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ABSTRACT: Hybrid networks are made of different types of polymer strands, which
could differ by their degrees of polymerization (DPs), chemical structure, or rigidity
(Kuhn length). Examples of such networks include biological networks and gels cross-
linked by binding proteins and networks of graft polymers cross-linked by their side
chains. Here, we report on a theoretical model and coarse-grained molecular
dynamics simulations of hybrid networks made of two types of strands. The networks
are made by cross-linking precursor chains of type 1 by shorter chains of type 2,
which results in a trifunctional network with junction points having two strands of
type 1 and one strand of type 2. The developed approach, based on the phantom
network model and the nonlinear elasticity of the network strands, self-consistently
accounts for entropic elasticity, bond deformation, and the continuous redistribution
of stress between different network strands as they undergo nonlinear deformation.
Analysis of the different deformation regimes shows that at small deformations the
network elastic response is controlled by the elasticity of the longest network strands. However, in the nonlinear network
deformation regime, the network mechanical properties are determined by nonlinear deformation of the strands of the first kind
constituting the majority of the network strands. The model predictions are in excellent agreement with molecular dynamics
simulations of hybrid networks in the linear and nonlinear deformation regimes. Furthermore, the model provides a theoretical
foundation for the analysis of strain stiffening observed in networks of graft polymers and networks with a bimodal distribution of
strands.

■ INTRODUCTION

Hybrid networksnetworks consisting of different types of
strandsplay an important role in biophysics and polymer and
materials science.1−13 The strands of such networks could
differ by their degrees of polymerization (DPs), chemical
structure, and rigidity (Kuhn length), as illustrated in Figure 1.
In this respect due to the random, uncontrolled, nature of the
cross-linking process, a typical elastomeric network consists of
chains with a broad distribution of strand DPs and therefore
can be viewed as a hybrid network.14−16 The mechanical
properties of polymeric networks depend on the width of their
strand distributions with the shortest ones believed to be the
driving force behind network rupture. The majority of
biological networks and gels are made by cross-linking
biopolymers with various binding proteins that themselves
can be highly compliant macromolecules (Figure 1b).17−19

These networks are examples of hybrid networks made of
strands with different chemical structures, DP, and rigidities.
The difference in bending rigidities of the network strands
dramatically influences the mechanical properties of biological
networks and gels in the linear and nonlinear deformation
regimes. In particular, these materials can have a linear
modulus as low as 1 Pa and can stiffen by a factor of up to
1000 under applied external stress.18

Another example of a hybrid network is a network made by
cross-linking graft polymers through their side chains (Figure
1c).20−23 This way of cross-linking produces synthetic
networks with brush-like and linear strands. The rigidity of
the brush-like strands can be controlled by changing the
grafting density of the side chains and their degree of
polymerization, while the compliance of the linear chains
bridging graft polymers together can be adjusted through
variation of the DP of the side chains as well. These networks
demonstrate mechanical properties similar to those of
biological tissues in solvent-free elastomeric materials and
can be viewed as solvent-free synthetic mimics of biological
networks and gels.22,23

In this paper, we develop a model of hybrid networks made
of strands with different DPs and Kuhn lengths to address the
networks’ mechanical properties in the linear and nonlinear
deformation regimes. Our approach fuses the phantom
network model,24−28 which accounts for cross-link fluctuations
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and a nonlinear expression for the effective chain spring
constant, incorporating finite chain extensibility, bending
rigidity, and bond stretching.29 The model predictions are
tested against the computer simulation results of hybrid
network deformation in the linear and nonlinear deformation
regimes. The model is applied to the analysis of deformation
data of bimodal networks30,31 and networks of graft polymers
with different molecular architectures.20−23

■ MODEL OF HYBRID NETWORKS
Phantom Network Model. Consider a hybrid network

made of two types of strands (see Figure 1a) in which chains of
type 1 are connected by chains of type 2, making each
connection a trifunctional cross-link. The polymeric strands
between cross-links are modeled by elastic springs with the
bare strand spring constants k1 and k2. For flexible linear chains
of type i with DP = Ni, monomer projection length li

0, and
Kuhn length bi

0, the chain spring constant is equal to

=k k T Nl b3 /i i i iB
0 0

(1)

where kB is the Boltzmann constant and T is the absolute
temperature.
To describe the elastic properties of hybrid networks, we

modify the classical “phantom network model” introduced by
James and Guth24,25 (see for review26−28). In the framework of
this model, the macroscopic deformation is transmitted to the
bulk of the network through the network strands connected to
its surface, such that each network strand (chain) is effectively
connected to the boundary by a cascading hierarchical set of
chains starting from both ends of a strand, as shown in Figure
2. This cascading set of strands defines fluctuations of the

network junction points (cross-links) and can be represented
by two effective springs connecting a network strand to the
affinely deformed elastic background. This reflects a dual role
of network strands as they (i) deform themselves upon applied
deformation and (ii) contribute to fluctuations of the other
chains’ junction points. In this respect, the phantom network
model is an effective elastic medium model, which self-
consistently determines the deformation of individual network
strands with fluctuating junction points, substituting them by
effective springs. The phantom network model was generalized
to incorporate the effects of strand polydispersity,16 entangle-
ments,28 and loops32−34 in network elasticity.
In our formulation of the phantom network model (see

