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Abstract. In this paper we investigate the local limit theorem for additive
functionals of a nonstationary Markov chain with �nite or in�nite second mo-
ment. The moment conditions are imposed on the individual summands and
the weak dependence structure is expressed in terms of some uniformly mixing
coe¢ cients.

1 Introduction

A local limit theorem for partial sums (Sn)n�1 of a sequence of centered random
variables is a result about the rate of convergence of the probabilities of the type
P (a � Sn � b). Local limit theorems have been initially studied for the case
of lattice random variables. The lattice case means that there exists v > 0 and
a 2 R such that the values of all the variables in the sum Sn are concentrated
on the lattice fa+ kv : k 2 Zg, whereas the nonlattice case means that no such
a and v exists.

This type of limit theorem is a deep result, a �ne scale behavior of the
sums Sn: Controlling such probabilities is important for �nding recurrence con-
ditions for a random walk, as pointed out in Orey (1966) and further developed
in Mineka and Silverman (1970), Mineka (1972). Theorems of this type are
also useful in combinatorics. Bender (1973) considered asymptotic enumera-
tion, Philipp (1988) considered continued fraction expansion, while Giuliano and
Weber (2016) analyzed random models used in arithmetical number theory. In
dynamical systems Guivarc�h and Hardy (1988), Aaronson and Denker (2001a)
obtained local limit theorems for Gibbs Markov maps. For these reasons, this
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is an area of intense research in probability, dynamical systems, number theory
and analysis.

This �eld has a rich history, and originates in the classical De Moivre-Laplace
theorem, which is 283 years old and precedes the central limit theorem. The
early results deal with the behavior of P (Sn = k); where Sn is a sum of i.i.d.
Bernoulli random variables. Among early results on local limit theorems we
mention works by Gnedenko (1948) and Gnedenko and Kolmogorov (1954). For
historical notes we direct the reader to McDonald (2005).

This problem was intensively studied for i.i.d. sequences of random variables
in further works by Shepp (1964), Stone (1965) and Feller (1967), just to name
a few.

Local limit theorems for sums of independent non-identically distributed
random variables serve as a basic mathematical tool in classical statistical me-
chanics and quantum statistics (see Khinchin, 1949, 1951). There are examples
in the literature showing that, in the nonstationary case, the local limit theo-
rems are more delicate than their convergence in distribution counterparts and,
in general require additional assumptions. An important counterexample is
given by Gamkrelidze (1964), pointing out this phenomenon for independent
summands and a variety of su¢ cient conditions were developed over the years.
We mention especially Rozanov�s condition in the lattice case (1957), Statule-
vicius�s condition (1965) and the Mineka-Silverman condition in the non-lattice
case (1970). They were further developed in Maller (1978) and Shore (1978). A
uni�ed discussion of these conditions can be found in Mukhin (1991).

There are also numerous more recent developments in several directions for
independent structures. Dolgopyat (2016) treated the vector valued sequences
of independent random variables.

Concerning dependent random variables we should mention early works on
Markov chains by Kolmogorov (1962). In the lattice case, for countable state
Markov chains with �nite second moments, the local limit theorem is discussed
in Nagaev (1963) and Séva (1995) while the case of in�nite variance is ana-
lyzed in Aaronson and Denker (2001a) and Szewczak (2008, 2010). Also in the
stationary case we mention the local limit theorems for Markov chains in the
papers by Hervé and Pène (2010), Ferré et al. (2012). Hafouta and Kifer (2016)
proved a local limit theorem for nonconventional sums for a class of stationary
Markov chains.

Many of the results mentioned above apply to classes of uniformly mix-
ing Markov chains, especially the class known under the name of  �mixing
Markov chains. As noticed in Denker (1992) and Bryc (1990,1992) the concept
of  �mixing is well suited to derive large deviation results. As examples of
 �mixing Markov chains we mention Gibbs-Markov dynamical systems intro-
duced in Aaronson and Denker (2001b), which contain �nite state aperiodic
Markov chains and certain recurrent Markov chains with in�nite state space.

