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Abstract 

 Previous research has demonstrated that testosterone (T) can inhibit growth in female-

larger species and stimulate growth in male-larger species, but the underlying mechanisms of this 

regulatory bipotentiality have not been investigated.  In the present study, we investigated the 

effects of T on the expression of hepatic insulin-like growth factor-1 (IGF-1) mRNA and 

circulating IGF-1 hormone in Sceloporus undulatus, a species of lizard in which females grow 

faster to become larger than males and in which T inhibits growth.  Experiments were performed 

in captivity on mature female and male adults in the asymptotic phase of their growth curve and 

on actively growing, pre-reproductive juveniles.  In adult males, the expression of hepatic IGF-1 

mRNA increased following surgical castration and returned to control levels with T replacement; 

in intact adult females, exogenous T had no effect on IGF-1 mRNA expression.  In juveniles, T 

significantly reduced both growth and the expression of hepatic IGF-1 mRNA to similar extents 

in intact females and in castrated males.  The relative inhibitory effects of T on mRNA 

expression were greater in juveniles than in adults.  Plasma IGF-1 hormone was about four-times 

higher in juveniles than in adults, but T had no significant effect on IGF-1 hormone in either sex 

or in either age group.  Our finding of inhibition of the expression of hepatic IGF-1 mRNA 

stands in contrast to the stimulatory effects of T in the published body of literature.  We attribute 

our novel finding to our use of a species in which T inhibits rather than stimulates growth.  Our 

findings begin to explain how T has the regulatory bipotentiality to be stimulatory in some 

species and inhibitory in others, requiring only an evolutionary reversal in the molecular 

regulation of growth-regulatory genes including IGF-1.  Further comparative transcriptomic 

studies will be required to fully resolve the molecular mechanism of growth inhibition. 
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1. Introduction 

 Body size is one of the most obvious traits of any organism, but its ease of measurement 

belies its pervasive biological importance (Peters, 1983; Dunham and Miles, 1985; Calder, 1996) 

and developmental complexity (Schreibman et al., 1993, Nijhout et al., 2010; Swanson et al., 

2013).  The importance of body size can be inferred from the widespread observation that even 

within species, females and males have evolved different optimal body sizes (i.e., sexual size 

dimorphism (SSD); Fairbairn et al., 2007) accompanied by sex differences in growth (Manicom 

et al., 2014).  In squamate reptiles (lizards and snakes), for example, either females or males can 

be as much as 50% larger (in length) than the other sex (Cox et al., 2003; Cox et al., 2007), and 

in some cases, opposite patterns of SSD have evolved even among closely related species (e.g., 

Cox and John-Alder, 2007).  In common with other sexual dimorphisms (Williams and Carroll, 

2009), sex differences in growth and body size exist even though females and males of a species 

share nearly identical genomes (Lande, 1980; Chenoweth et al., 2008), and this focuses attention 

on sex differences in gene expression (Badyaev, 2002; Mank, 2009) as the predominant cause of 

the development of sex differences in body size.  The present study investigates how testosterone 

regulates the expression of a key growth-controlling gene in a female-larger, sexually size 

dimorphic lizard. 

As reviewed by Williams and Carrol (2009), gonadal steroids mediate the development 

of most sexual dimorphisms in vertebrates .  This has specifically been found to be the case for 

sex-specific growth in sexually size dimorphic vertebrates.  In some Iguanian lizards, for 

example, SSD develops because of sex differences in growth rate that are temporally associated 

with sexual divergence in plasma testosterone (T) (Cox et al., 2005; Cox and John-Alder, 2005).  

Experimental administration of T has the bipotential capacity to either stimulate or inhibit 
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growth in these species (Cox and John-Alder, 2005; John-Alder et al., 2007), where the 

directional effects of T are concordant with each species’ natural pattern of SSD (Cox et al., 

2009).  In several Gekkotan species of lizards, ovarian hormones (especially estrogens) may be 

more important than T in the development of SSD (see Kubička et al., 2017).  In this regard, sex-

specific growth regulation in squamate reptiles is reminiscent of the situation in fishes, in which 

androgens appear to be the dominant growth-regulatory steroids in most species, while estrogens 

may be dominant in others (Goetz et al., 2009).  Furthermore, even while T stimulates growth 

and contributes to the development of SSD in Anolis sagrei (Cox et al., 2015), estrogens rather 

than androgens may underlie the development of cranial sexual dimorphism in this and other 

species of Anolis (Sanger et al., 2015).  Given that SSD is a manifestation of the body sizes of 

males compared to females, its development is almost certainly influenced by both androgenic 

and estrogenic gonadal steroids. 