Figure 3a), each network strand is substituted by a spring with
spring constant ki (see eq 1). These springs are connected to
the affinely deformed elastic background by four effective
springs with spring constants ki

∞ where index i = 1 and 2, as
illustrated in Figure 3a for strands of type 2. The strength of
the effective spring ki

∞ is obtained from the recurrence

Figure 1. Examples of hybrid networks. Networks made of two types of linear chains (a), networks of semiflexible biological filaments (b), and
bottlebrush networks (c).

Figure 2. Schematic representation of chains used in calculations of
the effective springs in the phantom network model in homopolymer
networks.

Figure 3. (a) Schematic representation of chains used in calculations
of the effective springs of hybrid networks in the phantom network
model. The reduction procedure is illustrated for chains of type 2. (b)
Diagrammatic representation of the recurrence relations for
calculations of the renormalized spring constants.
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relations between the spring constants of binary tree
generation P and those of generation P + 1, as illustrated in
Figure 3b. For large P (P → ∞) such that ki

P ≈ ki
P+1 ≈ ki

∞, the
recurrence relations transform into

= + +∞ − − ∞ ∞ −k k k k( ) ( )1
1

1
1

1 2
1

(2a)

= +∞ − − ∞ −k k k( ) (2 )2
1

2
1

1
1

(2b)

After some algebra, the solutions of eqs 2a and 2b are written
in the following form

= − + +∞k k
v

v
3 9 16

41 1 (3a)

=
+

∞k k
vr
vr

2
1 22 2 (3b)

where normalized spring constants v = k1/k2 and r = k1
∞/k1 are

introduced.
Taking into account network topology (see Figure 3) and

the explicit expressions for ki
∞, we write down equations

determining the effective spring constants representing each
network strand and connected to the affinely deformed elastic
background

= + +− − ∞ ∞ −k k k k( ) 2( )1
e 1

1
1

1 2
1

(4a)

= +− − ∞ −k k k( ) ( )2
e 1

2
1

1
1

(4b)

Substituting the explicit expressions for the spring constants ki
∞

into eqs 4a and 4b, we arrive at the relationships between the
effective spring constants and the bare spring constants of
network strands ki and their ratio v

ϕ= =
+ +

k
k

v
v

( )
2

9 16 1
1
e

1
1

(5a)

ϕ= = + −
+ +

k
k

v
v
v

( )
9 16 3
9 16 1

2
e

2
2

(5b)

Note that the calculations of the effective spring constants of
individual network strands presented above are based on a
tree-like structure of a network without loops or dangling ends.
The shear modulus of a hybrid network with the number

density ρs,i of strands of type i and their mean-square average
end-to-end distance ⟨R̅in,i

2 ⟩ is a sum of contributions from all
effective springs within a unit volume

ρ ρ= ⟨ ̅ ⟩ + ⟨ ̅ ⟩G k R k R
1
3

1
3s s0 ,1 1

e
in,1
2

,2 2
e

in,2
2

(6)

Here and below in the text, we use a bar ... to indicate the
average over a strand’s conformations and brackets ⟨...⟩ to
show the average over all strands of this type in a network.
At small deformations, eq 6 can be simplified using the

expression for ki (eq 1), accounting for the constraint imposed
by the network topology on strand density, ρs,1/ρs,2 = 2 and
assuming that network strands are flexible chains with ⟨R̅in,i

2 ⟩ =
Nili

0bi
0. Thus, in the linear network deformation regime, the

shear modulus of hybrid networks of flexible chains is
expressed as follows

ρ ϕ ν ϕ ν ρ= + =
+

G k T k T
N N

( )
1
2

( )
2s0 B ,1 1 2 B

1 2 (7)

where the number density of the network strands ρs,1 is
obtained from the number density of repeat units

ρ ρ ρ ρ= + = +N N N N( /2)s s s,1 1 ,2 2 ,1 1 2 (8)

In a hybrid network of long chains connected by short chains,
N1 ≫ N2, eq 7 indicates that such networks behave as
networks of long linear chains cross-linked by tetrafunctional
cross-links. However, if the opposite inequality holds, N1 ≪
N2, the network shear modulus is proportional to the
concentration of the cross-linking chains, ρ/N2. Thus, in the
linear network deformation regimes in both cases, the shear
modulus of hybrid networks at small deformations is
controlled by the longest chains.
It is also important to point out that the number of repeat

units belonging to network strands with DPs N1 and N2 are not
independent but interrelated through the number fraction of
repeat units belonging to strands of type 1, φ = ρs,1N1/ρ, as

φ φ= −N N/ /2(1 )1 2 (9)

This relationship allows one to express the shear modulus in
terms of the DP of strands of type 1 and network composition
φ

φρ=G k T
N20 B
1 (10)

Thus, one can view the chains of the second kind as an
effective solvent diluting the stress supporting strands of the
first kind.

