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Abstract. We consider the best subset selection problem in linear regression—that is,
finding a parsimonious subset of the regression variables that provides the best fit to the
data according to some predefined criterion. We are primarily concerned with alternatives
to cross-validation methods that do not require data partitioning and involve a range of
information criteria extensively studied in the statistical literature. We show that the
problem of interest can be modeled using fractional mixed-integer optimization, which can
be tackled by leveraging recent advances in modern optimization solvers. The proposed
algorithms involve solving a sequence of mixed-integer quadratic optimization problems
(or their convexifications) and can be implemented with off-the-shelf solvers. We report
encouraging results in our computational experiments, with respect to both the optimi-
zation and statistical performance.

Summary of Contribution: This paper considers feature selection problems with infor-
mation criteria. We show that by adopting a fractional optimization perspective (a well-
known field in nonlinear optimization and operations research), it is possible to leverage
recent advances in mixed-integer quadratic optimization technology to tackle traditional
statistical problems long considered intractable. We present extensive computational
experiments, with both synthetic and real data, illustrating that the new fractional opti-
mization approach is orders of magnitude faster than existing approaches in the literature.
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1. Introduction

variables and keeping only the most important and

We consider the linear regression model (Seber and
Lee 2003, Weisberg 2005) in which, given a design
matrix X = [x1,...,x,] € R of explanatory (indepen-
dent) variables and a vector y € R" of response (depen-
dent) variables, the relationship between them is

y=Xp+e )
where f € R? is a vector regression coefficients and € €
R" are the error terms; throughout the paper, we as-
sume 7 > p. The linear regression approach involves
finding appropriate values for parameters § such that
the data fitting error is minimized according to some
predefined criteria. The ordinary least squares esti-
mate, found by minimizing the residual squared er-
ror, is easy to compute but suffers from poor prediction
accuracy and interpretability. Model overfitting is one
of the key challenges, which naturally leads to the
problem of finding a parsimonious best subset of ex-
planatory variables. By removing unnecessary or noise
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critical ones, we obtain more interpretable and robust
regression models. This subset selection problem has
attracted significant attention in the statistical, machine
learning, and optimization literatures. A classical model
for the subset selection problem (Miller 2002) is

min]y — XB]f; subject tollgl <k,

@)
where k is some predefined sparsity parameter and
Il -1lp is the €y-norm (i.e., ||Blly = Zh_; Lisz0p, with 1,
denoting the indicator function). Problem (2) is strongly
NP-hard (Chen et al. 2019), and several approaches to
tackleitapproximately or exactly have been proposed
in the literature.

Perhaps the most widely known approximation
approachis Lasso (Tibshirani 1996), where the {;-norm
is replaced by the convex {;-norm. The resulting
convex problem can be solved very efficiently (Efron
et al. 2004). Lasso has some desirable theoretical


http://pubsonline.informs.org/journal/ijoc
mailto:gomezand@usc.edu
https://orcid.org/0000-0003-3668-0653
https://orcid.org/0000-0003-3668-0653
mailto:droleg@pitt.edu
https://orcid.org/0000-0003-2888-8630
https://orcid.org/0000-0003-2888-8630
https://doi.org/10.1287/ijoc.2020.1031
https://doi.org/10.1287/ijoc.2020.1031

552

Gomez and Prokopyev: Fractional Optimization in Best Subset Selection
INFORMS Journal on Computing, 2021, vol. 33, no. 2, pp. 551-565, © 2021 INFORMS

properties under appropriate conditions on data (Zhang
and Huang 2008, Wainwright 2009, Bithlmann and
van de Geer 2011, Tibshirani 2011) and is widely used
for finding sparse models in practice. However, Lasso
is only a surrogate and may potentially lead to low-
quality solutions; we refer the reader to the detailed
discussion in Bertsimas et al. (2016) and the refer-
ences therein.

Alternatively, globally optimal solutions for (2) can
be sought. Earlier approaches, including exhaustive
enumerations of all subsets (Garside 1965, 1971a, b)
and the leaps and bounds procedure (Furnival and
Wilson 1974), do not scale well for large instances.
Nevertheless, recent approaches based on mixed-
integer optimization (MIO) have proven more effec-
tive at solving problem (2), see Bertsimas and Shioda
(2009), Bertsimas and King (2015), Bertsimas et al.
(2016), Bertsimas and Van Parys (2020), Cozad et al.
(2015), Miyashiro and Takano (2015b), and Wilson
and Sahinidis (2017). Specifically, by introducing
binary variables z € {0,1} such that z; = 1 if g; #0,
problem (2) can be formulated as

min |y - X2 6a)
s.t. 1z <k, (3b)
-Mz < B <Mz, (3¢0)
ze{0,1), Be R, (3d)

where 1 denotes a p-dimensional vector of all ones,
and big-M constraints (3c) are used to link the indi-
cator and regression coefficient variables (Glover 1975).
Problem (3) is a mixed-integer quadratic optimization
(MIQO) problem, which can be solved directly with
off-the-shelf solvers for convex MIO.

Note that (3) requires specifying a priori the desired
sparsity k at the right-hand side of (3b). The standard
technique for determining k is based on using cross
validation, which considers (3) for multiple values of k
and then selects the one that performs best in a held-
out validation set. A naive approach would be to
simply solve (3) for all possible values of k. Clearly, it
is prohibitively expensive in many settings. Thus,
various ideas have been explored in the literature to avoid
such enumeration. For example, Kenney et al. (2018)
propose warm-starting and novel bisection schemes
to reduce the burden of solving multiple MIO prob-
lems; other warm-start-like and related ideas are
explored by Bertsimas et al. (2016, 2019a). Never-
theless, the approach based on (3) and cross valida-
tion may remain relatively expensive. Hence, the
primary goal of this study is to explore alternatives to
cross-validation methods that can be performed ef-
fectively and do not require partitioning the data.

