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a b s t r a c t

The goal of this paper is to indicate a new method for constructing normal confidence
intervals for the mean, when the data is coming from stochastic structures with possibly
long memory, especially when the dependence structure is not known or even the
existence of the density function. More precisely we introduce a random smoothing
suggested by the kernel estimators for the regression function. The normal confidence
intervals are constructed under the sole condition that the sequence is ergodic and has
finite second moments and a mild condition on the sample variance. Applications are
presented for linear processes and reversible Markov chains with long memory.

1. Introduction

1.1. Motivation

Let us suppose that we have a stationary sequence (Yi)i∈Z with finite variance (var(Y0) = σ 2
Y < ∞). Denote by µY = EY0,

the expected value of Y . Also, denote as usual the sample mean by Ȳn =
1
n

∑n
i=1 Yi. If, for instance, the sequence is ergodic,

then by the Birkhoff ergodic theorem it is well-known that, limn→∞ Ȳn = µY almost surely. If additional information on
the dependence structure of (Yi)i∈Z is available, such as martingale-like conditions or mixing conditions, we can derive a
central limit theorem for

√
n(Ȳn − µY ), which naturally leads to the construction of confidence intervals for µY based on

the standard normal distribution. Without any other information on the dependence structure of (Yi)i∈Z , obviously, such a
sequence might not obey the central limit theorem, and thus the sample mean becomes useless for confidence intervals.
In this paper, we indicate a way to construct normal confidence intervals for µY based on a smoothing method inspired
by the Nadaraya–Watson estimators. These confidence intervals can be applied to a wide range of ergodic stochastic
processes with finite second moment, therefore including processes with long-memory.

The procedure we propose is the following. The data (Yi)1≤i≤n consists of a sample from a stationary sequence
(Yi)i∈Z . Independently of (Yi)1≤i≤n we generate a random sample (Xi)1≤i≤n, from a distribution with bounded density f (x),

Journal of Statistical Planning and Inference , 211, 90-106.  

https://doi.org/10.1016/j.jspi.2020.06.001
http://www.elsevier.com/locate/jspi
http://www.elsevier.com/locate/jspi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jspi.2020.06.001&domain=pdf
mailto:mlongla@olemiss.edu
mailto:peligrm@ucmail.uc.edu
https://doi.org/10.1016/j.jspi.2020.06.001


2

continuous at the origin, with f (0) ̸= 0. In addition we select a sequence of positive constants called bandwidths (hn)n∈N
satisfying the condition

hn → 0 and nhn → ∞ as n → ∞, (1)

and a kernel K that satisfies the following property

K is a symmetric bounded density function. (2)

Our estimator is

r̂n =
1

nE(K (X1/hn))

n∑
i=1

YiK (
1
hn

Xi). (3)

We shall see that, under the condition

Ȳn → µY in probability as n → ∞, (4)

r̂n is a consistent estimator of µY . We mention that condition (4) is a very weak condition. By Lemma 7 in Appendix
condition (4) is equivalent to apparently stronger condition

var(Ȳn) → 0 as n → ∞. (5)

If the sequence (Yi)i∈Z is ergodic, by the Von Newman’s mean ergodic theorem, (5) holds (see Theorem 8.1 in Eisner et al.
(2015)). As a matter of fact the consistency result does not require the ergodicity of (Yi)i∈Z . Condition (5) also holds if, for
instance, cov(Y0, Yn) → 0.

1.2. Main results

We shall provide a rate of convergence via a central limit theorem, some confidence intervals for µY , a functional
central limit theorem. We also discuss the optimal bandwidth which minimizes the mean square error and provide the
proper bandwidths for several examples. A simulation study is proposed for several models. To establish these results, we
use the independence structure of the smoothing sequence (Xi)i∈Z that allows us not to restrict the dependence structure
of (Yi)i∈Z and also not to impose the existence of the density of Y . The closest idea to this one is the block-wise bootstrap.
For instance, in the paper by Peligrad (1998), the central limit theorem for the mean is obtained via bootstrap smoothing,
for a sequence that does not satisfy the CLT, but rather satisfies some restrictive mixing conditions.

1.3. Structure of the paper

The rest of this paper is organized as follows. In Section 2 we provide our results. In Section 3 we provide a brief
discussion of the methods. In Section 4, we provide the proofs of our main results. In Section 5, we discuss the size
of the optimal bandwidth and optimal kernel to be used in the confidence intervals. In Section 6 we provide several
applications to processes with long memory. We show here that we can construct with our method confidence intervals
for the mean of the population without estimating the variance or the memory parameter. In Section 7, we provide a
simulation study to support our results. Simulations show that our confidence intervals, obtained without estimation of
the memory parameter are statistically significant and very closely estimate the confidence intervals. Here we used the
90%, 95% and 99% confidence level for several models, including the Frechet copula family, the Clayton copula family and
the ARFIMA(0, d, 0) process. In Section 8 we have several remarks and conclusions. In Appendix, we give an auxiliary
result.

2. Formulation of the main results

In the sequel we denote by ⇒ the convergence in distribution. For positive sequences of numbers an = O(bn) means
lim supn→∞ an/bn < ∞; an = o(bn) means limn→∞ an/bn = 0. We use the notation an ∼ bn for limn→∞ an/bn = 1. Our
first result is the consistency of r̂n.

Proposition 1. Assume that (Yi)i∈Z is a stationary sequence with finite second moments, satisfying (4). Also assume that
conditions (1) and (2) are satisfied. Then, the following consistency result holds for the mean squared error:

MSE(r̂n) := E(r̂n − µY )2 → 0 as n → ∞.

In order to establish the central limit theorem we need a stronger condition on the bandwidth sequence:√
nhn(Ȳn − µY ) →

P 0, (6)

which is implied by

nhnvar(Ȳn) → 0. (7)
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Note that we can always find a sequence (hn)n≥1 satisfying both conditions (1) and (7), provided (5). In particular such a
selection is possible for every stationary and ergodic sequence having finite second moments.

We establish the following theorem:

Theorem 2. Assume that (Yi)i∈Z is a stationary and ergodic sequence with finite second moments. Let (hn)n≥1 be a sequence
of positive constants satisfying conditions (1) and (6). Also assume that K satisfies condition (2) and that (Xi)i∈N is an i.i.d.
sequence of random variables, independent of (Yi)i∈Z , having a bounded density function f (x), continuous at the origin, with
f (0) ̸= 0. Then we have

√
nhn√
Y 2
n

(r̂n − µY ) ⇒ N(0,
1

f (0)

∫
K 2(x)dx).

where Y 2
n =

∑n
i=1 Y

2
i /n and r̂n is defined by (3).

Based on Theorem 2 we can construct confidence intervals for the mean:

Corollary 3. Under the conditions of Theorem 2, for 0 < α < 1, a (1 − α)100% confidence interval for µY is⎛⎝r̂n − zα/2

(
Y 2
n

∫
K 2(x)dx

nhnf (0)

)1/2

, r̂n + zα/2

(
Y 2
n

∫
K 2(x)dx

nhnf (0)

)1/2
⎞⎠ , (8)

where P(−zα/2 < Z < zα/2) = 1 − α and Z is a standard normal variable.