Nonlinear Network Deformation. To extend the
approach developed above to the nonlinear network
deformation regime, we consider deformations of network
strands associated with conformational, bending, and bond
stretching degrees of freedom. The configurational part of the
free energy of the sth network strand of type i can be written as
follows35

λ
λ

λ

=

+ −
−

F R k T
R

b

R

R

R

R

( , )
2

1

i s l i
i

i

i s

l i i

i s

l i i

conf , , B
max,
0

,
2

,
2

max ,
2

,
2

,
2

max,
2

1

(11)

and is characterized by the end-to-end distance Ri,s, the number
of bonds Ni, bond projection length li

0, and Kuhn length bi
0,

which is determined by the chain’s bending rigidity Ki (see eq
12 below). In eq 11, we describe the bond and Kuhn length
deformation by the bond deformation ratio λl,i = li/li

0

measuring bond extension with respect to its undeformed
length li

0 and introduce the length of the fully stretched chain
with undeformed bonds, Rmax,i = li

0Ni. For a polymer chain with
bending rigidity Ki, its Kuhn length bi is

36,37

= + −
− +

−

−b l
K K
K K

1 coth
1 cothi i

i i

i i

1

1
(12)

At small bond deformations, the bond stretching potential is
approximated by a harmonic function with the bond spring
constant Kb,i

35

λ λ= −U K l( ) 0.5 ( ) ( 1)l i b i i l ibond , ,
0 2

,
2

(13)

Combining the configurational and bond stretching contribu-
tions to the total free energy of a chain of type i, we have

λ λ λ= +F R F R NU( , ) ( , ) ( )i s l i i s l i i l i, , conf , , bond , (14)
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The force fi,s acting on the sth chain of type i (see Figure 4)
required to maintain an end-to-end distance Ri,s is obtained by

differentiating the free energy eq 14 with respect to the
components of the vector Ri,s

λ
λ= −k T

R b
g R Rf R ( / )i s i s

l i i i
l i i s i, ,

B

,
2

max,
0 ,

2
,
2

max ,
2

(15)

where the function

= + − −g x x( ) (1 2(1 ) )2 (16)

We define a spring constant describing the elasticity of strands
of type i in the nonlinear deformation regime as the
proportionality coefficient between the force and the strand
end-to-end vector Ri,s averaged over all strands of this type in a
system35−37

λ
λ= ⟨ ⟩−k

k T
R b

g R R( / )i
l i i i

l i i i
B

,
2

max,
0 ,

2 2
max ,
2

(17)

In writing eq 17, we substituted ⟨g(x)⟩ ≈ g(⟨x⟩) and
introduced the mean-square average end-to-end distance of
network strands of the ith type ⟨Ri

2⟩.
The equilibrium bond deformation ratio λl,i for a given value

of Ri,s is obtained from the minimization of the free energy of
the individual network strand (eq 14) with respect to λl,i, which
after averaging over all network strands of this type in a system
reduces to

λ λ⟨ · ⟩ = − ≈ ⟨ ⟩NK l k Rf R( ) ( ) ( 1)i s i s i b i i l i l i i i, , ,
0 2

, ,
2

(18)

Note that the last relationship in eq 18 with the approximate
sign should only be used to eliminate the divergence of the
strand spring constant ki at strand deformations ⟨Ri

2⟩ ≈ Rmax,i
2 .

The correct analysis of the bond deformation regime requires
consideration of the force balance at network vertices, as
discussed below.
Equations 15−18 describe the deformation of the network

stands in the nonlinear network deformation regime in terms
of ⟨Ri

2⟩. Now we need to find a relationship between ⟨Ri
2⟩ and

the first deformation invariant, I1 = λx
2 + λy

2 + λz
2, describing

changes in the network dimensions along the x-, y-, and z-
directions that are characterized by the corresponding
deformation ratios λi. In the framework of the phantom
network model, each network strand with spring constant ki is
connected to a nonfluctuating background by two springs with
spring constants k̃i. The values of these spring constants are

found from the condition that the effective spring constant ki
e

given by eq 4 represents the three springs connected in series,
with spring ki sandwiched between the two springs k̃i. This
representation follows from the middle panel in Figure 3a, if
one reduces the assemblies of the two springs at each end of
the spring ki into one effective spring with a spring constant k̃i
= k1

∞ + k3−i
∞ . Taking this spring arrangement into account and

using eq 8, we have

ϕ
ϕ

= + ̃ → ̃ =
−

− − −k k k k k
v

v
( ) ( ) 2( ) 2

( )