 The underlying mechanism(s) of steroidal growth regulation in lizards – including 

bipotential effects of testosterone – are unresolved (John-Alder et al., 2007), but reports on other 

classes of vertebrates (Borski et al., 1996) and a recent report on Anolis sagrei (Cox et al., 2017) 

implicate the somatotrophic axis, also known as the GH/IGF-1 axis (i.e., central endocrine 

growth axis), as a fruitful starting point for investigation.  Vertebrate growth is primarily 

mediated by the somatotrophic axis, in which pituitary growth hormone (GH) binds hepatic 

receptors and stimulates the synthesis and secretion of hepatic (systemic endocrine) insulin-like 

growth factor-1 (IGF-1), which then promotes cell proliferation and growth in target tissues (Le 

Roith et al., 2001; Wood et al., 2005; Laviola et al., 2007).  Activity of the GH/IGF-1 axis is 

influenced by energy, nutrients, and numerous hormones including sex steroids (Reindl and 

Sheridan, 2012), suggesting that sex steroids operate through the somatotrophic axis to produce 
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sex differences in growth (Gatford et al., 1998).  In most species that have been investigated to 

date, growth-stimulatory effects of T are typically associated with increases in the expression of 

hepatic IGF-1 mRNA and plasma levels of IGF-1 hormone (Borski et al., 1996; Larsen et al., 

2004; Riley et al., 2002; Beckman, 2011; Cox et al., 2017), while estradiol (E2) has the opposite 

effect (Murphy and Friesen, 1988; Hanson et al., 2014).  Even within the same species, 

functional activity of the somatotrophic axis can be increased by T and decreased by E2, not only 

in whole organisms but also in primary hepatic cell culture (Norbeck and Sheridan, 2011; Riley 

et al., 2004).  In other species, however, E2 stimulates growth and may increase the expression of 

hepatic IGF-1 mRNA (Goetz et al., 2009), suggesting evolutionary lability in the molecular 

identity of the “on” switch for the growth-regulatory network.   

 How, then, can an identical signal, T, have the bipotential capacity to stimulate growth in 

male-larger species while inhibiting growth in female-larger species of lizards?  In the present 

study, we investigate the underlying mechanism of T-induced growth inhibition in Eastern fence 

lizards (Sceloporus undulatus), a species in which females grow faster to become larger than 

males (Haenel and John-Alder, 2002) and in which T has previously been shown to inhibit 

growth (Cox et al., 2005).  Given the weight of previously published evidence, the stimulatory 

effect of T on the expression of hepatic IGF-1 mRNA may have been evolutionarily conserved 

in both male- and female-larger species, and atypical growth inhibition by T may then reflect 

upstream or downstream mechanisms to negate the growth-promoting effect of T in female-

larger species.  In other words, a tight linkage between T and its phenotypic effects may have 

been evolutionarily conserved, consistent with the evolutionary constraint hypothesis (Hau, 

2007), and other mechanisms would have to be invoked to prevent the stimulation of growth.  

Alternatively, fundamentally different effects of T on the expression of hepatic IGF-1 mRNA 
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may have evolved in female-larger versus male-larger species, consistent with the evolutionary 

potential hypothesis (Hau, 2007), which allows flexibility in the linkage between a hormone and 

its effects.  The plausibility of this latter hypothesis is strengthened by the report that T 

differentially regulates gene expression even between sexes of a single species (Peterson et al., 

2014), which indicates that differences in responses to common hormonal regulators can evolve 

readily.  In the experiments reported here, we tested this hypothesis by investigating the 

predictions that T will reduce growth as well as the expression of hepatic IGF-1 mRNA and 

levels of plasma IGF-1 peptide in S. undulatus.  Our study represents a specific test of 

evolutionary lability in effects of T on the central vertebrate growth-regulatory network (see 

Hau, 2007; McGlothlin and Ketterson, 2008; Cox, 2020). 

2. Material and methods 

2.1 Animal collection and care 

 In June 2009, adult males and females (≥ 2 years of age; minimum snout-vent length 

(SVL) 56 mm) of S. undulatus were captured by hand in the pinelands of New Jersey, USA 

(41°N, 74°35′W) under permit from the New Jersey Department of Environmental Protection, 

Division of Fish and Wildlife (permit #SC 2909C).  In September 2009, juvenile males and 

females (maximum SVL 40 mm measured on October 16) of S. undulatus were collected from 

the same field site.  Age classes were established on the basis of published (Haenel and John-

Alder, 2002) and unpublished demographic records of S. undulatus in the NJ pinelands, and the 

narrow age estimate of juveniles was based on records of HJ-A regarding the first appearance of 

hatchlings, typically around the beginning of August.  All lizards were subsequently transported 

to and housed under permit in our laboratory facility at Rutgers University (permit #SH 29097).  

Adults were maintained for 6–27 days before experiments were begun.  Juveniles were allowed 
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to grow in captivity for 4 months prior to experimentation, until they were exhibiting indicators 

of sexual maturation (e.g., sex-specific pigmentation) and were large enough for easy surgical 

manipulations.  All lizards were housed individually in plastic cages (59.1 × 43.2 × 45.7 cm3) 

with a 2-cm substrate of granular bedding (Marcal® KaoBed™) and two concrete bricks, which 

were stacked under the heat source to create shelter and provide a basking site.  An incandescent 

spotlight (Philips 65 W BR-40SP, Royal Philips Electronics, Netherlands) was suspended above 

the bricks to provide a 10 h basking period.  Full-spectrum fluorescent bulbs (General Electric 

Chroma 50, General Electric Company, Fairfield, CT, USA) were hung about 60 cm above the 

floor of the cage to provide a 12:12 light:dark photoperiod.  Water was provided ad libitum in a 

shallow dish lined with aquarium gravel.  Cages were separated by opaque dividers to prevent 

visual interactions.  All experiments were approved by the Rutgers University Animal Care and 

Facilities Committee (protocol number 01-019). 

