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Abstract

Effects of combustion heat release on turbulent velocity and scalar statistics are investigated as a func-
tion of the Damköhler number using three Direct Numerical Simulation (DNS) databases of spatially
developing turbulent premixed jet flames. At low Karlovitz numbers, where heat-release effects dominate
turbulent kinetic energy budgets, their relative significance scales with the integral Damköhler number in
a priori Reynolds-Averaged Navier–Stokes (RANS) statistics and the filter Damköhler number in Large
Eddy Simulation (LES). The Damköhler-number scaling of counter-gradient transport in this regime
follows theoretical arguments underpinning linear-algebraic turbulence models, which explains their effi-
cacy at low Karlovitz numbers. Conversely, at moderate Karlovitz numbers, LES subfilter turbulence is
more strongly influenced by heat-release effects than the analogous large-scale RANS turbulence. This is
consistent with the notion of an “active cascade,” which postulates that heat-release-induced volumetric
expansion competes on intermediate scales with classical forward-cascade energy transfer. LES exposes
these dynamics as dominant subfilter-scale physics, unlike in RANS, where they are secondary to the
effects of mean-shear production at the large scales. The significance of subfilter-scale interactions is
promoted by the LES filter itself, which modifies the RANS spectral basis by incorporating local flame-
normal averaging. This is highlighted by comparing LES fields obtained using a 3D filter to those using a
modified 2D filter, excluding the flame-normal direction, which significantly reduces the apparent influ-
ence of heat-release effects but is not representative of LES in practice. The subfilter modeling challenges
posed by these distinctions at moderate Karlovitz numbers and order-unity Damköhler numbers remain
to be understood.

1 Introduction

Interactions between turbulence and combustion heat release can dramatically alter turbulence dynamics in
turbulent premixed combustion. When a flame is thin and fast relative to turbulence scales, combustion-
induced pressure-dilatation (volumetric expansion) becomes a significant source of turbulent kinetic energy
(TKE) and is balanced by “negative production;” that is, the mean shear “production” term becomes
a TKE sink.1 Negative production has long been associated with counter-gradient transport (CGT),2,3

which invalidates the Boussinesq/Smagorinsky and gradient-diffusion assumptions of conventional dissipative
turbulence models.4,5 This presumably arises in part due to inverse-cascade energy transfer.6–9

Scaling arguments10 suggest that pressure–dilatation work becomes the dominant source of TKE when
the premixed-flame time scale is faster than the viscous dissipation time scale. This dependence may be
recast as a local Karlovitz number

Ka ≡ tF
tη

=
δF
sL

( ε
ν

)1/2

(1)
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and a critical Karlovitz number Kacr ≡ τB . In these, tF ≡ δF /sL is the laminar flame time scale; tη ≡ (ν/ε)1/2

is the Kolmogorov time scale; τB ≡ ρu/ρb − 1 is the flame density ratio; δF is the laminar flame thickness;
sL is the laminar flame speed; ν is the kinematic viscosity; ε is the TKE dissipation rate; and ρu and ρb are
the densities of the unburned reactants and burned products, respectively.

Effects of combustion-induced dilatation on turbulence, including inverse-cascade energy transfer and
CGT, should be apparent for Ka � Kacr. Turbulence in this regime essentially undergoes rapid distortion
by the flame.3,8, 11–15 In the opposite extreme, Ka� Kacr, large-scale turbulence straining balances viscous
dissipation, and pressure–dilatation work plays a negligible role.5,16 Although heat release still occurs, it
does not significantly disrupt the forward-cascade production–dissipation balance.12,17

Whereas the forward-cascade picture is disrupted when flame-induced kinetic energy is injected at small
scales, i.e., when Ka� Kacr, the magnitude of effects felt at large scales depends on the Damköhler number

Da ≡ t`
tF

=
sL
δF

`

u′
, (2)

where ` is a suitable pseudo-integral length scale and u′ is the rms fluctuations. In the early 1990s, Gao
and O’Brien18 recognized its importance when performing some of the first Direct Numerical Simulations
(DNS) of turbulent reacting flows. They observed a first-order Damköhler-number dependence of mean
scalar correlations for Da ≈ 1, for this corresponds to comparable reaction and flow time scales. However,
they found no Damköhler-number effect on velocity fluctuations due to a constant-density assumption. The
influence of the Damköhler number in the low-Karlovitz-number regime is addressed in section 3.

