100% prevalence in mid-July.
197 Individual loads were as high as 300 mites per lizard.

198 *Sex- and Age-Biased Seasonal Variation in Mite Loads.*—Despite the
199 importance of month as a determinant of mite load in 2014–2015 (Wald $X^2 =$
200 15748.48 ; $P < 0.001$), interaction effects of month x age (Wald $X^2 = 355.03$; $P <$
201 0.001), month x sex (Wald $X^2 = 321.47$; $P < 0.001$), sex x age (Wald $X^2 = 23.23$;
202 $P < 0.001$), and month x sex x age (Wald $X^2 = 95.31$; $P < 0.001$) resulted in
203 significant monthly differences between age-sex classes. In females (Fig. 2A;
204 Table 1), mite loads were higher on adults than yearlings in June (SE = 0.78; $P <$
205 0.001), but higher on yearlings than adults in July (SE = 1.46; $P = 0.003$), August

206 (SE = 1.20; $P < 0.001$), and September (SE = 0.90; $P < 0.001$). In males (Fig. 2B;
207 Table 1), however, mite loads were higher on yearlings than adults in June (SE =
208 0.78; $P < 0.001$), July (SE = 1.63; $P < 0.001$), August (SE = 1.41; $P < 0.001$), and
209 September (SE = 0.94; $P < 0.001$). In adults (Fig. 3A; Table 1), mite loads were
210 higher on females than males in June (SE = 0.81; $P < 0.001$) and July (SE =
211 1.62; $P < 0.001$). In yearlings (Fig. 3B; Table 1), however, mite loads were higher
212 on males than females in July (SE = 1.47; $P < 0.001$), August (SE = 1.27; $P <$
213 0.001), and September (SE = 0.94; $P < 0.001$).

214 Based on weekly data of 2016, mite loads were influenced most
215 significantly by week (Wald $\chi^2 = 2315.75$; $P < 0.001$). Age was also statistically
216 significant (Wald $\chi^2 = 86.65$; $P < 0.001$), as were the interactions of sex x age
217 (Wald $\chi^2 = 115.56$; $P < 0.001$), week x age (Wald $\chi^2 = 81.70$; $P < 0.001$), week x
218 sex (Wald $\chi^2 = 26.60$; $P < 0.001$), and week x sex x age (Wald $\chi^2 = 83.40$; $P <$
219 0.001). In females, mite loads were higher on yearlings than adults during the
220 last week of June (week 4: SE = 4.62; $P < 0.001$; Table 2), but higher on adults
221 than yearlings during the first two weeks of July (week 5: SE = 5.39; $P < 0.001$;
222 week 6: SE = 6.09; $P = 0.005$; Table 2). In males, mite loads were significantly
223 higher on yearlings than adults during the last two weeks of June (week 3: SE =
224 3.35; $P < 0.001$; week 4: SE = 3.94; $P < 0.001$; Table 2) and during the first two
225 weeks of July (week 5: SE = 4.03; $P < 0.001$; week 6: SE = 4.44; $P < 0.001$;
226 Table 2). In adults, mite loads were significantly higher on females than males
227 during the first two weeks of July (week 5: SE = 5.73; $P < 0.001$; week 6: SE =
228 6.37; $P < 0.001$; Table 2). In yearlings the opposite occurred: mite loads were

229 higher on males than females during the fourth week of June (week 3: SE = 2.85;
230 $P < 0.001$; Table 2) and during the first two weeks of July (week 5: SE = 3.54; P
231 < 0.001 ; week 6: SE = 4.04; $P < 0.001$; Table 2).

232 *Individual Consistency of Mite Loads.*—Individual rankings of mite loads
233 were fairly consistent week-to-week in 2016 (Fig. 4; Kendall's $W = 0.485$, $X^2 =$
234 106.72, $P < 0.0001$). Lizards were categorized into quintiles based on average
235 mite loads calculated across the final five sampling points, and they tended to
236 remain within those quintiles every week.

237

DISCUSSION

Our results indicate significant seasonality in mite load and environmental mite abundance in Eastern Fence Lizards, in addition to significant sex- and age-specific differences in mite load. Previous studies have documented seasonal variation in ectoparasite load (Goldberg and Bursey, 1991; Schall et al., 2000; Godfrey et al., 2008; Lumbad et al., 2011) or environmental ectoparasite abundance (Clopton and Gold, 1993; MacDonald and Briggs, 2016), but ours is one of the few to investigate seasonal variation in both ectoparasite load and abundance. We found a temporal association between mite load and environmental mite abundance across months. Furthermore, mite loads on lizards in July and August were correlated with environmental mite abundances measured at the specific localities where lizards were captured. These findings, along with strong significant effects of month and week, suggest abundance of mites in the environment is the primary determinant of host lizard mite load.