In this paper we shall continue the study of the local limit theorem for a
class of nonstationary  �mixing Markov chains.

We assume now that (�k)k�1 is a Markov chain de�ned on (
;K;P) with
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values in (S;B(S)) with regular transition probabilities,

Qk(x;A) = P(�k 2 Aj�k�1 = x); Pk(A) = P(�k 2 A) where A 2 B(S):

Also, we denote by Qk the associated operator de�ned on L2(B(S)) by Qkg(x) =R
g(y)Qk(x; dy).
For some real-valued measurable functions gj on S de�ne

Xj = gj(�j): (1)

The sequence (Xj)j�1 is assumed centered (E(Xj) = 0 for all j � 1) and, unless
otherwise speci�ed, having �nite second moments (E(X2

j ) < 1 for all j � 1).
Set

Sn =
nX
k=1

Xk, �2n = E(S2n) and �2n =
nX
j=1

E(X2
j ):

We shall assume that there are two constant a > 0 and b <1 with the following
property:

For all k � 2 there is S0k 2 B(S) with Pk�1(S0k) = 1 such that for all A2 B(S)
and x 2 S0k we have

aPk(A) � Qk(x;A) � bPk(A). (2)

Denote


 =
a4

b
:

Clearly b � 1 and a � 1:
Throughout the paper we shall assume that �2n !1: As we shall see latter,

since we assume a > 0; the condition �2n ! 1 is equivalent to �2n ! 1 (see
subsection 3.2).

In order to obtain our results we shall combine several techniques speci�cally
designed for obtaining local limit theorems with a bound on the characteristic
function using 
: More precisely, the conditions and techniques are rooted in
Mineka and Silverman (1970) and Maller (1978), who treated the local limit
theorem in the non-lattice setting, for sequences of independent random vari-
ables not identically distributed. We shall prove that if we assume (2), then
the results referring to the local CLT in Maller (1978) and also in Mineka and
Silverman (1970) can be extended from independent sequences of random vari-
ables to the Markovian case. Furthermore we shall also consider the situation
when the variables have in�nite variance and are in the domain of attraction of
the normal law.

Our paper is organized as follows. In Section 2 we present the local limit
theorem for nonstationary Markov chains. In Section 3 we present bounds on
the characteristic function of sums, bounds of the variance of sums and proofs
of the main results.

In the following sections, the notation a(n) = o(n) means that a(n)=n ! 0
as n!1: Also by ) we denote the convergence in distribution.

In the sequel we shall denote by fk(t) the Fourier transform of Xk;

fk(t) = fXk
(t) = E(exp(itXk)):
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2 Results

The �rst condition we shall impose is the usual Lindeberg condition needed to
obtain the CLT.

Lindeberg�s condition. For any " > 0;

1

�2n

nX
k=1

E(X2
kI(jXkj � "�n))! 0: (3)

From Gamkrelidze (1964) we know that this condition is not su¢ cient for a local
limit theorem. We shall impose a balance-type condition involving moments of
order 2.

Condition C1. There is 0 � c < 1 and � > 0 such that

lim sup
n!1

Pn
k=1 E(X2

kI(jXkj > �))

�2n
< c:

Next condition is a nonlattice-type condition. Recall that a random variable X
has a nonlattice distribution is equivalent to jfX(t)j < 1 for all t 6= 0.

Condition C2: Assume (3) and for all u 6= 0 there is an open interval Ou
containing u and a n0 = n0(u) such that for all t 2 Ou and n > n0;

1

n

nX
k=1

jfk(t)j2 < 1: (4)

Our general local limit theorem is as follows:

Theorem 1 Let (Xj)j�1 be de�ned by (1). Assume that Conditions C1, C2,
(2) and (3) are satis�ed. Then, for any function h on R which is continuous
and with compact support,

lim
n!1

sup
u2R

���p2��nEh(Sn � u)� exp(�u2=2�2n)Z h(u)�(du)
��� = 0; (5)

where � is the Lebesgue measure on the real line.