1.1. Criteria

Several criteria have been proposed in the statistics
literature to evaluate the quality of a given regression
model. The measures involve a trade-off between the
residual squared error |ly — XB||5 and the size of the
model ||f]ly. We present a brief description of the in-
formation criteria used in this paper and refer the
reader to Konishi and Kitagawa (2008) for an in-depth
treatment of the statistical merits of the information
criteria used (and others). To simplify the discussion,
we assume in this section that the noise € is inde-
pendent and identically distributed (i.i.d.) Gaussian
with unknown variance o2, € ~ N(0, ¢°I).

1.1.1. Mean Squared Error. The mean squared error
(MSE; Wherry 1931) of a regression model is given by

ly - XpIR
1Bl @

Minimizing the MSE is equivalent to maximizing
the adjusted R? and is one of the most widely used
criteria to compare regression models because of
its simplicity. Note that ”y;ﬂ is precisely the least
squares estimator of the variance o2 for (1) with p
regressors; thus, intuitively, optimization with re-
spect to the MSE criterion selects the model that
“promises” the lowest noise variance.

1.1.2. Akaike Information Criterion and Corrected Akaike
Information Criterion. The Akaike information crite-
rion (AIC; Akaike 1974) is

nln (@) +2||Bllo + K, (5)

where K is a constant that does not depend on the
model. Note that the term inside the logarithm in (5)
is the maximum likelihood estimator of ¢, but this
estimator is biased. Akaike (1974) corrects this bias
using the term 2||f||, and shows that if the data are
indeed generator according to (1) for some sparse
vector f, then minimizing the AIC criterion yields
estimates with minimal Kullback-Leibler divergence
withrespect to a true distribution. Sugiura (1978) note
that AIC bias needs to be further corrected when n is
close to p and propose the corrected AIC (or AICc):

lly — X3 211l + 21l .
nln(#) +2(Blly + Wﬂo—lol (6)

see also Hurvich and Tsai (1989).
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1.1.3. Bayesian Information Criterion. The Bayesian
information criterion (BIC; Schwarz 1978) is

nm(w) Fnlfl +K )

Whereas AIC seeks to minimize the Kullback-Leibler
divergence between the true and estimated models,
BIC is obtained by maximizing the model that is a
posteriori most probable, under the prior that all
subsets of {1, ..., p} are equally likely to be the model
generating the data.

The criteria just outlined are widely used to com-
pare linear regression models. Furthermore, they are
also used as stopping rules for heuristics (2) such as
forward selection or backward elimination (Miller
2002). However, currently few approaches exist to
find the best model according to one of these criteria.

In particular, Park and Klabjan (2017) propose a
mixed-integer quadratically constrained programming
approach for optimization with respect to MSE. Kimura
and Waki (2018) proposed a tailored branch-and-
bound algorithm for minimization of the AIC crite-
rion. Wilson and Sahinidis (2017) exploit the fact that
if the variance of the error terms € is known, problems
with AIC and BIC can be simplified to MIQO prob-
lems. Cozad et al. (2014) tackle subset selection
problems with information criteria by solving prob-
lem (3) for different values of k and choosing the
best one:

min }{min{F (B, k) : (3b) — (3d)}}, 8)

kE{O,A..,p

where F(f3, k) corresponds to one of the above-mentioned
criteria given by (4)—(6).

Observe that for a fixed k = ||fl|y, finding the best
model with respect to any criterion in (4)—(7) can be
done by minimizing |ly — Xp||3. Thus, approach (8)
requires solving p + 1 different MIO problems and is,
to the best of our knowledge, the most efficient
method to date. Note that this approach can be im-
proved by warm-starting each MIO problem with the
solution found from the previous one, as pointed out
by Bertsimas et al. (2016).

Miyashiro and Takano (2015a) propose using mixed-
integer second-order conic optimization (MISOCO)
for the best subset selection problem with information
criteria. The best model can be found by solving a
single MIO, but it requires the addition of p + 1 ad-
ditional binary variables. The authors report that the
MISOCO formulations perform worse than (8) by an
order of magnitude. Finally, Takano and Miyashiro
(2020) also propose the MIO approach for the best
subset selection using the cross-validation criterion.

1.2. Contributions and Outline

In this paper we propose new MIO formulations
and techniques for the best subset selection problem
with information criteria. In particular, the problems
considered are modeled as convex mixed-integer
fractional optimization problems (MIFO). The for-
mulations are stronger than the existing alternatives
proposed in the literature; the proposed approach is
faster than (8) by at least an order of magnitude in
large instances and several orders of magnitude faster
than previous MISOCO approaches. The algorithms
proposed can be easily implemented using off-the-
shelf mathematical optimization software, resulting
in several advantages over customized methods: addi-
tional constraints can easily be incorporated into the
formulations (e.g., see Bertsimas and King (2015) and
Cozad et al. (2015)), and the proposed algorithms
benefit from the continuous improvements to com-
mercial software.

The remainder of the paper is organized as follows.
In Section 2 we describe our MIFO approach and
compare it against the existing modeling alternatives.
In Section 3 we discuss how to solve the resulting
MIFO by (partially) solving a sequence of MIQO
problems. In Section 4 we provide computational
experiments on synthetic and real data sets, and in
Section 5 we conclude the paper and highlight di-
rections for future research. Finally, we note that all
proofs as well as some modeling and algorithmic
details are relegated to the online supplement.

2. Formulations

In this section we give MIFO formulations for the
subset selection problems with the information cri-
teria discussed in Section 1. In particular, one of the
main challenges for solving best subset selection
(with respect to criteria other than the MSE) is
handling the (nonconvex) logarithmic term in the
objective function; see (5)—(7). In order to do so, we
first show in Section 2.1 how to model the best sub-
set selection problems as the (possibly nonconvex)
MIFO problem:

2
lly = XBlly subject to —Mz < <Mz, (9)
ze{01) perv g(1'z)
where g : R; — R, is a one-dimensional nonincreasing
convex function that depends on the criterion used.
Then in Section 2.2 we discuss how to obtain mixed-
integer convex formulations of (9) by exploiting
submodularity. Finally, in Section 2.3, we show that
the resulting formulations are at least as strong as the
alternative formulations proposed in the literature.
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2.1. Fractional Formulations

We now discuss a MIFO framework that is able to
handle most feature selection problems with infor-
mation criteria.

