
Annals of Operations Research (2021) 303:265–295
https://doi.org/10.1007/s10479-020-03917-w

S . I . : DATA MINING AND DECIS ION ANALYT ICS

Solving a class of feature selection problems via fractional
0–1 programming

Erfan Mehmanchi1 · Andrés Gómez2 ·Oleg A. Prokopyev1

Accepted: 22 December 2020 / Published online: 30 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Feature selection is a fundamental preprocessing step for many machine learning and pattern
recognition systems. Notably, some mutual-information-based and correlation-based feature
selection problems can be formulated as fractional programs with a single ratio of polyno-
mial 0–1 functions. In this paper, we study approaches that ensure globally optimal solutions
for these feature selection problems. We conduct computational experiments with several
real datasets and report encouraging results. The considered solution methods perform well
for medium- and reasonably large-sized datasets, where the existing mixed-integer linear
programs from the literature fail.

Keywords Feature selection · Fractional 0–1 programming · Mixed-integer linear
programming · Parametric algorithms

1 Introduction

An essential preprocessing step for many data mining and machine learning tasks is the
dataset dimensionality reduction that can be performed either by reducing the sizes of the
sample or feature sets. In this paper, we focus on the latter procedure as a large number of
features may causemodel overfitting, which results in poor validation results (Chandrashekar
and Sahin 2014; Jović et al. 2015).

Formally, a feature is a single measurable property of a process being observed. Feature
selection is the process of identifying a subset of the most informative data features from the
original feature set. Feature selection is often used in various machine learning and pattern
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recognition settings that deal with large datasets including classification, clustering, and
regression tasks. The corresponding applications arise in diverse areas such as e-commerce
(Yuan et al. 2018),medical diagnosis (Fan andChaovalitwongse 2010), bioinformatics (Saeys
et al. 2007) and biomedicine (Busygin et al. 2008, 2005; Kocheturov et al. 2019), among
others. Moreover, feature selection has other potential side benefits such as facilitating data
visualization, decreasing training and utilization (computational) times aswell as reducing the
data storage requirements.We refer the readers toGuyon andElisseeff (2003), Chandrashekar
and Sahin (2014), Tang et al. (2014), Jović et al. (2015), and the references therein for an
overview of applications and methods for feature selection.

In general, feature selection procedures are classified into three major categories, namely,
filter, wrapper, and hybrid (embedded) methods (Chandrashekar and Sahin 2014; Jović et al.
2015). Wrapper and hybrid methods involve learning algorithms and the selection process is
tailored based on the cho sen algorithm (El Ghaoui et al. 2010; Tibshirani et al. 2012; Viola
et al. 2017; Atamtürk and Gómez 2020). In contrast, filter methods are not linked with any
learning algorithm and are often a more appropriate choice for large-sized datasets (Nguyen
et al. 2010b; Jović et al. 2015).

The main focus of this paper is on the filter methods. These methods select a subset of
features by evaluating them according to some predefined measures. The measures typically
applied in the literature can be categorized as information, distance, similarity, consistency,
and statistical-based ones (Jović et al. 2015).

In this paper, we consider measures for the classification task in supervised learning,
wherein we are given a training dataset and the classification of each sample is known. Then
the goal is to predict unknown classes of new samples employing the information provided
by the training dataset. To this end, it is important to distinguish relevant features from
redundant ones, and hence, a desired measure (for feature selection) needs to differentiate
the former from the latter. Relevant features are those that provide useful information for
predicting the class of each given sample; redundant features are either weakly informative
for this prediction or can be replaced with a set of some other relevant features.

The relevancy and redundancy are often characterized in terms of the correlation and
mutual information concepts, which are widely used statistical tools (Peng et al. 2005). In
particular, the studies in Hall (1999), Peng et al. (2005), and Ding and Peng (2005) propose a
mutual-information-based and a correlation-based feature selection measures, referred to as
minimal redundancy maximal relevance (mRMR) and correlation feature selection (CFS),
respectively. A key advantage of these two approaches is that they take into account the
features’ relevancy and redundancy simultaneously.

Once a measure is selected, a procedure must be developed to select a subset of features
from the full feature set. Finding an optimal subset, i.e., a subset that has the best value with
respect to the considered measure (among exponentially many possible feature subsets) is
often an N P-hard problem (Chandrashekar and Sahin 2014). Hence, in order to find a high
quality (but not necessarily an optimal) subset, various heuristic methods have been proposed
in the literature based on the mRMR and CFS measures; see, e.g., Yu and Liu (2003), Ding
and Peng (2005), Peng et al. (2005), Brown et al. (2012), Huang et al. (2012), Liu andMotoda
(2012), and Cilia et al. (2019). These heuristics are typically based on a (greedy) ranking of
individual features with respect to the selected measure and then choosing a subset from the
highest-ranking ones (Chandrashekar and Sahin 2014).