Let us notice that, at no extra cost, our result can also be formulated as a functional CLT. If we consider the stochastic
process

r̂n(t) =
1

nE(K (X1/hn))

[nt]∑
i=1

YiK (
1
hn

Xi),

from the proof of Theorem 2 and Donsker’s theorem (see Theorem 8.2 in Billingsley, 1999) we obtain:

Corollary 4. Under the conditions of Theorem 2 we have√
nhn(r̂n(t) − µY )/

√
Y 2
n ⇒

(
1

f (0)

∫
K 2(x)dx

)1/2

W (t),

where W (t) is the standard Brownian motion.

3. Discussion

Let us discuss now the relation of our estimator to the Nadaraya–Watson estimator. Given a sample (Xi, Yi)1≤i≤n from a
random vector (X, Y ) on a probability space (Ω, K , P), the well-known Nadaraya–Watson estimator (see Nadaraya (1964)
and Watson (1964), or pages 126–127 in Härdle (1991)) is defined by

m̂n(x) =
1

nhn f̂n(x)

n∑
i=1

YiK (
1
hn

(Xi − x)),

where

f̂n(x) =
1

nhn

n∑
i=1

K (
1
hn

(Xi − x)).

This estimator has been widely studied in the literature. For instance, when the vector (X, Y ) has joint density f (x, y),
m̂n(x) is used to estimate

E(Y |X = x) = r(x) =

∫
y[f (x, y)/f (x)]dy.

Under various smoothness assumptions on (X, Y ) and various dependence assumptions on the process (Xi, Yi)i∈Z , the
speed of convergence of m̂n(x) to r(x) was pointed out in numerous papers. The dependence structure considered in the
literature is rather restrictive, of the weak dependence type, such as mixing conditions, function of mixing sequences, or
martingale-like conditions. We mention for instance results in Bradley (1983), Collomb (1984), Peligrad (1992), Yoshihara
(1994), Bosq (1996), Bosq et al. (1999), Laib and Louani (2010), Long and Qian (2013), and Hong and Linton (2016) among
many others. Now, let us notice that if the variables (Xi)i∈Z are independent of (Yi)i∈Z , we have E(Y |X) = E(Y ) = µY .
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Since f̂n(x) is a consistent estimator of f (x), m̂n(0) is asymptotically equivalent to (3). Actually this was the starting point
of our paper. However we could not use any available results in the literature since our goal was to treat the case when
no information is known about the dependence structure of the ergodic sequence (Yi)i∈Z or the existence of the density
of Y .

Let us also mention that our estimator is also formally related to the weighed estimators, so called W-estimators. (see
sections 12.2.2 and 12.2.3 in Thode (2002)). These robust estimators are actually weighted M-estimators. The weighting
could be based, for instance, on the Tukey’s biweight function:

ω(u) = (1 − u2)2I(|u| ≤ 1).

which can be normalized to be a kernel K (u) = 15ω(u)/16. The W-estimators have the form

Tω =

∑n
i=1 YiK (Xi,n)∑n
i=1 K (Xi,n)

,

where Xi,n is a certain function of the data, namely of (Yi)1≤i≤n. The rate of convergence of these robust estimators of
location are theoretically difficult to study, unless (Yi)i∈Z exhibit a known-type of dependence structure. Alternatively, we
can use a different idea; we could construct the weighted estimators by taking (Xi) independent on (Yi) and then set
Xi,n = Xi/hn. We obtain

T ′

ω =
1

nhn f̂n(0)

n∑
i=1

YiK (
Xi

hn
),

We note that, T ′
ω constructed above is asymptotically equivalent to (3).

4. Proofs of the main results

4.1. Proof of Proposition 1

For convenience, we shall drop the index n from the notation of hn. Denote

Vn,i = h−1K (Xi/h).

We shall compute first the bias

Bias r̂n = E(r̂n − µY ) =
µY

E(Vn,1)
E(f̂n(0)) − µY = 0.

This is an unbiased estimator with variance

var r̂n = E[r̂n − µY ]
2

= E[r̂n −
µY

E(Vn,1)
f̂n(0) +

µY

E(Vn,1)
(f̂n(0) − E(f̂n(0)))]

2

= E[r̂n −
µY

E(Vn,1)
f̂n(0)]

2
+

µ2
Y

E2(Vn,1)
var f̂n(0).

Simple computations based on stationarity show that the first term of the last sum becomes

E[r̂n −
µY

E(Vn,1)
f̂n(0)]2 =

1
E2(Vn,1)

E[
1
n

n∑
i=1

(Yi − µY )Vn,i]
2

=
1

E2(Vn,1)n2 [nσ 2
Y E(V

2
n,1) + 2

∑
1≤i<j≤n

cov(Yi, Yj)(EVn,1)2]

=
1

E2(Vn,1)n2 [nσ 2
Y E(V

2
n,i) + (EVn,1)2(var SY − nσ 2

Y )]

=
1

E2Vn,1n2 [nσ 2
Y var Vn,1 + (EVn,1)2var SY ]

=
var f̂n(0)
E2(Vn,1)

σ 2
Y + var Ȳn.
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Therefore, by combining these results, the mean squared error is

MSE r̂n = E(r̂n − µY )2 = var r̂n + [Bias r̂n]
2

=
var f̂n(0)
E2(Vn,1)

E(Y 2) + var Ȳn. (9)

It is known that f̂n(0) is an asymptotically unbiased estimator of f (0), provided the bandwidths hn satisfies condition (1)
and the kernel K satisfies condition (2) (see Parzen, 1962 or Härdle, 1991, page 59). We recall that for all i ∈ N ,

var f̂n(0) =
1

nh2

∫
K 2(

t
h
)f (t)dt − E(f̂ 2n (0))

≤
1
nh

∫
K 2(t)f (th)dt.

By condition (5) it follows that

lim
n→∞

supMSE r̂n ≤ lim
n→∞

varȲn = 0.

4.2. Proof of Theorem 2

We condition on (Yi)i∈Z and shall first find the limiting distribution of a related sequence of random variables under
the regular conditional probability Pω

Y (·) = P(·|(Yi)i∈Z )(ω). In the sequel Eω
Y denotes the expected value with respect to Pω

Y .
We introduce the sequence of random variables

Zn,i =
1

√
h

(
K (

1
h
Xi) − E(K (

1
h
Xi))

)
Yi = Xn,iYi, (10)

where

Xn,i =
1

√
h

[
K (

1
h
Xi) − E(K (

1
h
Xi))

]
.

Note that, by independence of sequences (Yi)i∈Z and (Xi)i∈Z , for almost all ω, we have

Eω
Y (Zn,i) = Yi(ω)E(Xn,i) = 0.

Denote

Wn =
1

√
n

n∑
i=1

Zn,i =
1

√
n

n∑
i=1

Xn,iYi.

Let us find the limiting distribution of Wn under Pω
Y , for almost all ω. We start by constructing Ω ′ such that, for all ω ∈ Ω ′

the following convergences hold:

lim
n→∞

1
n

n∑
i=1

Y 2
i (ω) = E(Y 2), (11)

and for all positive integer A,

lim
n→∞

1
n

n∑
i=1

Y 2
i (ω)I(|Yi|(ω) > A) = E[Y 2I(|Y | > A)]. (12)

This is possible because (Yi)i∈Z is ergodic, so the convergences in (11) and (12) hold on sets of measure 1. We construct
Ω ′ as a countable intersection of these sets, which will also have measure 1. Fix ω ∈ Ω ′.