2.2 Experimental design: growth and feeding 

Immediately prior to surgical manipulation, snout-vent length (SVL) was measured to the 

nearest 0.5 mm and body mass was measured to the nearest 0.02 g.  These data were used to rank 

lizards by size and to assign them to size-matched treatment groups.  During experiments, SVL 

and body mass were measured weekly (juveniles) or bi-weekly (adults) to support calculations of 

growth rate.  Growth rate (mm/day) was calculated by dividing change in length by number of 

days for each interval that was analyzed, including the 14-day experimental period for adults and 

three growth intervals for juveniles (two pre-treatment intervals plus the experimental period).  

For the purposes of these calculations, we assumed linear growth within each interval.  For 

juveniles, the first pre-treatment growth interval was 35 days, the second was 59 days, and the 

experimental interval was 36 days.  A priori, we did not expect to be able to detect growth in the 
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adults because these individuals were on the asymptotic part of their growth curve (Haenel and 

John-Alder, 2002; John-Alder et al., 2007) and because the duration of the experiment was only 

14 days (see below).   

Throughout their time in captivity, both before and during their experimental periods, 

lizards were fed three crickets per day.  Food consumption was measured by counting uneaten 

crickets every 3 days (adults) or every 7 days (juveniles).  Adults were fed larger crickets than 

juveniles, rendering comparisons of food consumption valid within but not between the age 

classes of the two experiments (see below). 

2.2.1 Experiment 1: Adults 

 Adults were divided into five size-matched treatment groups: 1) sham-surgery + placebo-

implanted control males (M-CON; n = 9; SVL: 64  1.2 mm; range 58 to 70 mm), 2) surgically 

castrated + placebo-implanted males (M-CAST; n = 9; SVL: 64  1.2 mm; range 56 to 68 mm), 

3) surgically castrated + T-implanted males (M-TEST; n = 9; SVL: 63  1.0 mm; range 57 to 67 

mm), 4) placebo-implanted control females (F-CON; n = 9; SVL: 67  1.4 mm; range 60 to 72 

mm), and 5) T-implanted females (F-TEST; n = 9; SVL: 68  1.4 mm; range 61 to 75 mm).  The 

14-day treatment period began immediately following surgery.  

2.2.2 Experiment 2: Juveniles 

 At the time of capture, SVLs of juvenile males and females were statistically 

indistinguishable (♂ 36.5 0.47 vs. ♀ 37.2 0.30 mm; F1,38 = 1.48, p=0.2319).  When 

experimental procedures were begun after four months of growth in the laboratory, females were 

larger than males (♂ 55.1 0.43 vs. ♀ 59.7 0.52 mm; F1,36=66.32, p<0.0001).  At the end of the 

second growth interval, female and male juveniles were ranked separately by SVL and were then 

assigned to size-matched treatment groups, as follows: 1) surgically castrated + placebo-



9 
 

implanted males (JM-CAST; n = 9; SVL: 55.30.50 mm; range 53 to 57 mm), 2) surgically 

castrated + T-replaced males (JM-TEST; n = 9; SVL: 55.30.60 mm; range 52 to 57 mm), 3) 

placebo-implanted control females (JF-CON; n = 10; SVL: 59.90.66 mm; range 56 to 62 mm), 

and 4) T-supplemented females (JF-TEST; n = 10; SVL: 60.10.57 mm; range 57 to 62 mm).   

We anticipated that plasma T in juvenile males could be quite variable at the time of 

surgical treatments, and that an interpretation of effects of castration alone would therefore be 

ambiguous (see Cox and John-Alder, 2005).  Since our specific goal here was to investigate 

effects of T on IGF-1, we elected to “homogenize” the starting point of the experiment by 

castrating all of the juvenile males and replacing T in half of them.  This experimental design 

created a more uniform starting point for all males while fully controlling replacement of T in 

castrated males, thus strengthening our specific focus on the effects of T.  The experiment on 

juveniles was terminated after 36 days of treatment, which was sufficient time to measure 

significant differences in growth rate among treatment groups. 

2.3 Testosterone implants 

 Implants were constructed from 5 mm lengths of Silastic® tubing (Dow Corning, 

Midland, MI, USA) as previously described (Cox et al., 2005).  After sealing one end of each 

tubule with silicone adhesive gel (Dow Corning), we used a Hamilton® syringe to inject 3 l of 

a solution of T dissolved in dimethyl sulfoxide (DMSO; 100 g T / l) into the open end.  Each 

tubule was then sealed with silicone adhesive and stored at room temperature for several days to 

allow the DMSO to diffuse through the tubing and evaporate, leaving 300 g of crystalline T 

within the lumen of each implant.  Placebo implants were constructed in an identical fashion but 

were injected only with pure DMSO. 
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2.4 Surgical treatments 

 Animals were anaesthetized with an intramuscular injection of ketamine (200 mg/kg 

body mass; Vetus Animal Health, MFA Inc., Columbia, MO, USA).  In castrated and T-replaced 

males, the testes were exposed with a single ventral midline incision.  Each spermatic cord was 

ligated with surgical silk, the testes were ablated, and the ligated spermatic cords were 

cauterized..  Sham surgeries were done on control males and all groups of females.  A T-filled or 

a placebo implant was inserted into the coelomic cavity, and the incision was closed with Surgi-

Lock 2oc™ instant tissue adhesive (Meridian Animal Health, Omaha, NE, USA).  

