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ABSTRACT

Introduction: The occurrence of metal ions in biomolecules is required to exert vital cellular functions.
Metal-containing biomolecules can be modulated by small-molecule inhibitors targeting their metal-
moiety. As well, the discovery of cisplatin ushered the rational discovery of metal-containing-drugs. The
use of both drug types exploiting metal-ligand interactions is well established to treat distinct
pathologies. Therefore, characterizing and leveraging metal-coordinating drugs is a pivotal, yet challen-
ging, part of medicinal chemistry.

Area covered: Atomic-level simulations are increasingly employed to overcome the challenges met by
traditional drug-discovery approaches and to complement wet-lab experiments in elucidating the
mechanisms of drugs’ action. Multiscale simulations, allow deciphering the mechanism of metal-
binding inhibitors and metallo-containing-drugs, enabling a reliable description of metal-complexes
in their biological environment. In this compendium, the authors review selected applications exploit-
ing the metal-ligand interactions by focusing on understanding the mechanism and design of (i)
inhibitors targeting iron and zinc-enzymes, and (ii) ruthenium and gold-based anticancer agents
targeting the nucleosome and aquaporin protein, respectively.

Expert opinion: The showcased applications exemplify the current role and the potential of atomic-
level simulations and reveal how their synergic use with experiments can contribute to uncover

ARTICLE HISTORY
Received 13 May 2020
Accepted 11 November 2020

KEYWORDS

Metallodrug; metal-binding
inhibitors; molecular
dynamics; QM/MM; CYP450;
ruthenium drug; breast
cancer; prostate cancer;
RAPTA; metallo-beta-
lacatamases; aromatase

fundamental mechanistic facets and exploit metal-ligand interactions in medicinal chemistry.

1. Introduction

Metal-containing biomolecules are involved in vital cellular pro-
cesses, accounting for roughly 30-40% of the proteome [1].
These include metalloenzymes promoting complex biochemical
reactions, metal-transporters that strictly preserve the homeos-
tasis of critical metal ions [2], and metal-responsive transcrip-
tional regulators, which modulate DNA-binding affinity and
concomitant gene expression by binding to their cognate
metal [3,4]. In addition to them, RNA enzymes also need divalent
metal ions to stabilize their tertiary structure and promote the
catalysis of nucleic acids [5,6].

Among the most abundant metal ions present in biomole-
cules are iron, copper, zinc, and magnesium. As an example,
iron is contained within the heme moiety of cytochromes
P450 (CYP450) and catalyzes the oxidative transformations of
endogenous and exogenous compounds [7]. Some CYP450s
also promote the biosynthesis of steroid hormones and, there-
fore, inhibitors targeting the Fe moiety are currently employed
to fight diffused cancer types [8].

Due to their optimal redox potential, reactions mediated by
copper enzymes promote fundamental biological processes (i.e.
cellular respiration, iron oxidation, antioxidant defense) [9]. Yet, an
excessive concentration of copper can possibly trigger cytotoxic
cellular damages, as implicated in neurodegenerative disorders
and cancer [10]. Deregulated copper metabolism, due to genetic

abnormalities in Cu transporters, is responsible for Menkes’ and
Wilson’s diseases [11]. In this respect, ligands that regulate mis-
function of Cu(l) metabolism offer appealing opportunities to
counteract these pathological states [12]. Zinc ions are the natural
cofactors of a wide variety of enzymes such as (i) matrix metallo-
proteinase (MMP), responsible for protein degradation at the cell-
extracellular matrix, typically targeted by anticancer compounds
[13]; (i) human carbonic anhydrase (hCA), promoting reversible
hydration of carbon dioxide to bicarbonate [14], whose inhibitors
exhibit several medical applications (i.e. diuretics, anticonvulsants,
as anticancer agents/diagnostic tools for tumors, antiobesity
agents); (iii) bacterial metallo-B-lactamases (MBL) enzymes that
promote the degradation of B-lactam antibiotics. Their inhibitors
are of critical importance to counteract resistance to commonly
used B-lactam antibiotics [15,16].

Finally, magnesium-dependent proteins and ribozymes are
widespread and promote the metabolism of nucleic acids in
genome regulatory processes [17,18]. Among these, Mg>*-
dependent pharmacological targets are (i) the flap endonuclease
1 (FENT), an enzyme that removes the DNA and RNA flaps
formed during replication and repair and is targeted by antic-
ancer drugs [19,20]; (ii) HIV integrase, which inserts the viral
genome into the host cell and is targeted by antiviral com-
pounds [21]; (iii) the GTPase enzymes, which are critically linked
with cellular differentiation, proliferation, division, and
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Article highlights

¢ Small-molecule inhibitors can establish metal-coordination bonds to
impair the function of pharmacologically relevant metalloenzymes.

o Transition metals find application mainly as anticancer agents exert-
ing their cytotoxic action by coordinating to nucleic acids and/or
proteins.

e Multiscale simulations can rationalize the potency of metal-targeting
inhibitors and unveil the mechanism of metalloenzymes, thereby
boosting the efficacy inhibitor's potency.

e (lassical and quantum-classical simulations enable prediction and
assessment of the binding mode, mechanism, and the targeting
proclivity of metallodrugs.

o This review highlights the current role and challenges faced by all-
atom simulations, envisioning their permeation in the drug-discovery
workflow to target and exploit metal ions.

This box summarizes the key points contained in the article.

movement by regulating signal transduction. Their activity in
many infiltrative (brain, ovarian, and melanoma) cancers can be
inhibited by small-molecules binding to their Mg®* ion cofac-
tor [22].