Combining the Karlovitz- and Damköhler-number dependence of heat-release effects, a theory of an
intermediate regime has been postulated. It is thought that heat release occurring over scales not small
enough to promote an outright inverse cascade (e.g., at moderate Karlovitz numbers, Ka & Kacr), but with
sufficient strength to affect the large scales (Da = O(1)), can result in competition between a heat-release-
induced inverse cascade and the classical, production-driven forward cascade. This has been called an “active
cascade.”8

Still, the dependence of heat-release effects on the Damköhler number remains an open question. It can
be recast as a Reynolds-number dependence19 through

Ret = Da2Ka2, (3)

where Ret = u′`/ν. At Da ≈ 1 and moderate Karlovitz numbers, say Ka ≈ 50, the required Reynolds
numbers are high, out of reach for DNS for the foreseeable future. Analysis of intermediate-regime heat-
release effects on large-scale turbulence statistics, for example, in the context of Reynolds-Averaged Navier–
Stokes (RANS) closure modeling, will be challenging for the foreseeable future.

Conversely, the influence of heat-release effects in Large Eddy Simulation (LES) at the intermediate
scales is characterized by the filter width. This dependence is parameterized by a filter Damköhler number
Da∆ ≡ t∆/tF , where t∆ ≡ (∆2/ε)1/3 is the time scale of turbulence at the filter scale ∆. Unlike the integral-
scale Damköhler number, which in general may be varied only by changing the Reynolds number (for fixed
Karlovitz number), the filter Damköhler number may be varied by almost two orders of magnitude in a
priori analysis by changing the filter width. This enables the Damköhler-number scaling of subfilter-scale
heat-release effects to be probed, and insights into active-cascade effects to be obtained, using currently
available DNS data.

Building on previous analyses of heat-release effects in the low- and high-Karlovitz-number regimes,5

the Damköhler-number dependence of heat-release effects in spatially evolving jet flames is explored in two
steps. First, the large-scale Damköhler-number dependence in the Ka � Kacr regime is analyzed using DNS
at higher Reynolds number (1.3). Second, the filter-scale Da∆ dependence in the Ka� Kacr and Ka & Kacr

regimes is analyzed by varying the Reynolds number and the filter width. Computational configuration
details are summarized in section 2. The large-scale Damköhler-number dependence in the low-Karlovitz-
number regime is analyzed in section 3. Heat-release effects at varying LES filter scales, with evidence of
intermediate-regime and active-cascade effects, are analyzed in section 4. Conclusions are summarized in
section 5.
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2 Numerical configuration

Spatially evolving, turbulent premixed planar jet flames are simulated using DNS. The low-Mach-number,
variable-density Navier–Stokes equations, together with equations for the temperature and the mass fractions
of ns reacting species,

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (4)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

, (5)

∂ρT

∂t
+
∂ρujT

∂xj
=

∂

∂xj

(
λ

cp

∂T

∂xj

)
+
λ

c2p

∂cp
∂xj

∂T

∂xj
− ρ

cp

ns∑
k=1

cp,kVk,j
∂T

∂xj
− 1

cp

ns∑
k=1

hkṁk, (6)

∂ρYk
∂t

+
∂ρujYk
∂xj

= − ∂

∂xj
(ρYkVk,j) + ṁk, (7)

are solved with sufficient resolution such that the small-scale turbulence and flame reaction-zone scales are
resolved. In the equations, ρ is the gas density, ui are the velocity components, p is the hydrodynamic
pressure, T is the temperature, and Yk are species mass fractions. Hydrogen–air combustion is modeled
using a 9-species, 50-reaction detailed kinetic model.20 The ideal gas equation of state

p0 = ρR0T

ns∑
k=1

Yk
Wk

, (8)

with p0 the constant thermodynamic pressure, closes the system. Further details of the governing equations,
transport models, and numerical solution may be found in MacArt et al.5