1 ( )i i i i i
i

i

e 1 1 1

(19)

The mean-square average end-to-end distance ⟨Ri
2⟩ of the

middle spring for the three-spring assembly is28,37

⟨ ⟩ = ⟨ ̅ ⟩ +
+ ̃R R
k T

k k
3

2
2i i

i i

2 2 B

(20)

where in writing down the expression for ⟨R̅i
2⟩ one first

averages over all conformations of the sth network strand and
after that performs averaging over all strands of this type in a
network. Taking into account the affine portion of the
deformation of the average end-to-end distance of the sth
strand, ⟨R̅i

2⟩ = ⟨R̅in,i
2 ⟩I1/3, and substituting k̃i from eq 19, we

arrive at

ϕ⟨ ⟩ =
⟨ ̅ ⟩

+ −R
R I k T

k
v

3
3

(1 ( ))i
i

i
i

2 in,
2

1 B

(21)

This is a self-consistency condition, which allows for
calculations of ⟨Ri

2⟩ in terms of the first deformation invariant
I1. Note that the affine strand deformations with ⟨Ri

2⟩ ≈
I1⟨R̅in,i

2 ⟩/3 correspond to the case ki → ∞. It is worth pointing
out that in the derivation of eq 21 it is assumed that all springs
are approximated by Gaussian springs with deformation-
dependent spring constants (see eq 17) which imposes
significant limitations on the applicability of this expression.
At best, it could provide a qualitative description of the
network strand fluctuations at large chain deformations.
However, this crude approximation appears to provide a
reasonable crossover function to account for nonlinear strand
deformation.
The network shear modulus in the nonlinear network

deformation regime is obtained by substituting the nonlinear
spring constants given by eq 17 into eqs 3−6

λ ϕ λ

λ ϕ λ

⟨ ⟩ = [ ⟨ ⟩

+ ⟨ ⟩ ]

− −

− −

G R G v g R R

G v g R R

( )
1
3

( ) ( / )

( ) ( / )

i l l

l l

2
,1
2

1 1 ,1
2

1
2

max ,1
2

,2
2

2 2 ,2
2

2
2

max ,2
2

(22)

where we introduced the network structural modulus
associated with strands of the type i

ρ ρ βα= ⟨ ̅ ⟩ = −G k T R R b k T/i s i i i i s i i iB , in,
2

max,
0

B ,
1

(23)

The parameter αi is the ratio of the ith strand’s Kuhn length bi
0

to its undeformed contour length, αi = bi
0/Nili

0. Parameter βi =
⟨R̅in,i

2⟩/Rmax,i
2 , the extensibility ratio, represents the extension of

strands of type i in the as-prepared network state. Note that the
parameters αi and βi are related through the expression for the
mean-square end-to-end distance of a semiflexible chain27

β α α α= − − −(1 (1 exp( 2/ ))/2)i i i i (24)

in the undeformed state. It follows from eq 24 that if there are
many Kuhn segments per strand, αi

−1 ≫ 1, the network strand

Figure 4. Schematic representation of the reduction of a set of
deformed chains connecting a test chain to the boundary by a pair of
forces acting on both ends of a chain and maintaining an end-to-end
distance.
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between cross-links behaves as a flexible chain for which βi ≈ αi
≪ 1. In the opposite limit, αi ≫ 1, which corresponds to
polymer networks made of rod-like filaments, βi ≈ 1 − 2/3αi ≈
1. Furthermore, due to the relationship eq 9, we can express
parameters α2 and β2 describing properties of the network
strands of type 2 in terms of the parameters α1, βi and the
ratios of the Kuhn lengths b1

0/b2
0 and the bond lengths l1

0/l2
0.

The expression for the deformation-dependent shear
modulus (eq 22) is used to calculate the stress in hybrid
networks made of strands with different bending rigidities and
DP undergoing uniaxial deformation along the x-axis at a
constant volume. For such a system, the deformation ratios are
λx = λ, λy = λz = 1/√λ and the first deformation invariant is I1
= λ2 + 2/λ. The true stress in a uniaxially deformed network is

σ λ λ= − − G I( ) ( )xx
2 1

1 (25)

Below, we consider two representative cases of hybrid network
deformation.
Case β1 < β2. This case corresponds to networks in which

long flexible strands of the type 1 are cross-linked by short rigid
strands of the type 2, as shown in Figure 5a. In this case at
small deformations ⟨R2

2⟩ < Rmax,2
2 , the shear modulus is given by

eq 22 with ⟨Ri
2⟩ obtained from eq 21. As deformation of the

network increases and the value of ⟨R2
2⟩ approaches the fully

stretched chain limit Rmax,2
2 , the nonlinear spring constant of

the strands of the second kind k2 becomes much larger than k1
such that the ratio v = k1/k2 ≪ 1. In this limit, the
corresponding effective spring constants (see eq 8)