The use of metal-containing drugs to treat patients affected by
distinct pathologies is nowadays well established. As an example,
metallodrugs can be effective anticancer agents [23]. Among
these, cisplatin is currently the most widely used chemotherapeu-
tic drug [24], being active in the treatment of 18 cancers, including
testicular and ovarian carcinomas, lymphoma, melanoma, and
neuroblastoma [25]. The activity of this drug and its derivatives
(carboplatin, oxaliplatin, etc.) has been historically ascribed to the
formation of DNA lesions that interfere with transcription, result-
ing in cellular apoptosis. Nowadays, it is however clear that its
complex pharmacological profile is also due to its interactions with
distinct proteins [26].

In spite of their successful clinical applications, the small size
and the typical square planar geometry of platinum compounds
only allow a poor site discrimination toward its biological target,
resulting in severe toxicity and intrinsic or acquired resistance
issues [27,28]. This prompted the development of novel che-
motherapeutic strategies aimed at exploiting the potential of
alternative metals such as ruthenium and gold compounds
[29]. Ruthenium (Ru)-based compounds are promising candi-
dates for their selective activity against specific cancer cell
types and low toxicity [30]. The typical octahedral coordination
sphere of ruthenium allows a higher degree of site selectivity,
reducing the resulting toxicity. These properties led two ruthe-
nium compounds - the anti-primary tumor indazolium trans-
[tetrachloridobis (1 H-indazole) ruthenate(lll)] (KP1019) and the
anti-metastasis imidazolium trans- [tetrachloride (1 H-imidazole)
(S-dimethylsulfoxide) ruthenate(lll)] (NAMI-A) - in clinical trials,
and later suspended for toxicity [30-32]. Again, gold (Au) com-
plexes were object of intense research efforts due to their cyto-
toxic effects toward several cancers and their different
pharmacological profiles as compared to Pt-drugs. Auranofin,
an Au(l) compound originally used to treat rheumatic arthritis,
was later approved for clinical trials against lung and ovarian
carcinomas. The selenoprotein thioredoxin reductase is a well-
documented target of auranofin. In addition, other Au(l) com-
plexes were later demonstrated to bind different proteins,

among which aquaporin-3 [33] and zinc finger proteins, such as
poly(adenosine diphosphate ribose)polymerase-1 (PARP-1) [34].

Understanding the mechanism and designing of new drugs
forming coordination bonds with metal ions pose serious
challenges to structure-based drug discovery. Molecular dock-
ing simulations, traditionally used in medicinal chemistry, are
unable to explicitly account for the intricate metal electronic
structure [35,36]. Indeed, they cannot describe the formation/
breaking of bonds of the metal-coordination sphere (i.e. the
type and number of ligands coordinating to the metal center)
and they cannot account for the readjustments of the metal
electronic structure and charge density (polarization and
charge transfer effects), occurring either during the binding
of a drug to the meta-moiety of a biomolecule or while
a metallodrug binds to its target biomolecule [37].

These limitations are shared by both main and transition metal
elements [38,39]. Hence, a hierarchical computational approach is
most commonly adopted in which docking calculations are instru-
mental to obtain the initial binding pose for (i) the inhibitor in
proximity of the metal site to the target biomolecule or (i) the
metallodrug nearby the residues/nucleobases of the biological
target. This binding pose is then relaxed with more advanced
computational methods, traditionally used by computational che-
mists and biophysicists, such as all-atom molecular dynamics (MD)
simulations at force field (FF) and electronic structure level [40].

FF-based MD simulations experience limitations for properly
describing the electronic structure of metals or requires system-
specific parameters, thus, making necessary the use of quantum
mechanical (QM) methods. In this case, a hybrid quantum/classi-
cal (QM/MM) approach is employed that describe the metal and
its coordination sphere (organic ligands and residues/nucleic
acids) at a QM level, while treating the remainder of the system
(the rest of the biomolecule in explicit solution, and, eventually,
in a membrane mimic) with classical FF [41].

In this compendium, we review selected informative stu-
dies aimed at exemplifying the use of molecular simulations
when dealing with transition metal elements, such as the
biologically abundant iron and zinc atom embedded in metal-
loenzymes, or the ruthenium and gold ions contained in
metallodrugs. In particular, we report how QM/MM MD simu-
lations contributed to elucidate the reaction mechanisms of
steroidogenic Fe-containing CYP450s and their inhibitors used
in standard treatment regimens against distinct cancers [8], to
study the binding of ligands to Zn-containing enzymes (MMP,
hCA, MBL) [42], to dissect the mechanism of novel Ru-based
anticancer drugs targeting the nucleosome [37], and the bind-
ing of Au(l) complexes to aquaporins [33].

This review highlights that understanding the mechanism
of a metal-targeting or a metal-containing drug is not lim-
ited to the drug-ligand interactions or local drug-induced
perturbations, but it can also be linked to a drug-induced
allosteric modulation of the target, delineating different
kinetic and thermodynamic properties. This information
allows gathering precious information to rationalize and
boost drug efficacy. This review also remarks that the inter-
play between experiments and computations is critical to
clarify relevant biological questions at molecular level,
assuming a prominent role in the rational design of drugs
deploying metal-ligand interactions.



2. Computational methods
2.1. Force field-based MD

Molecular dynamics allows the solution of the classical equa-
tion of motion for a set of particles [43]. This provides
a trajectory, which describes the time-evolution of each
atom of a bimolecular system at finite temperature. In classical
MD, the potential energy of the system is determined by
empirical FFs, usually exhibiting the generic form of the
potential energy reported in Eq. (1). FFs result from the sum
of different contributions which mimic the molecular proper-
ties of the system (i.e. bonded terms, describing stretching,
bending, torsional vibrational modes, and non-bonded terms,
accounting for dispersion and electrostatic forces) [44,45].
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AMBER [46], GROMOS [47], and CHARMM [48]. These are com-
plemented for simulations of small molecules and cofactors by
the Generalized AMBER FF (GAFF) [49] and CHARMM General
FF (CgFF) [50].