2.1.1. MSE Criterion. Observe that optimization with
respect to the MSE criterion can be directly formu-
lated as

ly - XPl3

i -Mz << Mz.
—T subject to —Mz < < Mz

z€{0,1},BeR?
That is, function g(x) = n — x is affine.

2.1.2. AIC and BIC Criteria. Consider optimization
with respect to either AIC or BIC, given by (5) or (7),
respectively. The best model with respect to such
criteria can be found by solving

CW ﬂﬁ

min +al'z

z€{0,1}" BeR? (10)
subject to —-Mz < f <Mz,

where the constant terms in the definition of the
criterion is dropped, and «a is a constant that may
depend on n; that is, & = 2/n for AIC and a = In(n)/n
for BIC. Because the exponential function is nonde-
creasing and monotone, we can take the exponential
of the objective function and find that (10) is equiv-
alent to

1

n ze{o 1}P BeR? ly — Xl - ¢

subject to —~Mz < f < Mz
1 ly = XBIl3

=—- min n
e—al'z

n z€{0,1}" BeR?
subject to —Mz < f < Mz.

From these derivations, we see that (10) is a special
case of (9), where g(x) = e™**.

2.1.3. AICc Criterion. A similar approach can be used
for optimization with respect to AICc given by (6),
resulting in

2(1'z)* +2(1'z)
-1z-1
subject to —-Mz < f <Mz, z€{0,1}/, e R".

min nln(w) +2(1'z) + (11a)
(11b)

After dividing by n, taking the exponential of the
objective function and some algebraic manipulations

(please see details in the online supplement), prob-
lem (11) can be equivalently written as
1 - XBl3
R R 715
162 ze{01) BeRP =i (12)
subject to —Mz < ff < Mz.

Therefore, we see that (11) is a special case of (9),
where g(x) = e7%+ ==

2.2. Convexification
Consider the mixed-integer set

F={z€{0,1y, se R, :s < g(1'2)}. (13)

Because g is convex, the function g(1'z) is super-
modular. Define m; =g(i)—g(i—-1), i=1,...,p, and
given a permutation ((1),(2),...,(p)) of [p], consider
the inequality

P
s <g(0)+ Z TUZ(5).- (14)
i=1

The coefficients —m in (14) correspond to an extreme
point of the extended polymatroid associated with the
submodular function —g, and (14) is referred to as an
extended polymatroid inequality (Atamtiirk and Narayanan
2008). Additionally, extended polymatroid inequal-
ities and bound constraints are sufficient to describe
the convex hull of F (Lovasz 1983); that is,

conv(F) = {(z, s) € [0,1]F xRy : s < g(0)

p
+ > Mz, for all permutations of [p]}
i1

Thus, we can formulate (9) as the convex MIFO problem

_ 2
min w (15a)

4
s.t.s < g(O) + Z TUZ (i),
i=1

for all permutations of [p],  (15b)
-Mz < B <Mz, (15¢)
ze{0,1), BeR?, s 0. (15d)

Note that there is a factorial number of constraints (15b).
Therefore, to implement formulations (15) in prac-
tice, a lazy constraint generation scheme for (15b)
should be used, which is a standard feature of mod-
ern off-the-shelf solvers. In particular, finding which
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inequality (15b) to add at a particular point (z, 8, 3) (if
any) can be done using a greedy algorithm (Edmonds
1970), as formalized in Proposition 1.

Proposition 1 (Edmonds 1970). A most violated inequality
(15b) at (z,B,5) is precisely s < g(0)+ X/, 7z for the
permutation where variables are ordered in nonincreasing
order, Zay2Zg =2 Z(p).

Remark 1 (MSE Criterion). If g(x) = n — x, correspond-
ing to the MSE criterion, then each inequality (14) re-
duces to s <n—1z. This inequality can be changed
to an equality constraint without loss of generality.
Hence, in such case, (15) reduces simply to the con-
vex MIFO:

— X2
min lly = XPlly subject to —Mz < f < Mz. (16)
ze{0, 1) Ry n—1'z

2.3. Comparison with Existing Results

In this section we compare formulation (15) with
other MIO formulations for optimization with respect
to information criteria.

2.3.1. Linearization for MSE Criterion. Park and Klabjan
(2017) propose a MIO formulation for optimization
with respect to the MSE criterion. They formulate
problem (16) as

r;}lgl t (17a)
5 r

st |y —Xﬁ”zs t{n— Zzi , (17b)
i=1

-Mz < B <Mz, (17¢)

ze{0,1}F,fe R, teR,. (17d)

Then, in order to model the nonlinear constraint (17b),
the authors linearize the bilinear terms. Specifically,
by introducing additional variables v;, they replace
(17b) with the system

P
ly - XBI < tn = > v, (18a)
i=1
OSUiSt,t—M(l—Zi)SUiSMZj, Vi=1,...,p,
(18b)

where M is sufficiently large. Because each bilinear
term tz; is replaced by its convex envelope, the system
(18a) and (18b) is weaker than (17b). Also, for the MSE
criterion, (15) is equivalent to (17) in terms of its
continuous relaxation strength. Thus, (15) is stronger
than the formulations induced by (18a) and (18b), and it
avoids the inclusion of additional big-M constraints.

2.3.2. MISOCO Formulations. Miyashiro and Takano
(2015a) propose to tackle subset selection problems
with information criteria using MISOCO formulations,
discussed next. As we show in this section, the re-
laxations induced by our approach are stronger than
the existing MISOCO formulations for criteria other
than MSE (and is equivalent for MSE).

MSE Criterion. Constraint (17b) is a rotated cone con-
straint, and problem (17) can be directly formulated
as a MISOCO. Thus, the strength of the convex relaxa-
tion of (16) is the same as that of the MISOCO for-
mulation (17) used in Miyashiro and Takano (2015a).