Nguyen et al. (2009, 2010b) show that the mRMR and CFS feature selection problems
can be posed as single-ratio polynomial fractional 0–1 programs (PFPs), where the objective
function is a ratio of quadratic binary functions. The existing exact solution approaches for the
mRMR and CFS problems are centered around their transformations into equivalent mixed-
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integer linear programs (MILPs). Notably, the PFPs of mRMR and CFS can be reformulated
as MILPs by exploiting the methods from Chang (2001) and Nguyen et al. (2009); the latter
method is also studied in Nguyen et al. (2010a, b, 2011). These reformulations are based on
the substitution of the denominator of the ratio with a continuous variable and then linearizing
the resulting quadratic and cubic terms, which, in turn, involve products of binary and at most
one continuous variables.We also refer the reader toMehmanchi et al. (2019) andMehmanchi
(2020) for additional details on reformulation approaches for fractional 0–1 programs.

On the other hand, the single-ratio structure of the PFP models of mRMR and CFS may
allow us to use specialized approaches from fractional optimization instead of the generic
MILP reformulations. In particular, an alternative approach can be based on parametric
algorithms; see Borrero et al. (2017) and Ibaraki (1983) for reviews of such algorithms.
Applying parametric algorithms to solve mRMR and CFS involves solving a sequence of
binary quadratic problems (BQPs), which are also, in general, N P-hard (Palubeckis 2004).
However, due to recent advances in binary quadratic optimization solvers that are readily
available in CPLEX IBM (2019) and Gurobi Gurobi (2018), reasonably sized BQPs can be
solved rather effectively. Additionally, within the parametric algorithms solving BQPs to
optimality may not be required and each iteration of the algorithms can be stopped when a
feasible solution satisfying some predefined conditions is found. This approach can lead to
substantial improvements in the performance of these algorithms.

Contributions and the structure of the paper.The aimof this paper is to study exact approaches
for the mRMR and CFS feature selection problems. To this end:

– In Sect. 2, we formally describe mRMR and CFSmeasures and the corresponding single-
ratio fractional 0–1 optimization problems.

– In Sect. 3, first, we perform a comprehensive review of the existingMILP reformulations
of the mRMR and CFS problems in the literature. Then by exploiting the structure of
the fractional model of mRMR we propose a new MILP reformulation approach that
outperforms the previous MILPs in the literature.

– In Sect. 4, we describe parametric methods from fractional optimization such as binary-
search (Ahuja et al. 1993; Lawler 2001; Radzik 2013) and Newton’s method (Dinkelbach
1967) algorithms that can be used for solving the mRMR and CFS problems.

– In Sect. 5, we conduct computational experiments with a collection of real datasets.
From our results we observe that the performance of the existing MILPs in the literature
is rather poor even for small- and medium-size problems. This observation is consistent
with the earlier results in the literature (Nguyen et al. 2009, 2010b). On the other hand, the
parametric methods perform well across all considered problem sizes. We also provide
some insights on the selection of an appropriate measure and solution method.

2 Problem formulations

In the supervised learning for the purpose of classification the input data is given as an
n × (p + 1) observation matrix, where n is the number of samples (observations). Each
sample is a (p + 1)-dimensional vector of p features, f j , j ∈ J = {1, 2, . . . , p}, and the
label of the class that contains this sample.

The aim of classification is to predict the label of the target class variable, denoted by C ,
for a given sample that indicates the classification of the sample. Then the feature selection
problem is to find a subset S ⊆ { f1, f2, . . . , f p} such that the reduced n × (|S| + 1) obser-
vation matrix provides sufficient information for the classification procedure to predict C .
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Throughout the paper we letC denote the set of all possible labels forC , i.e.,C ∈ C . Next, we
describe the mRMR and CFS feature selection measures and the corresponding optimization
problems in Sects. 2.1 and 2.2, respectively.

2.1 mRMR optimization problem

In the information theory, the mutual information (MI) quantifies the amount of information
that a random variable provides about another one and it can be used as a measure of the
mutual dependency between two random variables (Peng et al. 2005). The notion of mutual
information is related to the concept of entropy as the latter represents the “uncertainty” in
the random variable. We refer to MacKay (2003) for more formal discussion on the entropy
and mutual information.

Formally, let X and Y be two discrete random variables. Then the entropy of X is given as

H(X) = −
∑

x

P(x) logP(x),

where P(x) is the probability that X = x . Moreover, the conditional entropy of X is given by

H(X |Y ) = −
∑

x

∑

y

P(x, y) logP(x |y),

which indicates the uncertainty that remains about X when we know the value of Y . Then
the mutual information between X and Y , denoted by I(X , Y ), is computed by

I(X , Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X) =
∑

x

∑

y

P(x, y) log
[

P(x, y)

P(x)P(y)

]
.

Note that I(X , Y ) is non-negative; if X and Y are independent then I(X , Y ) is zero and a
larger value of I(X , Y ) indicates larger dependency between X and Y . Additionally, observe
that I(X , X) = H(X). If X and Y are continuous variables, then similar definitions can be
provided for H(X) and I(X , Y ) by replacing the summations with integrations.