2.5 RNA isolation, RT-PCR, and qRT-PCR 

At the conclusion of the treatment periods, lizards (n=9 per treatment group) were killed 

by rapid decapitation, and liver tissue was harvested, flash frozen on dry ice, and stored at −80°C 

until analysis.  Liver tissue was homogenized with TRIzol® (Invitrogen - Thermo Fisher 

Scientific, Waltham, MA, USA) using a Teflon pestle and a glass homogenizing tube, and total 

RNA was isolated according to the manufacturer’s protocol using Qiagen RNeasy Mini Kit 

(Qiagen Inc., Valencia, CA, USA) coupled with DNase digestion.  RNA purity and integrity 

were assessed by determination of the A260/A280 ratio and visualization of 28S and 18S ribosomal 

bands after electrophoresis on a 1% formaldehyde denaturing gel, respectively.   RNA 

concentration was determined using the NanoDrop® ND-1000 (Thermo Fisher Scientific Inc., 

Waltham, MA, USA).  

 RNA (2 g) was reverse-transcribed using the High-Capacity Reverse Transcription Kit 

(Thermo Fisher Scientific).  Subsequently, gene-specific primers (IGF-1: 5′-

TTGGTGGATGCTCTTCAGTTTG-3′/3′-CAGGTCACAGCTTTGGAAACAA-5′; β-actin: 5′-

GAAGAGGAAGCAGCTGTGGC-3′/3′-GCTATGTTGCCTTGGACTTCG-5′), which were 
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previously validated for S. undulatus (Duncan et al., 2015), were used to amplify 135 bp and 52 

bp PCR products, respectively.  All samples (n=9 per treatment group) were run in triplicate, 

cDNA was fluoresced with SYBR® Green (Applied Biosystems Inc.), and the threshold cycle 

(CT) of each sample was recorded on an ABI 7900HT.  Standard curves of pooled cDNA were 

serially diluted so that the curve ranged from 250 ng to 25 pg.  Within each experiment (i.e., 

adults versus juveniles), all samples in triplicate plus standard curves for IGF-1 and β-actin were 

run in a single plate.  Amplification efficiency of standard curves ranged from 95–100%, and R2 

values exceeded 0.99 for all standard curves.  Relative quantification of IGF-1 was normalized to 

β-actin, which was unaffected by treatment (F3,36 = 0.42, p = 0.7390), and then compared to a 

calibrator (i.e., pooled RNA from experimental animals).  The appropriate negative controls were 

run (i.e., No-RT control and master mix of reagents without template) to ensure the absence of 

DNA and non-specific amplification.  The presence of a specific product was verified by visually 

inspecting the dissociation curves for each sample.   

2.6 Hormone assays 

At the conclusion of the experimental periods, blood was collected from the post-orbital 

sinus as well as the neck and trunk wounds using heparinized microcapillary tubes (Fisher 

Scientific, Pittsburgh, PA, USA).  Blood collection was completed within 3 minutes to avoid 

prolonged stress.  Plasma was separated via centrifugation and stored at −80°C until used for 

radioimmunoassay (RIA) for IGF-1.  We did not have sufficient plasma to assay T in the present 

experiments.  However, we have previously shown that surgical castration reduces plasma T to 

basal levels characteristic of females, and that implants such as those used here consistently 

restore plasma T to an average of about 35 ng/ml, which is typical of breeding males (Cox et al., 
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2005; Cox and John-Alder, 2005).  Thus, treatment differences in T levels have previously been 

verified. 

Assays for IGF-1 were conducted in G. Grau’s laboratory at the Hawaii Institute of 

Marine Biology, University of Hawaii.  For RIA of IGF-1, proteins were extracted from plasma 

with acid-ethanol followed by cryoprecipitation to separate IGF-1 peptide from the IGF binding 

proteins (IGFBPs) (Shimizu et al., 1999).  Reconstituted samples were assayed in duplicate with 

125I-recombinant salmon/trout (Oncorhynchus sp.) IGF-1 and rabbit anti-recombinant 

barramundi (Lates calcarifer) IGF-1 as the antiserum (Novozymes Biopharma AU Ltd., 

Adelaide, SA, AUS).  The hormone complexes bound to antibody were precipitated from free 

radiolabel by the addition of goat anti-rabbit IgG (Sigma-Aldrich, St. Louis, MO, USA).  This 

assay was previously validated for S. undulatus by demonstrating parallel binding to anti-

recombinant barramundi IGF-1 in S. undulatus plasma (pool from intact S. undulatus) compared 

to a salmon/trout standard (Novozymes Biopharma AU Ltd.) and O. mossambicus plasma 

(Duncan, 2011).  The intra-assay variation, based on four aliquots of S. undulatus pooled plasma 

included in each assay, was 16% for adults and 4% for juveniles. 

2.7 Statistical Analyses 

All statistical analyses were performed using SAS 9.3 and 9.4 (SAS Institute Inc., Cary, 

NC, USA).  For all response variables, treatment effects were initially analyzed in multiple 

regression models using SAS proc GLM, with body size (SVL at beginning of measurement 

period) and feeding rate (crickets/day) as covariates and with full interaction. To linearize 

relations between variables, body size (SVL), growth rate, and feeding rate were log-transformed 

for these analyses.  Covariates and interaction terms were retained in final statistical models only 

when they were statistically significant at  = 0.05.  On this basis, none of the final statistical 
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models retained SVL or interactions with SVL as significant effects.  Expression data for IGF-1 

mRNA were log-transformed prior to analysis to normalize their distribution. 