It is well known that the convergence in (5) implies that for any c and d real
numbers with c < d

lim
n!1

sup
u2R

���p2��nP(c+ u � Sn � d+ u)� (d� c) exp(�u2=2�2n)
��� = 0:

In particular, since �n !1 as n!1, then for �xed A > 0,

lim
n!1

sup
juj�A

���p2��nP(c+ u � Sn � d+ u)� (d� c)
��� = 0:
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If we further take u = 0, then

lim
n!1

p
2��nP(Sn 2 [c; d]) = d� c:

In other words, the sequence of measures
p
2��nP(Sn 2 [c; d]) of the interval

[c; d] converges to the Lebesgue measure.
As we can easily verify, condition C1 is satis�ed under stronger condition:

There is 0 � c < 1 and � > 0 such that

E(X2
kI(jXkj > �))

E(X2
k)

< c for all k; (6)

and also under Mineka and Silverman (1970) condition, namely: For some � > 0
and d > 0,

E(X2
kI(jXkj � �)) � dE(X2

k) for all k:

Clearly Condition C1 is trivially implied if there is C > 0 such that jXkj � C
a.s. for all k, or under the near stationarity assumption:

There is a random variable X and constants 0 < c1 � 1 and c2 � 1 such
that

c1P(jXj � x) � P(jXkj � x) � c2P(jXj � x) for all x � 1 and all k 2 N:

Condition C2 is satis�ed in the stationary case if the marginal distribution
satis�es jf0(t)j < 1 for all t 6= 0:

Remark 2 As we can notice from formula (9), instead of the right hand side
of condition (2) we can use a slightly weaker version of it, namely

aPk(A) � Qk(x;A) and
Z
Qk(y;A)Qk�1(x; dy) � bPk(A): (7)

Remark 3 Theorem 1 can be reformulated for triangular arrays of Markov
chains (�n;i)1�i�n and Xn;i = gn;i(�n;i). The di¤erence is that in condition
(3) and in Conditions C1 and C2 the we have to replace Xk by Xn;k and fk by
fn;k. The relations in (2) become for a > 0 and b <1

aPn;k(A) < Qn;k(x;A) � bPn;k(A):

By using Theorem 1 we can treat linear statistics with coe¢ cients which are
uniformly bounded above and stay away from 0.

Corollary 4 Assume that (�k)k2Z is a strictly stationary Markov chain. For a
measurable function g and k 2 Z, de�ne Xk = g(�k). Assume that E(Xk) = 0
and E(X2

k) < 1: Assume that X0 has a non-lattice distribution and condition
(2) is satis�ed. We consider an array of real numbers (an;k)k�1 such that there
are two positive constants m;M with 0 < m � jan;kj � M for all n and k:
De�ne

Xn;` = an;`X`:

Then, for any function h on R which is continuous and with compact support,
Sn =

Pn
`=1Xn;` satis�es (5).
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Remark 5 Note that the strictly stationary case follows from Corollary 4 if we
take for all 1 � ` � n the constants an;` = 1:

With a very similar proof as of Corollary 4 we can treat the linear processes
with short memory.

Corollary 6 Let (Xk)k2Z be as in Corollary 4. Let (ai)i�1 be a sequence of
real numbers such that

P
i�1 jaij < 1 and m = infj jAj j > 0; where Aj =

a1 + a2 + :::+ aj : Construct

Yk =
X
i�1

aiXk+i and Sn =
nX
k=1

Yk:

Assume that X0 has a nonlattice distribution and condition (2) is satis�ed.
Then, for any function h on R which is continuous and with compact support,

lim
n!1

sup
u2R

���p2��njAjEh(Sn � u)� exp(�u2=2�2nA2)Z h(u)�(du)
��� = 0;

where �2n = E(
Pn

i=1Xi)
2 and A = limj!1Aj.