Under Pω
Y , (Wn)n≥1 becomes a sum of a triangular array of independent random variables. Therefore, in order to

establish the CLT, we have to take care of the limiting variance and then verify the Lindeberg’s condition. All the integrals
below are taken over R = (−∞, ∞). First we recall that for all i ∈ N ,

var(Xn,i) =

∫
K 2(t)f (th)dt − h(

∫
K (t)f (th)dt)2.

So, by Bochner’s theorem and condition (2),

lim
n→∞

var(Xn,i) = lim
n→∞

E(X2
n,i) = f (0)

∫
K 2(u)du = C1. (13)

By independence of sequences (Yi)i∈Z and (Xi)i∈Z and stationarity, we have

σ 2
n (ω) = varωY (Wn) =

1
n

n∑
i=1

Y 2
i (ω)var(Xn,1) = Y 2

n (ω)var(Xn,1)
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and therefore, by (11)

lim
n→∞

σ 2
n (ω) = lim

n→∞

C1

n

n∑
i=1

Y 2
i (ω) = C1E(Y 2). (14)

Let us establish now the Lindeberg’s condition under Pω
Y .

Denote σn(ω) =
√

σ 2
n (ω). We have to show that, for every ε > 0,

lim
n→∞

1
σn(ω)

1
n

n∑
i=1

Eω
Y [X2

n,iY
2
i I(|Xn,iYi| ≥ εσn(ω)

√
n)] = 0. (15)

Now, by (14) there is N(ω) such that for all n > N(ω) we have σn(ω) ≥ C1E(Y 2)/2. By this remark, by independence of
the two sequences (see Example 33.7 in Billingsley (1995)) and stationarity, we obtain

Eω
Y [X2

n,iY
2
i I(|Xn,iYi| ≥ εσn(ω)

√
n)] = Y 2

i (ω)Eω
Y [X2

n,1I(|Xn,1Yi(ω)| ≥ εσn(ω)
√
n)].

It follows that, in order to show (15), we have to show instead

lim
n→∞

1
n

n∑
i=1

Y 2
i (ω)Eω

Y [X2
n,1I(|Xn,1Yi(ω)| ≥ ε′

√
n)] = 0,

where we denoted ε′
= εC1E(Y 2)/2. Denote the expression above:

Gn(ω) =
1
n
Eω
Y [X2

n,1

n∑
i=1

Y 2
i (ω)I(|Xn,1Yi(ω)| ≥ ε′

√
n)].

We shall decompose the sum in two parts. Let A be a positive integer and define the index sets

I1(ω) = (i : 1 ≤ i ≤ n, |Yi|(ω) ≤ A),

I2(ω) = (i : 1 ≤ i ≤ n, |Yi|(ω) > A).

Note {1, 2, . . . , n} = I1(ω) ∪ I2(ω). We write
∑n

i=1 =
∑

i∈I1(ω) +
∑

i∈I1(ω) and, by using the stationarity assumption, we
shall upper bound Gn in the following way:

Gn(ω) ≤ A2E[X2
n,1I(|Xn,1| ≥ A−1ε′

√
n)] + E(X2

n,1)
1
n

n∑
i=1

Y 2
i (ω)I(|Yi|(ω) > A). (16)

Note that:

E[X2
n,1I(|Xn,1| ≥ A−1ε′

√
n)] =

1
h

∫
K 2(

v

h
)I(K (

v

h
) ≥ A−1ε′

√
nh)f (v)dv =∫

K 2(u)I(K (u) ≥ A−1ε′
√
nh)f (uh)du.

Since nh → ∞ and K is bounded, this limit is 0 as n → ∞. By passing to the limit in (16) with n → ∞ and by using
(13), we easily obtain

lim sup
n→∞

Gn(ω) = C1E[Y 2I(|Y | > A)].

By letting A → ∞, and using the fact that Y has finite second moment, we get

lim
n→∞

Gn(ω) = 0.

Therefore, the Lindeberg’s condition is satisfied under Pω
Y . By all these considerations, we obtain that the following

quenched central limit theorem holds: for any fixed ω ∈ Ω ′

Wn ⇒ N(0, C1E(Y 2)) under Pω
Y .

This quenched CLT is a stronger form of CLT. After representing it in terms of characteristic function we can integrate
with respect to the measure P and we obtain the annealed CLT, namely

Wn ⇒ N(0, C1E(Y 2)) under P . (17)

Now recall that Zn,i = h−1/2
(
K ( 1hXi) − E(K ( 1hXi))

)
Yi. Let us also note that by definition (3),

1
√
nh

n∑
i=1

YiK (
1
h
Xi) =

√
nhE(Vn,1)r̂n.
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So we can rewrite

Wn =
√
nh

(
E(Vn,1)r̂n −

1
n

n∑
i=1

YiE(Vn,1)

)
=

√
nh
(
E(Vn,1)r̂n − ȲnE(Vn,1)

)
(18)

Note that
√
nh(ȲnE(Vn,1) − E(Vn,1)µY ) =

√
nh(Ȳn − µY )E(Vn,1). (19)

If we impose (7), then
√
nh
(
ȲnE(Vn,1) − E(Vn,1)µY

)
→

P 0 (20)

and, by Theorem 25.2 in Billingsley (1995), we obtain
√
nhE(Vn,1)

(
r̂n − µY

)
⇒ N(0, C1E(Y 2)).

or
√
nhf (0)

(
r̂n − µY

)
⇒ N(0, C1E(Y 2)).

By the ergodic theorem and Slutski’s theorem we obtain the desired result. □

4.3. Alternative estimator

The provided estimator r̂n is unbiased with an MSE that increases as hn tends to 0. The selection of the best value of
hn is thus difficult through the MSE. The following estimator r̃n is not unbiased, but is asymptotically unbiased and the
presence of the bias for finite samples allows to select the optimal bandwidths.

r̃n =
1

nhnf (0)

n∑
i=1

YiK (
Xi

hn
). (21)

As for r̂n, it is easy to establish the following result.

Corollary 5. Under the conditions of Theorem 2, the following CLT holds
√
nh

Y 2
n

(r̃n − cµY ) ⇒ N(0,
1

f (0)

∫
K 2(x)dx), (22)

where c = Ef̂ (0)/f (0).

The proof of this corollary repeats that of Theorem 2 replacing Ef̂ (0) by f (0).

5. Bandwidth and kernel selection

The method we propose introduces new parameters, the bandwidth sequence (hn)n≥1 and the kernel. There is a vast
literature on the selection of hn for kernel estimation of the density and for the Nadaraya–Watson estimator of a regression,
under independence or weak dependence assumptions. They can be found in books, such as in Section 5.1.2 in Härdle
(1991) or in surveys, such as Jones et al. (1996). Our case deals with possible long range dependence for (Yi)i∈Z , but it
benefits from the independence of (Yi)i∈Z and (Xi)i∈Z and also from the fact that we know f (x). Recall that we assume that
(Yi)i∈Z is ergodic. If we impose additional conditions on the smoothness of f (x) and K (x), namely f (x) has a continuous
and bounded second derivative and K satisfies condition (2) and

∫
x2K (x)dx < ∞, we can analyze the global optimal

bandwidth by optimizing the main part of the mean square error under the constraints (1) and (7). We shall see that this
selection depends on the strength of dependence of (Yi)i∈Z . As a matter of fact we shall prove the following proposition.