General Criteria. For tackling (9), Miyashiro and
Takano (2015a) propose to use

zrﬁn;}r}t t (19a)
s.t. |ly — X,Bllﬁ <ts, (19b)
4
s < Zg(i)wi, (19¢)
i=0
4
> iw; =1z, (19d)
i=0
Tw=1, (19¢)
-Mz < < Mz, (199)

ze{0,1}), we{0,1}/*!, BeR?,s>0,t>0 (19g)

(i.e., using special ordered sets of type 1 (SOS 1) with
the introduction of additional variables w). We have
the following theoretical observation.

Proposition 2. Formulation (15) has a stronger convex
relaxation than (19).

Our result implies that the formulations proposed
in this paper, which do not require the introduction of
additional binary variables, result in a stronger con-
vex relaxation than the MISOCO formulation.

Finally, we want to point out that current tech-
nology for solving MISOCO is lagging far behind
MIQO technology. Specifically, convexifications for
MIQO sparse regression problems have been exten-
sively studied in the literature ( Giinliik and Linderoth
2010, Jeon et al. 2017, Atamtiirk and Gémez 2018;
Atamtiirk et al. 2018; Wei et al. 2020a, b; Xie and Deng
2020), whereas there are relatively few results con-
cerning the corresponding MISOCO structures (Atamtiirk
and Jeon 2019, Gémez 2020). Using parametric ap-
proaches for fractional optimization, discussed in
Section 3, our method fully leverages the advanced
technology for MIQO problems and far outperforms
the MISOCO formulations even in the case of the
MSE criterion.
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3. Parametric MIQO Approaches
Formulations (15) and (19) can be tackled with convex
MIO solvers such as Bonmin (Bonami et al. 2008)
and FilMINT (Abhishek et al. 2010); see also the work
of Mahajan et al. (2017) and the references therein
for further details. However, a MIQO problem such
as (3) admits specialized and better solution approaches.
Specifically, the convex subproblems arising in MIQO
can be solved with the simplex method, which is ame-
nable to warm starts and is a better choice for branch-
and-bound algorithms. As a consequence, current codes
for MIQO are more efficient than the corresponding
codes for convex MIO. To leverage the superior per-
formance of solvers for MIQO, recent works have pro-
posed to tackle MISOCO with a polyhedral feasible re-
gion by solving a sequence of MIQO problems (Atamtiirk
and Gomez 2019b, Atamtiirk et al. 2020), and they
report significant speedups in solution times. By ex-
ploiting the fractional structure of problem (15), similar
approaches can be used in our context.

Consider the MIQO problems parameterized by ¢:

(MIQO;) d(t) =min [ly-XpI3—ts
s.t. (15b)—(15d),

(20a)
(20b)

and recall that s = g(1'z) in any optimal solution. A
classical result from the fractional optimization lit-
erature (see, e.g., Radzik (1998)) is that if d(t*) =0, then
t* is the optimal objective function value of (9). Hence,
problem (9) reduces to finding a root for the func-
tion d(t), for example, via bisection or Newton-like
methods (Dinkelbach 1967, Megiddo 1979, Radzik
1998, Borrero et al. 2017).

Givenaparameter & > 0, let solve; be aroutine that
either returns a feasible solution (f(t), 2(1),d(t)) of
MIQO; with corresponding objective function value d(t)
less than —¢,

() = lly - XP)IE - tg(1'2(t) < -&,

or proves that d(t) > —&. For example, solve; can be
naturally implemented using branch-and-bound solvers
for MIQO by either solving (20) to optimality and
checking whetherd(t) < —¢&, or stopping the algorithm
when an incumbent solution with a value less than —&
is found or when a tight lower bound is proven.
Define the function /i : {0,1}Y X R? — R, as

B _ YRI2
h(‘B, 2) — “yg(l)ég”Z .

Furthermore, let (8%, z*) be an optimal solution for (9)
and define for any feasible solution (f, z) the relative
optimality gap as

(21)

Next, we consider the Newton method approach given
in Algorithm 1.

Algorithm 1 (Newton method for (9))
Input: y response vector; X model matrix; € preci-
sion parameter.

Output: S, regression coefficients; z, selected features.
1: Compute initial bounds
2: (B, z) « any feasible solution > for example, f =z =0
3:t «— h(B,z)
4: while time limit not exceeded do

5 & —elglp) > Precision for subproblem
6: (ﬁ(f)r E(t),;i(t)) «— solve;

7: Ifd(t) < =& then

8 (B7) < (B)2()

9: t— h(B,z)

10: else if d(f) > —& then
11: return (3, z)
12:  end if

13: end while

14: return (B, z)

> Optimal solution found

> Best solution found within the
time limit

Proposition 3. If the time limit is not reached, then
Algorithm 1 terminates with a feasible solution with gap < e.

The result of Proposition 3 holds independently of the
quality of the feasible solutions found in line 6 of the al-
gorithm. However, as Proposition 4 shows, high-quality
solutions may lead to substantially fewer iterations.

Proposition 4. If all problems MIQO, in line 6 are solved to
optimality, then Algorithm 1 finds an optimal solution in at
most p + 1 iterations.

The proof of Proposition 4 follows standard argu-
ments in fractional combinatorial optimization lit-
erature, see similar results in Radzik (1998). More
important, Proposition 4 provides some intuition on
why Algorithm 1 performs better than using (8): in the
worst case, both approaches involve solving p +1
MIQO, but in practice, Algorithm 1 requires signifi-
cantly fewer iterations. Furthermore, in our compu-
tations discussed next, we found out that stopping
the optimization of MIQO; whenever a feasible so-
lution with objective value less than —& is found,
results in a better performance. Indeed, it is well
known that algorithms for MIO find high quality
and even optimal solutions in a fraction of the time
required to prove optimality. Thus, if problems (20)
are solved partially, then in practice all iterations
except the last one or two are solved in seconds
or milliseconds with few branch-and-bound nodes.
Even if such an approach requires more iterations
(in our computations the number of iterations is still
bounded by p + 1), the overall solution times are re-
duced significantly.
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3.1. Exploiting Conic Relaxations for
Sparse Regression

There has been a recent research thrust toward de-
signing strong convex relaxations of problem (3), and
either using them as stand-alone methods to obtain
estimators for sparse regression (Dong et al. 2015,
Pilanci et al. 2015, Atamtiirk and Gémez 2019a) or
embedding them into branch-and-bound methods
(Bertsimas et al. 2019b, Bertsimas and Van Parys
2020). It is possible to modify Algorithm 1 to solve
at each iteration any such relaxation (instead of a
MIO), thus solving a strong relaxation of the frac-
tional problem (9)—the resulting estimator can then
be used directly as a proxy of the optimal estimator
with respect to a given information criteria.

