Adiabatic Elimination in Strong Field Light Matter Coupling
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We explore the validity of adiabatic elimination in the derivation of an essential-states representa-
tion of the time-dependent Schrédinger equation in the presence of a strong laser field. We consider
the elimination of off resonant states in generating an effective two level description of the light
matter interaction, where the initial and final states are two-photon resonant. The treatment is
non-perturbative and can be generalized to N-photon absorption.

I. INTRODUCTION

In time-resolved spectroscopy and non-linear optics,
the coupling between a strong-field laser pulse and the
molecule of interest takes center stage [1-3]. An impor-
tant tool in dealing with strong laser-molecule coupling
is adiabatic elimination (AE), which allows one to de-
rive multi-photon Rabi frequencies and dynamic Stark
shifts, as well as describe the laser-molecule interaction
in terms of a small group of “essential states” [4-17]. AE
can also be applied in the calculation of “multiphoton”
decay channels, such as the two-photon decay of the Hy-
drogen 2s state [18], or for coupling control in waveguides
[19] and is the starting point for developing more accu-
rate approximations for quantum computing simulations
[20-22].

If one considers the full time-dependent Schrodinger
equation (TDSE) in the basis of field-free molecular
states, then the idea is to eliminate those “intermediate”
molecular states which do not play an important role in
the dynamics - i.e. those which are not significantly pop-
ulated during the interaction with the laser field. These
states are so far off resonance that any population that is
transferred to the state is rapidly transferred back to the
initial state as the interaction switches between stimu-
lated absorption and emission at the detuning frequency,
A = wy — (E; — Ey), where F; and FEy represent the
energies of the ground and intermediate states.

Our goal is to examine the validity of removing such
“far off resonant” states in detail by comparing numer-
ical integration of the TDSE with all states considered
explicitly (exact treatment) vs calculations where the off-
resonant states have been adiabatically eliminated. We
show how cancellation of errors enables accurate calcula-
tions with AE even when the validity of the approxima-
tion is in question. This supports the use of AE even for
very short (i.e. few cycle) pulses which do not fulfill the
slowly varying envelope approximation.

II. MODEL SYSTEM

In the following, we focus on a simple model system.
We divide the eigenstates of the field-free molecule into
two groups. An initial ground state, |1)4), and an excited
state, |t).), which are “n-photon resonant” (E.—E, = nw
in atomic units), and all of the other “intermediate”
states, |¢;), of the system which are off resonant but
dipole coupled to both the initial and final states. For our
simulations, we restrict ourselves to a model with two-
photon transitions and one intermediate state. These are
illustrated in the bottom left corner of Fig. 1. Further
details can be found in the appendix. We ignore vibra-
tions here, but they have been included in a separate
paper [23].

III. ADIABATIC ELIMINATION

The traditional formulation for adiabatic elimination
is to assume a slowly varying field envelope and large de-
tuning of the intermediate state, such that the variation
in the Rabi frequency, x, between i and g or e and i has
to be much smaller than the Rabi frequency, y, times
the detuning between g and i, or e and i, A;, or A,; (ie.
X/x < A) [1, 14]. Here we revisit this approximation,
and calculate the errors that one accumulates with AE
when the approximation is not strictly valid. We present
a brief derivation of the TDSE with AE, illustrating ex-
actly what approximations are made to create the adi-
abatically eliminated system. We start by writing the
time-dependent wavefunctions in terms of the field-free
electronic eigenstates:
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where c,, (t) is the complex amplitude of the n*" electronic
eigenstate, with n representing the ground state g, the
excited state e, or any intermediate states i. The TDSE



is then:
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where wy,n, = Wy — wy, and Hjy, is the Hamiltonian of
the system including the molecule-field interaction.

Up to this point the TDSE is general, but not partic-
ularly useful because of the large number of intermedi-
ate states that are involved, leading to a potentially very
large Hamiltonian matrix. The idea in AE is to eliminate
all of the states i from the TDSE, while taking into ac-
count the role that they play in generating multi-photon
couplings and dynamic Stark shifts. We focus here on an
initial and final state which are two-photon coupled. The
extension to higher order couplings is straightforward but
tedious. As mentioned above, we focus here on an initial
and final state which are two-photon coupled via a single
intermediate state, i, understanding that this can repre-
sent many states and that in general one needs to sum
over a large number of such states in the derivation in
order to accurately calculate the multi-photon couplings
and Stark shifts.