Proposition 6. Under the conditions above, the optimal data driven bandwidth, which minimizes the mean squared error of
r̃n is

ho = [
f (0)BY 2

n

n(f "(0)A)2(Ȳn)2
]
1/5 provided that var(Ȳn) = o(n−4/5) and µY ̸= 0. (23)

where

A =

∫
x2K (x)dx and B =

∫
K 2(x)dx. (24)
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The condition var(Ȳn) = o(n−4/5) is necessary for the CLT to hold. If this condition does not hold, this proposition
defines a range of hn for which our theorem is not applicable. It provides a hint for the selection of hn. In such a case,
knowing that the MSE decreases prior to h0, we need to select hn as close as possible to ho, ensuring that nhnvar(Ȳ ) → 0
and nhn → ∞.

Proof. We start from the computation of MSE(r̃n) similar to those leading to formula (9), to obtain

MSE(r̃n) =
1

f 2(0)
[E(Y 2)var(f̂ (0)) + µ2

YBias
2(f̂ (0)) + E2(Vn,1)var(Ȳn)]. (25)

When f (x) has a continuous and bounded second derivative, according to formula (2.3.2) in Härdle (1991), we have

Bias f̂n(0) =
h2

2
f "(0)A + o(h2) as n → ∞.

Also by formula (2.3.3) in the same book

var f̂n(0) =
1
nh

Bf (0) + o(
1
nh

) as n → ∞.

Under condition (7),

(EVn,1)2var Ȳn = (1 + o(1))var Ȳn = o(
1

nhn
).

It follows that

MSE r̃n =
1

f 2(0)
[
E(Y 2)
nh

Bf (0) +
h4

4
µ2

Y (f "(0)A)
2
+ o(

1
nhn

) + o(h4)]. (26)

In order to minimize it, we set 0 the derivative with respect to h of the main part and obtain

ho′ = [
f (0)BE(Y 2)

n(f "(0)A)2µ2
Y
]
1/5,

provided µY ̸= 0. Since the optimal ho′ depends on the unknown parameters E(Y 2) and µ2
Y ̸= 0, we shall replace them by

plug in estimators which are consistent because of the ergodicity of (Yn)n>0 to obtain (23). Finally, the size of ho combined
to condition (7) leads to the restriction var(Ȳn) = o(nho)−1

= o(n−4/5). □

If lim infn→∞ n4/5var(Ȳn) ̸= 0 this implies that lim infn→∞ nho′var(Ȳn) ̸= 0, and we need to select an h < h0 in order
for (7) to be satisfied. Note that the MSE is decreasing for h < ho′ . Therefore, in this case, the MSE is minimized when
hn satisfies hn = εn[nvar(Ȳn)]−1, with εn converging very slowly to 0. But such a selection would be difficult to estimate
when no information is available on the dependence of (Yn)n∈Z . In fact, when one can estimate the variance of partial
sums, εn and hn can be chosen to satisfy the following conditions:

εn → 0, var(Ȳn) = o(εn), hn =
εn

nvar(Ȳn)
→ 0. (27)

The most important thing in formula (27) is the rate of convergence of var(Ȳn). When estimated, this rate can replace
var(Ȳn).

The mean squared error given in formula (26) depends on the kernel estimator via the quantities A and B, given in
(24). Epanechnikov suggested to compare the performance of kernels satisfying the restriction

A =

∫
x2K (x)dx = 1.

For this case, studying kernel density estimators, he found that the MSE is optimized when B is minimized, and this
happens for the so called Epanechnikov kernel, namely K (u) = (3/4)(1 − u2)I(|u| ≤ 1). However, other kernels are also
giving very good results with a minimal loss of efficiency and therefore the success of the method does not depend too
much on the kernel selection for kernel density estimation. Other kernels that are often used are the quadratic kernel
(K (u) = (15/16)(1 − u2)2I(|u| ≤ 1)) and the standard normal kernel.

5.1. Kernels, densities and efficiency

We provide here few tables containing quantities that are needed for use of various kernels and distribution functions
for X.

In Table 1 we have values of A and B for each of the provided kernels. Using these values, we will propose a study of
the impact of kernels and densities on the proposed estimator of the mean and the subsequent confidence intervals.

We use Table 1 to obtain Table 2 of various optimal bandwidths for a set of kernels and densities of X . This Table
shows that the quartic kernel in combination with the χ2(2) for 1 + X provides the largest optimal bandwidth. These
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Table 1
Values of A and B for various kernels.
Kernel Gaussian Epanechnikov Uniform Quartic

A|B 1|1/2
√

π 1/5|3/5 1/3|1/2 1/7|5/7

Table 2
Optimal bandwidths.

Density of X

Kernel Gaussian χ2(2) Cauchy

Gaussian ( y2n
n
√
2ȳ2n

)1/5 ( 16
√
ey2n

n
√

π ȳ2n
)1/5 (

√
πy2n

8nȳ2n
)1/5

Epanechnikov ( 15
√
2πy2n

nȳ2n
)1/5 ( 480

√
ey2n

nȳ2n
)1/5 ( 15πy2n

4nȳ2n
)1/5

Uniform ( 9
√

πy2n
n
√
2ȳ2n

)1/5 ( 144
√
ey2n

nȳ2n
)1/5 ( 9πy2n

8nȳ2n
)1/5

Quartic ( 35
√
2πy2n

nȳ2n
)1/5 ( 1120

√
ey2n

nȳ2n
)1/5 ( 35πy2n

4nȳ2n
)1/5

Table 3
Asymptotic variance when the kernel is known.
Kernel Gaussian Epanechnikov Uniform Quartic

Efficiency .363D1 .349D1 .370D1 .351D1

Table 4
Asymptotic variance when the Distribution of X is known.
Density of X Gaussian χ2(2) − 1 Cauchy

Efficiency .48D2 .55D2 .53D2

bandwidths when used for estimation also show that the theoretical asymptotic variance for the quartic kernel and χ2(2)
density for 1 + X is not the smallest. In fact, a larger optimal bandwidth does not necessarily imply a shorter confidence
interval. This is because the size of the confidence interval depends also on f (0), A and B, considered separately from h.
To have a procedure with shorter confidence intervals, we will look for the scenario with the lowest asymptotic variance.
We call asymptotic variance the quantity

var(Case) =
BµY2

f (0)nhn
.

A set of kernel K and density of X that provides a smaller value of var(Case), defines a smaller confidence interval.
So, we will call this quantity efficiency as well. Using the optimal bandwidths for hn in var(Case) leads to the following
tables.

In Table 3 of theoretical asymptotic variances, D1 is a constant that depends on µY , µY2 , f (0) and f ′′(0). The form of
the constant is irrelevant at this point. This table shows that when the optimal bandwidths are used, the quartic kernel is
the most efficient among the considered kernels in terms of variance minimization along with the Epanechnikov kernel.
The Gaussian kernel performs a little better than the uniform kernel. Overall, the difference in variance is relatively small
compared to the smallest, these are (97%, 100%, 95% and 100%).