We can also provide a result for the stationary situation when the variance
of the individual summands can be in�nite. As an application of the proof of
Theorem 1 we obtain the following corollary:

Corollary 7 Assume that (�k)k2Z is a strictly stationary Markov chain. De�ne
(Xk)k2Z by Xk = g(�k) and assume E(X0) = 0 and H(x) = E(X2

0I(jX0j � x)
is a slowly varying function as x ! 1. Assume (2) and X0 has a non-lattice
distribution. Then there is bn !1 such that for any function h on R which is
continuous and with compact support,

lim
n!1

sup
u2R

���p2�bnEh(Sn � u)� exp(�u2=2b2n)Z h(u)�(du)
��� = 0:

As far as we know this corollary is new, though for Gibbs-Markov processes
the result is provided in Aaronson and Denker (2001a) and for continued fraction
processes can be found in Szewczak (2010).

On the other hand, we can start with a stationary Markov chain (�k)k2Z
satisfying condition (2) and then construct the nonstationary sequence Xn;k =
gn;k(�k) satisfying our conditions and therefore provide new results. Here below
are two such examples:

Example 1. (Continued fraction expansion) For every irrational number x
in (0; 1) there is a unique sequence of positive integers x1; x2; x3; ::: such that
the following continued fraction expansion holds:

x =
1

x1 +
1

x2+
1

x3+���

:
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If we introduce on [0; 1] the Gauss probability measure with the density f(x) =
(ln 2)�1(1+x)�1; then the sequence (x1; x2; x3; :::) is a strictly stationary Markov
chain. We know from Lemma 2.1 in Philipp (1988) that one can take for a and
b which appear in condition (2) a = 0:2 and b = 1:8: Now we can consider Xk

de�ned by (1) as a measurable function of xk and apply both Corollary 4 and
Corollary 7.

Example 2. (Gibbs Markov chains). Let S be a countable set, p : S�S !
[0; 1] be an aperiodic, irrreducible stochastic matrix and �s�s > 0 for all s 2 S;P

s2S �s = 1. Let T : S
N ! SN be the shift and de�ne the Markov chain in a

canonical way on SN by

P(X1 = x1; :::; Xn = xn) = �x1p(x1; x2):::p(xn�1; xn):

Let 
 � SN such that 
 = fx 2 SN : P(X1 = x1; :::; Xn = xn) > 0g: We assume
that there is M > 1 such that for all s; t 2 S

1

M
�t � p(s; t) �M�t (8)

Then our condition (2) is satis�ed and our results applied for suitable functions
gn;k. Such a chain is called Gibbs-Markov. For other examples of Gibbs Markov
maps see Aaronson and Denker (2001b).

Example 3. In the context of Example 2, a fairly large class of countable
state Markov processes satisfying condition (8) can be constructed by de�ning
for i; j 2 N�

p(i; j) = �j + (�i;j � �i+1;j)"i;

where for all i 2 N�; �i;i = 1 and for j 6= i we have �i;j = 0: We take 0 � "i �
min(1� �i; �i+1): In addition we assume that there is M > 1 such that

"i � (M � 1)min(�i; �i+1=M):

For example, let M = 2; �j = 2
�j and set p(i; j) = 2�j + (�i;j � �i+1;j)2�(3+i):

3 Proofs

3.1 Bounds on the characteristic function

The bound on the characteristic function of a Markov chain is inspired by
Lemma 1.5 in Nagaev (1961). It is given in the following proposition.

Proposition 8 Let (Xj)j�1 be de�ned by (1). Then

jE(exp(iuSn)j4 �
nY
j=1

h
1� 


2
(1� jfj(u)j2)

i
:
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For proving this proposition we need some preliminary considerations. For u
�xed let us introduce the operator Tk = Tu;k de�ned on complex-valued bounded
functions by:

Tk(h)(x) =

Z
h(y) exp(iugk(y))Qk(x; dy):

So
Tk(h)(�k�1) = E([h(�k) exp(iuXk)]j�k�1):

Notice that the values are also complex-valued bounded functions.

For an operator T on L1(S;B(S)) denote by jjT jj=supjf j1<1 jTk(f)j1.