The task of feature selection using mRMR, proposed in Peng et al. (2005), is to find the
subset S ⊆ {1, . . . , n} that has the maximum value for

1

|S|
∑

f j∈S
I( f j ,C) − 1

|S|2
∑

f j , fk∈S
I( f j , fk), (1)

over all 2p possible feature subsets. The first term in (1) denotes the average MI between
the features in set S and target class variable C , and thus, indicates the average relevancy of
features in S. The second term denotes the averageMI between features in S that also reflects
the average redundancy of features in S.

In light of the above discussion, the maximization problem of (1) can be formulated as
the fractional 0–1 program of the form, see Nguyen et al. (2009):

(mRMR) max
x∈Bp

{∑
j∈J

∑
k∈J

(I( f j ,C) − I( f j , fk)
)
xkx j∑

j∈J
∑

k∈J xk x j

}
, (2)

whereB := {0, 1} and x j = 1 (x j = 0) indicates the presence (absence) of feature f j in set S.
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2.2 CFS optimization problem

The mutual information is biased in favor of features that can take more number of values
(Yu and Liu 2003). Moreover, for the purpose of comparing the degree of relevancy and
redundancy of features, normalized values (i.e., adjusted values that have the same scale)
are preferred. An alternative measure that can be used as an indicator of the relevancy and
redundancy is correlation. In fact, a feature is said to be relevant if it is highly correlated with
the target class variable, and it is redundant if it is highly correlated with some other features.
These interpretations lead to the hypothesis that “good feature sets contain features that are
highly correlated with the class, yet uncorrelated with each other” (Hall 1999).

The correlation—that is also referred to as symmetrical uncertainty (Yu and Liu 2003)—
between two randomvariables X and Y can be obtained by their scaledMI (Press et al. 1992):

SU(X , Y ) = 2I(X , Y )

H(X) + H(Y )
,

which, in a sense, compensates the bias in MI. Also, SU(X , Y ) ∈ [0, 1], where 0 indicates
the independency between X and Y and a larger value implies some degree of dependency.

Then feature selection bymeans of CFS, proposed in Hall (1999), is to find subset S which
has the maximum value for:

∑
f j∈S SU( f j ,C)

√
|S| + 2

∑
f j , fk∈S,

j �=k
SU( f j , fk)

. (3)

Relation (3) provides the correlation of subset S and the target class. The numerator
of (3) reflects the relevancy (correlation) of features in S to the target class; its denominator
encompasses both the size of |S| and the redundancy (inter-correlation) of features in S.

In view of the above discussion, the maximization problem of (3) over all 2p possible
feature subsets can be posed as the fractional 0–1 program of the form, see Nguyen et al.
(2010a):

(CFS) max
x∈Bp

{∑
j∈J

∑
k∈J SU( f j ,C)SU( fk,C)xk x j∑

j∈J x j + ∑
j �=k 2SU( f j , fk)xkx j

}
, (4)

where x j = 1 (x j = 0) indicates the presence (absence) of feature f j in set S.

3 Mixed-integer linear programming approaches

Both the mRMR and CFS feature selection problems given in (2) and (4), respectively, can
be represented in the form of a single-ratio PFP as follows:

λ� = max
x∈Bp

f (x)

g(x)
:= max

x∈Bp

{∑
j∈J a j x j + ∑

j∈J
∑

k∈J b jk x j xk∑
j∈J c j x j + ∑

j∈J
∑

k∈J d jk x j xk

}
, (5)

where a j , b jk, c j , d jk ∈ R, for all j, k ∈ J := {1, . . . , p}. Moreover, the denominators
of (2) and (4) are strictly positive whenever |S| ≥ 1; the latter can enforced, if needed, by∑

j∈J x j ≥ 1. Thus, throughout the paper we assume that g(x) > 0.
Herein, we first review the existing MILP solution methods to solve (5). In particular,

first, we discuss the method proposed by Chang (2001) to transform (5) intoMILP, which we
denote as MILP1; see Sect. 3.1. Second, we describe the approach of Nguyen et al. (2009),
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denoted by MILP2; see Sect. 3.2. Finally, we propose a new MILP reformulations for the
mRMR problem given in (2), which we denote by MILP3; see Sect. 3.3.

3.1 Reformulation 1 (MILP1)

We describe the approach of Chang (2001) for transforming PFPs into MILPs. To this end,
define

y := 1∑
j∈J c j x j + ∑

j∈J
∑

k∈J d jk x j xk
. (6)

Then the substitution with variable y in (5) yields

max
x∈Bp,y

∑

j∈J

a j x j y +
∑

j∈J

∑

k∈J

b jk x j xk y (7a)

s.t.
∑

j∈J

c j x j y +
∑

j∈J

∑

k∈J

d jk x j xk y = 1. (7b)

Since x j ∈ B and xk ∈ B, cubic terms x j xk y, for all j, k ∈ J , can be linearized as follows:

� jk := {
(x j , xk , y, z jk) ∈ B

2 × R
2 | 0 ≤ z jk ≤ yux j , z jk ≤ yuxk , yu(x j + xk − 2) + y ≤ z jk ≤ y

}
,

where yu is an upper bound on y; recall also that y > 0 by our assumption for the denominator
of (5). Note that (x j , xk, y, z jk) ∈ � jk ⇔ z jk = x j xk y. Similarly, we use � j as a variant
of � jk to linearize bilinear (quadratic) terms x j y, for all j ∈ J ; specifically,