Classical MD simulations are performed for time scales of
tens-hundreds of ps, thus being impaired to directly monitor
many biologically relevant phenomena. Nevertheless, by cou-
pling classical MD with methods that enhance the sampling of
the configurational space (i.e. enhanced sampling techniques)
[51,52] or with non-equilibrium free-energy methods (i.e. free-
energy perturbation, umbrella sampling, adaptive biasing force)
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[53], it becomes possible to study interesting biophysical phe-
nomena taking place at longer time scales (us-to-ms) [54,55].

2.2. Mixed quantum-classical (QM/MM) MD

FF-based methods can be combined to QM calculations,
resulting in the so-called QM/MM approach. After its original
formulation in the 70s [56], different QM/MM implementations
have been proposed [57]. Here, we mostly refer to the fully
Hamiltonian approaches included in the CPMD [58] and CP2K
codes [59]. An efficient variation of this traditional scheme has
been recently proposed [60]. This relies on a loose coupling of
two highly parallelized codes such as the CPMD [61] and
GROMACS [62], resulting in a higher computational efficiency.
In QM/MM studies of metallo-systems, the metal and its
coordination sphere are treated at a higher level of accuracy
(QM level), while the remainder of the system is described at
the MM (FF) level of theory (Figure 1). Namely, for an inhibitor
binding to the metalloenzyme, the QM region should com-
prise the enzyme’s metal center, the residues coordinating to
it, and the inhibitor. In the case of a metallodrug binding an
enzyme, the QM region includes the drug and the residues/
nucleobases of the protein/nucleic acid directly binding the
metal. In the general form of a hybrid QW/MM scheme, Eq. 2,
the Hamiltonian H of the system contains Hamiltonians for
the quantum (Hqy) and classical (Hyy) systems and for the
interacting part between the QM and MM regions (Hou/mm):

H =Haom + Hum + HQM/MM (2)

where the ab initio Hamiltonian (Hgu) can be based on different
QM approaches, spanning from semiempirical to ab initio
Hartree-Fock or Density Functional Theory (DFT) methods. We
remark that in the study of metallo-systems, the latter is most

Figure 1. Representative QW/MM partitioning of a metal-containing biological system, showing the catalytic site of the spliceosome (total atoms 370,000 atoms).
Proteins are shown with white surface and green new cartoons, distinct RNA strands are shown in blue, orange, cyan and green ribbons. The cycle on the right
reports a close view of the QM region (highlighted with a transparent surface), composed by the Mg?* ions (yellow), and the remaining RNA nucleobases and
phosphate shown in licorice and ball and sticks and colored by atom name. The remaining part of the system, including RNA strands (shown as blue and orange
ribbons), water molecules (shown as red sticks), protein and counter ions (not shown) are treated at the classical (MM) level. Adapted from Ref [94] with permission

of Copyright © 2020, American Chemical Society.
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often the method of choice owing to its favorable scaling with
the number of atoms and its reasonable accuracy to treat corre-
lation effects [39].

QM/MM implementation has to devote particular care to the
coupling between the QM and MM regions. This is described by
the interaction Hamiltonian Hou/mm term, which accounts for
both bonded and non-bonded interactions at the interface of the
QM and MM regions. The description of the covalent bonds, split
between the QM and MM regions, relies either on linking hydro-
gen atoms or on specially parameterized pseudo-atoms that
saturate the valence of the terminal QM atoms. Furthermore,
between the non-bonded interactions, the van der Waals terms
are accounted at the classical FF level, while special care is
needed for describing the electrostatic interactions. In the
mechanical embedding scheme, the electrostatic interactions
between the two partitions are either not described or are
treated at the MM level. In the more rigorous and most com-
monly employed electrostatic embedding scheme, the electro-
static effects of the environment (MM portion) polarize the QM
electronic charge density. Additionally, the interaction between
MM point charges and QM electron density is incorporated in the
Hom as one-electron terms. Finally, in the polarized embedding
scheme, the polarization effects of the QM region on the MM part
are also considered toward a polarizable FF.

Since its first appearance [56], QM/MM approaches have been
successfully applied to a growing number of drug-design [33,40,-
40,63-67] and enzymatic reaction studies [68-81]. The QM/MM
method, in combination with ab initio MD (i.e. through the Car-
Parrinello and Born Oppenheimer approaches), has also been
widely employed to study anticancer metallodrug-target inter-
actions [40,41,82,83] and mechanistic studies of metalloenzyme
catalysis [84-89]. Both the CPMD [90] and CP2K [91] codes are
based on DFT and can be interfaced with distinct non-polarizable
classical FFs. These continuous developments and code improve-
ments enabled the study of huge cryo-EM structures accessible
nowadays [92,93], with recent applications to biological systems
of increasing size and complexity (reaching more than 370,000
atoms), such as the spliceosome and CRISPR-Cas9 [94-97].

3. Mechanism and design of metal-coordinating
drugs within biomolecules

3.1. Drugs targeting metalloenzymes

3.1.1. Drugs targeting iron-containing enzymes

CYP450s are a wide family of enzymes involved in the metabo-
lism of endogenous and exogenous substances [98,99]. CYP450s
promote the biosynthesis of steroid hormones for which their
de-regulated activity is linked to the onset of distinct diseases
such as cancer [78,100]. Thanks to a specific catalytic scaffold,
steroidogenic CYP450s promote complex biosynthetic processes
with high precision and efficiency [8]. Their intricate catalytic
functions are entwined with their environment, such as their
membrane-associated nature, which affects the ligand channel-
ing to/from the active site [101,102] and their interactions with
specific redox partner, supplying the electrons needed for cata-
lysis [103,104]. All these aspects are critical to understand and
exploit at best CYP450s” mechanism to devise inhibitors target-
ing the metal ions.