Using Eq. 2 the TDSE for this system can be written
as:
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where the coupling is given by:
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With Xnm (t) = pnm E(t), where i, is an element of the
transition dipole moment matrix and E(t) is the time
dependent electric field amplitude. We drop the explicit
time dependence of xp, for ease of notation.

When written out explicitly by plugging the coupling
(Eq. 4) into Egs. 3 the complex exponentials for the
molecule eTwsit  eFiweit and light e*™ot combine such
that we can define the AE frequencies: wy e+ = wg,ei £wo,
and using these rewrite Eqgs. 3 as:
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The process of adiabatic elimination begins by directly
integrating the rapidly oscillating, off-resonant interme-

diate state (Eq. 5b):
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This leads to four separate integrals where we define the
integrands as ¢4, g—, e4, and e_ based on the AE fre-
quencies. We can evaluate these four integrals by the
usual integration by parts: [UdV = UV — [VdU. If
we take [dt'g_ as an example then U = x;4¢4(t') and
dV = e~"™s-t resulting in the integral:
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The usual approach to adiabatic elimination can be

expressed in terms of Xje,q/Xie,g < Wg,e+ such that we

can neglect the [VdU term, since it is an integral of a

product of slowly and rapidly varying terms. However, a

more precise condition for adiabatic elimination can be

derived from Eq. 7 by performing integration by parts

a second time. The U term now contains a derivatve,

U= %xigcg(t’), while the dV term remains the same,

dV = e~™@s-t yielding:
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This approach now allows us to directly compare the
different terms in Eq. 7: 8a and 8b. The approximation
requires that 8b be much smaller than 8a, and assuming
that the second derivative of the envelope will vary even
slower than the first, 8¢ can be neglected. Thus, the
approximation can be written as:
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where an appropriate swap of g/e and +/— yield a similar
inequality for the other three AE frequencies.

Although similar to the traditional approximation, this
revised statement of the approximation contains an ad-
ditional term, which leads to cancellation of errors if the
two terms have different signs. We note that the sign of
the terms can also vary as a function of time since the



derivative of the Rabi frequency changes at the peak of
the pulse and the state coefficients are not always real
and positive.

If Eq. 9 is satisfied then the [VdU term can be re-
moved from each of the four integrals leaving us with the
intermediate state written as:
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Now we plug this equation (Eq. 10) back into the differ-
ential equations for ¢4(t) and c.(t), Eq. ba and 5¢, respec-
tively. The next step is to make the two-photon rotating
wave approximation to eliminate the rapidly oscillating
terms which is to say that any oscillation faster than the
two-photon detuning, Ay = wey—wp, is removed. See the
appendix for the complete derivation continuing from Eq.
10. The system resulting from AE + the two-photon ro-
tating wave approximation (AER) can thus be written as
a system of two coupled first order differential equations:
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or more concisely in terms of the dynamic Stark shift
wy () and the two-photon Rabi frequency Q(t):
i€y =cq4 (t)wf(t) + ce(t)fl(t)efmﬁ
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In order to quantify the error associated with AE, we
numerically integrate the full system of equations given
by Eq. 5 (exact solution), as well as the equations after
AER given by Eq. 11. The results of these calculations
are shown in Fig. 1. The top panel shows the laser pulse
intensity as a function of time, where the pulse has a
Gaussian profile with a peak intensity of 2/3 TW/cm?
and pulse duration of 30 fs. The bottom panel shows
the state populations as a function of time, where the
population is given by P,(t) = |c,(#)|>. In this panel
there is an inset showing the energy level diagram where
the one-photon detuning (A = E; — E; —1p) is 200 THz.
These parameters were chosen such that there was a large
population transfer to the excited state and that the sim-
ulation would meet the standard adiabatic criteria as the
30 fs pulse sustains a bandwidth of ~ 15 THz which is
much less than the detuning. Full model parameters are
given by Table II in the appendix.