In Table 4 we provide the asymptotic variance for 3 distributions of X . Here, D2 is a constant that depends only on A
and B. The choice is made to have a centered bell-shaped distribution, a distribution with heavy tail and a distribution
that does not have a mean. The result shows that the Normal distribution seems to be a better distribution for X (smallest
asymptotic variance for a fixed kernel). Entries of this table are asymptotic variances when for the same data and same
kernel we use various distributions for X .

Combining Tables 3 and 4, using the special form of var(Case), we obtain the following Table 5 by multiplying the
coefficients in each of the cases.

In Table 5, G is a constant that depends only on µY and µ2
Y , if we consider that the sample size is known. We can see

that for the proposed distributions, the normal distribution for X outperforms others in all cases. This fact motivates the
definition of asymptotic relative efficiency of estimators of the provided form as

e = var(Case1)/var(Case2),

where var(Case1) is the variance of the estimator when the kernel is Gaussian and the distribution of X is standard
normal; and var(Case2) is the variance of the considered alternative. We obtain the following table of asymptotic relative
efficiencies.
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Table 5
Asymptotic variances for given kernel and density of X using the optimal bandwidths.
Kernel Density of X

Gaussian χ2(2) − 1 Cauchy

Gaussian .17G .20G .19G
Epanechnikov .17G .19G .18G
Uniform .18G .20G .19G
Quartic .17G .19G .18G

Table 6
Relative efficiencies using the optimal bandwidths.
Kernel Density of X

Gaussian χ2(2) − 1 Cauchy

Gaussian 100% 85% 89%
Epanechnikov 100% 89% 94%
Uniform 94% 85% 89%
Quartic 100% 89% 94%

Table 7
Asymptotic variances for given kernel and density of X without optimal bandwidths.
Kernel Density of X

Gaussian χ2(2) − 1 Cauchy

Gaussian .707G1 .930G1 .886G1
Epanechnikov 1.504G1 1.978G1 1.885G1
Uniform 1.253G1 1.648G1 1.571G1
Quartic 1.790G1 2.355G1 2.244G1

Table 8
Relative efficiencies when not using the optimal bandwidths.
Kernel Density of X

Gaussian χ2(2) − 1 Cauchy

Gaussian 100% 76% 80%
Epanechnikov 47% 36% 38%
Uniform 56% 43% 45%
Quartic 40% 30% 32%

It is clear from Table 6 that when the optimal bandwidths are used, in order to minimize the size of the confidence
interval, one needs to use the Gaussian, quartic or Epanechnikov kernel and the standard normal distribution for X . This
result is valid only for the considered kernels and distributions. Also, one can notice that the lack of mean for the Cauchy
distribution does not stop it from outperforming the shifted χ2(2) distribution on all considered kernels. When hn is not
the optimal bandwidth in the confidence interval, minimizing the asymptotic variance (the size of the confidence interval)
over kernels and densities of X presents a different pattern as shown below.

It can be seen from Table 7 that the Gaussian kernel combined with the standard normal distribution for X performs
better than any other proposed scenario. In this table, G1 is a constant that depends on hn, µY and µ2

Y . The relative
efficiencies can be obtained easily.

Table 8 shows that when the optimal bandwidths is not used, the Gaussian kernel and the standard normal outperform
any other considered scenario by at least 20% of the length of the confidence interval. The Gaussian kernel is indisputably
by far better that any of the used popular kernels. Differences in lengths of the confidence intervals for the considered
distributions of X are not too high when the Gaussian kernel is used. We recommend for this reason to use the normal
kernel when the optimal bandwidth is not used.

6. Applications to stationary sequences with long memory

Condition (4) used in our theorems is satisfied if the sequence (Yn)n∈Z is ergodic in the ergodic theoretical sense (see
for instance (Krengel, 1985). Convergence of Y 2

n to the second moment of Y is also a consequence of ergodicity. There are
numerous sequences which are ergodic. For instance, given (ξn)n a sequence of i.i.d. and f : RN

→ R a Borel function, then
Yk = f (....ξk−2,ξk−1, ξk) is an ergodic sequence. Other examples are the countable Markov chains which are irreducible and
aperiodic. Also general space Markov chains which are Harris recurrent and aperiodic. A Gaussian sequence with spectral
density is a function of i.i.d., and therefore ergodic. For other examples we refer to the book of Bradley (2007).
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Example 1. Polynomial restriction on the covariance structure.

Let us recall that our confidence intervals are obtained for stationary ergodic sequences with finite second moments.
No other restriction on the dependence structure and on the distribution of Y is assumed other that nhnvar(Ȳn) → 0. In
particular, when |cov(Y0, Yk)| ∼ C(k−α) as k → ∞ for 0 < α < 1, the covariances are not summable and (Yk)k∈Z has long
memory. Note first that we have

nhnvar(Ȳn) ≤ 2hn

n∑
k=0

|cov(Y0Yk)| = O(hnn−α+1) as n → ∞. (28)

Therefore condition (7) of Theorem 2 holds, if using formula (27), we select

εn =
log n
nα

and hn =
log n
n

.

The CLT applies with hn = log n/n. Notice that for this example, the rate α is not necessary for the choice of hn.

Example 2. Logarithmic restriction on the covariance structure.

If we consider |cov(Y0, Yk)| ∼ C(log k)−1, then the above computations lead to

nvar(Ȳn) ≤ 2
n∑

k=0

|cov(Y0Yk)| = O(n/log n).

For this example, applying formula (27) leads to the possibility

εn =
log log n
log n

, hn =
log log n

n
.

This, with hn = log log n/n, Theorem 2 can be applied. In this case, the rate of convergence to 0 of the MSE is slower
than (log n)−1 as n → ∞. This shows that when the memory is very long the rates of convergence can be rather slow,
therefore a very large sample size might be necessary.

Example 3. Long memory linear processes.

Let (ξj)j∈Z be an i.i.d. sequence of random variables, centered with finite second moments. Let (aj)j∈Z be a sequence of
constants. We consider the linear process

Yk =

∞∑
j=−∞

ak−jξj. (29)

Denote Sn =
∑n

k=1 Yk. If
∑

i∈Z a2i < ∞, Yk in (29) is well defined a.s. and in L2. Note that, being a function of i.i.d., the
sequence (Yk)k∈Z is ergodic and our results apply. To find the condition satisfied by hn we start by writing Sn =

∑
∞

i=−∞
bniξi

with bni = a1−i + · · · + an−i. Using this notation we have var(Sn) = var(ξ 2
0 )
∑

i b
2
ni. Then var(

√
nh(Sn/n)) = hnn−1∑

i b
2
ni. If

we select hn to satisfy (1) and hnn−1∑
i b

2
ni → 0, then the conclusion of Theorem 2 holds.

As a particular case, we consider the important case of causal long-memory processes with

ai = l(i + 1)(1 + i)−α, i ≥ 0, with 1/2 < α < 1, and ai = 0 otherwise.