In this paper we implemented this approach using
the convex relaxation by Atamtiirk and Gémez (2019),
which is the strongest of the three mentioned and the
only one that does not require an additional ridge
regularization term [|B||3. Note that solving to opti-
mality each problem in Algorithm 1 requires solving
an SDP with lazy constraints. As SDPs are solved
in current off-the-shelf solvers via interior point
methods and lack warm-start capabilities, a naive
implementation of this lazy constraint method may be
tantamount to solving several SDPs from scratch, and
it may be prohibitively expensive. To address this
issue, we modify Algorithm 1 to integrate the cut
generation and Newton method, reducing the num-
ber of SDPs to be solved. The details of the convex
relaxation used and the modified Newton method are
given in the online supplement.

4. Computations

In this section we report computational experiments
performed on synthetic and real data sets to test the
proposed approaches for the best subset selection
problems with respect to MSE, BIC, and AICc criteria.
We set the following specifications:

e Computations were performed using CPLEX 12.7.1
(for MIO) and MOSEK 8.1.0 (for conic relaxations) on a
computer with a 3.50 GHz Intel® Xeon® E5-1620 v4 CPU
and 16 GB main memory and with a single thread.

e All solver parameters were set to their de-
fault values.

® The code used in the implementations is avail-
able in the online supplement of the paper.

4.1. Instances
We now describe the instances used in our experiments.

4.1.1. Synthetic Instances. We generate synthetic data
sets as done in Bertsimas et al. (2016) and Hastie
et al. (2017). Given dimensions n and p, a sparsity

parameter kg € Z,, an autocorrelation parameter p,
and a signal-to-noise parameter v, the instances are
generated as follows:

(i) The “true” regression coefficients ° have their
first ko components equal to 1 and the remaining equal
to 0.

(ii) Each row of the design matrix X is generated
i.i.d. from a multivariate normal distribution A/, (0, I),
where T € RP satisfies Z; = pliJ.

(iii) The response variable y is generated from a nor-
mal distribution N,(XB°, 0%I), where o2 = (B°2B°)/v is
defined to meet the desired SNR level.

4.1.2. Real Instances. We test the proposed methods
on the Diabetes data set used in Efron et al. (2004) and
later in Bertsimas et al. (2016). We also use the data
sets used in Miyashiro and Takano (2015a): the data sets
Housing, AutoMPG, SolarFlare, BreastCancer, and
Crime, as well as the Insurance data set; their sizes
(n,p) are reported in the left column in Table 1. All
data sets except for Diabetes are available from the
UCIMachine Learning Repository (Dheeru and Karra
Taniskidou 2017).

4.2. Optimization Performance

We first focus on the performance of the methods
from an optimization perspective (i.e., their solution
times and end gaps). We point out that although there
exist techniques for sparse regression that can solve
to optimality problems with thousands of variables
(Bertsimas et al. 2019b, Atamtiirk and Gémez 2020,
Bertsimas and Van Parys 2020), those methods in-
volve and exploit additional regularization terms. By
contrast, the regression problems with respect to
information criteria call for solving the “core” best
subset selection problem with no additional regula-
rization, where such techniques cannot be applied or
do not perform well.

4.2.1. Methods. We compare the following methods
for tackling the feature selection problems with in-
formation criteria:

Misoco: The MISOCO formulation (as in Miyashiro
and Takano (2015a))

(22a)
(22b)

min t
st.y=y-XB, y'y <ts, (190)~(19g), y € R"

Fractional: The fractional optimization approach
with Algorithm 1

Cardinality: The approach described in (8), where
the MIQO (3) is solved for all values of k=1,...,p;
solutions obtained from solving the method with
cardinality k are used to warm-start the solvers when
solving the problem with cardinality k + 1
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Table 1. Performance for MIO Methods in Real Data Sets

Instance Method MSE BIC AlCc
Time Gap (%) Nodes Time Gap (%) Nodes Time Gap (%) Nodes
Housing Misoco * * * 134 — 416 4.1 — 151
n=>506,p=13 Fractional 0.2 — 31 0.3 — 160 0.2 — 34
Cardinality 1.2 — 304 1.2 — 304 1.2 — 304
AutoMPG Misoco * * * 612.3 — 39,387 439 — 6,336
n=2392,p=25 Fractional 1.3 — 4,999 5.1 — 27,708 1.9 — 8,121
Cardinality 10.3 — 50,562 10.3 — 50,562 10.3 — 50,562
SolarFlareC Misoco 155.0 — 4,502 177.2 — 15,476 1,712 — 359,532
n = 1,066, p = 26 Fractional 0.6 — 824 2.7 — 9,704 1.3 — 3,576
Cardinality 11.2 — 21,396 5.1 — 21,396 5.1 — 21,396
SolarFlareM Misoco t t * 65.8 — 11,270 366.6 — 148,084
n=1,066, p =26 Fractional 0.3 — 54 2.2 — 8,265 1.6 — 5,239
Cardinality 23.1 — 108,409 23.1 — 108,409 23.1 — 108,405
SolarFlareX Misoco * * * 22 — 178 19.5 — 10,730
n = 1,066, p = 26 Fractional 0.2 — 20 0.5 — 554 0.4 — 599
Cardinality 9.6 — 22,472 9.6 — 22,472 9.6 — 22,472
BreastCancer Misoco Limit 53 2.9x10° Limit 6.0 489,650 Limit 7.3 785,634
n=196,p =237 Fractional 119.9 — 648,348 825.0 — 3.6x10° 860.4 — 4.7x10°
Cardinality 515.9 — 3.0x10° 515.9 — 3.0x10° 515.9 — 3.0x10°
Diabetes Misoco Limit 222 52,651 Limit 41.0 117,190 Limit 8.9 155,747
n=442, p = 64 Fractional Limit 4.3 1.4x107 Limit 16.1 1.3x107 Limit 7.9 1,3x107
Cardinality Limit 6.0 8.9x10° Limit 6.0 8.9x10° Limit 6.0 8.9x10°
Crime Misoco Limit 100.0 4,201 Limit 41.3 22,283 Limit 72 24,544
n=1,993, p =100 Fractional Limit 3.1 6.3x10° Limit 134 6.0x10° Limit 5.1 5.7x10°
Cardinality Limit 11.8 4.8x10° Limit 11.8 4.8x10° Limit 11.8 4.8x10°
Insurance Misoco t t * Limit 100.0 2,871 Limit 100.0 1,100
n=25822,p=151 Fractional Limit 2.1 3.1x10° Limit 42 2.6x10° Limit 2.5 3.2x10°
Cardinality Limit 3.1 2.7x100 Limit 3.1 2.7x100 Limit 3.1 2.7x10°0