The flow evolves in the streamwise (x) and cross-stream (y) directions and is statistically homogeneous in
the spanwise (z) direction. The computational domain x = {x, y, z} has extents x ∈ [0, L], y ∈ [−H/2, H/2],
and z ∈ [−W/2,W/2]. Spatio-temporal (RANS) averages are denoted by angle brackets and are obtained
from DNS data by averaging in the z-direction and time. For the density, this is

〈ρ〉 (x, y) ≡ 1

W (te − ts)

∫ te

ts

∫ W/2

−W/2
ρ(x, t) dzdt, (9)

where ts and te are the averaging start- and end-times. Durations te− ts are given for specific configurations
in section 2.1. Density-weighted averages {φ} ≡ 〈ρφ〉 / 〈ρ〉 are computed for all other quantities. Density-
weighted fluctuations are represented as φ′′ ≡ φ− {φ}.

Filtered DNS fields are obtained from

φ(x, t) ≡ 1

∆3(x)

∫
Ω

G(y,x)φ(x− y, t) dy, (10)

where G(y,x) is an inhomogeneous filter with unit support inside a box of size (∆1,∆2,∆3)(x). The
local directional filter sizes are integer multiples of the local DNS grid spacing: ∆i(x) = r∆∆i,dns(x) with
r∆ ∈ {2, 4, 8, 16, 32, 48, 64}. The characteristic local filter size is ∆(x) = (Πi∆i(x))1/3. Density-weighted-

filtered quantities are denoted by tildes, φ̃ ≡ ρφ/ρ. A list of averaged, fluctuating, filtered, and derived
quantities is given in Table 1.

A reaction progress variable

C(x) ≡ YO2
(x)− YO2,u

YO2,b − YO2,u
(11)

represents a local, instantaneous flame coordinate, where Yk,u and Yk,b are the mass fractions of species k in
unburned reactants and equilibrium products, respectively.
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Field Definition Description

〈φ〉 (2.6) Spatio-temporal (RANS) averages
{φ} 〈ρφ〉 / 〈ρ〉 Density-weighted RANS averages
φ′′ φ− {φ} Density-weighted fluctuations

φ (2.7) Filtered DNS fields

φ̃ ρφ/ρ Density-weighted filtered DNS fields
Rij {uiuj} − {ui} {uj} Reynolds stress (§3.1)
Fj,k {ujYk} − {uj} {Yk} Scalar flux (§3.2)
τ sgsij ũiuj − ũiũj Subfilter stress (§4.1)

F sgs
j,k ũjYk − ũj Ỹk Subfilter scalar flux (§4.1)

Table 1: Notation for RANS and LES averaged and filtered quantities.

5P-K1 5P-K2 10P-K1

Re0 = U0H0/ν 5 000 5 000 10 000
Da0 = (sL/δF )(`0/u

′
0) 0.99 0.06 1.40

Ka0 = (δF /sL)(ν0/ε0)1/2 10.9 43.5 10.9
Ka{C}=0.5 3.7 54.0 4.7
H0 (mm) 4.32 1.08 7.23
U0 (m/s) 23.4 93.4 27.8
Domain (L,H,W )/H0 12× 24× 3 24× 16× 3 12× 24× 3
Grid size 768× 586× 256 1536× 576× 256 1292× 1024× 384
Duration (te − ts)U0/H0 62.75 70.56 8.68

Table 2: Jet-flame DNS conditions. Quantities with subscript (·)0 are evaluated in the unburned reactants at the jet outlet.
In-flame Karlovitz numbers Ka{C}=0.5 are reported at streamwise location x/H0 = 3.

2.1 Jet-flame simulations

An unburned stoichiometric (φ = 1.0) hydrogen–air premixture, diluted 20 % by volume with nitrogen to
avoid flashback, issues from a central jet at bulk Reynolds number Re0 ≡ U0H0/ν0 = 5 000 with jet height
H0 and bulk velocity U0. The inlet viscosity ν0 is evaluated in the unburned reactants. Laminar coflow jets
of equilibrium products surround the reactants jet. The laminar flame thickness and laminar flame speed at
these conditions are δF = 0.435 mm and sL = 1.195 m/s, respectively. The critical Karlovitz number of the
mixture is Kacr = 6.7.