252 However, further studies are necessary to clarify relationships between host
253 ectoparasite load and environmental ectoparasite abundance.

254 Two other studies on lizards have investigated seasonal variation in
255 ectoparasite load and environmental abundance. In Collared Lizards
256 (*Crotaphytus collaris*), Curtis and Baird (2008) found that seasonal variation in
257 mite parasitism and environmental abundance were temporally dissociated,
258 probably because abundance of nonparasitic adult mites was monitored instead
259 of parasitic larval mites. Larval mites parasitized lizards after adult mites
260 disappeared in early June, suggesting that adult mites descend into soil to
261 oviposit in May, after which parasitic larvae emerge in June to feed on lizard
262 hosts (Curtis and Baird, 2008). This could similarly explain the low mite loads and
263 low environmental mite abundances we observed during May and early June.
264 However, further investigations of the phenology of mite life cycles are needed
265 (Shatrov and Kudryashova, 2006).

266 In contrast, Klukowski (2004) found an associated pattern similar to ours
267 in his study of *S. undulatus* in Tennessee, where mite loads were low in May and
268 August when environmental mite abundance was low, but high in June and July
269 when abundance was high. However, environmental mite abundances, as well
270 as mite loads, were high earlier and for a longer period of time in Tennessee than
271 New Jersey. Differences in phenology of mite parasitism and environmental mite
272 abundances can be attributed to geographical differences in climate. In south
273 Texas, for example, Mather (1979) reported high mite loads and 100% infestation
274 prevalence on *S. undulatus* in October and November, in sharp contrast to what

275 has been found in California (Goldberg and Bursey, 1991; Lumbad, 2011),
276 Tennessee (Klukowski, 2004), and New Jersey studies.

277 Geographic variation in patterns of seasonal mite loads is likely the result
278 of climate differences between regions and subsequent impacts on abundance of
279 mites in the environment. Environmental mite abundances are highest in areas
280 with high humidity and moderate temperatures (Zippel et al., 1996), and mite
281 activity is determined by a combination of temperature and humidity, rather than
282 by either of these variables alone (Clopton and Gold, 1993). In New Jersey,
283 variation in mean monthly temperatures recorded at the Rutgers Pinelands Field
284 Station (RPFS, 2015) is closely associated with monthly environmental mite
285 abundances. Environmental mite abundance is low during months in which mean
286 monthly temperatures are less than 20 °C, but high during months in which mean
287 monthly temperatures are greater than 20 °C.

288 Seasonal variation in mite abundance is likely an overarching cause of
289 variation in mite load, but superimposed on this are consistent differences in mite
290 load among sex and age classes. Based on commonly observed sex effects and
291 previously reported relationships between T and parasitism, and because plasma
292 T is always higher in males than in females of *S. undulatus* (Cox et al., 2005;
293 John-Alder et al., 2009), we predicted mite loads would be higher on males than
294 females and would show an association with seasonal variation in plasma T.
295 However, our findings only partially support these predictions. Although mite
296 loads were consistently higher on yearling males than other age/sex classes
297 during the latter half of the activity season, loads in adult males were never

298 highest and were often lowest among all classes. Furthermore, the majority of
299 studies investigating effects of age on parasitism in reptiles have found higher
300 parasite loads on older individuals (Amo et al., 2004; Reardon and Norbury,
301 2004; Dudek et al., 2016), but this was not the case in the present study.

302 The absence of mites in the environment can explain why mite loads on
303 adult males are lower in May than at other times of year (Fig. 5), despite this
304 being the time of high plasma T and peak investment in reproductive activity.
305 Even if T and high activity cause males to be highly susceptible to parasitism,
306 ecological exposure is simply too low for mites to be of any consequence. By the
307 time mites become abundant in the environment, reproductive activity and
308 plasma T have declined in adult males. Generational differences in the
309 seasonality of activity and plasma T (Fig. 5) may help to explain why mite loads
310 are lower on adult than yearling males during the latter half of the activity season,
311 when environmental mite abundance is high. In yearling males, plasma T
312 reaches its seasonal peak in July as they approach sexual maturity and begin to
313 expand their home ranges. In effect, yearling males behave and have high
314 plasma T in July and August much as adults do in the spring. Differences in mite
315 load between adult and yearling males can be attributed to the difference in
316 phenology between these age classes and associated differences in exposure
317 and susceptibility to mites.