Among steroidogenic CYP450s, two enzymes have attracted
particular interest for their implications in two diffused cancer
types among the male and female populations. These are
CYP19A1 (also referred to as aromatase, AR) and CYP17A1,
which are in charge of the synthesis of estradiol and testoster-
one, the main adult female and male hormones, respectively.

CYP450 acts as monooxygenase enzymes which, by using
molecular oxygen, insert one oxygen atom into their sub-
strates (RH to ROH), while reducing the second oxygen to
a water molecule (Eq. 3).

NADPH + H™ + O, + RH — NADP™ + H,O + ROH (3)

This occurs following a general mechanism (Figure 2A):

In the resting state (1) CYP450s coordinate a water molecule
to the iron of the heme moiety; (i) the substrate (RH) enters into
the active site and water dissociates (2); (ii) the first electron
transfer (ET) from the redox partner occurs, triggering the forma-
tion of a high spin ferrous complex (3); (iii) this species binds O,
resulting into oxy-ferrous complex (4); (iv) a second ET yields
a ferric peroxo complex (5) and (v) after protonation this complex
results into compound 0 (Cpd 0, 6); (vi) a proton transfer induces
the formation of highly reactive iron-oxo species compound
| (Cpd 1), a FeM-oxo porphyrin radical cation (7); (vii) in most
CYP450s" cycles, Cpd | performs substrate hydroxylation (8),
yielding an alcohol, ROH, and ultimately restoring the heme
resting state (1). The protons required for the reactions are
supplied either from water molecules accessing the active site
or a specific redox partner that furnishes the electrons.

3.1.2. Metal-ligand interactions in CYP19A1

Besides sharing these common features, the mechanism of sub-
strate hydroxylation has specific differences in each CYP450
enzyme. This has been exhaustively addressed for the AR enzyme,
which converts estrone and androstenedione to estradiol and
estrogen, respectively (Figure 2B). The highly hydrophobic nature
and substrate specificity of its active site have initially fostered the
idea that a distinct mechanism may have been operative with
respect to the general CYP450 catalysis. In particular, the last
catalytic step, implicated in completing substrate aromatization,
remained controversial and has been addressed in many compu-
tational studies [105-107]. After Cpd | was demonstrated to be the
reactive species of final catalytic step, extensive classical and QM/
MM metadynamic simulations supplied a comprehensive picture
of AR’s enzymatic cycle (Figure 3A) [108]. This study disclosed that
the most likely enzymatic path for the conversion of androstene-
dione to estrone occurs via (i) androstenedione enolization and
Cpd 0 formation via a proton network mediated by Asp309
(Helmholtz's free-energy barrier (AF*) = 11.4 + 3.0 kcal/mol), (ii)
subsequent formation of Cpd |, upon a rearrangement of the
Asp309 sidechain (AF* = 9.1 + 0.7 kcal/mol) and engagement of
a proton network with Asp309 and Thr310. (iii) Two hydroxylation
reactions next occur and are then followed by the conversion of
19,19-gem-diol is into estrone by Cpd | (AF* s = 6.5/6.0 + 1.3 keal/
mol [108].

Besides the key regulatory role that estrogens play in sexual
and reproductive development, estrogens can also stimulate the
development and growth of estrogen-dependent (ER+) breast
cancer (BC), which currently is the most diffused BC type in post-
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Figure 2. A) General CYP450 cycle and hormones conversion catalyzed by aromatase (AR) and CYP17A1 [77]. B) The three oxidation steps catalyzed by AR. C) 17a-
hydroxylation and 17a-20-lyase reactions of pregnenolone as performed by CYP17A1.

menopausal woman. As such, AR is a pivotal target for standard  inhibitor exemestane (EXE) [111] or for characterizing the metal-
pharmacological treatment against BC [109,110]. ligand interaction underlying the inhibition mechanism of non-

A clear understanding of the reaction mechanism by multi-  steroidal inhibitors, which have so far eluded a structural charac-
scale simulations is instrumental to design small-molecules that  terization by experimental means [110]. The third-generation of AR
covalently inhibit the enzyme. This is notable in the steroidal inhibitors (Al) shares a common azole moiety, which is believed to
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Figure 3. A) Free-energy surface for the aromatization (third catalytic) step, considering the enol form of androstenedione as a reagent [108]. Representative
snapshots for the reagent (R), intermediate (1), product (P) and transition states (TSs) formed along the lowest energy path, are reported. Heme and the substrate are
shown in a stick representation. Binding of B) letrozole and C) abiraterone to the Fe atom of CYP19A1 and CYP17A1, respectively, as predicted by QM/MM MD
simulations [113] and X-ray crystallography (PDB 3RUK) [121]. Reproduced with permission from Ref [108], Copyright 2018 John Wiley & Sons.

coordinate the heme iron atom. QW/MM MD simulations have
provided insights into the possible binding mode of letrozole, a-
third generation Al, to the AR’s active site (Figure 3B) [112]. In
addition, these inhibitors were used to estimate the binding free-
energy and dissociation free-energy barrier of letrozole to/from the
metal center [112]. This study showed that the dissociation free-
energy cost associated with the cleavage of the covalent bond
with the Fe atom is comparable to that for traveling among the
egress channels. Therefore, both aspects have to be considered in
order to ameliorate the kinetic properties of such drugs.