For analyses restricted to adults, males and females were analyzed separately with 

treatment as the main effect because the number and identity of treatment groups were not 

balanced.  Similarly, for analyses restricted to juveniles, males and females were initially 

analyzed separately because of unmatched treatment groups.  Secondarily, juveniles were 

analyzed using castrated males as the counterpart of female controls, allowing sex and treatment 

(placebo or T implant) to be entered as main effects.  We recognize that female controls and 

male castrates are not comparable sensu stricto.  However, by treating these groups as statistical 

counterparts, we could conduct a balanced comparison of sexes, and in no case did the outcomes 

differ qualitatively from separate analyses within sexes.  Intact adult males were excluded from 

the analysis of the effect of age on IGF-1 hormone because this treatment was not represented in 

juveniles.  All analyses were via one- or two-way ANOVA or ANCOVA models using SAS proc 

GLM, with feeding rate entered as a covariate where appropriate.  Post hoc comparisons were 

done via Ryan-Einot-Gabriel-Welsch test (REGWQ; SAS Institute 2002) in ANOVAs or by 

comparing least square means (lsmeans) in ANCOVAs.  The Dunn-Sidàk correction for family-

wise error was applied where appropriate. 

3. Results 

3.1 Growth and food consumption 

3.1.1 Adults 

 Based on their body sizes (SVLs) at the time of capture, all adults in this study were at 

least two years of age and in their asymptotic growth phase (see Haenel and John-Alder, 2002).  

Consistent with this determination, measurable growth did not occur in any of the adult treatment 
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groups during the 14-day experiment, and experimental treatments had no discernible effects on 

growth.   

 Experimental treatments did not affect food consumption in adults (Table 1).  Feeding 

rates (crickets/day) were identical in female groups (F-CON = 3.0 ± 0.01, F-TEST = 3.0 ± 0.01; 

F1,16 = 0.00; p = 1) and very similar among male groups (M-CON = 3.0 ± 0.00, M-CAST = 2.9 ± 

0.04, M-TEST = 2.9 ± 0.03).  Due to zero variance in M-CON, the slight differences in feeding 

rates achieved statistical significance in males (F2,24 = 5.43, p = 0.0114) due solely to the 

REGWQ contrast between M-CON and M-CAST.  However, almost all of the reduced food 

consumption in M-CAST occurred during the first 6 days after surgery.  During the final 8 days 

of the experimental period, only one male failed to eat all of his crickets, eating 23 of the 24 

offered.  Thus, the small reduction in food consumption in M-CAST is a result of surgery itself 

rather than a treatment effect.   

3.1.2 Juveniles     

In juveniles prior to experimental manipulations, growth rate (mm/day) was higher in 

females than in males and declined in both sexes as juveniles increased in size (Figure 1).  

Females grew faster than males during the first (0.29  0.011 vs. 0.26  0.009 mm/day; p = 

0.0065) and second (0.21  0.007 vs. 0.16  0.006 mm/day; p < 0.0001) growth intervals, and 

had become 8% larger than males by the beginning of the experimental period (60.0  0.42 vs. 

55.0  0.42 mm; p < 0.0001).   

None of the experimental groups of juveniles ate its entire daily ration of 3 crickets, 

indicating that juveniles were fed to satiety.  Feeding rate differed significantly among groups 

(Table 1; F3,34 = 44.89, p < 0.0001).  Feeding rate was higher in females than in males (F1,34 = 

65.03, p < 0.0001) and was reduced by T (F1,34 = 44.96, p < 0.0001).  Additionally, the 
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significant treatment-by-sex interaction indicates that T reduced feeding rate to a greater extent 

in females than in males (F1,34 = 21.25, p < 0.0001).  

During the experimental period (shaded interval in Figure 1), growth rate was 

significantly dependent on feeding rate and experimental treatment (overall ANCOVA; F3,34 = 

15.22, p < 0.0001; Figure 2A).  In this model, growth rate increased with increasing feeding rate 

(F1,34 = 9.21, p = 0.0046) and was reduced by T both in females (JF-TEST) and in castrated 

males (JM-TEST) (F1,34 = 6.67, p = 0.0143) after accounting for differences in food intake, but 

sex itself did not have a significant effect on growth rate during the experimental period (F1,34 = 

2.27; p = 0.1412).  Interactions between treatment, sex, and feeding rate were not statistically 

significant and were therefore excluded from the final ANCOVA model.    

Given that growth rate was significantly higher in intact females than in males prior to 

experimental treatments (above), it is particularly noteworthy that during the experimental 

period, growth rate did not differ significantly between castrated males and control females.  

Thus, castration of males eliminated but did not reverse the sex difference in growth rate that 

was evident prior to experimental treatments.  At the same time, castrated males ate fewer 

crickets than control females and thus were somewhat more efficient than control females in 

terms of converting food into growth.   

3.2 Hepatic IGF-1 mRNA and plasma IGF-1 

3.2.1 Adults 

 In adult males, the relative expression of hepatic IGF-1 mRNA was significantly 

increased by surgical castration and restored to control levels by T replacement (Figure 3).  After 

the 14-day treatment period, hepatic IGF-1 mRNA was 3-fold higher in M-CAST than in M-

CON and M-TEST (F2,24 = 5.34, p = 0.0121).  In adult females (F-CON), relative hepatic IGF-1 
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mRNA was indistinguishable from that of adult males (M-CON) (F1,25 = 0.74; p = 0.3985), and 

supplementation with T had no effect on hepatic IGF-1 mRNA (F-CON vs. F-TEST: F1,16 = 0.10, 

p = 0.7582; Figure 3).   