318 Similarly, phenological differences in activity may help to explain the
319 unexpected result of higher mite loads on adult females rather than males. Adult
320 males have much larger home range areas than females (Haenel et al., 2003;

321 Cox et al., 2005), and if home range size is positively associated with exposure
322 to mites, then adult males would be expected to have greater mite loads than
323 females. However, in European Common Lizards (*Zootoca*, formerly *Lacerta*,
324 *vivipara*), parasite loads are negatively correlated with activity (Clobert et al.,
325 2000). Furthermore, ectoparasites exhibit preferences for particular habitats
326 depending on temperature, humidity, and precipitation (Clopton and Gold, 1993;
327 Eisen et al., 2002; Zippel et al., 1996), and we have shown that mite load is
328 correlated with mite abundance at the lizard capture site. Thus, despite being
329 less active than adult males, females could be spending more time in
330 microhabitats preferred by mites (Rubio and Simonetti, 2009). This behavior of
331 females, coupled with heightened susceptibility as a result of reproductive
332 investment, could help to explain the higher mite loads of adult females in
333 comparison to adult males.

334 In yearlings, we found no clear differences in mite loads between males
335 and females until July, when plasma T in males and environmental mite
336 abundance are high (Fig. 4; Cox et al., 2005). This male-biased pattern of
337 parasitism is in accordance with other studies on lizards (Salkeld and
338 Schwarzkopf, 2005; Cox and John-Alder, 2007; Heredia et al., 2014; Dudek et
339 al., 2016). As yearlings approach reproductive maturity during the latter half of
340 the activity season in New Jersey, males but not females expand their home
341 range areas and daily movement distances (John-Alder, pers. obs.). The male
342 bias in yearling mite loads from July–September may be a result of sex

343 differences in microhabitat use and yearling males expanding their home ranges
344 and taking up residence in microhabitats abundant with mites.

345 Alternatively, high plasma T in yearling males may increase physiological
346 susceptibility through immunosuppression (Duffy et al., 2000; Belliure et al.,
347 2004; Tripathi and Singh, 2014), allowing more mites to feed and survive (Veiga
348 et al., 1998; Poiani et al., 2000; Hughes and Randolph, 2001). However, several
349 studies have failed to find a suppressive effect of T alone on immune function
350 (Hasselquist et al., 1999; Greenman et al., 2005; Ruiz et al., 2010; Roved et al.,
351 2017), and natural seasonal elevations in T are not generally associated with
352 immunosuppression (Foo et al., 2017). Further studies are required to examine
353 the interplay between T and immune response with ectoparasites of reptiles.

354 A final point of discussion concerns the relative consistency in the rank
355 ordering of mite loads on *S. undulatus*. Even while mite loads increased
356 dramatically and exhibited considerable week-to-week variation, individual lizards
357 held fairly consistent ranks in terms of mite loads relative to other lizards. Some
358 of this consistency may reflect week-to-week autocorrelation due to continuing
359 residence of individual mites. We do not know residence time for mites on *S.*
360 *undulatus*, but residence times of 7–52 days have been reported for mites on
361 other species of *Sceloporus* (Goldberg and Bursey, 1993). Thus, it is likely that
362 some portion of mites were counted in consecutive weeks in the present study.
363 However, given the consistent rank-ordering of lizards, even while mite loads
364 increased through June, whether the mechanisms of inter-individual variation
365 involve differences in exposure or differences in susceptibility, the differences

366 among lizards are fairly consistent. This suggests that detrimental effects of
367 mites are expected to be stronger in some individuals than others. For example,
368 Knapp et al. (2019) found that consistently high tick loads were associated with
369 decreased body condition and leukocyte counts in large-bodied iguanas, but not
370 in small-bodied iguanas. Any inter-individual differences in detrimental effects of
371 mites may depend on host susceptibility to ectoparasites and age-acquired
372 immunity (Holland et al., 2007; Jackson et al., 2014).

373 In summary, sex biases in mite parasitism are dependent upon age and
374 time of year in *S. undulatus*. Age biases in mite parasitism are dependent upon
375 sex and time of year. The overriding determinant of mite load in yearlings and
376 adults is seasonal variation in environmental mite abundance. Future studies
377 should focus on detailed analyses of the physiological and behavioral
378 mechanisms giving rise to seasonal patterns of male and female biased
379 ectoparasite loads. Studies should also investigate direct and indirect effects of T
380 and reproductive effort on immune function and activities and behaviors that may
381 increase exposure to ectoparasites. Lastly, studies are needed to describe local
382 population dynamics of mites and abiotic factors mediating local environmental
383 mite abundance and mite prevalence on hosts.