� j := {
(x j , y, z̄ j ) ∈ B × R

2 | 0 ≤ z̄ j ≤ yux j , yu(x j − 1) + y ≤ z̄ j ≤ y
}
, (8)

and (x j , y, z̄ j ) ∈ � j ⇔ z̄ j = x j y.
Hence, non-linear (due to the presence of terms x j xk y and x j y) and non-convex (for

x ∈ [0, 1]p) problem (7) is equivalent to the following MILP:

(MILP1) max
∑

j∈J

a j z̄ j +
∑

j∈J

∑

k∈J

b jk z jk

s.t.
∑

j∈J

c j z̄ j +
∑

j∈J

∑

k∈J

d jk z jk = 1

(x j , xk, y, z jk) ∈ � jk ∀ j ≤ k ∈ J

(x j , y, z̄ j ) ∈ � j ∀ j ∈ J .

Let a j = c j = 0, b jk = I( f j ,C) − I( f j , fk), and d jk = 1, for all j, k ∈ J , in MILP1.
Thenwe obtain an equivalentMILP of themRMR feature selection problem (2). Similarly, in
MILP1, let a j = 0, b jk = SU( f j ,C) ·SU( fk,C), and c j = 1, for all j, k ∈ J ; additionally,
set d jk = 2SU( f j , fk), for j �= k ∈ J and d jk = 0, for j = k ∈ J . Then we obtain an
equivalent MILP of the CFS feature selection problem (4).

3.2 Reformulation 2 (MILP2)

Nguyen et al. (2009) describe an alternative approach for transforming (5) into an MILP
given as follows. Note that problem (7) can be rewritten as

max
x∈Bp,y

∑

j∈J

a j x j y +
∑

j∈J

[
(
∑

k∈J

b jk xk)y
]
x j (9a)
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s.t.
∑

j∈J

c j x j y +
∑

j∈J

[
(
∑

k∈J

d jk xk)y
]
x j = 1, (9b)

where y is given in (6). Then define vbj := [∑k∈J b jk xk y]x j and vdj := [∑k∈J b jk xk y]x j ,
for all j ∈ J . Observe that vbj and vdj are products of continuous terms, i.e.,

∑
k∈J b jk xk y

and
∑

k∈J d jk xk y, respectively, and binary variable x j .
Hence, in contrast to the approach of Sect. 3.1 that directly linearizes cubic terms xkx j y

using �i j , by employing the technique used in � j we first replace cubic terms with a set of
constraints involving linear and bilinear terms.

max
x∈Bp,y,v,v̄

∑

j∈J

a j x j y +
∑

j∈J

vbj (10a)

s.t.
∑

j∈J

c j x j y +
∑

j∈J

vdj = 1 (10b)

− Mb
j x j ≤ vbj ≤ Mb

j x j ∀ j ∈ J (10c)

Mb
j (x j − 1) +

∑

k∈J

b jk xk y ≤ vbj ≤ Mb
j (1 − x j ) +

∑

k∈J

b jk xk y ∀ j ∈ J (10d)

− Md
j x j ≤ vdj ≤ Md

j x ∀ j ∈ J (10e)

Md
j (x j − 1) +

∑

k∈J

di j xk y ≤ vdj ≤ Md
j (1 − x j ) +

∑

k∈J

di j xk y ∀ j ∈ J , (10f)

where Mb
j and Md

j are sufficiently large values for all j ∈ J . Then to transform (10) into

an MILP we can linearize bilinear terms xk y, for all k ∈ J by using � j . Thus, we get

(MILP2)max
∑

j∈J

a j z̄ j +
∑

j∈J

vbj

s.t.
∑

j∈J

c j z̄ j +
∑

j∈J

vdj = 1

Mb
j (x j − 1) +

∑

k∈J

b jk z̄k ≤ vbj ≤ Mb
j (1 − x j ) +

∑

k∈J

b jk z̄k ∀ j ∈ J

−Mb
j x j ≤ vbj ≤ Mb

j x ∀ j ∈ J

Md
j (x j − 1) +

∑

k∈J

d jk z̄k ≤ vdj ≤ Md
j (1 − x j ) +

∑

k∈J

d jk z̄k ∀ j ∈ J

−Md x j ≤ vdj ≤ Md
j x j ∀ j ∈ J

(x j , y, z̄ j ) ∈ � j ∀ j ∈ J .