DNS databases of three configurations are considered. Cases 5P-K1 and 10P-K1 have Re0 = 5 000 and
Re0 = 10 000, respectively, in-flame Karlovitz number Ka{C}=0.5 < Kacr, and approximately unity Da0. Case
5P-K2 has Re0 = 5 000, Ka{C}=0.5 = O(10Kacr), and Da0 = 0.06. “In-flame” properties are evaluated at
{C} = 0.5. Table 2 lists DNS conditions, grid parameters, and fully developed statistics averaging durations.
Previously reported studies of 5P-K1 and 5P-K2, as well as further configuration details, may be found in
MacArt et al.5

2.2 Numerical discretization

The coupled Navier–Stokes, temperature, and reacting species equations are discretized using second-order
central differences and staggered variable placement,21 except for convective terms in the temperature and
species equations, which are discretized using a third-order weighted essentially non-oscillatory (WENO)
scheme.22 The equations are integrated in time using a fractional-step method23 and an iteratively implicit,
linearized midpoint method24 with an alternating-direction implicit (ADI) framework for transport terms.
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Figure 1: TKE budgets for (a) 5P-K1 and (b) 10P-K1. Major terms are labeled as indicated in the text. The unsteady term
is indicated by black lines with points (•), and the residual is indicated by dashed lines. Both cases are are shown at x/H0 = 3.

Reaction source terms in the species and temperature equations are integrated monolithically with transport
terms using an approximately factorized exact Jacobian.25

The computational grid resolves the local mean Kolmogorov length scale {η} = ({ν}3 / {ε})1/4 to within
∆i,dns/ {η} = 1.8 in all cases. The laminar flame thickness is resolved by a minimum of δF /∆1,dns = 15 cells
in 5P-K1 and 10P-K1 and a minimum of δF /∆3,dns = 20 cells in 5P-K2. These resolutions are generally
considered sufficient for DNS.26–29

3 Damköhler-number scaling of inverse-cascade effects

Damköhler-number effects in the inverse-cascade regime—low Karlovitz number and order-unity integral
Damköhler number—are first discussed. For fixed Ka, the integral-scale Damköhler number is adjusted
according to (1.3) by changing the Reynolds number. MacArt et al.5 reported velocity statistics for 5P-K1;
here, these are compared to the new case 10P-K1 with higher Ret and Da. This corresponds to a relatively
faster flame time scale compared to the integral time scale.

3.1 Effect on velocity statistics

The turbulent kinetic energy evolves according to

1

2

∂ 〈ρ〉 {u′′i u′′i }
∂t

=− 1

2

∂ 〈ρ〉 {u′′i u′′i } {uk}
∂xk︸ ︷︷ ︸
T1

− 1

2

∂

∂xk
〈ρu′′ku′′i u′′i 〉︸ ︷︷ ︸
T2

+
∂

∂xk
〈u′′i τik〉︸ ︷︷ ︸
T3

−
〈
u′′i

∂p

∂xi

〉
︸ ︷︷ ︸

T4

−〈ρu′′ku′′i 〉
∂ {ui}
∂xk︸ ︷︷ ︸

T5

−
〈
τik

∂u′′i
∂xk

〉
︸ ︷︷ ︸

T6

,

(12)

with terms representing unsteadiness, mean convective transport (T1), turbulent transport (T2), viscous
transport (T3), the velocity fluctuation–pressure gradient correlation (T4), production by the mean shear
(T5), and viscous dissipation (T6). Budgets of these terms, normalized by U0, H0, and ρ0, are shown for
the low-Karlovitz-number cases in figure 1.

The 5P-K1 and 10P-K1 budgets differ primarily in the relative magnitude of T4 and T5 compared to the
remaining budget terms. T4 contains the pressure-dilatation (volumetric expansion) term,16 which becomes
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Figure 2: Normalized Reynolds stress components in (a) 5P-K1 and (b) 10P-K1. Both cases are shown at x/H0 = 3.

a significant positive source at Ka� Kacr due to flame-induced expansion. T5, the mean shear “production”
term, becomes a TKE sink to balance T4.1,5, 30 Upon increasing Da (Ret), T4 and T5 become relatively
larger compared to all other terms. This underscores the increasing importance of volumetric-expansion
effects with increasing Damköhler number. Said differently, at fixed Karlovitz number, in the regime in
which dilatation dominates (Ka� Kacr), increasing the Reynolds number likewise increases the Damköhler
number, which leads to larger magnitudes of heat-release effects on the turbulence.