≈ ≈k k k k/2 and 2 /31
e

1 2
e

1 (26)

only depend on the nonlinear spring constant of the strands of
the first kind. Taking this into account, the expression for the
deformation-dependent shear modulus (eq 22) reduces to

λ λ⟨ ⟩ ≈ +
⟨ ̅ ⟩
⟨ ̅ ⟩

⟨ ⟩− −G R
G R

R
g R R( )

6
1

2
3

( / )l l1
2 1 in,2

2

in,1
2 ,1

2
,1
2

1
2

max ,1
2

(27)

The prefactor in front of the brackets in eq 27 corresponds to
the structural modulus of a tetrafunctional network of strands
of type 1. The stress in the network undergoing uniaxial
deformation at a constant volume is given by eq 25 with the
value of ⟨R1

2⟩ being determined by eq 21 in which the value
ϕ1(v) = 1/2.
To establish what happens with strands of the second kind

when upon deformation their size approaches or exceeds
Rmax,2, we have to consider force balance at a network vertex. In
each vertex of the network, there are two forces generated by

strands of type 1 and one by a strand of type 2. At equilibrium,
the sum of these forces is equal to zero such that

+ = −f f f1,1 1,2 2,3 (28)

In eq 28, we use double index notations (i, j) using index i to
indicate the type of the strand generating the force and index j
to enumerate the strands connected to the vertex. Multiplying
both sides of eq 28 by R2,s and averaging over network vertices,
we have

λ λ λ⟨ · ⟩ ≈ ⟨ · ⟩ = −k N l N K lR e f R2 ( ) ( ) ( ) ( 1)l b l l1 1 2 2 2
0

,2 2,3 2,3 2 ,2 2
0 2

,2 ,2

(29)

where e2 is a unit vector pointing along the average vector R2
and we set R̅2 ≈ N2l2

0λl,2. It follows from eq 29 that bond
deformation will be negligible as long as 2k1 ⟨(R1·e2)⟩/Kb,2l2

0 ≪
1, which is controlled by the spring constant k1 and elongation
of the strands of the first kind. Thus, the bond stretching
begins when the length of the network strands of the first kind
approaches their fully extended chain limit Rmax,1.
Figure 6 shows network deformation curves calculated using

eqs 22 and 27 for the deformation-dependent shear modulus of

hybrid networks with l1
0 = l2

0, K1 = K2 = 3, and Kb,1(l1
0)2 = 450

kBT and degrees of polymerizations N1 = 200 and N2 varying
between 20 and 200. At large λ, all deformation curves
converge together.

Case β1 > β2. This case represents networks made of short
rigid strands of type 1 cross-linked by long flexible strands of
type 2 (see Figure 5b). In this case upon deformation, network
strands of the first kind approach a fully extended chain limit

Figure 5. Snapshots of two different types of networks corresponding to the set of network parameters with β1 < β2 (a) and β1 > β2 (b).

Figure 6. Dependence of network stress on the deformation ratio λ
for uniaxially deformed hybrid networks with N1 = 200 and different
values of N2: 20 (black), 50 (red), 100 (blue), 150 (green), and 200
(purple). Network strands are made from identical monomers with
bond projection lengths l1

0 = l2
0, bending constants K1 = K2 = 3, and

bond spring constant Kb,i(li
0)2 = 450 kBT. The inset shows the bond

deformation ratio λl,i as a function of λ.
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first. This in turn will result in nonlinear spring constant k1 (see
eq 17) to become much larger than k2 such that their ratio v =
k1/k2 ≫ 1. Substituting this relationship into eq 8, we obtain
the effective spring constants

≈ ≈k k k k k/2, and1
e

1 2 2
e

2 (30)

and derive the following expression for the network shear
modulus at large deformations

λ λ λ λ

⟨ ⟩ ≈

⟨ ⟩ ⟨ ⟩− − − −

G R
G R b

R b

g R R g R R

( )
6

( / ) ( / )

i

l l l l

2 1 max,1 1
0

max,2 2
0

,1
2

,1
2

1
2

max ,1
2

,2
2

,2
2

2
2

max ,2
2

(31)

Note that since the properties of the network are determined
by the shortest chains, we can use eq 22 in the entire
deformation regime. We derive eq 31 to illustrate what effect
softer chains have on the network elasticity and the unexpected
geometric mean expression for the effective spring constant in
eq 30.
In Figure 7, we plot network stress as a function of the

deformation ratio λ calculated using eq 25 with the shear

modulus given by eqs 22 and 31. These deformation curves
correspond to hybrid networks with l1

0 = l2
0, K1 = K2 = 3, and

Kb,1(l1
0)2 = 450 kBT and degrees of polymerizations N2 = 200

and N1 varying between 20 and 200. By changing the degree of
polymerization of the strands of the first kind, we increase the
value of β1 shifting the crossover to the nonlinear deformation
regime and the associated bond deformation to the left in
terms of the deformation ratio λ.
Thus, the main conclusion of the analysis of the nonlinear

network deformation is that in this regime the properties of
networks are determined by the extensibility of the strands of
the first kind.