Finally, to obtain equivalent MILPs of the mRMR and CFS feature selection problems (2)
and (4), we need to use the same parameters settings, as described at the end of Sect. 3.1, in
MILP2.
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3.3 New reformulation for mRMR (MILP3)

Here, we propose a new MILP reformulation for the mRMR problem given in (2) based on
its special structure. Notably, the denominator of the objective function ratio in problem (2),
i.e.,

∑
j∈J

∑
k∈J x j xk , takes values in the set {12, 22, 32 . . . , p2}. Thus, using the standard

value-disjunction approach we have:

1∑
j
∑

k xk x j
=

∑

�∈J

1

�2
w�,

where w� ∈ B with
∑

�∈J w� = 1 and
∑

j∈J x j = ∑
� �w�. Thus, problem (2) reduces to:

max
x,w∈Bp

∑

�∈J

∑

j∈J

∑

k∈J

I( f j ,C) − I( f j , fk)

�2
xkx jw� (11a)

s.t.
∑

j∈J

x j =
∑

�∈J

�w� (11b)

∑

�∈J

w� = 1. (11c)

In order to transform (11) into an MILP, a possible approach is to define u� jk = xkx jw�

and use the technique of Glover and Woolsey (1974) to linearize cubic binary term xkx jw�.
The resulting MILP is:

max
x,w∈Bp,u≥0

∑

�∈J

∑

j∈J

∑

k∈J

I( f j ,C) − I( f j , fk)

�2
u� jk (12a)

s.t.
∑

j∈J

x j =
∑

�∈J

�w� (12b)

∑

�∈J

w� = 1 (12c)

u� jk ≤ w�, u� jk ≤ x j , u� jk ≤ xk ∀� ∈ J ,∀ j ≤ k ∈ J (12d)

u� jk ≥ w� + x j + xk − 2 ∀� ∈ J ,∀ j ≤ k ∈ J . (12e)

Based on our experiments, formulation (12) performs poorly in computations and does
not scale well to large datasets. Nonetheless, as described next, an alternative linearization
of the cubic terms leads to significantly better results.

In particular, we first transform the cubic expressions into bilinear terms, and then linearize
the latter. Letting

r :=
∑

j∈J

∑

k∈J

(I( f j ,C) − I( f j , fk)
)
xkx j ,

problem (11) reduces to:

max
x,w∈Bp,r

∑

�∈J

1

�2
rw� (13a)

s.t. r =
∑

j∈J

∑

k∈J

(I( f j ,C) − I( f j , fk)
)
xkx j (13b)

∑

j∈J

x j =
∑

�∈J

�w� (13c)
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∑

�∈J

w� = 1. (13d)

Next, we introduce continuous variable t jk := xkx j and use the technique of Glover and
Woolsey (1974) to linearize binary quadratic term xkx j . Additionally, we define continuous
variable s� := rw� and use a variant of � j to linearize rw�. Hence, we obtain:

(MILP3) max
x,w∈Bp,t≥0,s,r

∑

�∈J

1

�2
s�

s.t. r =
∑

j∈J

∑

k∈J

(I( f j ,C) − I( f j , fk)
)
t jk

∑

j∈J

x j =
∑

�∈J

�w�

∑

�∈J

w� = 1

t jk ≤ x j , t jk ≤ xk, t jk ≥ x j + xk − 1 ∀ j ≤ k ∈ J

s� ≤ Mw�, s� ≤ r + M(1 − w�) ∀� ∈ J ,

whereM is a sufficiently large value. Note that since the MILP3 is a maximization problem,
the lower bounds for s� can be dropped.

4 Parametric approaches

Parametric algorithms are typical solutionmethods for single-ratio fractional (either binary or
continuous) programs; see, e.g., reviews in Borrero et al. (2017) and Ibaraki (1983). Simply
speaking, parametric algorithms find an optimal solution of a single-ratio fractional problem,
as in (5), by solving a sequence of non-fractional problems.

Specifically, define parameter t ∈ R and consider the parametric optimization problem:

v(t) = max
x∈Bp

{
f (x) − t · g(x)

}
, (15)

where f (x) and g(x) are defined as in (5). Note that for fixed t , problem (15) is a BQP as
both f (x) and g(x) contain quadratic terms of binary variables.

Next, we observe that, under the positive denominator assumption, i.e., g(x) > 0, function
v(t) is monotone and if v(t) = 0, then t is the optimal objective function value of (5), i.e.,
t = λ�. Otherwise, we have either v(t) > 0 or v(t) < 0, which indicates, respectively, that
t < λ� and t > λ�. Thus, problem (5) reduces to the problemof finding a root of function v(t).

Consequently, for our problems we can exploit root-findingmethods that solve a sequence
of either BQPs, or their equivalent linearized MILP versions. To obtain the latter, we observe
that for (15) we can simply apply a variant of (8) to linearize the nonlinear terms xi x j ; see,
e.g., Glover and Woolsey (1974). Next, we first outline the binary-search method (Lawler
2001; Radzik 2013) in Sect. 4.1; thenwe describe theNewton-likemethod (Dinkelbach 1967;
Megiddo 1979; Borrero et al. 2017) in Sect. 4.2.
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4.1 Binary-search algorithm

Suppose that for the optimal objective function value λ� at the beginning of iteration i

of the algorithm an upper-bound, λ
i
, and a lower-bound, λi , are given, i.e., it is known

that λ� ∈ [λi , λi ]. Then the binary-search algorithm (Lawler 2001; Radzik 2013) evaluates

v(λiM ), where λiM is the midpoint of the given interval, i.e., λiM = (λi +λ
i
)/2. If v(λiM ) > 0,

then we update the lower-bound, λi+1 = λiM ; if v(λiM ) < 0, then we update upper-bound,

λ
i+1 = λiM ; else, we have v(λiM ) = 0 and the midpoint λiM is the optimal objective function

value. The formal pseudo-code is given in Algorithm 1 below.