384

385 *Acknowledgments.*—We thank R. Cox, J. Lockwood, and M. Sears for
386 their valuable feedback on data presentation and statistical analyses. We also
387 thank R. Antigues, J. Azzolini, J. Gribben, C. Groninger, and J. Kerr for their
388 assistance in lizard capturing and data recording, without which this study would

389 not be possible. Funding was provided by the Graduate School of Rutgers
390 University. Animal capture was approved by the New Jersey Department of
391 Environmental Protection, Division of Fish and Wildlife (Permit #2014086,
392 #2015090).

393

394 **LITERATURE CITED**

395 Amo, L., P. Lopez, and J. Martin. 2004. Prevalence and intensity of
396 haemogregarinid blood parasites in a population of the Iberian rock lizard,
397 *Lacerta monticola*. *Parasitology Research* 94:290–293.

398 Belliure, J., L. Smith, and G. Sorci. 2004. Effect of testosterone on T cell-
399 mediated immunity in two species of Mediterranean lacertid lizards.
400 *Journal of Experimental Zoology A* 301:411–418.

401 Bulté, G., A. Plummer, A. Thibaudeau, and G. Blouin-Demers. 2009. Infection of
402 Yarrow's spiny lizards (*Sceloporus jarrovii*) by chiggers and malaria in the
403 Chiricahua Mountains, Arizona. *Southwestern Naturalist* 54:204–207.

404 Christe, P., O. Glaizot, G. Evanno, N. Bruyndonckx, G. Devevey, G. Yannic,
405 P. Patthey, A. Maeder, P. Vogel, and R. Arlettaz. 2007. Host sex and
406 ectoparasites choice: preference for, and higher survival on female hosts.
407 *Journal of Animal Ecology* 76:703–710.

408 Clobert, J., A. Oppiger, G. Sorci, B. Ernande, J. G. Swallow, and T. Garland Jr..
409 2000. Trade-offs in phenotypic traits: Endurance at birth, growth, survival,
410 predation and susceptibility to parasitism in a lizard, *Lacerta vivipara*.
411 *Functional Ecology* 14:675–684.

412 Clopton, R. E., and R. E. Gold. 1993. Distribution and seasonal and diurnal
413 activity patterns of *Eutrombicula alfreddugesi* (Acari: Trombiculidae) in a
414 forest edge ecosystem. *Journal of Medical Entomology* 30:47–53.

415 Cox, R. M., and H. B. John-Alder. 2005. Testosterone has opposite effects on
416 male growth in lizards (*Sceloporus* spp.) with opposite patterns of sexual
417 size dimorphism. *Journal of Experimental Biology* 208:4679–4687.

418 Cox, R. M., and H. B. John-Alder. 2007. Increased mite parasitism as a cost of
419 testosterone in male striped plateau lizards *Sceloporus virgatus*.
420 *Functional Ecology* 21:327–334.

421 Cox, R. M., S. L. Skelly, and H. B. John-Alder. 2005. Testosterone inhibits growth
422 in juvenile male Eastern Fence Lizards (*Sceloporus undulatus*):
423 implications for energy allocation and sexual size dimorphism.
424 *Physiological Biochemical Zoology* 78:531–545.

425 Curtis, J. L., and T. A. Baird. 2008. Within-population variation in free-living adult
426 and ectoparasitic larval trombiculid mites on collared lizards.
427 *Herpetologica* 64:189–199.

428 de Carvalho, A. L., A. F. de Araújo, and H. R. D. Silva. 2006. Patterns of
429 parasitism by *Eutrombicula alfreddugesi* (Oudemans) (Acari,
430 Trombiculidae) in three species of *Tropidurus* (Squamata, Tropiduridae)
431 from cerrado habitat of central Brazil. *Revista Brasileira Zoologica*
432 23:1010–1015.

433 Dudek, K., P. Skórka, Z. A. Sajkowska, A. Ekner-Grzyb, M. Dudek, and P.
434 Tryjanowski. 2016. Distribution pattern and number of ticks on lizards.
435 Ticks and Tick-Borne Diseases 7:172–179.

436 Duffy, D. L., G. E. Bentley, D. L. Drazen, and G. F. Ball. 2000. Effects of
437 testosterone on cell-mediated and humoral immunity in non-breeding adult
438 European starlings. Behavioral Ecology 11:654–662.

439 Eisen, L., R. J. Eisen, and R. S. Lane. 2002. Seasonal activity patterns of *Ixodes*
440 *pacificus* nymphs in relation to climatic conditions. Medical and Veterinary
441 Entomology 16:235–244.

442 Foo, Y. Z., S. Nakagawa, G. Rhodes, and L. W. Simmons. 2017. The effects of
443 sex hormones on immune function: a meta-analysis. Biological Reviews
444 92:551–571.