Here l(·) is a slowly varying function at infinite. These processes have long memory because
∑

j≥0 |aj| = ∞.
For this case, var(Ȳn) ∼ καn1−2αℓ2(n) (see for instance Relations (12) in Wang et al. (2001)), where κα is a positive

constant depending on α. Theorem 2 can be applied as soon as hn = o((n2(1−α)ℓ2(n))−1) as n → ∞, provided that
nhn → ∞.

This example covers the ARFIMA (0, d, 0) processes (cf. Granger and Joyeux, 1980; Hosking, 1981), which play an
important role in financial time series modeling and applications. As a special case, let 0 < d < 1/2 and B be the
backward shift operator with Bεk = εk−1,

Xk = (1 − B)−dξk =

∑
i≥0

aiξk−i, where ai =
Γ (i + d)

Γ (d)Γ (i + 1)
.

Notice that here, limn→∞ an/nd−1
= 1/Γ (d). Thus, for this case, var(Ȳn) ∼ κdn2d−1 and the CLT applies when hn = o(n−2d),

provided that nhn → ∞. The CLT holds for instance if

hn =
ln n
n

.

So, for applications, one does not need to know the value of d. We will provide a simulation study that shows that using
the same hn across all values of d does not affect our procedure.



11

Example 4. A long memory reversible Markov chain.

For a nonlinear example we would like to mention an example given in Zhao et al. (2010), describing a stationary and
ergodic reversible Markov chain, which does not satisfy the CLT. This is their Example 2. Let 1 < α < 2. One starts with
a measurable function p : R → (0, 1), p(x) = e−1/|x|I(|x| > 1) and a probability measure υ such that for |x| > 1,

υ(x) =
[1 − p(x)]dx

2γα|x|α
where γα =

∫ 1

0
yα−2(1 − e−y)dy.

We define now a stationary and reversible Markov chain, (Xn)n∈Z , with transition operator:

Q (x, A) = p(x)δx(A) + (1 − p(x))υ(A),

where δx denotes the Dirac measure. This Markov chain is stationary, reversible and ergodic with invariant distribution

π (dx) = (α − 1)dx/(2|x|α) for |x| > 1.

Zhao et al. (2010) showed that Sn =
∑n

i=1 sign(Xi) does not satisfy the central limit theorem under any normalization.
They showed in fact n−1/αSn → Z , where Z has a symmetric stable distribution. This implies that var(Ȳn) ∼ cn−2+2/α . For
statistical inference in this case, one would need to look for properties of Z . With the proposed Theorem 2, we just need
to select hn = n−1/α when α is known or just take in general for this case hn as in the above example.

7. Simulation study

7.1. Generalities for the confidence interval for the mean

Recalling that for the normal kernel and the standard normal distribution for X the estimator of the mean of the

sequence (Yi, 1 ≤ i ≤ n) is r̃n =
1
nh

n∑
i=1

Yiexp(−
1
2
(
Xi

h
)2). Using the quartic kernel and the standard normal distribution for

X , the estimator is

r̃n =
15

√
2π

16nh

n∑
i=1

Yi(1 − (
Xi

h
)2)2I(|Xi| < h).

For a sample of observations {Yi.1 ≤ i ≤ n} with unquantified dependence, based on Corollary 5, a (1−α)100% confidence
interval for the mean µY is⎛⎝r̂n −

(
Y 2
n

∫
K 2(x)dx

nhf (0)

)1/2

zα/2, r̂n +

(
Y 2
n

∫
K 2(x)dx

nhf (0)

)1/2

zα/2

⎞⎠ .

Using the standard normal distribution for X we obtain⎛⎝r̂n −

(
Y 2
n

nh
√
2

)1/2

zα/2, r̂n +

(
Y 2
n

nh
√
2

)1/2

zα/2

⎞⎠ , r̂n = r̃n
√
1 + h2. (30)

7.2. Using r̃n to estimate µ for some reversible Markov chain

Longla (2015) proposed conditions for mixing properties of mixtures of copulas that generate reversible Markov chains.
A class of copulas for such Markov chains was the Frechet family of copulas C(x, y) = aW (x, y) + (1 − a)M(x, y), for
0 ≤ a ≤ 1. This copula is the joint distribution of a bivariate random variable (U, V ) with uniform marginals on (0, 1). It
generates reversible Markov chains with any initial distribution (see Longla and Peligrad (2012), Longla (2013) or Longla
(2015) for more). Technically, any sample from any Markov chain generated by this copula will be a string made of two
values X0 and 1− X0 with changes depending on the value of a. The number a is typically the probability to obtain 1− x
after obtaining x for the previous sample point. So, the larger a, the more flips we will have in the sample. Our aim here
is to apply the results of the study to the population mean and compare the performances of various estimators.

Table 9(a)–(d) indicates some sample results from the Markov chains with distributions given in the headings and
having transition probabilities defined by the Frechet copula with parameter a. The sample size in this table is given in
thousands. The sequence of X observations is from the standard normal distribution and we use the Gaussian kernel. To
generate observations from these stationary Markov chains, if F is the cumulative distribution of Y , we generate a Markov
chain (Ui, 1 ≤ i ≤ n) with uniform distribution as marginals and Frechet copula for transitions, then set Yi = F−1(Ui) for
i = 1, . . . , n. The estimators r̃n and Ȳ are applied to the same data set with the same sample (Xi, 1 ≤ i ≤ n) from the
standard normal distribution. Here, the optimal bandwidths are used and provided pretty accurate estimates for the mean
with reasonable variances for large samples. To obtain coverage probabilities of our confidence intervals, we generate
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Table 9
Applications to the Frechet family of copulas.
(a) a = .3 and Y = N(50, 1) (b) a = .5 and Y = Normal(6, 1)

n(103) 20 10 5 .1 20 10 5 .1

r̃n 49.2 49.18 50.79 50.19 r̃n 5.91 5.89 5.71 6.33
σr̃n .83 1.09 1.44 6.89 σr̃n .10 .13 .17 .83
ȳ 49.99 49.99 50.01 49.95 ȳ 6.01 6.00 5.99 6
σy .30 .62 1.33 1.10 σy .50 .22 1.52 .51

(c) a = .7 and Y = N(200, 4) (d) a = .7 and Y = Normal(−5, 4)

20 10 5 .1 20 10 5 .1

r̃n 199.14 194.88 199.86 211.35 r̃n −5.00 −5.01 −5.07 −4.68
σr̃n 3.31 4.37 5.77 27.61 σr̃n .08 .11 .15 .72
ȳ 199.96 200.00 199.98 200.15 ȳ −4.99 −5.00 −4.99 −4.82
σy 1.40 2.71 3.17 3.72 σy .84 .90 .96 2.30

Table 10
Coverage probabilities of confidence intervals.

a=.3 µ = 200 a=.7 µ = −5 a = .5 µ = 50

n 20,000 10,000 5000 1000 500 100
99% 99/100 96/100 98/88 97/91 100/99 100/100
95% 96/100 94/100 98/83 95/86 95/90 100/95
90% 94/100 91/100 91/78 92/79 90/87 95/93

Table 11
Coverage probabilities of confidence intervals for r̂n with modification.