This increased significance is further evident from changes to the Reynolds stress Rij ≡ {uiuj}−{ui} {uj},
the nonzero components of which are shown in figure 2. These are qualitatively similar in the two low-
Karlovitz-number cases with the exception of the cross-stream R22, which increases more substantially on
the burned side at higher Damköhler number (10P-K1). As this component is preferentially aligned with
the flame-normal vector (progress-variable gradient),5 this larger increase represents a greater magnitude of
flame-generated turbulence in agreement with figure 1. Conversely, the magnitude of “counter-Boussinesq”
transport5 of the shear component R12 is essentially unchanged. Apparently, increasing the Damköhler
number only increases the thermal expansion effect, while non-equilibrium effects on the Reynolds stress16

are relatively unaffected.

3.2 The relative significance of “gradient” and “counter-gradient” terms

Implications of heat-release effects for distinctly “gradient” and “counter-gradient” representations of tur-
bulence statistics are now explored. The former corresponds to Ka →∞ non-reacting turbulence; the latter
corresponds to the Ka → 0 infinitely thin flame limit.3 This is done in the context of linear algebraic tur-
bulence models,4,5 which comprise linear combinations of terms in the two limit cases. Analysis of these
enables exploration of the relative significance of each.

The most basic model for the scalar flux Fj,k ≡ {ujYk} − {uj} {Yk} in non-reacting turbulent flows is
based on the gradient-diffusion hypothesis

FGrad
j,k = − νt

Sct

∂ {Yk}
∂xj

, (13)

where νt is an eddy viscosity. In the following, νt is evaluated from a realizable k-ε model.31,32 The turbulent
Schmidt number Sct = 0.65 is chosen by fitting (3.2) to the 5P-K2 scalar flux, for which it is qualitatively
accurate.5
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Figure 3: (a) Variation of Da with mean progress variable in 5P-K1 and 10P-K1, shown in the latter at two streamwise
coordinates. (b) Variation of the DNS-evaluated efficiency function αdns within the flame brush at the same coordinates.

The “gradient” term may be combined with a “counter-gradient” term in the thin-flame (Ka → 0) limit
to form a Linear Algebraic Heat Release (LAHR) model4,5

F lahr
j,k = FGrad

j,k + α
({Yk} − Yk,u)(Yk,b − {Yk})

Yk,b − Yk,u
τsL {nj} , (14)

in which {nj} is the mean flame-normal vector and α is an “efficiency function” that controls the relative
weight of the two terms. A functional form of α,5 which balances the magnitude of the terms in (3.3) at
Kacr, is adopted. It contains a weak Da dependence

α = cα
τB
τ

(
sLδF
ν

)−1/2

Da1/2, (15)

where τ = Tb/Tu − 1 is a heat-release factor. The model constant is cα = 1.4 for consistency with previous
work. The model (3.3) with (3.4) qualitatively captures the transition from gradient to counter-gradient
transport for the Karlovitz-number range considered here.5

Given the DNS data, the left-hand side of (3.3) may be replaced by the exact cross-stream flux F2,k and
the “exact” αdns evaluated. The component F2,k is chosen because it is the only one significantly affected by
flame-normal expansion. This is subject to the caveat that αdns is only truly exact if the gradient-diffusion
model (including νt evaluation) completely predicts the “gradient” contribution, the thin-flame-limit model
completely predicts the “counter-gradient” contribution, and nonlinear interactions are insignificant. Still,
the scaling of (3.4) is relatively robust despite the obviously limited framework of (3.3).

At fixed Karlovitz number, the Damköhler number increases by a factor of
√

2 for a factor-of-two increase
of Ret. Figure 3(a) plots Da within the mean flame brush in 5P-K1 and 10P-K1; it is everywhere higher
in the latter. The depressed Da within the flame is due to the faster integral time scale (increased TKE),
which arises from flame-normal thermal expansion.