■ SIMULATIONS OF HYBRID NETWORKS
Simulation Details. We tested the predictions of the

model of the deformation of hybrid networks in coarse-grained
molecular dynamics simulations of the deformation of dense
phantom networks of linear chains, as shown in Figure 8. The
chains forming the network were modeled by bead-spring
chains consisting of monomers with diameter σ. The
connectivity of beads in polymer chains and the cross-link
bonds were described by the finitely extensible nonlinear
elastic (FENE) potential,38

= − −U r k R r R( ) 0.5 ln(1 / )s l lFENE max,
2 2

max,
2

(32)

where ks is the spring constant set to ks = 100 kBT/σ
2 and the

maximum bond length is Rmax,l = 1.5σ. (The large value of the
spring constant was selected to minimize the effect of bond
stretching at large network deformations). The repulsive part
of the bond potential was modeled by the shifted Lennard-
Jones potential with the value of the Lennard-Jones interaction
parameter εLJ = 1.0 kBT. For this set of parameters, the bond
length l0 = 0.903σ. The chain bending rigidity was introduced
into the model through a bending potential controlling the
mutual orientations between two neighboring unit bond
vectors ni and ni+1 along the polymer backbone

= − ·+ +U k TK n n(1 ( ))i i i i, 1
bend

B 1 (33)

The value of the bending constant K was varied between 0.1
and 10. Thus, for the studied interval of the bending constants
K, the corresponding values of the Kuhn length were varied
between 0.98σ and 17.5σ. We did not have any additional
interactions between monomers.
Networks were prepared by cross-linking a precursor melt of

chains with DP = 512 by shorter chains with N2 = 20. The
cross-linking algorithm allowed us to obtain a narrow
distribution of chains of the first kind with the number average

Figure 7. Dependence of the network stress on the deformation ratio
λ for uniaxially deformed hybrid networks with N2 = 200 and different
values of N1: 20 (black), 50 (red), 100 (blue), 150 (green), and 200
(purple). Network strands are made from identical monomers with
bond projection lengths l1

0 = l2
0, bending constants K1 = K2 = 3, and

bond spring constant Kb,i(li
0)2 = 450 kBT. The inset shows the bond

deformation ratio λl,i as a function of λ.

Figure 8. Snapshot of the simulation box.
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degree of polymerization ⟨N1⟩ ≈ 32 by setting every 32nd bead
on the backbone chains to be available for cross-linking. The
number density of strands of type 1 is equal to ρs,1 = 0.0310
σ−3 and of type 2 is ρs,2 = 0.0165 σ−3. The fact that ρs,1 < 2ρs,2 is
due to the existence of dangling ends of type 1.
Simulations were carried out in a constant number of

particles, volume, and temperature ensemble with periodic
boundary conditions. The constant temperature was main-
tained by coupling the system to a Langevin thermostat. The
equation of motion of the ith bead is

ζ= − +m
t
t

t t t
v

F v F
d ( )
d

( ) ( ) ( )i
i i i

R
(34)

where v(t) is the ith bead velocity and Fi(t) is the net
deterministic force acting on the ith bead with mass m, which
is set to unity in our simulations. Fi

R(t) is the stochastic force
with zero average value ⟨Fi

R(t)⟩ = 0 and δ-functional
correlations ⟨Fi

R(t)·Fi
R(t′)⟩ = 6ξkBTδ(t − t′). The friction

coefficient ζ was set to ζ = 0.143m/τLJ, where τLJ is the
standard LJ-time τ σ ε= m/LJ , where ε/kBT = 1.0. The
velocity-Verlet algorithm with a time step Δt = 0.005τLJ was
used for the integration of the equations of motion (eq 34). All
simulations were performed using LAMMPS.39

The stress in the uniaxially deformed networks undergoing
incremental uniaxial deformation at a constant volume was
calculated from the pressure tensor following the standard
procedure.37,40

Analysis of the Simulation Results. In Figure 9, we test
the assumption of the redistribution of stress between short

and long network strands by plotting the mean-square values of
the end-to-end distance ⟨Ri

2⟩ normalized by their correspond-
ing Rmax,i

2 as a function of ⟨R̅i
2⟩/Rmax,i

2 in the deformed networks.
It follows from this figure that both types of strands approach
their fully extended chain limit and begin to deform affinely
when strands of type 1 demonstrate strong nonlinear
deformation. Furthermore, in this deformation regime, both
data sets corresponding to strands of type 1 (filled symbols)
and type 2 (open symbols) begin to converge indicating a

crossover to the affine deformation regime of almost fully
extended network strands, in which elastic response is
dominated by individual bond elongation and is independent
of the initial chain bending constant.
Figure 10 shows stress-deformation curves of a series of

hybrid networks. By changing the Kuhn length of the “cross-

linking” chains, we cover both cases of the network
deformation discussed in the previous section. Convergence
of the deformation curves at large network deformation clearly
indicates that in the nonlinear deformation regime network
properties are controlled by deformation of the network
strands of the first kind. Note that the bonds begin to deform
when type 1 chains approach their fully extended chain limit.
At small deformations, however, both types of chains

contribute to the network shear modulus. In particular, with
increasing rigidity of the cross-linking chains (increasing their
Kuhn length), networks become softer. The solid lines in
Figure 10 correspond to network stress calculated using eq 25.
For flexible chains with K2 < 1, we use more the general form
of the function35,37