In addition, a recent study was aimed at identifying a novel
class of non-steroidal inhibitors able to bind to the heme iron
with their azole moiety [113] and to additionally target one
allosteric site [114,115]. In this study, QM/MM MD simulations
elucidated the key molecular traits underlying the measured
trend of ICso (half inhibitory concentration). Namely, this study
showed that the binding geometries (bond lengths and angles)
of all the newly developed inhibitors and letrozole are similar, in
spite of their different potencies, suggesting that the structural
deformation induced to the catalytic site is a key aspect to
consider during the drug-design process (Figure 3B) [113].
Furthermore, it was observed that effective inhibitors active in
the low nM range, such letrozole and exemestane, forms hydro-
gen (H)-bonds and engage optimal hydrophobic and m -stacking
interactions that further boost their potency [113]. Ligand strain
has already been indicated as an essential trait affecting the
activity of inhibitors. Indeed, molecular simulations revealed

that compounds exhibiting ICsos in the nM range undergo
a protein-induced ligand strain smaller than 3 kcal/mol [116].

3.1.3. Metal-ligand interactions in CYP17A1

CYP17A1 promotes the biosynthesis of androgens [4] by merging
two functions: 17-hydroxylase and 17,20 lyase, which are exploited
to convert pregnenolone and progesterone to dehydroepiandros-
terone and androstenedione [8] (Figure 2C). The 17-hydroxylation
of pregnenolone and progesterone occurs via the canonical oxy-
gen rebound mechanism detailed in Figure 2A, whereas the
mechanism of the lyase step remains unclear. This may be pro-
moted by Cpd | or by the nucleophilic attack of FeO,™ on the
steroid C20 atom [8]. The mechanistic intricacies of CYP17A1 have
been addressed by DFT calculations, complemented by classical
MD simulations. The first was employed to identify the structures
of transition states and intermediates and their relative energies,
while the latter were used to link the DFT-obtained geometries
with the actual conformations of the protein framework. This
study tackled the reaction mechanism of both the hydroxylase
and lyase reactions considering Cpd | and peroxo anion as the
reactants of the two steps, respectively. For the hydroxylase step,
the reaction was observed to proceed with a Gibbs's free-energy
barrier (AG") of 13-14 kcal/mol. Conversely, for the lyase step, two
distinct mechanisms (stepwise or concerted) were discovered
both having a AG* of 20 kcal/mol [117]. In addition, in line with
previous findings of the AR enzymes, this study confirmed that the
selectivity and specificity of the steroidogenic CYP450s are



dictated by peculiar interactions between the substrate and the
enzyme’s active site [117].

Prostate cancer (PC) is the second most common type of cancer
in men and the fifth leading cause of death worldwide [118].
Several treatments are available against this disease. Most of the
FDA approved drugs against PC are hormonal modulators target-
ing the androgen pathway such as gonadotropin-releasing ago-
nists, and androgen-receptor blockers [119]. However, advanced
PC ultimately develops resistance to current therapies, rapidly
leading to castration-resistant prostate cancer (CRPC), where the
androgens, synthesized by tumors and/or the adrenal glands,
stimulate disease progression. Thus, the reduction/suppression of
hormone levels in cancer cells remains a key pharmacological
strategy against CRPC [120]. The use of CYP17A1 inhibitors,
which prevent the conversion of cholesterol to testosterone, is
the forefront therapy against CRPC. Abiraterone (ABI), the first
CYP17A1 inhibitor approved in the United States [118], has
a steroidal scaffold with a pyridin-3-yl moiety at position 17 that
inhibits CYP17A1 by coordinating to the iron atom of the heme
moiety [121] (Figure 3C). ABl is structurally similar to the substrates
of other CYP450s involved in steroidogenesis, and interference can
pose a liability in terms of side effects. Hence, designing and using
non-steroidal scaffolds may lead to compounds that interact more
selectively with CYP17A1. As such, a structure-based virtual screen-
ing approach to search compounds bearing azole or pyrazole
moieties was done and complemented by QM(DFT)/MM simula-
tions to assess the structural properties and compute the binding
energy of the selected ligands. The success of the adopted proto-
col was confirmed by in vitro assays, demonstrating that two
compounds selectively inhibited CYP17A1 with 1Cses in the nM
range [120]. The same protocol allowed optimizing these heme-Fe
targeting ligands [120,122].

3.1.4. Metal-ligand interactions in Zn-containing enzymes
Many Zn-binding enzymes are the target of inhibitors directly
binding to the metal moiety. Among them, the mechanism of
matrix metalloproteinases (MMP), a family of Zn-dependent endo-
peptidases, which degrade the extracellular matrix has been inten-
sively studied [76,123] due to their role in cell proliferation,
adhesion, and migration. Therefore, these enzymes are implicated
in cancer progression leading to metastasis. An articulated com-
putational study investigated the binding of 28 hydroxamate
inhibitors to the Zn-moiety of MMP9. In this study, the docking
pose of these inhibitors has been initially scored with the tradi-
tional docking algorithm. Nevertheless, suitable binding poses
have been selected on the basis of the Zn-ligand distance in
order to select the pose, which enables the binding of the inhibitor
to the metal moiety [124]. On a selection of suitable poses, QM/MM
simulations were done to obtain the appropriate coordination
geometries, and MD simulations were ultimately performed,
while keeping constrained the distance and the angles defining
the coordination geometry of the ligand to the metal moiety. This
computational approach was instrumental to rationalize the
observed inhibition constant and the different binding modes of
the ligands [124].

Human carbonic anhydrase Il (hCAll) is yet another Zn-
dependent enzyme, which catalyzes the transformation of carbon
dioxide into bicarbonate [75,125]. This is often used as a prototypi
cal model system for medicinal chemistry applications.
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Sulfonamide-carrying ligands are known to inhibit hCAIl by
directly binding to the catalytic Zn?* ion of the protein, upon
displacement of the fourth water/hydroxyl ligand. A recent com-
putational study addressed the multistep hCAll-sulfonamide
recognition process, identifying the structural features of the kine-
tically relevant intermediate along the binding pathway via
enhanced sampling simulations at the classical FF level. On the
identified free-energy minima, DFT calculations were performed to
study the displacement of the hydroxyl ligands, after a proton
transfer from the sulfonamide inhibitor to the hydroxyl ion. This
allows the displacement of the resulting water molecule and the
direct binding of the inhibitor to the metal moiety. This study
revealed that the experimentally measured binding affinity of
benzenesulfonamide to hCAIl could be explained on the basis of
the association rates, which is strongly connected with the hydro-
phobicity of the inhibitor substituents [42]. Moreover, QW/MM
simulations have been used to refine the binding poses of
a series of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamides
directly binding to the zinc ion [126].