In adults, plasma IGF-1 was not significantly affected by experimental treatments and did 

not differ between control males and control females (M-CON vs. F-CON: F1,16 = 1.53, p = 

0.2345; Figure 4A).  In males, plasma IGF-1 tended to be reduced by castration and restored by 

T replacement, and in intact females, plasma IGF-1 tended to be increased by supplementation 

with T.  However, none of these differences achieved statistical significance (adult males: F2,24 = 

1.91, p = 0.1698; adult females: F1,16 = 0.92, p = 0.3514).  Furthermore, an overall analysis of all 

adult treatment groups with relative IGF-1 mRNA expression and treatment entered as main 

effects, only 14% of the variation in plasma IGF-1 hormone was explained by the full model 

(i.e., R2 = 0.14; F5,39 = 1.24, p = 0.3071). 

3.2.2 Juveniles  

 In juveniles, the expression of hepatic IGF-1 mRNA was significantly reduced by 

exogenous T (Figure 2B).  Hepatic IGF-1 was strongly predicted by the model including sex and 

treatment as main effects and feeding rate as a covariate (F3,33 = 27.69, p < 0.0001; R2 = 0.715), 

although sex itself did not contribute significantly (F1,33 = 0.33, p = 0.5701).  The expression of 

hepatic IGF-1 mRNA was positively affected by feeding rate (F1,33 = 5.67, p = 0.0232) and was 

significantly reduced by T in females and in castrated males (F1,33 = 22.98, p < 0.0001). 

 Plasma IGF-1 was about four times higher in juveniles than in adults (~30 vs. 8 ng IGF-1 

/ ml; Figure 4), and all comparisons of plasma IGF-1 between matched treatment groups of 

adults versus juveniles were highly significant at p < 0.0001.  Plasma IGF-1 did not differ 

between JF-CON vs. JM-CAST: F1,17 = 0.49, p = 0.4927; Figure 4B).  As in adults, plasma IGF-
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1 was not significantly affected by experimental treatments in juveniles.  In castrated juvenile 

males, plasma IGF-1 tended to be slightly increased by replacement of T (JM-CAST vs. JM-

TEST), and similarly in intact females, plasma IGF-1 tended to be increased by supplementation 

with T (JF-CON vs. JF-TEST), but these differences failed to achieve statistical significance 

(juvenile males: F1,16 = 0.52, p = 0.4794; juvenile females: F1,18 = 4.81; p = 0.0416).  To achieve 

overall ‘family-wise’ significance at  = 0.05 in these four comparisons, we applied the Dunn-

Sidàk correction, which yielded  = 0.0127 as the acceptance level for any one comparison.   

4. Discussion 

 Previous research has demonstrated that testosterone (T) can inhibit growth in female-

larger species and stimulate growth in male-larger species of lizards (Cox and John-Alder, 2005; 

Cox et al., 2005; Cox et al., 2009; Cox et al., 2015), but the underlying mechanisms of this 

regulatory bipotentiality are not known.  In species where it stimulates growth, T enhances 

functional outputs of the somatotrophic axis, including the expression of genes for hepatic IGF-1 

and peripheral IGF-1 receptors (IGFr; Borski et al., 1996; Riley et al., 2002; Larsen et al., 2004; 

Norbeck and Sheridan, 2011; Cox et al., 2017), but how might T affect the somatotrophic axis in 

species where T inhibits growth?  The novel results we report here begin to answer this question.  

In two independent experiments, we found that T inhibits the expression of hepatic IGF-1 

mRNA in Sceloporus undulatus (Eastern fence lizard), a female-larger species in which T 

inhibits growth.  We found this inhibitory effect in growing juveniles of both sexes and in adult 

males (not females), in which perceptible growth was lacking.  In juveniles, reduced expression 

of hepatic IGF-1 mRNA was accompanied by a reduction in growth rate of similar magnitude in 

both sexes.  To our knowledge, this is the first report of T inhibiting the expression of hepatic 

IGF-1 mRNA, and therefore our findings stand in contrast to the published body of work.  We 



18 
 

attribute our novel result to the use of a female-larger species in which T inhibits organismal 

growth, whereas the existing literature is heavily biased toward studies using species in which T 

stimulates growth.  Our findings suggest a relatively simple evolutionary reversal in the 

molecular switching mechanism by which T regulates the expression of hepatic IGF-1 mRNA 

and may thus have far-reaching implications regarding evolutionary lability in the endocrine 

regulation of the central vertebrate growth axis.  However, we also found that while plasma 

levels of IGF-1 hormone were about 4-fold higher in growing juveniles than in adults, reductions 

in IGF-1 mRNA expression were not accompanied by significant changes in plasma IGF-1, 

creating apparent discordance (see Beckman, 2011) between the growth response and the 

hormone response to T.  As discussed below, no known mechanism of growth inhibition in 

juveniles can be attributed to a decrease in IGF-1 mRNA in the absence of a concordant decrease 

in IGF-1 hormone.  Other components of the somatotrophic axis (e.g., IGF receptors and IGF 

binding proteins) and perhaps other molecular systems (e.g., mTOR) will have to be taken into 

account, and further research will be needed to reveal fully the cellular and molecular 

mechanism(s) by which T inhibits growth. 