445 Godfrey, S. S., C. M. Bull, and N. J. Nelson. 2008. Seasonal and spatial
446 dynamics of ectoparasite infestation of a threatened reptile, the tuatara
447 (*Sphenodon punctatus*). Medical and Veterinary Entomology 22:374–385.

448 Goldberg, S., and C. Bursey. 1991. Integumental lesions caused by
449 ectoparasites in a wild population of the side-blotched lizard (*Uta*
450 *stansburiana*). Journal of Wildlife Diseases 27:68–73.

451 Gooderham, K., and A. Schulte-Hostedde. 2011. Macroparasitism influences
452 reproductive success in red squirrels (*Tamiasciurus hudsonicus*).
453 Behavioral Ecology 22:1195–1200.

454 Greenman, C. G., L. B. Martin, and M. Hau. 2005. Reproductive state, but not
455 testosterone, reduces immune function in male house sparrows (*Passer*
456 *domesticus*). *Physiological Biochemical Zoology* 78:60–68.

457 Grear, D. A., S. E. Perkins, and P. J. Hudson. 2009. Does elevated testosterone
458 result in increased exposure and transmission of parasites? *Ecology*
459 *Letters* 12:528-537.

460 Haenel, G., L. C. Smith, H. B. John-Alder, and C. Guyer. 2003. Home-range
461 analysis in *Sceloporus undulatus* (eastern fence lizard). I. Spacing
462 patterns and the context of territorial behavior. *Copeia* 2003:99–112.

463 Halliday, W., J. Paterson, L. Patterson, S. Cooke, and G. Blouin-Demers. 2014.
464 Testosterone, body size, and sexual signals predict parasite load in
465 Yarrow 's spiny lizards (*Sceloporus jarrovii*). *Canadian Journal of Zoology*
466 92:1075–1082.

467 Hasselquist, D., J. A. Marsh, P. W. Sherman, and J. C. Wingfield. 1999. Is avian
468 humoral immunocompetence suppressed by testosterone? *Behavioral*
469 *Ecology and Sociobiology* 45:167–175.

470 Hatcher, M. J., J. T. A. Dick, and A. M. Dunn. 2012. Diverse effects of parasites
471 in ecosystems: linking interdependent processes. *Frontiers in Ecology and*
472 *Environment* 10:186-194.

473 Heredia, V. J., N. Vicente, C. Robles, and M. Halloy. 2014. Mites in the
474 neotropical lizard *Liolaemus pacha* (Iguania: Liolaemidae): relation to body
475 size, sex and season. *South American Journal of Herpetology* 9:14–19.

476 Holland, M., D. Skelly, M. Kashgarian, S. Bolden, L. Harrison, and M. Cappello.

477 2007. Echinostome infection in green frogs (*Rana clamitans*) is stage and

478 age dependent. *Journal of Zoology* 271:455–462.

479 Hughes, V. L., and S. E. Randolph. 2001. Testosterone depresses innate and

480 acquired resistance to ticks in natural rodent hosts: a force for aggregated

481 distributions of parasites. *Journal of Parasitology* 87:49–54.

482 Jackson, J. A., A. J. Hall, I. M. Friberg, C. Ralli, A. Lowe, M. Zawadzka, A. K.

483 Turner, A. Stewart, R. J. Birtles, S. Paterson, J. E. Bradley, and M. Begon.

484 2014. An immunological marker of tolerance to infection in wild rodents.

485 *PLoS Biology* 12:e1001901.

486 John-Alder, H. B., R. M. Cox, G. J. Haenel, and L. C. Smith. 2009. Hormones,

487 performance and fitness: Natural history and endocrine experiments on a

488 lizard (*Sceloporus undulatus*). *Integrative and Comparative Biology*

489 49:393–407.

490 Klein, S. L. 2004. Hormonal and immunological mechanisms mediating sex

491 differences in parasite infection. *Parasite Immunology* 26:247-264.

492 Klukowski, M. 2004. Seasonal changes in abundance of host-seeking chiggers

493 (Acari: Trombiculidae) and infestations on fence lizards, *Sceloporus*

494 *undulatus*. *Journal of Herpetology* 38:141–144.

495 Klukowski, M., and C. E. Nelson. 2001. Ectoparasite loads in free-ranging

496 northern fence lizards, *Sceloporus undulatus hyacinthinus*: effects of

497 testosterone and sex. *Behavioral Ecology and Sociobiology* 49:289–295.

498 Knapp, C. R., C. Perez-Heydrich, T. Zachariah, J. Jollay, A. N. Schnelle, S. D.

499 Buckner, C. R. Lattin, and L. M. Romero. 2019. Host sex, size, and

500 hemoparasite infection influence the effects of ectoparasitic burdens on

501 free-ranging iguanas. *Ecology and Evolution* 9:1946–1956.