Lemma 9 For any k 2 N; u 2 R we have for all k � 2;

jjTk�1 � Tkjj2 � 1�



2
(1� jE(exp(iuXk�1)j2):

Proof. Without restricting the generality we shall assume that (2) is satis�ed.
Let x 2 S0; where S0 2 B(S) such that Pk�1(S0) = 1; for which condition (2)
holds. By the de�nition of Tk�s

Tk�1 � Tk(h)(x) =
Z
exp(iugk�1(y))

Z
h(z) exp(iugk(z))Qk(y; dz)Qk�1(x; dy):

Changing the order of integration

Tk�1 � Tk(h)(x) =
Z
h(z) exp(iugk(z))

Z
exp(iugk�1(y))Qk�1(x; dy)Qk(y; dz)

=

Z
h(z) exp(iugk(z))mx(dz);

where, for x �xed, mx is the measure de�ned on B(S) by

mx(A) =

Z
exp(iugk�1(y))Qk(y;A)Qk�1(x; dy):

Denote by Var (mx) the total variation of mx: With this notations and because
h is bounded by 1,

jTk�1 � Tk(h)(x)j � Var (mx) :

Now, in order to compute the total variation for mx we start from the following
estimate:�Z

Qk(y;A)Qk�1(x; dy)

�2
�
��� Z exp(iugk�1(y))Qk(y;A)Qk�1(x; dy)

���2
=

ZZ
(1� cos(u (gk�1(y)� gk�1(y0)))Qk(y;A)Qk�1(x; dy)Qk(y0; A)Qk�1(x; dy0)

=

ZZ
2 sin2

�u
2
(gk�1(y)� gk�1(y0))

�
Qk(y;A)Qk�1(x; dy)Qk(y

0; A)Qk�1(x; dy
0)

� a4P 2k (A)

ZZ
2 sin2

�u
2
(gk�1(y)� gk�1(y0))

�
Pk�1(dy)Pk�1(dy

0):
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ButZ
Qk(y;A)Qk�1(x; dy) +

��� Z exp(iugk�1(y))Qk(y;A)Qk�1(x; dy)
��� � 2bPk(A):

(9)
So, we obtain�Z

Qk(y;A)Qk�1(x; dy)

�
�
��� Z exp(iugk�1(y))Qk(y;A)Qk�1(x; dy)

��� �
a4

2b
Pk(A)

ZZ
2 sin2

�u
2
(gk�1(y)� gk�1(y0))

�
Pk�1(dy)Pk�1(dy

0)

=
a4

2b
Pk(A)(1� jfk�1(u)j2):

Therefore

jmx(A)j �
Z
Qk(y;A)Qk�1(x; dy)�




2
Pk(A)(1� jfk�1(u)j2):

Now we consider (Ai)i2J a �nite partition of S; with sets in B(S). ThenX
i2J

jmx(Ai)j � 1�



2
(1� jfk�1(u)j2):

It follows that, for all x 2 S0,

Var (mx) � 1�



2
(1� jfk�1(u)j2);

and Lemma 9 follows. �

Proof of Proposition 8. Note that

E(exp(iuS2k)j�0 = x) = T1 � T2 � � � � � T2k(1)(x):

So
jE(exp(iuS2k)j�0)j � jjT1 � T2jj � � � jjT2k�1 � T2kjj a.s.

By Lemma 9 we have that, for k � 1;

jE(exp(iuS2k)j�0)j2 �
kY
j=1

h
1� 


2
(1� jf2j�1(u)j2)

i
a.s.

Also, by Lemma 9, for k � 1;

jE(exp(iuS2k)j�0)j2 � jjT2 � T3jj2 � � � jjT2k�2 � T2k�1jj2jjT2k(1)jj2

�
kY
j=1

h
1� 


2
(1� jf2j(u)j2)

i
a.s.
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and so, by multiplying these two relations we get

jE(exp(iuS2k)j�0)j4 �
2kY
j=1

h
1� 


2
(1� jfj(u)j2)

i
a.s.

A similar result can be obtain for jE(exp(iuS2k+1)j�0)j4. The result in Proposi-
tion 8 follows. �

3.2 Mixing conditions and the variance of partial sums

We shall clarify here the relation between a and b in condition (2) and several
mixing coe¢ cients for stochastic processes. Let (
;K;P) be a probability space
and let A;B be two sub �-algebras of K. De�ne the maximal coe¢ cient of
correlation

�(A;B) = sup
X2L2(A);Y 2L2(B)

jcorr (X;Y )j ,

where L2(A) is the space of random variables that are A measurable and square
integrable.