Note. Ininstances not solved to optimality, the best solution found by Cardinality with respect to a given criterion matches the solution found

by Fractional.
"Numerical errors occurred during branch and bound.

In addition, we also test methods Fractionalgpp,
corresponding to the conic relaxations described in
the online supplement, and Cardinalitygp, which
solves the conic relaxation propose in Atamtiirk and
Gomez (2019a) for all cardinalities.

Finally, for MIO formulations, we use the logical con-
straints z; = 0 = f; = 0 in CPLEX to impose constraints (3c),
which essentially delegates to the solver the task of
computing adequate big-M values—note that the conic
relaxations Fractionalgpp and Cardinalitygpp do not
use big-M values.

4.2.2. Time Limits. When solving the conic relaxa-
tions Fractionalgpp and Cardinalityspp, each prob-
lem is solved to optimality, and there is no time limit.
For the MIO-based Fractional and Cardinality
methods, we set a time limit of one hour. Note that for
the Cardinality method, this is a time limit to solve
all problems:" we initially allocate a time limit of (1/p)
hours to each problem to each problem, and if a problem
is solved before the time limit, then we allocate the
unused time evenly among remaining problems.

4.2.3. Results. Table 1 reports for each instance, MIO
method, and criterion the solution time (in seconds)
required to solve problem (9) to optimality or the
optimality gap proven when a time limit of one
hour is reached, as well as the number of branch and
bound nodes.

The optimality gaps are computed as follows: for
methods Fractional, the optimality gap is given by
Equation (27) in the online appendix; for Misoco, the
optimality gap just corresponds to the gap reported
by the solver; and for Cardinality, we report the
worst optimality gap among all problems (8). Note
that although the gaps of Misoco and Fractional
correspond to the gap with respect to the optimal
solution of problem (9), the gap of Cardinality hasa
different interpretation as it corresponds to the gap
with respect to the optimal solution of a cardinality
constrained problem (3), and thus it is not directly
comparable with the other optimality gaps.

We see from Table 1 that the performance of Misoco
is very poor, struggling in almost all instances; note
that, by default, CPLEX uses linear outer approximations



Gomez and Prokopyev: Fractional Optimization in Best Subset Selection

INFORMS Journal on Computing, 2021, vol. 33, no. 2, pp. 551-565, © 2021 INFORMS

559

to tackle MISOCO optimization problems, and poor
quality of such approximations may be the cause of this
bad performance. By contrast, the other MIO formula-
tions, Fractional and Cardinality, perform well in
the smaller data sets with p < 40, solving the problems
to optimality in seconds or minutes. In addition, in all
instances that are solved to optimality (except Breast-
Cancer), Fractional is consistently an order of
magnitude faster than Cardinality (in BreastCancer,
the formulations are approximately equal, depend-
ing on the criterion used). However, in instances
with p > 64, all MIO formulations are unable to
prove optimality, and end gaps are in some cases
above 10%. Solving these instances to optimality (by
either method) would require substantially larger
time limits.

In addition, Table 2 reports the time required to
solve the problems for relaxations Fractionalgspp and
Cardinalityspp, as well as the quality of the resulting
relaxations. Specifically, the relaxation quality is the
gap between the objective value of the best solu-
tion found via the MIO method Fractional (valyo)
and the corresponding lower bound proven by re-
laxation (valgpp):

ValMIO - VaISDp
Relax = ————"—.

ValMIo

We observe from Table 2 that Fractionalgpp is be-
tween 20 and 50 times faster than Cardinalitygpp.
Also, larger speedups correspond to instances with
larger values of p. In addition, by comparing the MIO
formulations (Table 1) and the conic relaxations
(Table 2), we make the following observations. First,
conic relaxations can be substantially faster than MIOs,

which is not surprising as the problems tackled are
simpler. Nonetheless, as shown by the small optimality
gaps in Table 2 and as will be argued further in Sec-
tion 4.3, the solutions from the conic relaxation can be
excellent estimators. Second, in the instances not
solved to optimality by the MIO methods, the gaps
reported by the conic relaxations are smaller, indi-
cating that the lower bound obtained by solving this
relaxation is better than the lower bound obtained
after one hour of branch and bound. These results also
indicate that the feasible solution found by MIO is
better than what the optimality gap from branch and
bound indicates and may, in fact, be optimal in many
cases (indeed, the solution with respect to MSE in
“Crime” was, in fact, proven optimal after solving the
conic relaxation).

We conclude from our experiments that by adopting
a fractional optimization perspective, feature selection
problems with information criteria can be solved sub-
stantially faster than by using the existing approaches.
These benefits are further compounded when the frac-
tional optimization methods are combined with novel
approaches for tackling MIQO problems.