Algorithm 1 Binary-search algorithm
1: Input: εrel , relative gap parameter; εabs , absolute gap parameter
2: Output: x ; if x j = 1, then feature j is selected
3: i ← 0
4: Compute λ

0
and λ0

5: while time limit not exceeded & |(λi − λi )/λi | > εrel & |λi − λi | > εabs do

6: λiM ← (λi + λ
i
)/2

7: Solve problem (15) for t = λiM and obtain v(λiM ) and its optimal solution xi

8: if v(λiM ) > 0 then

9: λi+1 ← λiM , λ
i+1 ← λ

i

10: else if v(λiM ) < 0 then

11: λi+1 ← λi , λ
i+1 ← λiM

12: else
13: return xi 
 Optimal solution found
14: end if
15: i ← i + 1
16: end while
17: return xi 
 Best solution found within the time limit

Note that at each iteration of Algorithm 1 we do not need to solve problem (15) in line 7 to
optimality; instead, we can stop whenever a feasible solution with a positive objective func-
tion value is found. This observation can potentially result in a better performance for the
binary-search algorithm. In fact, mixed integer optimization algorithms often find feasible
and even optimal solutions in a portion of the time required to prove the optimality. Thus,
if problem (15) is solved until the first feasible solution with a positive objective function
value is found, then in practice most of the iterations, except the few last, are solved with a
few branch-and-bound nodes. Although this approach may require more iterations, the total
solution times are often improved significantly.

We define h(x) := f (x)
g(x) . Thus,

λ� = max
x∈Bp

h(x) = max
x∈Bp

f (x)

g(x)
. (16)

Next, let x� denote an optimal solution of (16), i.e., x� ∈ argmax
x∈Bp

h(x). Then for any feasible

solution x̄ we define the relative and absolute optimality gaps as follows.

Relative gap: Gaprel :=
∣∣∣ h(x�)−h(x̄)

h(x̄)

∣∣∣, Absolute gap: Gapabs :=|h(x�)−h(x̄)|. (17)
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If Algorithm 1 terminates before reaching the time limit, then it yields a feasible solution
with either Gaprel ≤ εrel or Gapabs ≤ εabs . If the time limit is reached after processing the
i-th iteration of the algorithm, then

Gaprel ≤ |(λi − λi )/λi |, and Gapabs ≤ |λi − λi |. (18)

4.2 Newton-likemethod algorithm

The second approach that we employ to find the root of problem (15) is based on Newton-like
method (Dinkelbach 1967;Megiddo 1979; Borrero et al. 2017) described as follows. Suppose
that at the beginning of iteration i a lower-bound t i on λ� is known, which can be obtained,
e.g., by computing the fractional objective function at any feasible solution. If v(t i ) = 0,
then t i = λ�; otherwise, the algorithm updates t i+1 = h(xi ), where xi is an optimal solution
of v(t i ), and proceeds to the next iteration. The formal pseudo-code is given in Algorithm 2.

Algorithm 2 Newton-like method algorithm
1: Input: εrel , relative gap parameter; εabs , absolute gap parameter
2: Output: x ; if x j = 1, then feature j is selected
3: i ← 0
4: Compute t i 
 e.g., t i = h(1′)
5: while time limit not exceeded do
6: Solve problem (15) for t i and obtain v(t i ) and its optimal solution xi

7: if v(t i ) > εrel · |t i | and v(t i ) > εabs then
8: t i+1 ← h(xi )
9: else
10: return xi 
 Solution found within either relative or optimality gaps
11: end if
12: i ← i + 1
13: end while
14: return xi 
 Best solution found within the time limit

Note that at each iteration of Algorithm 2 we can stop the optimization of problem (15)
in line 6 whenever a feasible solution with an objective function value greater than εrel · |t i |
and εabs is found. Similar to the observation made in Sect. 4.1, this modification of the
algorithm can result in more iterations but a better overall performance.

Recall the relative and optimality gaps defined in (17). Following the proofs of similar
results in Gómez and Prokopyev (2020) - Proposition 4 - and Radzik (2013) if the time limit is
not reached, then Algorithm 2 terminates with a feasible solution with either Gaprel ≤ εrel
or Gapabs ≤ εabs . If the time limit is reached after the operation of the i-th iteration of
Algorithm 2, then we estimate relative and absolute gaps by

Gaprel � v(t i )

|t i | · g(xi ) , and Gapabs � v(t i )

g(xi )
. (19)

5 Computational results

The aim of our computational study is to evaluate the performances of the MILP reformu-
lations provided in Sect. 3 versus the parametric approaches of Sect. 4. Note that results
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Table 1 Considered datasets