a = .3 µ = 100 a = .3 µ = 10 a = .3 µ = 10

n 4,000 3,000 4,000 3,000 10,000 20,000
99% 99.9/99.8 99.9/99.6 99.8/99.7 99.9/99.8 99.6/99.5 99.3/99.3
95% 97.9/97.8 96.9/96.6 97.4/97.2 97.8/97.4 97.3/97.3 96.2/96.2
90% 95.0/94.9 94.0/93.4 93.2/93.1 94.2/94.1 93.2/92.9 92.8/92.5

one hundred samples of the described Markov chain with the normal distribution with mean µ and variance σ 2
= 4 as

invariant distribution. We have selected 3 values of a for the analysis in Table 10. The value a = .5 is the case when half
of the sample is expected to have value 1 − X0. The other two cases a = .3 and a = .7 are closer to the extremes of the
copula. One can see that large sample confidence intervals are pretty accurate. For instance, Table 10 indicates that when
the sample size is n = 20, 000, a = .3 and µ = 200, we find that 99, 96 and 94 of the 99%, 95% and 90% confidence
intervals cover the true mean respectively (while inaccurately the standard interval Ȳn ± zαS/

√
n covers 100 times the

true mean). Each of the entries of Table 10 is a set of two proportions (p1/p2), where p1 is the percentage of intervals
that cover the true mean when r̃n is used and p2 is the proportion of confidence intervals that cover the mean when Ȳn
is used.

In Table 11, we have coverage probabilities of two confidence intervals. The performance is compared on the same
data sets. Entries of Table 11 are percentages of confidence intervals covering the true mean of the process after 1000
simulations with r̂n and a modified version of the above interval by dividing the length of the interval by

√
1 + h2. The

outputs show that the modified intervals are more accurate on moderate samples, and the performances of both intervals
are identical for larger samples (n ≤ 10,000). In any of the cases, the test of the confidence level is statistically significant.

7.3. Estimation of µ for Markov chain with Clayton copula

Copulas are bivariate distributions that are used to capture the strength of the dependence between random variables.
When using a copula to model the dependence for a bivariate random variable with uniform marginals, the conditional
distribution for transitions is the derivative with respect to the first variable of the copula (see Nelsen (2006) or Longla
and Peligrad (2012)). Thus, to obtain the data, we generate a Markov chain with uniform marginals and Clayton copula
for transition probabilities (Zi, 1 ≤ i ≤ n). This is done using the Clayton copula and its derivative

C(u, v) = (u−α
+ v−α

− 1)−1/α, Cu(u, v) = u−α−1(u−α
+ v−α

− 1)−1/α−1.

Knowing the previous value u0 of the Markov chain, the following is obtained by generating a value from the distribution
Cu(u0, v) (see Nelsen (2006) for more). An independent observation vi is generated from the uniform distribution. Then
Zi = (u−α

0 (v−α/(α+1)
i − 1) + 1)−1/α . We then set (Yi = F−1(Zi), 1 ≤ i ≤ n), where F is the cumulative distribution of the

invariant distribution of the generated Markov chain. The estimators use the same sample of X values from the standard
normal distribution.
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Table 12
Number of 95% confidence intervals covering the true µ = 30 for α = 3.
n 20,000 10,000 5000 1000 500

Gaussian and h0 93 93 94 94 96
Gaussian and h = n−.19 91 93 93 92 96
Epanechnikov and h0 88 92 92 91 90
Epanechnikov and h = n−.19 89 89 94 92 91

Table 13
Percentage of 95% confidence intervals covering the true µ = 30 for α = 3.
n 20,000 10,000 5000 1000 500

Gaussian and h0 91 95.5 94.1 94.7 93.5
Gaussian and h = n−.19 89 94.9 93.9 94.1 93.5
Epanechnikov and h0 86 87.4 85.9 85.0 85.6
Epanechnikov and h = n−.19 89 90 90.1 88.8 89.8

Table 14
Proportions of confidence intervals covering the true mean using h0 .
Sample size 7000 5000 3000 2000 1000 500

r̃n , Gaussian kernel, d = .1 95.2 95.2 95.9 96.3 96.5 96.6
r̃n , Gaussian kernel, d = .3 95.0 95.6 95.1 96.2 96.0 96.7
r̃n , Gaussian kernel, d = .4 95.3 95.3 96.0 96.3 96.3 97.1
r̃n , Gaussian kernel, d = .6 95.2 94.8 95.2 96.4 94.8 97.9

Entries of Table 12 are coverage probabilities of 95% confidence intervals using the indicated kernel and bandwidths
applied to the same data set. The data (Yi, i = 1, . . . , n) is simulated from the Clayton copula with α = 3 and invariant
distribution T (2) + 30 (T distribution with 2 degrees of freedom shifted to a mean of 30). This is done by generating
a reversible Markov chain (Zi, = 1, . . . , n) from the Clayton copula the Uniform distribution as invariant marginal
distribution. Then, the SAS function TINV is used to find Y = 30+ TINV(Z, 2) for each of the Z observations generated via
the Clayton copula and the uniform distribution. The fourth row for example means that using r̃n, 89 of the 100 computed
95% confidence intervals cover µ = 30.

In Table 13, we have results of simulations for Y following χ2(30) using the copula with α = 3 and standard normal
distribution for X . It can be seen from Table 13 that r̃n defined via the Epanechnikov kernel performs poorly for confidence
intervals for the sample size up to 20,000, but the Gaussian kernel agrees more with the 95% confidence intervals under
the optimal bandwidths. Table 13 also shows that moving away from the optimal bandwidths reduces accuracy when
the Gaussian kernel is used. The opposite is true when the Epanechnikov kernel is used. The percentage is computed for
1000 simulations of samples of the given sizes.

7.4. Comparisons and example of simulation with Gaussian innovations

The ARFIMA(0, d, 0) model that we have considered in this paper is very popular in the literature. For this model,
when innovations are independent and normally distributed, it follows that the stationary distribution of the model is
Gaussian. It has been shown (see Beran (1989), Theorem 2.2. Beran (1959)) that the variance of the sample mean satisfies
n2−2Hvar(Ȳ ) → K where K is a function of H = d+1/2. Also, by the comment after Corollary 2.1 in Beran (1959), for any
stationary square integrable self-similar sequence (Yi)i∈N , var(Ȳ ) = σ 2n2H−2. Moreover, if the sequence is Gaussian with
mean µ and variance σ 2, then n1−Hσ−1(Ȳ−µ) has a standard normal distribution. As seen here, even in the Gaussian case,
inference highly relies on estimators of H and their distributions. With our proposed strategy, one just needs to define a
range of d, that can be obtained using one of the methods described in Chapter 4 of Beran (1959), such as the variance
plot. The variance plot plots log(var(mean of subsample of size k)) against log(subsample size k) for integers 2 ≤ k ≤ n/2.
This plot must exhibit a line with slope 2H − 2 = 2d − 1. It is clear that the only issue we have appears when d is
close to or equal to 1/2. For d = 1/2, nhvar(Ȳ ) → ∞ is impossible. But, for any value of d one can choose hn = ln n/n.
Table 14 below indicates coverage proportions for our estimator in the case when the Y observations are generated from
the ARFIMA(0, d, 0) shifted to mean µ = 50 after 1000 samples of the indicated size n, using the optimal bandwidths.
Table 15 is obtained in the same scenario as Table 14, but using hn = ln n/n. The results are striking even for d = .6 > .5.
All estimates are statistically significant. This result is obtained without need to estimate σ 2 or d.