4.3. Statistical Performance

In this section, we replicate the simulation setup used
by Hastie et al. (2017) to compare the statistical
performance of feature selection methods with dif-
ferent information criteria and test the performance
of solving the cardinality constrained problem (3)
while using hold-out validation to select the right
parameter k. In our computations, we use n = 1,000,
p =100, p=0.35 ve{0.050.09,0.14,0.25,042,0.71,
1.22,2.07,3.52,6.00}, and ko = {5, 10, 25}.

Table 2. Performance for Conic Relaxations in Real Data Sets

MSE BIC AICc
Instance Method Time Relax (%) Time Relax (%) Time Relax (%)
Housing Fractionalgpp 0.1 0.0 0.1 0.0 0.1 0.0
Cardinalityspp 0.7 — 0.7 — 0.7 —
AutoMPG Fractionalgpp 0.7 1.0 0.9 4.3 0.8 1.8
Cardinalityspp 6.8 — 6.8 — 6.8 —
SolarFlareC Fractionalgpp 0.5 0.3 0.6 15 0.4 0.4
Cardinalityspp 8.7 — 8.7 — 8.7 —
SolarFlareM Fractionalgpp 0.5 0.2 0.5 0.6 0.5 0.3
Cardinalityspp 8.7 — 8.7 — 8.7 —
SolarFlareX Fractionalspp 0.5 0.1 04 0.0 0.5 0.1
Cardinalityspp 9.0 — 9.0 — 9.0 —
BreastCancer  Fractionalspp 14 14 6.6 5.4 1.6 3.6
Cal‘di.l’lah’fySDP 28.1 — 28.1 — 28.1 —
Diabetes Fractionalgpp 17.6 2.9 36.1 6.7 17.0 4.2
Cardinalityspp 503.1 — 503.1 — 503.1 —
Crime Fractionalgpp 125.2 0.0 158.6 2.4 125.7 0.9
Cardinalityspp ~ 4,004.0 — 4,004.0 — 4,004.0 —
Insurance Fractionalgpp 1,305.7 1.1 1,140.0 1.1 1,113.3 1.2
Cardinalityspp 16hrs — 16hrs — 16hrs —
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4.3.1. Methods. We compare the performance of the
following methods.

Hold-out validation: The data are partitioned into a
training set and a validation set, each of size n/2.
The best subset selection problem (3) is solved on
the training set for all valuesof k =0,1, ..., 2ky, and the
estimator that results in the smallest prediction er-
ror on the validation set is used. This method corre-
sponds to the best subset selection method used in
Hastie et al. (2017).

MSE: The estimator that minimizes the MSE.

BIC: The estimator that minimizes the BIC.

AlCc: The estimator that minimizes the AICc.

For both the hold-out validation and information
criteria methods, we tested the MIO-based and conic
relaxation methods. For MIO methods, we set a time
limit of 3 minutes to compute the estimators; note that
for hold-out validation, this amounts to an average of
3/(2kg) minutes per problem (although some prob-
lems may be allocated more time, as discussed in
Section 4.2.2). For conic relaxations, we do not set a time
limit and solve all convex problems to optimality.

4.3.2. Metrics. To evaluate the performance of each
method, we consider the following metrics:
(i) The relative test error given by

Bl - %) _(B-F)=(B-p) + o

o2 02

where xy € R” denotes a test predictor drawn from
N »(0,X), yo is its associated response drawn from
Np(x5p°,62), and B is an estimator obtained from a
given regression procedure

(ii) Thesupport recovery (i.e., the number of correctly /
incorrectly identified predictor variables)

(iii) The total time required to compute the estimator

Observe that the relative test error was also used
as a metric in Hastie et al. (2017).

4.3.3. Results. We generated, for each combination of
parameters v and ko, 10 instances with identical pa-
rameters, and we report the averages across all rep-
lications. Specifically, Table 3 reports for each value
of ky the average total time required to compute the
estimators (the averages are also taken across all
SNRs). Consistent with the results reported in Sec-
tion 4.2, we observe that the conic relaxations with
respect to information criteria are substantially faster
to compute and that the conic problems are solved to
optimality in less than three minutes, the time limit
given for MIO problems. We also point out that, on
average, the conic relaxation of each cardinality-
constrained problem solved in hold-out validation
requires 62 seconds; thus we see that conic problems

Table 3. Average Computational Time (in Seconds) of
Conic Relaxations in Synthetic Instances with n = 1,000,
p =100, and p = 0.35

Setting MSE BIC AlCc Hold-out validation
ko =5 133 69 132 575
ko = 10 131 75 129 1,153
ko =25 57 33 52 3,075

Note. All MIO methods hit the time limit of three minutes without
proving optimality.

with respect to information criteria are solved in the
time required to solve two cardinality-constrained
problems (or less).

In terms of statistical performance, we observe that
MIO formulations and conic relaxations deliver almost
identical solutions: in SNR regimes with v < 0.25, the
estimators from the conic relaxations have a slightly
lower error than their MIO counterparts (by an av-
erage of 0.2%), whereas in regimes with v > 0.25, the
two errors are, on average, the same. This similarity
indicates on the one hand that conic relaxations in-
deed produce very-high-quality estimators and on
the other hand that MIO methods find optimal or
near-optimal solutions in a short time limit, even if
proving optimality would require a long time. Be-
cause both methods result in very similar perfor-
mance, but the conic relaxations are slightly superior
in low SNR regimes, we report only those results.

Figures 1 and 2 depict for different values of pa-
rameters kyp and signal-noise ratios v the test error
and support recovery, respectively. We observe from
Figure 1 that AICc dominates MSE and that BIC
dominates hold-out validation in terms of prediction
accuracy. Moreover, although the quality of the pre-
dictions of MSE and AICc are fairly insensitive to the
SNR and true sparsity parameter ky, the performance
of BIC and hold-out validation depends on those
parameters. In particular, both BIC and hold-out
validation perform (comparatively) better when the
true model is very sparse (i.e., low values of ky) and in
very low and very high SNRs. By contrast, AICc
performs better for denser models and for medium
SNR values. We see that the performance of hold-out
validation is especially poor for ky = 25, being out-
performed by all other methods for several SNR
values (i.e., for 0.09 < v < 0.71). We attribute, in part,
the superior performance of information criteria ap-
proaches such as BIC to the lack of hold-out valida-
tion, which requires holding out a portion of the data
for validation purposes.