As well, Zn-dependent nucleases able to cleave single-
strand DNA or RNA are object of research interest both for
understanding their mechanism [127] and for their emerging
role as the selective target of small-molecule inhibitors [128].

Finally, the metallo-B-lactamases (MBL) represent a large family
of Zn-dependent enzymes involved in the cleavage of the (-
lactam antibiotics. Several QM/MM MD studies in combination
with free-energy methods have been done to assess the substrate
cleavage mechanism [16,129-132]. QM/MM MD studies concern-
ing the binding and the mechanism by which known inhibitors
inactivate the enzyme include elucidated how a thiazolidinecarbox
ylic acid inhibitor inactivated the di zinc CcrA enzyme [129]. These
studies were performed aiming at designing common inhibitors of
all MBLs, in spite of the marked differences between the structure
of MBLs’ active site, -lactam specificity, and metal content [133].

In recent years, a series of small compounds like bisthiazolidines
were shown to act as inhibitors of all MBL types, restoring the
efficacy of currently used antibiotics against resistant bacterial
strains producing different MBLs. This study offered precious
insights for future MBL inhibitor design [134].

3.2. Metallodrugs targeting proteins and nucleic acids

3.2.1. Ru-containing drugs targeting the nucleosome core
particle: DNA versus protein targeting strategies

Ru(ll)-arene (RA) compounds represent a promising alternative
to Pt-drugs (Figure 4). These complexes, originally introduced in
the form of [Ru(II)(rf’—arene)CI(ethylene—diamine)] (RAED) and the
[Ru(II)(nG-arene)CI2(1,3,5-triaza-7-phosphoadamantane) (RAPTA)
compounds, share a m-bonded arene ligand. It can be pictorially
seen as the ‘seat of the stool,’ with a chelating ethylene-diamine
(ED) or a monodentate phosphine 1,3,5-triaza-7-phosphadaman-
tane (PTA) ligand occupying the remaining coordination sites
(Figure 4(A, B)) [23]. The arene ligand provides a bulky hydro-
phobic surface, possibly fostering a high degree of complemen-
tarity and selectivity toward bimolecular targets [30]. The
versatility of RA compounds stimulated the development of
similar compounds, among which those bearing a p-cymene
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Figure 4. Chemical structure and binding mode of the RAED-C (A), RAPTA-C (B) and RAED-THA (C) at the Nucleosome Core Particle (NCP). RAED-C preferentially
binds at DNA, while RAPTA-C selects protein histones. RAED-THA binds at the SHL +1.5 sites of the DNA and engages ligand coordination with a guanine base (i.e.
G + 15). Within the nucleosomal DNA (close-up view), RAED-THA intercalates within the +15/16 AG = CT step via a ‘mono-base stacking’ mechanism, which directly
involves G + 15. (B) Selected snapshots from classical MD simulations of a 14-mer DNA extracted from the RAED-THA/NCP model. After a ~ 20/30 ns MD, the THA is
extruded from the double strand, which assumes a B-configuration. The typical base-stacking of DNA in B-configuration is highlighted in orange.

(RAPTA-C) or a toluene (RAPTA-T) ligand, exhibited selective
antimetastatic activity in vitro and in vivo [135-137].

RA compounds have been demonstrated to bind to the
nucleosome core particles (NCP)s [138,139]. Nucleosomes are
the fundamental unit of chromatin and are composed of chro-
mosomal DNA (about 145-147 base pairs (bp) long), wrapped
around an octamer made by four core histone proteins (H3, H4,
H2A, and H2B, Figure 4). The packaging of the genome into
nucleosomes raises the intriguing possibility to form adducts
between the drugs to the DNA and/or protein sites. These latter
are particularly interesting, since the drugs binding at the histone
may directly influence gene expression, opening novel opportu-
nities for anticancer strategies [139,140].

Surprisingly, X-ray crystallography revealed that the chromatin-
bound adducts in cancer cells treated with RAPTA-C are mostly
associated with the NCP protein components, while RAED prefer-
entially targets the guanine sites of the DNA components of
chromatin (Figure 4(A, B)) [138,141,142]. When bound to the
protein components, both RAPTA-C and RAED-C preferentially
bind at glutamate sites of the histone components, while

displaying a very different histone (RAPTA-C) vs. DNA (RAED-C)
specificities. QM/MM MD simulations, complemented by free-
energy methods, elucidated the molecular basis of this observed
site selectivity. This was originating from both kinetic and thermo-
dynamic factors due to the distinct size of the ligands present in
the two drugs. Indeed, the steric constraints of the nucleosomal
DNA, prevent the easy accommodation of the PTA ligand during
the formation of the RAPTA-C-DNA adduct, also decreasing its
thermodynamic stability. In contrast, the PTA ligands favor the
binding of the drug at the histone sites owing to its special shape
and hydrophobic complementarity with the histone proteins. In
this scenario, the higher cytotoxicity of RAED-C may be related to
its DNA lesion-forming proclivity, whereas the propensity of
RAPTA-C to form protein adducts may be linked to its distinct
therapeutic effect [138]. Building on the RAED compound, a novel
antitumor  compound [(r]6-THA)Ru(ethylene—diamine)CI][PFG]
(THA = 5,8,9,10-tetrahydroanthracene; RAED-THA; Figure 4CQ),
showing the highest cytotoxicity among the reported Ru-based
agents, was identified [143]. This compound differs from RAED-C
in the substitution of the THA group with p-cymene. RAED-THA



cannot form bifunctional DNA cross-links. Its high cytotoxicity,
comparable to that of cisplatin, has been attributed to the poten-
tial THA group ability to intercalate within the DNA base pairs.