= + [ + − − + ]−g x
b
l

K x K( ) 3 2 (1 ) 1i
i

i
i i i

0

0
2 2 2

(35)

The good agreement between the analytical calculations and
simulation results validates the approximations that have been
used for the evaluation of the nonlinear spring constants.
The data shown in Figure 11 further corroborate our model

predictions that network strands of type 1 determine the
network nonlinear response. For this figure, we keep the
properties of the cross-linking chains of type 2 constant and
changed the bending rigidity constant K1 of the strands of the
first kind between 0.1 and 3. By increasing K1 values, we
increase the chain elongation ratio β1 moving the crossover to
the nonlinear network deformation regime to smaller λ values
since at the crossover λ ≈ 1/√β1. This crossover correlates
with the onset of bond deformation as evident from the inset.

■ COMPARISON WITH EXPERIMENTS
Our model provides the theoretical foundation for analysis of
the strain stiffening in networks of graft polymers (combs and

Figure 9. Ratio ⟨Ri
2⟩/Rmax,i

2 of the mean-square end-to-end distance
⟨Ri

2⟩ of stress-supporting strands of type i to the square of the end-to-
end distance of the fully elongated strand Rmax,i

2 as a function of the
affine part of the strand deformation ⟨R̅i

2⟩/Rmax,i
2 for networks of

chains with ⟨N1⟩ = 32, N2 = 20, and different values of K1 and K2: K1
= 1 and K2 = 0.1 (blue squares), K1 = 1 and K2 = 10 (blue rhombs),
and K1 = 3 and K2 = 0.1 (green squares). Filled symbols denote chains
of type 1, and open symbols denote chains of type 2. The dashed line
indicates affine deformation, and points above this line are nonaffinely
deformed due to the contribution of fluctuations. The inset shows the
dependence of the bond deformation ratios λl,1 (solid lines) and λl,2
(dashed lines) on β1I1/3, where β1 = ⟨R̅in,1

2 ⟩/Rmax,1
2 is the elongation

ratio of the longest strands.

Figure 10. Dependence of the network stress on the elongation ratio
λ for hybrid networks of chains with identical bond lengths, ⟨N1⟩ =
32, K1 = 3, N2 = 20, and different values of K2: 0.1 (squares), 0.3
(circles), 3 (inverted triangles), and 10 (rhombs). Solid lines are best
fits to eq 25 with G(I1) given by eq 22 with fitting parameters (G1, G2,
β1, β2) equal to (29, 34, 0.13, 0.10) for K2 = 0.1, (29, 32, 0.13, 0.11)
for K2 = 0.3, (29, 7.9, 0.13, 0.13) for K2 = 3, and (29, 2.7, 0.12, 0.13)
for K2 = 10, where G1 and G2 have units of 10

−3 kBT/σ
3. The inset

shows dependence of the bond deformation ratios λl,1 (solid lines)
and λl,2 (dashed lines) on λ.
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bottlebrushes) cross-linked by their side chains.23 According to
our model, the mechanical properties of such networks are
determined by the strands of the first kind, which in this case
are graft polymers. The validity of this simplification was
confirmed in several studies of strain stiffening in networks of
comb and bottlebrush macromolecules.20−23 Figure 12 shows

the dependence of the stress in networks of bottlebrush
polymers cross-linked through their side chains. The
experimental data are fitted by the following expression

σ λ λ β= − −G g I( ) ( /3)/3xx
2 1

1 (36)

in which structural modulus G and elongation ratio β are fitting
parameters.
We apply the approach developed here to describe the

deformation of end-linked polydimethylsiloxane chains made
of short chains with Mn = 1.1 × 103 g/mol and long chains
with Mn = 18.5 × 103 g/mol.30,31 The molar fraction of the
shorter chains is varied between 60 and 95%. The longer
strands with such molar mass can also entangle; therefore, to
account for this effect, we added the Mooney−Rivlin term

describing the effect of entanglements in the linear
deformation regime29

σ λ λ λ β= − +− G Gg I( )( / ( /3)/3)xx
2 1

e 1 (37)

where Ge is the shear modulus associated with the
entanglements. Figure 13 presents experimental data and

fitting results to eq 37 with the three fitting parameters G, Ge,
and β. Indeed, analysis of the experimental data clearly
indicates that networks become softer as the fraction of longer
chains increases with the longest network strands controlling
the crossover to the nonlinear network deformation regime. In
particular, the values of the parameter β decrease with the
decreasing molar fraction of the short chains, pointing out the
increase of the effective degree of polymerization of the longer
chains. The structural modulus G changes between 146 and
205 kPa, demonstrating a 40% increase as the molar fraction of
short chains changes between 63 and 95%. The entanglement
shear modulus shows a much weaker variation with the molar
fraction, changing between 125 and 164 kPa and beginning to
saturate as the molar fraction exceeds 84%.