Dataset Abbreviated name p n Data type Class type

Banknote_authenticationa banknote_auth 4 1372 Continuous Binary

Breast_cancera Breast_cancer 9 286 Discrete Binary

Letter_Recognitiona Letter_Recog 16 20000 Discrete Multi

Zooa Zoo 17 101 discrete multi

Breast_Cancer_Wisconsin_(Diagnostic)a Breast_Cancer 31 569 Continuous Binary

SPECTF_Heart_Dataa SPECTF_Heart 44 267 Continuous Binary

Lung_Cancera Lung_Cancer 56 32 Discrete Binary

Sports_articles_for_objectivity_analysisa Sports_articles 59 1000 Discrete Binary

Connectionista Connectionist 60 208 Continuous Binary

Optical_Recognitiona Optical_Recog 62 3823 Discrete Multi

Hill-Valleya Hill-Valley 100 606 Continuous Binary

Urban_Land_Covera Urban_Land 147 168 Continuous Multi

Epileptic_Seizure_Recognitiona Epileptic_Seiz 178 11500 Discrete Multi

SCADIa SCADI 205 70 Discrete Multi

Semeion_Handwritten_Digita Semeion_Hand 256 1593 Discrete Multi

USPSb USPS 256 9298 Continuous Multi

lung_discreteb lung_discrete 325 73 Discrete Multi

Madelon1,2 Madelon 500 2000 Continuous Binary

ISOLET1,2 ISOLET 617 7797 Continuous Multi

Parkinson’s_Diseasea Parkinson 754 756 Continuous Binary

CNAE-9a CNAE-9 856 1080 Discrete Multi

Yale_32x32b Yale_32x32 1024 165 Continuous Multi

ORL_32x32b ORL_32x32 1024 400 Continuous Multi

colonb Colon 2000 62 Discrete Binary

PCMACb PCMAC 3289 1943 Discrete Binary

We provide the number of features, p, and the number of samples, n as well as the types of the features’
values and the target class variable. For the latter, if |C | = 2, then the target class is binary, otherwise, it is
multi-class. Datasets’ abbreviated names are used in Tables 2, 3, 4, 5, 6 and 7
aUCI machine learning repository (Asuncion and Newman 2007)
bASU feature selection repository (Li et al. 2016)

for the MILP formulation (12) are omitted as it was consistently outperformed by the other
approaches. In Sect. 5.1, we outline the real-life datasets and the parameter settings used for
the computational experiments. Then we present our results in Sect. 5.2.

5.1 Computational environment and datasets

For all considered datasets, we solve MILPs and BQPs (at each iteration of the parametric
Algorithms 1 and 2) using CPLEX 12.9.0 IBM (2019). We run experiments on a PC with 32-
core CPU (2.90GHz) and 160GBof RAM;we allocate 4 threads and 16GB of RAM for each
individual experiment. We use the time limit of one hour (3600 seconds). To avoid running-
out-of-memory difficulties we use the “node-file storage-feature” of CPLEX to store some
parts of the branch-and-cut tree on a disk when the size of the tree exceeds the allocatedmem-
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ory. Furthermore, for computing the mutual information and correlation between a feature
and the target class or between two features, as well as computing F1 scorewe use scikit-learn
package (Pedregosa et al. 2011) and Python 3.7.7 (Python Software Foundation. 2020).

Datasets We consider various real-world datasets obtained from UCI machine learn-
ing repository (Asuncion and Newman 2007) and ASU feature selection repository (Li et al.
2016) available at https://archive.ics.uci.edu and http://featureselection.asu.edu, respectively.
Table 1 provides the list of the datasets as well as their sizes and key characteristics.

Linearization bounds In both MILP1 and MILP2, we let yu = 1. Moreover, for MILP2
reformulation of mRMR we let Mb

j = ∑
k∈J |I( f j ,C) − I( f j , fk)| and Md

j = n, for all

j ∈ J . For MILP2 reformulation of CFS we set Mb
j = ∑

k∈J SU( f j ,C) · SU( fk,C) and

Md
j = ∑

k∈J ,k �= j 2SU( f j , fk), for all j ∈ J . Finally, we setM = ∑
j∈J

∑
k∈J |I( f j ,C)−

I( f j , fk)| in MILP3.

Gaps We consider εrel = 0.01 and εabs = 0.001 in both Algorithms 1 and 2. If the
time limit is reached, then Gaprel and Gapabs are computed by using formulas given in (18)
and (19) for Algorithms 1 and 2, respectively. Similarly, we set 0.01 and 0.001 for the relative
and absolute optimality gaps in the MIP solver which are computed by Gaprel = |UB−LB

LB |
and Gapabs = |UB − LB|, where UB and LB are the upper- and the lower-bounds on the
optimal objective function value at the termination of the solver, respectively.

Classification scoreWe evaluate a subset of features in predicting the true class of samples
in the dataset by F1 score. To this end, we use the well-known Naive Bayes and Random
Forest classifiers (commonly used in the related literature, see, e.g., Peng et al. (2005) and
Nguyen et al. (2009, 2010a), with the 5-fold cross validation.