8. Conclusion and remarks

In this paper we propose a method for constructing confidence intervals for the mean or for testing statistical
hypotheses for the mean of a dependent stationary sequence with finite second moment. The method is robust in the
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Table 15
Proportions of confidence intervals covering the true mean using hn = ln n/n.
Sample size 7000 5000 3000 2000 1000 500

r̃n , Gaussian kernel, d = .1 94.4 95.0 94.9 96.2 96.0 95.6
r̃n , Gaussian kernel, d = .3 94.9 95.5 95.6 94.3 95.8 95.9
r̃n , Gaussian kernel, d = .4 94.7 95.4 95.5 95.4 94.7 95.2
r̃n , Gaussian kernel, d = .6 94.8 94.3 95.2 94.7 95.8 95.8

sense that we do not impose a specific restriction on the dependence structure of the sequence except for the ergodicity
and stationarity. The estimators we propose are r̂n, defined by (3) and r̃n leading to the confidence intervals defined by (30).
For simulations, it is convenient to use a kernel K following a standard normal distribution and to generate (Xi; 1 ≤ i ≤ n)
also from a standard normal variable. For this choice of f and K , we obtain f (0) = 1/

√
2π ,

∫
K 2(x)dx = 1/(2

√
π ), and

the (1 − α)100% confidence intervals for µY become⎛⎝r̂n − zα/2

(
Y 2
n

√
2hnn

)1/2

, r̂n + zα/2

(
Y 2
n

√
2hnn

)1/2
⎞⎠ (31)

and ⎛⎝r̃n − zα/2

(
Y 2
n

√
2hnn

)1/2

, r̃n + zα/2

(
Y 2
n

√
2hnn

)1/2
⎞⎠ (32)

where

r̃n =
1

nhn

n∑
i=1

Yi exp[−
1
2
(
1
hn

Xi)2] = cr̂n, c =
1

√
1 + h2

.

The size of the confidence interval depends on var(Ȳn) via condition (7), which restricts the size of nhn. The larger var(Ȳn),
the larger the size of the interval. Also, for the standard normal distribution of X and the Gaussian kernel,

∫
x2K (x)dx = 1

and f ′′(0) = −1/
√
2π . Thus, the plug in estimator of the optimal bandwidth for estimating µY is

ho = (
Y 2
n

n
√
2Ȳ 2

n

)1/5 provided var(Ȳn) = o(n−0.8). (33)

The obtained optimal bandwidths minimize the mean squared error for large but finite samples. This is very different
from minimizing the asymptotic variance, which would imply minimizing the length of the confidence interval as in the
cited case of Epanechnikov. The MSE finds a balance between the bias and the variance of the estimator. After minimizing
the MSE over hn, we have minimized the size of the interval (via the asymptotic variance of the estimator) by looking
for the kernel that provides the smallest interval from a given set of kernels (Gaussian, quartic, Epanechnikov, Uniform).
We found out that the Gaussian, the quartic and Epanechnikov kernels perform best when X has the standard normal
distribution. We also found that the standard normal distribution for X is better than the Cauchy distribution and the
shifted χ2(2).

In the case when µ = 0, we have suggested to shift the data (Yi, i = 1 · · · n) by a constant c. This shift by itself implies
the reasonable assumption that a gain could be obtained by minimizing the MSE over (h, c). But, simple calculations show
that the MSE cannot be minimized over (h, c) simultaneously. The minimization procedure leads to c = 0 as critical point.
In general, for µ ̸= 0, the minimization procedure leads to c = −µ, but for no possible h. Thus, the shift contributes to
lower the bias when equal to −µ, but in this case does not guarantee minimization of the asymptotic variance. A weaker
condition on the sequence of Y observations implies the main result of this paper. Namely, convergence to the second
moment of the average of sample squares. This follows from the proof of our result. Given that the boundary is defined for
the bandwidths sequence hn by nhnvar(Ȳ ) → 0, for implementation purposes it is good to consider estimating the variance
of partial sums in some cases. Several papers in the literature address this problem. It is mostly done through estimation of
the spectral density as in McElroy and Politis (2014), where taper-based estimates of the spectral density utilizing a fixed-b
asymptotic framework are provided. Approximations of the variance of partial sums can also be found in Deligiannidis
and Utev (2013) for weakly dependent stationary random sequences. In the case of ρ-mixing sequences, Peligrad and
Shao (1995) recall an earlier result of Peligrad (1982)

var(Sn) ≤ 8000exp(2
[ln n]∑
i=1

ρ(2i))nσ 2,

and show that for square integrable ρ-mixing sequences with
∑

∞

i=1 ρ(2i) < ∞, the CLT holds when var(Sn) → ∞.
Moreover, var(Sn)/n → σ 2. They mention that the difficulty in using this CLT is in approximating the value of σ 2. Our
result applies to such sequences without additional work to find σ 2 and with any hn satisfying nhn → ∞.
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Our results are asymptotic. We have conducted a numerical study to test the performance of the confidence intervals
based on formula (31) on finite sample sizes. We have constructed confidence intervals based on samples from an
ARFIMA(0, d, 0) with innovations (ξj)j∈Z . In our simulations we vary the size of d, which controls the dependence strength,
and accordingly the size of hn. Since the second moment of Y is important we also vary the distribution of Y by considering
various distributions for the innovations. In all the situations, for relatively large sample size, our methods returned
reliable results.

Based on standard normal innovations we simulated an ARFIMA(0, .09, 0) sequence (Y ′
n) and set Yn = 3 + Y ′

n. For
a sample size n = 100, and using optimal bandwidth, we found that a 95% confidence for µY is (2.9, 3.49), while for
n = 1000 the 95% confidence for µY is (2.81, 3.04). Constructed confidence intervals for long memory processes have
shown that this procedure is very reliable and allows to have inference ignoring the memory parameter. This is very
important, given that estimation of the memory parameter is cumbersome.
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Appendix

The following lemma might be known. However we could not find it in the literature.

Lemma 7. Assume that (Yi)i∈Z is a stationary sequence with finite second moments satisfying

Ȳn → E(Y0) in probability as n → ∞. (34)

Then

var(Ȳn) → 0 as n → ∞.

Proof. Let us center the sequence at expectations. By stationarity, E(Ȳ 2
n ) < ∞ and therefore (34) implies that E|Ȳn| → 0.

Note that

E(S2n ) = nE(Y 2
0 ) + 2

n∑
i=1

i−1∑
j=1

E(Y0Yj)

= nE(Y 2
0 ) + 2EY0[

n∑
i=1

i−1∑
j=1

Yj].

For all A > 0, by writing |Y0| = |Y0|I[|Y0| ≤ A) + |Y0|I(|Y0| > A), and using the stationarity we obtain

E(S2n )
n2 ≤

2A
n

n∑
i=1

E|Ȳi| +
2
n2

n∑
i=1

i−1∑
j=0

E|Y0|I(|Y0| > A)|Yj|.

The first term on the right hand side consists of a Cesàro sum of a sequence which is convergent to 0. As for the second
term, we apply first the Cauchy–Schwarz inequality and note that it is upper bounded by

√
E(Y 2

0 I(|Y0| > A)) which is
convergent to 0 as A → ∞. The result follows.
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