Figure 3(b) shows the variation of αdns with {C}. The computed values compare favorably with the
originally estimated4 α = 0.5 in the range 0.2 < {C} < 0.8. The flame-normal vector is not preferentially
aligned with Fj,k outside this range,5 thus (3.3) does not adversely affect predictions outside the flame brush.

Figure 4 combines the ordinates of figures 3(a)–(b) to show the Damköhler-number scaling of αdns.
The power of the Da-scaling is indicated by straight lines. Within 0.2 < {C} < 0.8, αdns scales nearly

log-linearly, and its dependence approaches the theoretical Da1/2 dependence from (3.4) with increasing
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Figure 4: Scaling of the DNS-evaluated efficiency function αdns with Damköhler number. Statistics in the lower-Reynolds-
number case (5P-K1) are shown at x/H0 = 3. Statistics in the higher-Reynolds-number case (10P-K1) are shown at x/H0 = 3
and x/H0 = 4. Points are colored by {C}. The solid and dashed lines indicate Da1/2 and Da1 scaling, respectively.

Damköhler number. Therefore, the magnitude of heat-release effects in this low-Karlovitz-number regime
is well captured by the assumption of linearly independent gradient and counter-gradient effects. This can
be interpreted as a reflection of the significant scale separation between shear production (large scales) and
flame-induced volumetric expansion (small scales).

Fundamentally, α has been formulated to link the regime dependence of low-Ka dilatation effects on small-
scale turbulence, based on scaling arguments of Bilger,10 to experimentally and computationally observed
counter-gradient transport. The scaling of αdns in figure 4 substantiates the claim that algebraic heat-release
models can account for counter-gradient transport of statistics for which the primary heat-release effects
occur via flame-normal thermal expansion. This is true for the flame-normal scalar flux F2,k. However, it does
not necessarily apply to the Reynolds stress, for which non-equilibrium interactions (e.g., involving pressure-
strain redistribution16) occur over finite flame thickness in low- but nonzero-Karlovitz-number flames. A
fundamentally different turbulence-modeling approach is likely necessary to account for these.33,34

4 Toward active-cascade effects

While the integral-scale Damköhler number scales the magnitude of heat-release effects on fluctuating quan-
tities, the filter Damköhler number is hypothesized to scale the effect on the analogous subfilter statistics.
These are analyzed in section 4.1 for the cases introduced previously, and their scaling with Da∆ is discussed
in section 4.2.

4.1 Heat-release effects on subfilter statistics

Subfilter statistics are obtained by filtering DNS data using (2.7). For the cases considered here, t∆ and

hence Da∆ generally increase with r∆ and x. The filter time scale {t∆} is evaluated at {C̃} = 0.5 for
consistency with Table 2. Subfilter statistics are averaged (2.6) over z and t to capture overall trends. The

two statistics of principal interest are the subfilter scalar flux F sgs
j,k ≡ ũjYk − ũj Ỹk and the subfilter stress

τ sgsij ≡ ũiuj − ũiũj .
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2,H2O versus {C̃} in (a) 5P-K1, (b) 10P-K1, and (c) 5P-K2, for filter ratios r∆ ∈ {2, 4, 8, 16, 32, 48, 64}.

Colors denote Da∆. 5P-K1 and 10P-K1 are shown at x/H0 ∈ {3, 4}. 5P-K2 is shown at x/H0 ∈ {3, 6, 9, 12, 15}. 5P-K2 with
∆y = 0 is shown in (d).

4.1.1 Subfilter scalar flux

Figure 5 displays the variation of the mean cross-stream subfilter H2O mass-fraction flux within the mean
flame brush. Since ∂ {YH2O} /∂y ≥ 0, positive values of F sgs

2,H2O are considered counter-gradient transport,
which is readily apparent for 5P-K1 and 10P-K1. The magnitude of counter-gradient transport in these
cases generally increases with Da∆.