The solid curves of Fig. 1 show the solution to integrat-
ing the full system Eq. 5. As expected, the intermediate
state population shows rapid oscillations with no popula-
tion remaining in the state at the end of the pulse. This
outcome reflects the fact that the intermediate state acts
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FIG. 1. Populations as a function of time for a three level
system with laser induced coupling. Top panel: laser intensity
vs. time. Bottom panel: populations vs. time. Solid curves
correspond to the full system and dotted curves correspond
to the AER system. The inset shows the energy level diagram
for the three level system.

as a mediator between the ground and excited states,
but has no lasting effect. This circumstance forms the
basis for AE, where we eliminate the intermediate state
and move its mediating effects to the dynamic Stark shift
and two-photon Rabi frequencies.

The dotted curves show the solution to the AER sys-
tem Eq. 11 where the intermediate state has been adi-
abatically eliminated. The agreement between the full
system and the AER system is quite good with a popu-
lation error, (PFuwl — PAER) /pFull " of only 2.5%.

IV. VALIDITY OF THE APPROXIMATION

We have found that AE works (producing relatively
small errors in comparison to integration of the full
TDSE) even when the slowly varying envelope approx-
imation (SVEA) is not strictly valid, as illustrated in
figure 1. Here, we examine the validity of the approx-
imation in more detail by testing its limits. In Fig. 2
we calculate the populations of the states for four dif-
ferent pulse durations. The intensity was adjusted to
keep the pulse area constant for the four simulations.
In the top left panel, we show the results for a 300 fs
pulse, for which the SVEA is valid, given an interme-
diate state detuning of 200 THz and a pulse envelope
bandwidth of less than 2 THz. The solutions to the full
TDSE and the AER equations overlap perfectly. As the
pulse duration is decreased, the approximation becomes
worse and we see some accumulation of error in compar-



ing the solutions to the TDSE and the AER equations.
However, the disagreement between the TDSE and AER
solutions remains rather small, even for a 10 fs pulse,
where the SVEA is clearly violated. Furthermore, the
solutions are still relatively close even for the dramatic
case of a roughly single cycle pulse, which grossly violates
the SVEA.
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FIG. 2. Adiabatic Elimination using different pulse dura-

tions while maintaining a constant pulse area. Pulse dura-
tions shown: 300fs (top left), 30fs (top right), 10fs (bottom
left), 3fs (bottom right).

So far we have only discussed how the approximation
works in the case of varying pulse duration. A similar
analysis can be done by varying the intermediate state
detuning, which we show in Appendix Fig. 5. Looking
at Eq. 9, one can show that the approximation can be
discussed in terms of either the pulse duration (dictated
by the pulse bandwidth for a transform limited pulse)
based on dy/dt from the LHS of the inequality or the
one-photon detuning based on wy .+ from the RHS and
that these are equivalent pictures.

A more thorough analysis of the population error,
given in appendix Fig. 6, shows that there is a smooth
decrease in error with increasing pulse duration. This
highlights the fact that there is nothing special about
the particular pulse durations discussed here. Adiabatic
elimination works even when the envelope does not vary
very slowly compared to the central frequency.

V. INTERPRETATION

In order to understand why AE works so well we need
to take a closer look at the approximation. The SVEA

is essentially equivalent to assuming that each term in
the LHS of Eq. 9 is smaller than the RHS. However, the
errors associated with the sum of the two terms can be
small even when the SVEA is not valid due to cancella-
tion between the two terms. We return to the integration
by parts from Eq. 7 in particular focusing on the [ VdU
term because this term describes the error in AE. Ex-
panding this term based on the product rule yields:

/(VdU)g— - /t dt’i[ ioC (t’)]eiiwgft/ (13a)
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where this equation is representative of the other three
terms g4, e—, and e;. This expansion highlights the
importance of the product rule and gives us the first level
of cancellation of errors throughout the approximation.