Building on the X-ray crystallography revealing that RAED-
THA attacks nucleosomal DNA at a pair of guanine sites establish-
ing an unconventional ‘mono-base stacking,” classical and QM/
MM MD simulations enabled to compare its binding mode to
both naked and nucleosomal DNA. These simulations confirmed
a stable binding of RAED-THA by the coordination of Ru(ll)-center
to G15 and the p-stacking of the THA ligand with nucleosomal
G £ 15 (Figure 4B). Due to the peculiar structural characteristics of
the nucleosomal DNA [144], RAED-THA assumes an atypical,
selective, and previously unknown semi-intercalative binding
mode. Conversely, the simulations considering RAED-THA cova-
lently bound to a 14-mer DNA section extracted from the RAED-
THA/NCP model experienced a rapid DNA (i.e. within the ~20/30
ns time scale) relaxation of the DNA double helix to the B-DNA
conformation, with the THA group being extruded (Figure 4B)
from ds DNA, while the adjacent bases returned to their canoni-
cal inter-base pair m-stacking [145]. These results further remark
that the histone-induced deformation of the nucleosomal
dsDNA is critical for stabilizing the newly reported semi-
intercalation mechanism of RAED-THA [145].

3.2.2. Synergistic effects of Ru(ll) and Au(l) compounds
Gold-based compounds have increasingly attracted interest of
medicinal chemists for their potential therapeutic applications
[146]. Among these, auranofin [(1-thio-b-d-glucopyranosyl)
(triethylphosphine) Au(l) 2,3,4,6-tetraacetate], a clinically approved
drug for the treatment of rheumatoid arthritis, has raised the
interest of medicinal chemistry community for its therapeutic
application in a wide number of diseases including cancer, neuro-
degenerative disorders, HIV, parasitic and bacterial infections [1471].
The antitumor activity of gold compounds is known to be ‘DNA-
independent,” being its main target thioredoxin reductase,
a mitochondrial enzyme, which is overexpressed in most cancer
cells [148]. In vivo, this drug is metabolized to tetraacetylthioglu-
cose and the bioactive fragment [Au(PEt3)]" (AUF - Figure 5A), with
the first fragment being excreted, the cationic AUF species can
coordinate His imidazole nitrogens and Cys thiol sulfurs of
biomolecules.

The importance of auranofin in this context is due to the
recent discovery of its synergistic cytotoxic activity with RAPTA-
T (with an ns—toluene ring) on ovarian cancer cells, along with
a ~ 3 fold increased uptake of auranofin into nucleosomes when
simultaneously applied with RAPTA-T. Crystallographic studies
on the NCP in complex with RAPTA-T and AUF showed that the
AUF fragment binds at two symmetry-related histidine residues
(H113/H113") located at ~35 A distance away from the two
adjacent RAPTA-T binding sites [149]. Extensive MD simulations
(considering the apo NCP, the NCP/RAPTA-T and NCP/AUF
adducts and the NCP in complex with both drugs) contributed
to shed light on the synergistic mechanism of the two drugs at
the molecular level. These simulations allowed discriminating
the differences in the structural and dynamic properties induced
by simultaneous binding of both drugs. Indeed, a cross-
correlation analysis showed that a cross-talk between the two
metals binding sites was taking place, thanks to a series of subtle
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conformational changes occurring within the protein framework
that are transmitted via the coupled motions of the histones.

We remark that the binding of RAPTA compounds at the
protein histones occurs at the specific binding sites of chromatin
factors. These latter are enzymes determining the degree of
chromatin compaction by binding NCPs [140]. Thus, the RAPTA
compounds directly interfere with the epigenetic mechanisms of
gene expression. In light of this evidence, the synergistic action
of RAPTA-T and auranofin might be explained by a mechanism of
sequestration of specific binding sites in which the NCP is made
inaccessible for the epigenetic machineries [149]. This is opening
new research lines attempting to fully exploit the allosteric nat-
ure of the NCP [150,151] through the cross-link of allosteric
sites [152].

3.2.3. Au(lll)-drugs targeting aquaporins

Au(lll) compounds have been also object of research interest
[146]. Recently, [Au(lll)(phen)Cl,ICI (phen = 1,10-phenanth
roline)], AuPhen, was identified as a selective and potent inhibi-
tor of human aquaporin-3 (AQP3). This is an aquaglyceroporin
family member allowing permeation of water and small
uncharged solutes such as glycerol. Remarkably, AQP3 overex-
pression is linked to cancer development and obesity [153].
A computational workflow, composed of docking, FF-based
MD, and QM/MM calculations, was applied to Auphen and
other similar Au(lll) complexes to predict their binding mode to
AQP3’s channel. Interestingly, Au(lll) binding to Cys40 induces
thorough conformational changes of the aquaglyceroporin
channel, ultimately leading to pore shrinkage and inhibition of
substrate permeation [33].

Furthermore, MD simulations of Hg2+ ions (benchmark inhi-
bitors of all AQPs) binding to AQP3 have shown metal-induced
pore closure of the channel, upon Hg?* binding to Cys40, trigger-
ing a protein conformational change rather than the steric block-
age of AQP3 channel by the metal inhibitor [154].