From Figure 2 we see that BIC achieves its good
prediction performance in low SNRs by selecting a
small number of predictor variables, but most of
those match the support of the “true” regression
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Figure 1. (Color online) Relative Test Error of Conic Estimators as a Function of the SNR in Synthetic Instances with n = 1,000,

p =100, and p = 0.35
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coefficients B°. As the SNR increases, the number of
predictor variables chosen by BIC gradually increases
until achieving an almost exact recovery of the true
support of B°. We see that hold-out validation is also
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able to recover the true support in large SNR re-
gimes but may choose a relatively large number of
incorrect regression predictors in low SNR regimes
when compared with BIC. By contrast, MSE and AICc
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Figure 2. (Color online) Support Recovery of Conic Estimators as a Function of the SNR in Synthetic Instances with n =1, 000,

p =100, and p = 0.35
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fail to recover the true support for v < 6; in general,
MSE selects a larger number of “incorrect” predictors,
which explains why its prediction performance is
worse than that of AICc. Nonetheless, for medium
values of the SNR value, AICc chooses a larger number
of true predictors than does BIC or hold-out validation
with a modest amount of incorrect ones, leading to better
prediction performance.

0.71 1.22 2.07 3.52

SNR

We conclude this section by summarizing our main
computational findings:

¢ The parametric method described in Section 3
is able to solve to optimality problems an order
of magnitude faster than previous approaches for
information criteria. The speedup is more pro-
nounced when paired with recent convexification
methods.
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e Optimizing with respect to information criteria
via the new conic relaxations can be substantially
“cheaper” than performing simple hold-out valida-
tion (and would be much faster than k-fold cross
validation) while delivering comparable or even su-
perior statistical performance (depending on the re-
gime and criterion used).

e In terms of the performance of information cri-
teria, we report the following findings:

—The BIC criterion delivers sparser solutions
than other criteria and is the best at identifying the
true sparsity pattern (validating the theoretical
derivation of the criterion). It also delivers excellent
prediction capabilities (although it is highly de-
pendent on the SNR) and consistently outperforms
hold-out validation.

—The AICc, although unable to identify the cor-
rect sparsity pattern, delivers good predictions and is
fairly insensitive to the SNR in terms of the relative
test error. It outperforms other methods when the un-
derlying model is relatively dense (25% of nonzeros).

—The MSE criterion, corresponding to the simple
and popular “adjusted” R* metric (but without the
theoretical justifications of other criteria), is domi-
nated by the AICc criterion in terms of both prediction
and support recovery. It also performs worse than
BIC and hold-out validation in most (but not of all) of
the scenarios considered.

4.4. Additional Discussion

One of the main advantages of the parametric ap-
proach given in Section 3 is that it reduces optimi-
zation with respect to highly nonlinear criteria such as
(6) and (7) to solving a sequence of MIQO optimi-
zation problems, for which specialized methods, well
beyond simply using off-the-shelf solvers, exist. In
this paper, we illustrate one such approach by using
the conic relaxations for MIQO derived in Atamtiirk
and Gémez (2019a). We now give pointers to alter-
natives and briefly discuss their integration with the
parametric method.

e Hazimeh and Mazumder (2018) propose a
coordinate-descent method for the {y-regularized best
subset selection that delivers locally optimal solu-
tions and scales to problems with p ~ 10°. This method
can be used to solve each subproblem in the Newton
method described in Section 3, resulting in a method
that quickly finds high-quality solutions to problems
with respect to information criteria. The integration
with respect to the MSE criterion is straightforward,
whereas other criteria require minor modifications to
account for the submodular regularization —t¢(1'z).

In addition, if an additional regularization term is
added in the numerator of (4) and inside the loga-
rithm in (5)-(7)—in which case the resulting prob-
lem can be interpreted as a robustification of the

original problem—the following methods could be
used as well:

¢ Bertsimas and Van Parys (2020) propose a linear
outer approximation algorithm to tackle the sparse
regression problems, and they show that computa-
tional times can be reduced in cross validation by
reusing the approximation constructed in earlier prob-
lems. The same algorithm can be used to solve sub-
problems arising in Algorithm 1, and the linear outer
approximations constructed can be reused in subse-
quent iterations.

e Pilanci et al. (2015), Dong et al. (2015), and Xie
and Deng (2020) propose to solve conic relaxations
that, although weaker than the one used in this paper,
are simpler and scale to larger instances while pre-
serving good statistical properties. These relaxations
could be used instead of the relaxation proposed by
Atamturk and Gomez (2019a).

e Atamtiirk and Gémez (2020) propose safe screen-
ing rules to quickly fix discrete variables to 0 or 1 while
preserving optimality guarantees. By using the Lovasz
extension of the submodular function —£¢(1’z), similar
rules could be derived for problems with informa-
tion criteria.

As the methods for tackling problem (3) keep im-
proving rapidly, the fractional optimization approach
presented in this paper allows the direct incorporation
of those methods to tackle problems with informa-
tion criteria.

5. Conclusion

We present an MIFO framework to support the best
subset selection in linear regression under a variety of
criteria proposed in the literature. We use an un-
derlying submodular function that arises with most of
the criteria considered to strengthen the formulations,
and we propose to tackle the resulting optimization
problems by solving a sequence of MIQO problems
(or their relaxations). We report encouraging results
in our computational experiments, with respect to
both the optimization and statistical performance.
Because of the ubiquity of the information criteria in
subset selection and other more general feature se-
lection problems, the proposed methodologies may
be potentially applicable in contexts other than lin-
ear regression.
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Endnote

"We also tested a parallel implementation of this method by allo-
cating one hour to each problem and not using warm starts. We found
that the sequential implementation with warm starts produces so-
lutions close or equal to the parallel implementation, although gaps
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can be much larger in the more difficult instances. For the sake of
brevity, we omit this approach from our computations.
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