 We cannot be certain of the mechanism by which T inhibits the expression of IGF-1 

mRNA, but our results are more consistent with an ‘evolutionary reversal hypothesis’ than with 

alternatives.  In the simplest case, the evolutionary reversal hypothesis can be envisioned as 

invoking the classical T signaling pathway, in which T binds to a nuclear receptor in the 

cytoplasm and is then translocated into the cell nucleus, where it interacts with androgen 

response elements to influence gene expression (see Jenster et al., 1997; Cox, 2020).  In the 

present model, this pathway would lead directly to inhibition of the expression of hepatic IGF-1 

mRNA, where the novel aspect here is the inhibitory rather than stimulatory effect of T on the 
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expression of IGF-1 mRNA.  Reversals in genomic effects of steroid hormones can evolve via 

several mechanisms, which may be as simple as point mutations in hormone response elements 

(Cox, 2020) or alterations in the expression of genes that code for response element binding 

proteins (REBiPs), which compete with a hormone’s nuclear receptor for binding to target DNA 

(Lisse et al., 2011).  Due to the simplicity of these mechanisms, and given that effects of steroids 

are known to differ even between sexes of a single species (Peterson et al., 2014), it should be 

anticipated that in comparisons across taxonomic lines, evolutionary reversals in hormonal 

effects will be common. 

In contrast to the evolutionary reversal hypothesis, three alternative hypotheses for 

growth inhibition are not supported by available evidence.  1) Aromatization hypothesis: Given 

the highly conserved nature of the vertebrate somatotrophic axis and the preponderance of 

evidence showing that T can increase and estradiol (E2) can decrease functional activity of the 

somatotrophic axis, even within the same species (Riley et al., 2004; Norbeck and Sheridan, 

2011), the inhibitory effects of T in female-larger species may first require that T be aromatized 

into E2.  However, Pollock et al. (2016) found that non-aromatizable 5-DHT inhibits growth as 

effectively as T in S. undulatus, suggesting a mechanism of growth inhibition mediated by 

androgen receptors and not requiring aromatization of T to E2.  2) Energetic trade-off hypothesis: 

The near-equivalence of the estimated energetic cost of experimental T-induced activity versus 

the energetic savings of T-inhibited growth in S. undulatus under semi-natural conditions led 

Cox et al. (2005) to suggest that growth inhibition by T in S. undulatus might reflect an energy 

allocation trade-off.  In the present report, however, we found that females in captivity grew 

faster and became significantly larger than males prior to experimental treatments under 

laboratory conditions in which substantial sex differences in energy allocation to activity could 
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not have occurred.  An allocation trade-off may contribute to sex differences in growth and the 

development of SSD in the field, but present results indicate that a trade-off is clearly not 

necessary to effect higher growth rates in females.  3) Nutritional inhibition hypothesis: 

Functional activity of the somatotrophic axis can be strongly influenced by an animal’s 

nutritional status (Duan, 1998; Moriyama et al., 2000; Beckman et al., 2004; Pierce et al., 2005; 

Pedroso et al., 2006), and in the present study, exogenous T caused reductions both in food 

intake and in growth rate.  Thus, the inhibitory effect of T on IGF-1 mRNA expression may have 

been mediated through under-nutrition.  However, two lines of evidence in the present report fail 

to support this hypothesis.  First, in adult males, castration caused an increase and T-replacement 

a decrease in the expression of IGF-1 mRNA without affecting food consumption.  Second, in 

juveniles, T caused substantial inhibition of the expression of IGF-1 mRNA in both males and 

females even after statistical removal of the significant effect of food intake (Figure 2B).  

Furthermore, Duncan et al. (2015) reported that extreme food deprivation (i.e., zero ration) was 

needed to inhibit the expression of IGF-1 mRNA in S. undulatus and that even a 67% reduction 

in food intake was without effect.  In the present experiment, ad libitum food intake was 

voluntarily reduced in juveniles by only about 14% in males and 28% in females, well below the 

threshold needed to inhibit the expression of IGF-1 mRNA.  Thus, in summary, current evidence 

suggests that the bipotentiality of T as a growth regulator derives primarily from evolutionary 

reversibility in its direct effects on the expression of growth-regulatory genes rather than from 

alternative mechanisms. 

Our findings imply evolutionary lability in the effect of T on a key member of the 

growth-regulatory gene network involving a simple reversal in the switching mechanism.  If 

supported by further investigation, our model would indicate that the intervening molecular 
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mechanisms between T and growth have evolved not as a tightly constrained functional unit but 

instead with the potential for diversification (see Hau, 2007; Cox, 2020).  Effects of T on other 

components of the growth-regulatory gene network in both female-larger and male-larger species 

remain to be investigated before this model can be fully evaluated.  However, in male-larger 

Anolis sagrei, in which T stimulates growth, Cox et al. (2017) have shown that T causes 

increased expression of a family of male-biased growth-regulatory genes, which code for 

receptors, binding proteins, and mTOR in addition to the hormone peptides themselves.  By 

analogy, if genes associated with the somatotrophic axis have evolved as a functional module 

with only the switching effect of T having the potential to be an ‘on’ or an ‘off’ signal, then T 

could decrease the expression of these genes in female-larger species just as easily as it increases 

their expression in male-larger species. 

Reduced expression of hepatic IGF-1 mRNA was not accompanied by corresponding 

changes in plasma IGF-1 hormone in adults or in juveniles.  On one hand, this is not surprising, 

as the correlation between transcript and protein is often quite weak, especially in perturbed 

systems with reduced transcript expression (Lee et al., 2011; Vogel and Marcotte, 2013).  