Relevant to our paper are the lower and upper  �mixing coe¢ cients de�ned
by

 0(A;B) = inf P(A \B)
P(A)P(B)

; A 2 A and B 2 B, P(A)P(B) > 0:

 �(A;B) = sup P(A \B)
P(A)P(B)

; A 2 A and B 2 B, P(A)P(B) > 0:

We would also want to mention that the well-known  �mixing coe¢ cient in-
troduced in Blum et al. (1963) can be de�ned as

 (A;B) = max[ �(A;B)� 1; 1�  0(A;B)]:

By a result of Bradley (2020) we have the following lemma, which will be useful
to analyze the variance of partial sums.

Lemma 10 (Bradley, 2020)

�(A;B) � 1�  0(A;B): (10)

Proof. For simplicity we denote � = �(A;B) and  0 =  0(A;B): Without
restricting the generality we assume  0 > 0: By the de�nition of � we have to
show that, for any X 2 L2(A) and Y 2 L2(B),

jE(XY )j � (1�  0)jjXjj2jjY jj2:

By a measure theoretic argument, for variables with values in a separable Hilbert
space, it is enough to prove this lemma for simple functions with mean zero.
So, let X =

Pn
i=1 aiI(Ai) and Y =

Pm
j=1 bjI(Bj); where Ai 2 A and Bj 2 B

are partitions of 
 and X and Y have mean 0:
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Denote

R(AiBj) = (1�  0)�1P(AiBj)� (1�  0)�1 0P(Ai)P(Bj)

and note that, by the de�nition of  0; for all i and j we have that R(AiBj) � 0:
Also

nX
i=1

R(AiBj) = P(Bj) and
mX
j=1

R(AiBj) = P(Ai):

Moreover, we have the decomposition

P(AiBj) =  0P(Ai)P(Bj) + (1�  0)R(AiBj):

Now, since E(X) = 0; clearly
Pn

i=1 aiP(Ai) = 0 and therefore, by the above
identity,

E(XY ) =
X
i;j

aibjP(AiBj) =
X
i;j

aibj ( 
0P(Ai)P(Bj) + (1�  0)R(AiBj))

= (1�  0)
X
i;j

aibjR(AiBj):

It follows that
jE(XY )j � (1�  0)

X
i;j

jaibj jR(AiBj):

So, by applying Holder�s inequality twice,

X
i;j

jaibj jR(AiBj) �
X
i

jaij

0@X
j

R(AiBj)

1A1=20@X
j

b2jR(AiBj)

1A1=2

�

24X
i

X
j

jaij2R(AiBj)

351=2 24X
i

X
j

jbj j2R(AiBj)

351=2

=

"X
i

jaij2P(Ai)
#1=2 24X

j

jbj j2P(Bj)

351=2 = jjXjj2jjY jj2:
�

For a sequenceX = (Xk)k�1 of random variables  0k(X) = infm�1  
0(Fm1 ;F1k+m),

 �k(X) = supm�1  
�(Fm1 ;F1k+m) and �k(X) = supm�1 �(Fm1 ;F1k+m); where Fmk =

�(Xj ; k � j � m).
For a Markov chain � = (�k)k�1 the de�nitions simplify

 0k = inf
m�1

 0(�(�m); �(�k+m));

 �k = sup
m�1

 �(�(�m); �(�k+m)), �k = sup
m�1

�(�(�m); �(�k+m)):
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By Theorem 7.4 (a,c and d) in Bradley (2007)

�k+m � �k�m

 k+m �  k m

1�  0k+m � (1�  0k)(1�  0m):

So, by Theorem 7.5 in Bradley (2007) we know that:
If there is n � 1 such that �n < 1; then �n ! 0 at least exponentially fast.
If there is n � 1 such that  n > 0; then �n ! 0 at least exponentially fast.
If there is n � 1 such that  0n > 0; then 1 �  0n ! 0 at least exponentially

fast.
Notice that, in terms of conditional probabilities, we also have the following

equivalent de�nitions:

 �1(�) = sup
k
ess sup

x
sup

A2B(S)
Qk(x;A)=Pk(A).