■ CONCLUSIONS

We developed a theoretical model of hybrid networks, made of
two different types of strands, covering both the linear and
nonlinear deformation regimes. The network shear modulus is
obtained in the framework of the phantom network model by
calculating the effective spring constants associated with each
network strand. To account for nonlinear strand deformation,
we describe the strands as nonlinear springs with conforma-
tional, bending, and bond stretching degrees of freedom. At
small deformations, the model predicts that the network shear
modulus is controlled by the longest network strands.
However, in the nonlinear deformation regime, the network
elastic response is dominated by the strands of the first kind. In
particular, in the case of a network made with short strands of
the first kind, their effective spring constant is proportional to
the geometric mean of the bare spring constants of both types
of strands (see eq 31).

Figure 11. Dependence of the network stress on the elongation ratio
λ for hybrid networks of chains with identical bond lengths K2 = 1, N2
= 20, ⟨N1⟩ = 32, and different values of K1: 0.1 (cyan triangles), 0.3
(red triangles), 1 (blue triangles), and 3 (green triangles). Solid lines
are best fits to eq 25 with G(I1) given by eq 22 with fitting parameters
(G1, G2, β1, β2) equal to (41, 7.9, 0.044, 0.049) for K1 = 0.1, (41, 7.6,
0.050, 0.047) for K1 = 0.3, (33, 6.8, 0.064, 0.042) for K1 = 1, and (35,
1.9, 0.155, 0.01) for K1 = 3, where G1 and G2 have units of 10

−3 kBT/σ
3. The inset shows dependence of the bond deformation ratios λl,1
(solid lines) and λl,2 (dashed lines) on λ.

Figure 12. Dependence of the network stress on the elongation ratio
λ for bottlebrush polymers cross-linked through their side chains, with
the backbone network strand DP N1 = 600, DP of the side chains nsc
= N2/2 = 14, and side chains grafted onto every ngth backbone
monomer, where ng = 1 (red), 2 (blue), 4 (cyan), 8 (magenta), 16
(purple), 32 (green), and 64 (orange). Black lines are best fits to eq
36, with fitting parameters (G, β) equal to (0.86 kPa, 0.055) for ng =
1, (3.02 kPa, 0.034) for ng = 2, (7.81 kPa, 0.020) for ng = 4, (15.1 kPa,
0.016) for ng = 8, (25.2 kPa, 0.012) for ng = 16, (28.4 kPa, 0.014) for
ng = 32, and (33.7 kPa, 0.013) for ng = 64. Data from ref 23.

Figure 13. Dependence of the deformation-dependent modulus G(λ)
= σxx/(λ

2 − λ−1) on the reciprocal elongation ratio 1/λ for end-linked
polydimethylsiloxane chains with bimodal distribution of their
molecular weights (Mn = 1.1 × 103 g/mol and 18.5 × 103 g/mol),
with the molar fraction of the shorter chains equal to 62.8% (red
squares), 70.0% (green triangles), 77.0% (blue circles), 83.4% (purple
inverted triangles), 89.4% (gold rhombs), and 95.0% (cyan left
triangles). Black lines are best fits to eq 37, with fitting parameters (G,
Ge, β) equal to (146 kPa, 125 kPa, 0.033) for 62.8%, (142 kPa, 159
kPa, 0.080) for 70.0%, (146 kPa, 139 kPa, 0.042) for 77.0%, (156 kPa,
149 kPa, 0.098) for 83.4%, (176 kPa, 164 kPa, 0.134) for 89.4%, and
(205 kPa, 163 kPa, 0.122) for 95.0%. Data from ref 30.
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The model predictions are in a very good agreement with
coarse-grained molecular dynamics simulations of hybrid
networks. The stress-deformation curves obtained in simu-
lations overlap with theoretical curves, as shown in Figures 10
and 11. Note that the analysis of the individual strand
deformations and location of the crossover to the bond
deformation regime confirms the assumptions made in the
model’s development. Furthermore, our model describes the
deformation of networks with graft polymer strands and
bimodal networks reasonably well, as illustrated in Figures 12
and 13.
We hope that the success of the model in describing the

simulation results and deformation of networks of graft
polymers and bimodal networks will inspire the application
of the model to the analysis of mechanical properties of the
hybrid network made of synthetic and/or biological macro-
molecules.
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