502 Krasnov, B. R., S. Morand, H. Hawlena, I. S. Khokhlova, and G. I. Shenbrot.

503 2005. Sex-biased parasitism, seasonality and sexual size dimorphism in

504 desert rodents. *Oecologia* 146:209–217.

505 Lumbad, A., L. Vredevoe, and E. Taylor. 2011. Season and sex of host affect

506 intensities of ectoparasites in western fence lizards (*Sceloporus*

507 *occidentalis*) on the central coast of California. *Southwestern Naturalist*

508 56:369–377.

509 MacDonald, A. J. and C. J. Briggs. 2016. Truncated seasonal activity patterns of

510 the western blacklegged tick (*Ixodes pacificus*) in central and southern

511 California. *Ticks and Tick-Borne Diseases* 7:234–242.

512 Mather, C. M. 1979. Incidence of mites on *Sceloporus variabilis* and *Sceloporus*

513 *undulatus* (Sauria: Iguanidae) in south Texas. *Texas Journal of Science*

514 31:103.

515 McAlpine, D. F. 1997. Helminth communities in bullfrogs (*Rana catesbeiana*),

516 green frogs (*Rana clamitans*), and leopard frogs (*Rana pipiens*) from New

517 Brunswick, Canada. *Canadian Journal of Zoology* 75:1883–1890.

518 Olsson, M., E. Wapstra, T. Madsen, and B. Silverin. 2000. Testosterone, ticks

519 and travels: a test of the immunocompetence-handicap hypothesis in free-

520 ranging male sand lizards. *Proceedings of Royal Society B: Biological*
521 *Sciences* 267:2339–2343.

522 Pandit, P., R. Bandivdekar, G. Geevarghese, S. Pande, and O. Mandke. 2011.
523 Tick infestation on wild snakes in northern part of Western Ghats of India.
524 *Journal of Medical Entomology* 48:504–507.

525 Poiani, A., A. R. Goldsmith, and M. R. Evans. 2000. Ectoparasites of house
526 sparrows (*Passer domesticus*): an experimental test of the
527 immunocompetence handicap hypothesis and a new model. *Behavioral*
528 *Ecology and Sociobiology* 47:230–242.

529 Pollock, N. B., L. Vredevoe, and E. N. Taylor. 2012. The effect of exogenous
530 testosterone on ectoparasite loads in free-ranging western fence lizards.
531 *Journal of Experimental Zoology* 317:447–454.

532 Reardon, J. T., and G. Norbury. 2004. Ectoparasite and hemoparasite infection in
533 a diverse temperate lizard assemblage at Macraes Flat, South Island,
534 New Zealand. *Journal of Parasitology* 90:1274–1278.

535 Reed, J. 1977. The effect of forest litter burning on populations of the chigger
536 *Eutrombicula alfreddugesi* (Acarina: trombiculidae). *Journal of Medical*
537 *Entomology* 14:134–135.

538 Roberts, M. L., K. L. Buchanan, and M. R. Evans. 2004. Testing the
539 immunocompetence handicap hypothesis: a review of the evidence.
540 *Animal Behaviour* 68:227–239.

541 Roved, J., H. Westerdahl, and D. Hasselquist. 2017. Sex differences in immune
542 responses: Hormonal effects, antagonistic selection, and evolutionary
543 consequences. *Hormones and Behavior* 88:95–105.

544 RPFS (Rutgers Pinelands Field Station). 2015. Meteorological data.

545 Rubio, A. V. and J. A. Simonetti. 2009. Ectoparasitism by *Eutrombicula*
546 *alfreddugesi* larvae (Acari: Trombiculidae) on *Liolaemus tenuis* lizard in a
547 Chilean fragmented temperate forest. *Journal of Parasitology* 95:244–245.

548 Ruiz, M., S. S. French, G. E. Demas, and E. P. Martins. 2010. Food
549 supplementation and testosterone interact to influence reproductive
550 behavior and immune function in *Sceloporus graciosus*. *Hormones and*
551 *Behavior* 57:134–139.

552 Salkeld, D. J., and L. Schwarzkopf. 2005. Epizootiology of blood parasites in an
553 Australian lizard: a mark-recapture study of a natural population.
554 *International Journal of Parasitology* 35:11–18.

555 Salvador, A., J. P. Veiga, J. Martin, P. Lopez, M. Abelenda, and M. Puerta. 1996.
556 The cost of producing a sexual signal: testosterone increases the
557 susceptibility of male lizards to ectoparasitic infestation. *Behavioral*
558 *Ecology* 7:145–150.