Heuristic methods In order to further evaluate the computational and classification per-
formances of the considered exact solution methods, we perform computational experiments
with heuristic methods for the mRMR and CFS feature selection problems based on the
approaches in Brown et al. (2012) and Zhao et al. (2010), respectively. Specifically, we use
the implementations from Li et al. (2016).

5.2 Results and analysis

Next, we evaluate the computational and classification performances of the MILPs in Sect. 3
versus Algorithms 1 and 2 in Sect. 4 as well as the considered heuristic methods from the
literature. In particular, the computational results are presented in Tables 2, 3 and 4 and the
classification results are reported in Tables 5, 6 and 7.

First, we discuss the computational results for the MILPs in solving the mRMR feature
selection problem, see Table 2. We observe that for “small” datasets (p ≤ 60), MILP3 has,
in general, the best performance among the MILPs. In particular, for most of the datasets
with 44 ≤ p ≤ 60, MILP1 and MILP2 do not find an optimal solution within the time
limit, while MILP3 solves the same datasets to optimality in only a few seconds. For larger
datasets (p > 60), all MILPs reach the time limit. For these datasets, MILP1 often struggles
to find a feasible solution, while MILP2 and MILP3 report large gaps, see Table 2. Thus,
we conclude that while MILP formulations—particularly MILP3—are adequate at tackling
problems with small number of features, they struggle with high-dimensional datasets.
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Next, we compare the performance of the best two MILPs (i.e., MILP1 and MILP3 based
on the above discussion) against Algorithms 1 and 2 as well as the heuristic method (Brown
et al. 2012) when solving the mRMR problem; see Table 3. Parametric algorithms are com-
petitive, if not better than pure MILP methods with p ≤ 60. More importantly, they are able
to solve problems with larger datasets to optimality, e.g., “Semeion_Handwritten_Digit”
(p = 256) or “Madelon” (p = 500), and consistently report solutions with much smaller
gaps than MILPs. In some cases, e.g., “Optical_Recognition” dataset (p = 62), the paramet-
ric algorithms prove optimality and are faster than the heuristic.

In Table 4, we report the computational results for the CFS feature selection problem. Sim-
ilar to the aforementioned results for mRMR, note that for CFS the parametric algorithms
outperform both MILP1 and MILP2 and scale better for larger instances. Moreover, for the
CFS problem, the heuristic is, in fact, quite expensive: in all cases where either Algorithm 1
or 2 find optimal solutions, their runtime is a fraction of the heuristic runtime.

By comparing the computational performances of the parametric algorithms (Tables 3
and 4), we note that Algorithms 1 and 2 have similar running times for the datasets that they
solve to optimality. For the datasets where an optimal solution is not found within the time
limit, Algorithm 1 can be a better choice as for these datasets Gaprel and Gapabs reported
by Algorithm 2 are approximations of the relative and absolute gaps, respectively.

In Table 5, we compare F1 classification score of the feature subsets obtained by MILPs
when solving the mRMR problem (2). In most of the datasets, MILP3 has the best score
for the both Naive Bayes and Random Forest classifiers and for a few other datasets it has
a competitive performance with the best reported scores. The mRMR heuristic, in general,
has a worse classification performance than the exact methods for the both classifiers, see,
e.g., datasets “Connectionist”, “ISOLET” and “USPS” in Table 6. The exact methods also
generally outperform the CFS heuristic method, in particular, for larger datasets (p > 60);
see the results in Table 7.

On average, the parametric algorithms have similar classification performances. However,
when solving the mRMR problem Algorithm 1 provides better results than Algorithm 2 for
more datasets; see Table 6. Table 7 shows the opposite observation for the CFS problem. In
Tables 6 and 7, there are some cases, where the MILPs report slightly better classification
performances than the parametric methods; however, considering the fact that the parametric
algorithms are faster, they can be used as the recommended solution methods for solving
both the mRMR and CFS feature selection problems.

Finally, it is worth mentioning that the choice of an appropriate feature selection measure
may depend on the dataset and its application setting [see, e.g., Chandrashekar and Sahin
(2014) and Jović et al. (2015) for a comprehensive discussions]. In particular, due to the
different structures and also coefficients values of the problems, the sizes of the selected
subsets of features by CFS are typically smaller than those selected by mRMR.

6 Concluding remarks

Feature selection is an essential preprocessing step in many data mining and machine learn-
ing tasks and involves finding a small subset of the most relevant features from the dataset. In
this paper, we focus on feature selection problems based on mRMR and CFS measures that
are typically tackled either by heuristic methods or their reformulations as MILPs. However,
heuristics do not guarantee the optimality of the output feature subset and MILPs given in
the literature have rather poor performances even for small- and medium-sized datasets.
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To address the aforementioned shortcomings, we consider approaches that ensure glob-
ally optimal solutions. To this end, we propose another MILP reformulation for the mRMR
feature selection problem which outperforms existing MILPs in the literature. Additionally,
we apply parametric approaches from fractional optimization to solve both the mRMR and
CFS feature selection problems. Our computational experiments with real-world datasets
show that the proposed approaches lead to encouraging improvements.
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