The 5P-K2 subfilter scalar flux (figure 5c) exhibits gradient transport on the whole; this is consistent
with past RANS results5 and a priori -filtered results for a single Da∆.35 However, a dependence on Da∆ is
apparent. Between {C} = 0.25 and {C} = 0.75, the subfilter scalar flux magnitude generally decreases with
increasing Da∆ for each filter size r∆. This would indicate an increase in heat-release effects and counter-
gradient transport as Da∆ increases. While the largest subfilter scalar flux magnitudes do correspond to the
largest filter sizes, the basic trend is independent of filter size, depending only on the relative Da∆ increase.

The fact that the 5P-K2 conditions display gradient transport for RANS but trend toward counter-
gradient transport for LES is striking. This apparent discrepancy is not inconsistent with the notion of an
“active cascade,” in that filter-scale energy dynamics may significantly modify LES subfilter turbulence but
might not necessarily be strong enough to be felt at the largest turbulence scales in RANS.

The apparent discrepancy can be attributed to an important feature of LES: that filtering fundamentally
changes the spectral basis of the energy cascade.9 The LES filter is effectively a local volume average,
even over the inhomogeneous flame-normal direction, while RANS does not average over inhomogeneous
directions. Thus, one should not expect LES subfilter quantities to converge to RANS fluctuating quantities
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Figure 6: Mean τ sgs12 versus {C̃} in (a) 5P-K1, (b) 10P-K1, and (c) 5P-K2 for filter ratios r∆ ∈ {2, 4, 8, 16, 32, 48, 64}. Colors
denote Da∆. 5P-K1 and 10P-K1 are shown at x/H0 ∈ {3, 4}. 5P-K2 is shown at x/H0 ∈ {3, 6, 9, 12, 15}. 5P-K2 with ∆y = 0
is shown in (d).

in the limit of large filter sizes if the filter is performed over inhomogeneous flow directions. Even moderate-
Karlovitz-number (nominally thickened) reaction zones can be made mostly or entirely subfilter by large
enough ∆. This is evaluated in figure 5(d), for which the cross-stream (flame-normal) component of the
filter ∆y = 0 is disabled. The modified subfilter scalar flux using this 2D filter kernel, which more closely
approximates the RANS spectral basis, does not tend toward CGT as for the three-dimensional filter kernel
used in figure 5(c).

4.1.2 Subfilter stress

The shear component of the mean subfilter stress, shown in figure 6, follows similar trends. Cases 5P-K1 and
10P-K1 (figures 6a and b) generally exhibit counter-Boussinesq transport of {τ sgs12 } < 0, and the magnitude
of the heat-release term increases with Da∆.

Conversely, the 5P-K2 subfilter stress (figure 6c) is significantly modified by heat-release effects with
increasing Da∆. It switches from Boussinesq to counter-Boussinesq transport with increasing Da∆, and the
trend is independent of subfilter-stress magnitude. As with the subfilter scalar flux, these effects largely
disappear for the 2D filter kernel (figure 6d), but, even still, slight counter-Boussinesq transport remains far
downstream for large Da∆, which is consistent with the downstream R12 Reynolds stress at these conditions.
Nonetheless, intermediate-regime LES using a 3D filter kernel would be subject to the severe heat-release
modifications highlighted by figure 6(c).
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4.2 Filter-Damköhler-number scaling of counter-gradient effects

The relative significance of “gradient” and “counter-gradient” subfilter transport is now discussed. In analogy
to the Smagorinsky model,36 the simplest model for F sgs

j,k is

F Smag
j,k = − (cs∆)2

Sct
S̃
∂Ỹk
∂xj

, (16)

where cs = 0.12 accurately predicts the 5P-K2 subfilter scalar flux, S̃ = (2S̃ijS̃ij)
1/2 is the filtered strain-rate

magnitude with Sij ≡ 1
2 (∂ui/∂xj + ∂uj/∂xi), and Sct = 0.65 as before.

In analogy to the LAHR model in section 3.2, a counter-gradient term obtained in the infinitely-thin
flame (Ka→ 0) limit3 is linearly superimposed with (4.1) to obtain

F lahr
j,k = F Smag

j,k + α∆
(Ỹk − Yk,u)(Yk,b − Ỹk)

Yk,b − Yk,u
τsLñj , (17)

where ñj is a suitable instantaneous filtered-flame-normal vector, and α∆ is the filter-scale efficiency function
with a weak Da∆ dependence:

α∆ = cα

(
sLδF
ν

)−1/2

Da
1/2
∆ . (18)

Again, this efficiency function is defined to balance the magnitude of terms in (4.2) at Kacr. The model
constant is cα = 1.4 as in section 3.2.