559 Schall, J. J., H. R. Prendeville, and K. A. Hanley. 2000. Prevalence of the tick,
560 *Ixodes pacificus*, on western fence lizards, *Sceloporus occidentalis*: trends
561 by gender, size, season, site, and mite infestation. *Journal of Herpetology*
562 34:160–163.

563 Schöler, A., W. A. Maier, and H. Kampen. 2006. Multiple environmental factor
564 analysis in habitats of the harvest mite *Neotrombicula autumnalis* (Acar:
565 Trombiculidae) suggests extraordinarily high euryoecious biology.
566 Experimental and Applied Acarology 39:41–62.

567 Shatrov, A. B. and N. I. Kudryashova. 2006. Taxonomy, life cycles and the origin
568 of parasitism in trombiculid mites. Pp. 119–140 in S. Morand, B.R.
569 Krasnov, and R. Poulin (Eds.), *Micromammals and Macroparasites*.
570 Springer-Verlag, USA.

571 Tripathi, M. K., and R. Singh. 2014. Differential suppressive effects of
572 testosterone on immune function in fresh water snake, *Natrix piscator*: an
573 in vitro study. PLoS One 9:e104431.

574 Uller, T., and M. Olsson. 2003. Prenatal exposure to testosterone increases
575 ectoparasite susceptibility in the common lizard (*Lacerta vivipara*).
576 Proceedings of Royal Society B: Biological Sciences 270:1867–1870.

577 Veiga, J. P., A. Salvador, S. Merino, and M. Puerta. 1998. Reproductive effort
578 affects immune response and parasite infection in a lizard: a phenotypic
579 manipulation using testosterone. Oikos 82:313–318.

580 Williams, R. 1946. A contribution to our knowledge of the bionomics of the
581 common North American chigger, *Eutrombicula alfreddugesi* with a
582 description of a rapid collecting method. American Journal of Tropical
583 Medicine and Hygiene 1946:243–250.

584 Zippel, K., R. Powell, J. Parmerlee, S. Monks, A. Lathrop, and D. Smith. 1996.

585 The distribution of larval *Eutrombicula alfreddugesi* (Acari: Trombiculidae)

586 infesting *Anolis* lizards. Caribbean Journal of Science 32:43–49.

587 Zuk, M., and K. A. McKean. 1996. Sex differences in parasite infections: patterns

588 and processes. International Electronic Journal of Environmental

589 Education 26:1009-1024.

590 Table 1. Mean (\pm 1 SEM) mite loads (# of mites) for each *S. undulatus* age-sex
 591 class and environmental mite abundances (# of mites/90 sec) for the 2014–15
 592 activity seasons at Colliers Mills. For mite loads, sample size (*n*), median mite
 593 load (Mdn), and prevalence of infestation (% of lizards with at least 1 mite) are
 594 given in parentheses (*n*, Mdn, %). For mite abundances, sample size (*n*) is the
 595 number of mite abundance sampling localities. See text for statistical analyses.

596

	May	June	July	August	September
Yearling male	0.29 ± 0.1 (50, 0, 20%)	28.5 ± 2.9 (102, 19, 85%)	117.4 ± 6.3 (93, 101, 100%)	86.0 ± 5.0 (102, 79, 100%)	30.0 ± 2.7 (60, 25, 98%)
Yearling female	0.32 ± 0.1 (74, 0, 11%)	29.4 ± 2.8 (111, 21, 94%)	92.4 ± 5.1 (103, 86, 100%)	73.3 ± 4.3 (95, 71, 99%)	17.5 ± 1.8 (47, 19, 98%)
Adult male	1.0 ± 0.3 (51, 0, 31%)	19.8 ± 3.5 (62, 11, 89%)	70.6 ± 8.3 (51, 51, 98%)	50.0 ± 4.8 (44, 42, 100%)	14.5 ± 2.2 (37, 12, 97%)
Adult female	1.8 ± 0.4 (60, 0, 42%)	34.4 ± 3.7 (102, 20, 93%)	86.3 ± 6.6 (70, 83, 99%)	46.8 ± 3.9 (69, 41, 97%)	11.9 ± 1.6 (27, 12, 100%)
Overall mite load	0.8 ± 0.1 (235, 0, 27%)	28.9 ± 1.6 (377, 18, 91%)	94.9 ± 3.3 (317, 87, 99%)	68.3 ± 2.5 (310, 63, 99%)	20.4 ± 1.3 (171, 15, 98%)
Mite abundance	1.1 ± 0.2 (112)	10.2 ± 1.1 (160)	9.2 ± 1.0 (160)	1.9 ± 0.3 (189)	0.1 ± 0.04 (121)

597

598 Table 2. Mean (\pm 1 SEM) mite load (# of mites) for each *S. undulatus* age-sex
 599 class and for all combined in 2016 at Colliers Mills. Sample size (*n*), median mite
 600 load (Mdn), and prevalence of infestation (% of lizards with at least 1 mite) are
 601 given in parentheses (*n*, Mdn, %). See text for statistical analyses.