Finally, a multi-level theoretical approach, relying on classi-
cal MD and QM/MM studies, was used to investigate both the
interaction with the physiological medium and the binding at
the extracellular pore of AQP3 of the Au(lll) complex
[AU(NAN)CLL][PFs] (NAN = 2,2"-bipyridine, Aubipy). This study
clarified the importance of the initial formation of non-
covalent Au(lll) complex/AQP3 adduct to compensate the
thermodynamic and kinetic barriers linked with the produc-
tion of the final covalent adduct [155].

4. Conclusions

The limits of in silico drug-discovery strategies to properly
account for metal-ligand interactions have prevented their
applications to the inorganic medicinal chemistry research field,
where metal-ligand interactions have to be accurately moni-
tored and described. The exponential increase of computational
power occurred in the last decades, together with the promise of
modern (quantum) computers, is expected to markedly boost
the use of accurate, yet computationally intensive, all-atom simu-
lations in drug-discovery programs in the near future. To show
the potential of the synergistic use of massive classical and QM/
MM MD simulations in unraveling the mechanism of action,
rationalizing the potency and the underlying binding specificity
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of metal-binding drugs, we have presented a selection of infor-
mative showcase applications. In particular, this compendium
focuses on the role of molecular simulations in decrypting the
metal-mediated catalytic mechanism of steroidogenic CYP450s
and exploiting the Fe-ligand interactions to inhibit their function
in cancer. Again, few applications of computer simulations in
studying the mechanism or the binding of inhibitors to distinct
members of the Zn-containing enzymes are also reported. The
studies discussed clearly exemplifies that the action, mechanism,
and specificity of metal-targeting drugs do not only depend on
the coordination geometries while being most often entwined
with the biological environment. This should be explicitly con-
sidered to optimize inhibitors’ potency and specificity [156].
Complementarily, in the field of metallodrugs, our selected
examples show how molecular simulations can contribute to
elucidate key aspects of the targeting characteristics of Ru and
Au-anticancer agents, such as the binding preferences, the topo-
logical dependence of their binding mode and allosteric regula-
tions of drugs targeting distinct binding sites.

Besides showing the predictive power of multiscale simula-
tions, this review also highlights how the synergism between
experiments and all-atom simulations can contribute to enrich
and expand our comprehension of inorganic medicinal chem-
istry, elucidating mechanistic features, which are often

inaccessible to experiments and molecular simulations taken
singularly. This synergism is also expected to contribute to
pinpointing off-target interactions and their associated toxicity
mechanism and the synergism/interference mechanism of dif-
ferent drugs. This information will contribute to design and
develop the next generation of clinically applicable drugs or
drug-combinations exploiting metal-ligand interactions.

5. Expert opinion

The use of metal-ligand interactions in medicine to treat
patients with different pathologies is well established.
Nowadays, the mechanism of action is increasingly used to
drive the drug-discovery process to optimize the properties
and the efficacy of drugs exploiting metal-ligand interac-
tions [64].

In this scenario, the rapid and constant increase in accuracy
and computational affordance of atomic-level simulations pro-
vide computational inorganic chemists with powerful tools to
gain direct views on the mechanism of action of two categories
of drugs: those directly binding the metal moiety of metal-
enzymes (metal-interacting drugs) or those containing non-bio-
abundant metals (metal-containing drugs). Recent advances in
free energy and enhanced sampling methods, the refinements of



FFs, the development of specific computational platforms to run
all-atom simulations have partially overcome traditional short-
comings of classical and QM/MM MD simulations (i.e. short time-
scales, size-limit, and predictability problems).

More importantly, the growing body of data gathered from
experimental and computational means enables computers to
learn from data, paving toward machine learning (ML)
approaches, a burgeoning research field in drug discovery and
chemistry [157,158]. Its impact has been so far more limited in
drug-discovery of metal-coordinating drugs. Indeed, metal-
ligand interactions are very sensitive to atom identity, exhibit
coordination, and environment-dependence of bonds. These
properties need to be captured by complex and sophisticated
descriptors and functions, therefore, posing a challenge for ML
[159]. Additionally, available training data sets are small, owing to
the high computational cost of simulation of transition metal
compounds with very accurate methods. This has a strong impact
on the predictive power of ML [159] in this research area. In spite
of these limitations, we expect that ML will hit on inorganic
medicinal chemistry. On one hand, ML is expected to foster the
development of cost-effective and more accurate description of
the system either based on quantum mechanics (by contributing
to the development of more accurate exchange-correlation func-
tional, orbital-free density functional theory, many-body expan-
sions) or based on molecular mechanics (by contributing to
develop more accurate and versatile classical FFs) suitable to
describe the full range of inorganic chemical bonding [160]. We
expect that these advances will contribute to further bridge
pharmaceutical companies and academic institutions.

Novel research areas representing an opportunity for compu-
tational studies of metallo-ligand/target interactions include
nuclear medicine. Radiometals can be applied for both imaging
and therapy, especially in the oncology field [161]. Selective tumor
targeting is required in radiotherapy to avoid compromising the
health of surrounding tissues. Therefore, the rational design of
radiopharmaceutical ligands, along with a detailed comprehen-
sion of their transport routes and mechanisms, is required to
ensure an optimal drug performance in terms of stability of the
radiometal compound and selective targeting properties [162].

The structural biology research is currently routinely acces-
sing increasingly large biological macromolecular machineries at
(or near) atomic resolution, thanks to single-particle cryo-EM. We
envision that in forthcoming years, this technique will enable to
obtain structures of new pharmacologically relevant metal-
dependent machineries amenable to structure-based design
studies [93,97]. Extending the metallodrug interaction context
from the single protein target to complex macromolecular
aggregates of proteins and/or nucleic acids will further advance
our mechanistic understanding of metal-containing or metal-
binding drugs. Irrespective of the methodological advances
achieved, computational drug-design efforts will have to be
supported, integrated, and complemented by experimental
data, as exemplified by the successfully showcased studies pre-
sented in this compendium.
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