Furthermore, in a review of the literature, Beckman (2011) reported that relationships involving 

IGF-1 mRNA, IGF-1 hormone, and growth are quite variable, especially when mRNA and 

hormone are measured at only a single time point.  For example, following a transfer from 

seawater to freshwater, tilapia (Oreochromis mossambicus) experienced reduced growth 

accompanied by a decrease in hepatic IGF-1 mRNA and an increase in plasma IGF-1 compared 

to their counterparts that remained in seawater (Riley et al., 2003).  In a study with juvenile 

hybrid striped bass (Morone chrysops × Morone saxatilis), partial food restriction increased 

hepatic IGF-1 mRNA by 82% while plasma IGF-1 and growth were substantially decreased 
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compared to ad libitum-fed controls (Picha et al., 2006).  Following a period of re-feeding, 

hepatic IGF-1 mRNA decreased by 61% but plasma IGF-1 and growth increased.  

Circumstances where hepatic IGF-1 mRNA and plasma IGF-1 do not correlate might also be due 

to alterations in mRNA stability, clearance rates, degradation pathways, or availability of IGF-1 

to its receptor, and to sequestration of IGF-1 by IGF binding proteins (IGFBPs).   

Regardless of the mechanism for the discordant effects of T, the lack of significant 

change in plasma IGF-1 begs the question of how reduced expression of hepatic IGF-1 mRNA is 

linked to reduced growth in juvenile S. undulatus.  The answer may derive from the complexity 

of the IGF-1 signaling pathway itself.  In circulation, IGF-1 forms complexes with IGFBPs at a 

greater affinity than that of the type-I IGF receptor (Kelley et al., 2002).  Exogenous T may have 

up-regulated IGFBPs that sequestered IGF-1 hormone and made it less readily available to its 

receptor.  Additionally, if expression of other genes in the growth-regulatory network, including 

genes coding for IGF-1 receptor in addition to the hormone itself, responds to T as a functional 

module, as suggested by the stimulatory effects of T on these genes in A. sagrei (Cox et al., 

2017), then in species such as S. undulatus, T may inhibit the expression not only of hepatic 

IGF-1 mRNA itself but also of other growth-regulatory genes including IGF-1 receptor (IGFr) 

and genes of the mTOR pathway.  If so, then the effectiveness of IGF-1 could be attenuated by a 

decrease in available IGF-1 receptors in target tissues as well as by downstream effects 

meditated through mTOR.  Indeed, C. Cox et al. (SICB conference program, 2018) have reported 

preliminarily that exogenous T exerts an inhibitory effect that mimics developmental divergence 

in the expression of genes in the GH/IGF-1 and mTOR pathways in S. undulatus.  Thus, reduced 

expression of hepatic IGF-1 mRNA alone may serve as a reliable proxy for the expression of 

other growth-regulatory genes, and a decrease in IGF-1r and other genes may be a key to fully 
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understanding the connection between reductions in hepatic IGF-1 mRNA expression and 

organismal growth without significant changes in plasma IGF-1 hormone. 

We cannot currently assess the generality of the inhibitory effect of T on the expression 

of hepatic IGF-1 mRNA, but this mechanism might be widespread in other species in which T 

inhibits growth, including lizards (Abell, 1998; Cox and John-Alder, 2005), snakes (Crews et al., 

1985; Lerner and Mason, 2001), birds (Sockman et al., 2008), and mammals (Swanson, 1997).  

However, even when only considering lizards, growth inhibition by T is unlikely to be the sole 

mechanism through which female-biased SSD is achieved.  Evolutionary changes in growth 

regulation by estrogens and other sex-specific factors can be expected to play important roles as 

well as T (see Kubička et al., 2013; Starostová et al., 2013; Kubička et al., 2015).  Differences in 

mechanisms would be reminiscent of the case in fishes, in which the dominant growth-regulatory 

roles of androgenic and estrogenic hormones differ among species.  Interestingly, all of the 

squamate species in which ovarian hormones may have a greater role than androgens are 

Gekkotans, while species in which testosterone has been shown to be either stimulatory or 

inhibitory are Iguanians.  Extant species of Gekkotan and Iguanian lizards have evolved 

following an ancient and early basal split in squamate phylogeny (Pyron et al., 2013), suggesting 

ample time and phylogenetic distance for variations in hormonal regulation of gene expression – 

as well as other growth-regulatory mechanism – to have evolved. 

In summary, our novel finding that T inhibits the expression of hepatic IGF-1 mRNA 

begins to answer the question of how hormones can have bipotential capacities, including the 

bipotential capacity of T to stimulate growth in many species, while inhibiting growth in others.  

While we have focused here on T, analogous capacities for bipotentiality could be generalizable 

to the effects of other hormone systems.  We attribute our finding to our use of a female-larger 
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species in which T inhibits growth, which stands in contrast to other studies in a literature 

dominated by male-larger species in which T stimulates growth.  The mechanism we propose 

would in its simplest form require only an evolutionary reversal in the switching effect of T on a 

conserved module of growth-regulatory genes, allowing T to be either an ‘on’ or an ‘off’ switch.  

We cannot currently evaluate the generality of our finding or the model it suggests.  Further 

comparative transcriptomic studies on squamates and other groups of vertebrates will be required 

to clarify these issues. 
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