602

	Week 1 June 9–10	Week 2 June 14–15	Week 3 June 22–24	Week 4 June 29–30	Week 5 July 6–7	Week 6 July 13–14
Yearling male	2.2 \pm 0.8 (41, 1, 56%)	15.3 \pm 1.0 (35, 13, 91%)	75.1 \pm 2.1 (55, 60, 100%)	110.9.8 \pm 2.6 (50, 83, 100%)	115.5 \pm 6.5 (44, 98, 100%)	148.6 \pm 2.9 (36, 130, 100%)
Yearling female	2.6 \pm 0.6 (21, 3, 57%)	10.3 \pm 0.8 (31, 13, 84%)	59.2 \pm 1.9 (41, 62, 100%)	121.9 \pm 2.8 (43, 86, 100%)	91.5 \pm 2.4 (42, 86, 100%)	122.0 \pm 2.8 (36, 102, 100%)
Adult male	4.2 \pm 1.1 (15, 4, 75%)	12.3 \pm 1.3 (22, 3, 82%)	47.7 \pm 2.6 (26, 35, 100%)	62.9 \pm 3.0 (22, 54, 100%)	66.1 \pm 3.1 (23, 38, 100%)	77.0 \pm 3.3 (18, 92, 100%)
Adult female	7.1 \pm 3.5 (17, 2, 53%)	13.4 \pm 1.6 (18, 3.5, 72%)	62.4 \pm 3.5 (26, 58, 100%)	68.6 \pm 3.7 (22, 76, 100%)	117.0 \pm 4.8 (23, 96, 100%)	147.6 \pm 5.4 (18, 133, 100%)
All	3.5 \pm 0.8 (94, 1, 59%)	12.7 \pm 0.6 (18, 3.5, 72%)	60.3 \pm 1.4 (148, 56, 100%)	87.4 \pm 1.7 (138, 82, 100%)	95.1 \pm 1.7 (136, 85, 100%)	119.8 \pm 1.9 (111, 84, 100%)

603

604 Fig. 1. Survey areas of *S. undulatus* (outlined in white) at Colliers Mills Wildlife
605 Management Area, an area of pinelands in Burlington County, New Jersey. The
606 survey areas were selected due to the relatively open canopy and forest floor,
607 abundant with fallen trees and branches.

608

609

610

611 Fig. 2. Mite loads recorded on female (A: red = adults, pink = yearlings) and male
612 (B: dark blue = adults, light blue = yearlings) *S. undulatus* during the 2014 and
613 2015 activity seasons at Colliers Mills. Circles represent mite loads of individual
614 lizards. Horizontal bars represent mean monthly mite loads. Environmental mite
615 abundances are shown in orange, with circles representing individual localities
616 and horizontal bars representing mean monthly abundances. See text for
617 statistical analyses.

618

619

620

621

622

623

624 Fig. 3. Mite loads recorded on adult (A: red = females, blue = males) and yearling
625 (B: red = females, blue: males) *S. undulatus* during the 2014 and 2015 activity
626 seasons at Colliers Mills. Circles represent mite loads of individual lizards.
627 Horizontal bars represent mean monthly mite loads. Environmental mite
628 abundances are shown in orange, with circles representing individual localities
629 and horizontal bars representing mean monthly abundances. See text for
630 statistical analyses.

631

632

633

634 Fig. 4. Mite loads recorded on individual *S. undulatus* at weekly intervals from 13
635 June to 14 July 2016 at Colliers Mills. Each line connects an individual lizard's
636 mite loads for each of these 5 wks. Lines are color-coded by categories of overall
637 mite ranks based on the mean mite count of each lizard over the 5-wk period.
638 Mite loads exhibited a consistent rank order throughout the weeks of study. This
639 consistency is evident in the segregation of colors in the figure. See text for
640 statistical analyses.

641 Fig. 5. Asynchronous seasonality between *S. undulatus* males and chigger mites
642 at Colliers Mills. The solid line (dark blue circles) represents plasma T in adult
643 males (John-Alder et al., 2009), and the dashed line (light blue circles)
644 represents plasma T in yearling males (Cox and John-Alder, 2005). For adults,
645 100% = 53 ng/ml; for yearlings, 100% = 33 ng/ml. The orange shaded region
646 represents the period when mites infested lizards during the 2014–2016 activity
647 seasons. The thick black-to-gray horizontal bar represents the activity season of
648 *S. undulatus* in New Jersey.