The DNS-evaluated αdns
∆ is computed in analogy to αdns, that is, by substituting the DNS-evaluated F sgs

j,k

for the left-hand-side of (4.2) and solving for αdns
∆ . Instantaneous Da∆(x, t), α∆(x, t), and C̃(x, t) values for

each case and r∆ value are conditionally averaged into filtered-progress variable bins Ĉ(x, y; r∆, c), centered
on midpoints c ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} with bin width 0.1. This range is chosen to avoid the

C → 0 non-reacting regions and {C̃} > 0.8 regions of low turbulence intensity (see figure 3a).

The conditionally averaged αdns
∆ is shown versus Da∆ in figure 7. It displays a clear Da

1/2
∆ trend for

Da∆ = O(100), which corresponds principally to large values αdns
∆ > 0.2 and significant counter-gradient

transport; see figure 5(a)–(b). The lower-Da∆ case 5P-K2 does not exhibit Da
1/2
∆ scaling except for the

largest filter sizes; these have comparable αdns
∆ to the low-Karlovitz-number cases and undergo significant

flame modification; see figure 5(c).
Figure 7 underscores the significance of the filter Damköhler number in controlling the prevalence of

subfilter heat-release effects on turbulence. Apparently, there is a continuous transition from gradient to
counter-gradient subfilter transport with increasing Da∆, even across the nominally different low- (K1) and
moderate-Karlovitz-number (K2) regimes. This can be attributed to the dominant energy-transfer dynamics
within the subfilter scales. For small Da∆, the flame is nearly or fully resolved, even for low-Karlovitz-
number flames, hence the subfilter energy transfer resembles the classical forward cascade. Conversely, as
Da∆ increases, the flame becomes unresolved, and the influence of heat release must be modeled.

5 Concluding remarks

The principal effect of the integral-scale Damköhler number in the low-Karlovitz-number regime (where
heat-release effects dominate) is to intensify the magnitude of flame-induced turbulence production. In
TKE budgets, this is manifested principally as increased significance of the pressure-dilatation and negative-
production terms relative to other terms, with a concomitant increase in the flame-normal Reynolds stress
but no significant changes to the remaining components. Non-equilibrium effects on the Reynolds stress,
such as pressure-strain redistribution, do not appear to be intensified as the Damköhler number increases in
the low-Karlovitz-number regime.
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∆ scaling. Instantaneous quantities are bin-averaged; see section 4.2.

As the primary large-scale effects in the low-Karlovitz-number regime occur due to flame-normal thermal
expansion, the prevalence of “gradient” or “counter-gradient” transport of the scalar flux is determined by
the integral-scale Damköhler number. This eases the scalar-flux modeling burden in this regime considerably,
as has been shown in the context of linear-algebraic closures. Conclusively verifying the effects of increasing
scale separation with Reynolds number will require computationally intensive simulations or possibly exper-
imental testing. Finally, further investigation is needed to isolate the non-equilibrium “counter-Boussinesq”
Reynolds-stress transport in this regime, which apparently does not scale with the Damköhler number, at
least for the range tested.

Likewise, the analogous low-Karlovitz-number filtered statistics exhibit increasing counter-gradient and
counter-Boussinesq transport magnitude with increasing filter Damköhler number, and the scaling of the

magnitude of counter-gradient effects matches the theoretical Da
1/2
∆ scaling. This is consistent with the a

priori suitability of linear-algebraic subfilter closures in this regime.
In the moderate-Karlovitz-number regime, however, heat release more prominently affects the subfilter

turbulence in LES than the large-scale fluctuations in RANS. This is due, at least in part, to inherent
properties of the LES filter. The LES filter fundamentally changes the spectral basis compared to RANS,
with the inclusion of local averaging over inhomogeneous flame-normal scales. This promotes the significance
of subfilter energy transfer among wavenumbers principally aligned with these directions. Further research
into these inhomogeneous energy-transfer dynamics is needed to better understand the potentially different
LES modeling challenge.
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