In order to emphasize this cancellation of errors, we
calculate each contribution to the intermediate state co-
efficient (all four UV terms and all eight [ VdU terms)
and use these to determine each contribution to the ex-
cited state coefficient (c.(t)) by plugging each into the
integral solving for the excited state:
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For example, we insert ¢;(t') = [(VdU)]~ into Eq. 14 to
determine this term’s contribution to the ¢, (). This term
is plotted in the upper left panel of Fig. 3 in black for
the system described in Fig. 1. We then calculate the
contribution to ¢.(¢) from the remaining seven [ VdU
terms which are plotted as a function of time in Fig. 3.
For clarity, each contribution to c¢.(t) is normalized to
the total c.(t) used to calculate the population.

Fig. 3 is divided into four panels marked g— (top left),
e+ (top right), g+ (bottom left), and e— (bottom right).
These correspond to the [VdU term for the four inte-
grals given by Eq. 6. The black and grey curves represent
this integral separated via the product rule as shown in
the example Eq. 13, where the colored curves represent
the sum of these two terms.

The top two panels (g— and e+) show little contribu-
tion due to [(VdU)y, (i.e. the derivative of the field) and
are thus dominated by the second term (the derivative of
the coefficient) but this term is quite small, being less
than 1%. We can attribute this to the fast oscillation
frequencies wy— = —1000 THz and w.+ = +600 THz
which lead to very little population transfer.

The bottom two panels (g+ and e—) tell a much more
interesting story. Both show a 2% error due to the de/dt
term, but this is then cancelled by the dx/dt term, yield-
ing a reduced total error of ~ 1%.
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FIG. 3. Excited state coefficient contributions from the

JVdU terms split by the product rule (RHS Eq. 13) and
normalized to the total final excited state coefficient. The
imaginary complement is given by appendix Fig. 7.

The discussion above highlights a first level of error
cancellation. As shown in Eq. 6 the four colored curves
in Fig. 3 must also be summed. Fig. 4 reproduces
these four curves and additionally shows their sum as
the black dashed line. Here, it is quite striking to see
that the e+ term has the opposite sign compared to the
other three, which introduces a further cancellation of
errors. This sign difference arises due to the denomina-
tor in the [ VdU. The denominator is the AE frequency
which is wg— in Eq. 13. The four AE frequencies are
then wy,_ = —1000 THz, wy, = w._ = —200 THz, and
we, = +600 THz. The e+ carries the opposite sign to the
others, providing additional cancellation of errors in AE.
Furthermore, we see that there is cancellation in time
due to the change in sign of the derivative of the Rabi
frequency, as discussed below Eq. 9. This cancellation
in time is even more pronounced in the imaginary part
of the coefficients, as shown in figures 7 and 8 in the ap-
pendix. These multiple levels of cancellation reduce the
total error due to adiabatic elimination, and allow calcu-
lations that make use of AE to yield accurate results even
when the traditional statement of the approximation is

not strictly valid.

VI. CONCLUSION

Adiabatic elimination often works much better than
expected based on the traditional formulation of the
approximation in terms of the SVEA. In order to un-
derstand why, we have examined the approximation in
greater detail, uncovering multiple cancellations of errors.
This provides a deeper understanding of the approxima-
tion, and validates the application of AE even when the
SVEA fails.
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VII. APPENDIX

Appendix A: Adiabatic Elimination Full Derivation

Here we provide some details on the derivation of equa-
tions 11 based on the expression for the intemediate state
given by equation 10. This includes the two-photon ro-
tating wave approximation (TPRWA).

We start from the expression for the intermediate state,
ci(t), that we arrived at in Eq. 10 from the main text:

N e—iwg+t e—iwg,t
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+2Xei o [ N }
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(A1)

We insert Eq. Al into the differential equations from
Eq. 5 such that they can be reduced to two coupled
differential equations given by:

icg = AggCy(t) + Agece(t) (A2a)
iCe = AcgCg(t) + Acece(t) (A2b)
where
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The Hamiltonian for this AE two level system is:

_ (Agg Age
Hap = (Aeg Aee>
with the matrix elements given by Egs. A3. We note
that this Hamiltonian is not Hermitian. However, this is
remedied by making the TPRWA.

We define the two-photon detuning as Ay = we —wy —
2w = Weg — 2wp, then apply the TPRWA by neglecting
all terms with frequencies oscillating faster than Ay. This
requires us to evaluate each of the complex exponentials
present in Egs. A3. The possible resulting frequencies
are shown in Table I as a matrix, where the first column
and row show the AE frequencies and each subsequent
cell is the AER frequency which is calculated by taking
the difference of each row (m) with each column (n) or

(A4)

m — n. Where present the second line of a given cell
is the first line rewritten in terms of A, to emphasize
which combinations yield frequencies greater than As.
The frequencies that remain after the approximation are
shown in bold.

TABLE I. Rotating Wave Approximation
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+(Az + 2wo) |+ (A2 + 4wo)
We— Weg — 2wo Weg —2wo 0
+As +(Asz + 2wo)

Keeping only terms that oscillate at Ag or slower, Egs.
A3 reduces to:

2
Agg = ?o{f% = w (1) (A5a)
Age = i%e‘mﬁ = Q(t)e A2t (A5b)
eg = imeHAQt = Q(t)etiAzt (A5c)
Ace = x;wa_wg =Wy (t) (A5d)

These matrix elements can be redefined as the dynamic
Stark shift, w5 (t), (Eqs. Aba and A5d) and the two-
photon Rabi frequency, Q(t), (Eqs. A5b and A5c). Thus

we can write the Hamiltonian as

WS O(t)e— D2t
Haptrwa = (Q(t)gegi)Azt Q(i)s(t) ) (A6)

e
with the matrix elements given by Eq. A5. This Hamil-
tonian is Hermitian in the limit that we; —wo = wyi +wo
or Ag =0.

Inserting Eqs. A5 back into Egs. A2 we generate the
TDSE for AER given in the main text, Eq. 12.

Appendix B: Simulation Model

As discussed in the main text the simulation uses a
differential equation solver to numerically integrate Egs.
5 and 11 to calculate the state populations. The param-
eters used in Figs. 1 are given below in Table II.

We ran several simulations for varying pulse duration,
ATy, as shown in Fig. 2, where we adjusted the pulse
intensity, Iy, such that the pulse area was kept constant.
All other parameters described in Table II remained the
same.



TABLE II. Default Model parameters

Parameter Value
E, 0 THz
E; 600 THz
E. 800 THz
Vo 400 THz

Lig 2117 C - m
Wie 2.09¢ 2 C - m
In 0.6667 TW /cm?
AT 30 fs

In a similar fashion, we varied the one-photon detun-
ing, A = E; — E, — 1y, by varying the intermediate state
energy E;. Fig. 5 shows the populations as a function of
time with an inset displaying the energy level diagram.
The four panels correspond to four different detunings:
50, 200, 350, and 500 THz, where the inset shows the in-
termediate state labelled |é) (purple) shifting to increas-
ing energy. Once again the pulse intensity was adjusted
to keep the pulse area constant and all other parameters
described in Table II remained the same.
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FIG. 5. Population as a function of time for four different
detunings (A = |i) — |vp)) at 30fs pulse duration.

In terms of understanding adiabatic elimination, the
pulse duration and one-photon detuning are interchange-
able. To complement the qualitative nature of the com-
parison of the exact solution and AER described in Fig.
5, we calculated the population error as a function of de-
tunings for a quantitative approach in Fig. 6. The figure
shows an upper and lower x-axis which are coupled to
one another. The lower axis describes the error in terms

A/BW
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FIG. 6. Population error ((P. — Pe apr)/Pe) as a function of
one photon detuning with fixed pulse duration FW HM = 30
fs.

of the detuning, while the upper axis describes the error
in terms of the SVEA. By dividing the detuning by the
laser bandwidth for a 30 fs pulse we effectively re-write
the SVEA as A/x >> 1. From this graph one can see
that even when the SVEA is no longer valid the error is
still rather reasonable.

Appendix C: Imaginary Complement

Using the coefficients from the full solution we calcu-
lated each term that contributed to the total excited state
coefficient. Figs. 3 and 4 show the real part normalized
to ce(t). In Figs. 7 and 8 we show the complementary
imaginary parts and note that the imaginary part is nor-
malized to the final total excited state coefficient.
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FIG. 7. Imaginary complement to figure 3.
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FIG. 8. Imaginary complement to figure 4.
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