 01(�) = sup
k
ess inf

x
inf

A2B(S)
Qk(x;A)=Pk(A).

Note that, by (2) we can take a =  01(�) > 0 and b =  �1(�) <1. In particular
we have 1 �  0k(�) � (1 � a)k ! 0 exponentially fast. On the other hand
condition (7) becomes in terms of  �mixing coe¢ cients

0 <  01(�) and  
�
2(�) <1: (11)

For a Markov chain of random variables, saying that  1 < 1 is equivalent to
 01 > 0 and  

�
1 < 2; which implies our condition (2).

Therefore in all our results we can use the language of upper and lower  �
mixing coe¢ cients and use instead of (2) or (7), the mixing condition (11). Of
course, our results also hold if  1 < 1:

If we consider now measurable functions of a Markov chain X = (g(�k))k�1;
by the de�nition of the mixing coe¢ cients, we notice that a <  01(X) and
 �1(X) < b. Assume the variables are centered and have �nite second moments.
Recall that �2n =

Pn
j=1 var(Xj) and �2n = E(S2n). From Proposition 13 in

Peligrad (2012) we know that for functions of Markov chains

1� �1
1 + �1

� �2n
�2n
� 1 + �1
1� �1

:

By combining this inequality with Lemma 10 we obtain, for a > 0,

a

2� a �
�2n
�2n
� 2� a

a
: (12)

�

12



3.3 Preliminary general local CLT

Here we give a general local limit theorem. Its proof is based on the inversion
formula for Fourier transform, which is a traditional argument for this type of
behavior. Its statement is practically obtained by arguments in Section 4 in
Hafouta and Kifer (2016).

Theorem 11 Assume that not all the variables have values in some �xed lattice.
Assume that bn !1 and

Sn=bn ) N(0; 1): (13)

In addition, suppose that for each L > 0

lim
T!1

lim sup
n!1

Z
T�juj�Lbn

���E exp�iuSn
bn

����du = 0. (14)

Then, for any function h on R which is continuous and with compact support,

lim
n!1

sup
u2R

��p2�bnEh(Sn � u)� exp(�u2=2b2n)Z h(u)�(du)
�� = 0:

By decomposing the integral in (14) into two parts, on fT � juj � �bng and
on f�bn � juj � Lbng, and changing the variable in the second integral we easily
argue that in order to prove this theorem it is enough to show that for each L
�xed there is 0 < � < L such that

(D1) lim
T!1

lim
n!1

sup

Z
T�juj�bn�

���E exp�iuSn
bn

����du = 0
and

(D2) lim
n!1

bn

Z
�<juj�L

jE exp(iuSn)jdu = 0:

3.4 Proof of Theorem 1

We start the proof by mentioning that, by using Condition (1.1) in Maller
(1978) and the Lindeberg�s condition (3), Condition C1 can be veri�ed under
the following condition (its proof is postponed to the end of the paper in Lemma
15):

Condition A. There is � > 0 and n0 2 N such that for 1 � juj � ��n and
n > n0




8

nX
k=1

�
1�

��fk( u
�n
)
��2� > g(u) and exp(�g(u)) is integrable on R. (15)

Furthermore, under the Lindeberg�s condition, Condition C2 implies:

13



Condition B. For u 6= 0 there is c(u), an open interval Ou containing u and
a n0 = n0(u) such that for all t 2 Ou, and n > n0




8(ln �n)

nX
k=1

(1� jfk(t)j2) � c(u) > 1: (16)

In order to see that Condition C2 implies Condition B, we note that the Lin-

deberg�s condition (3) entails

lim
n!1

�n+1
�n

= 1:

This gives that, for any d > 1 and all n su¢ ciently large

�n
�n0

=
�n
�n�1

� �n�1
�n�2

� � � �n0+1
�n0

� dn�n0 :

Therefore,
ln �n � (n� n0) ln d+ ln �n0 = n ln d+ o(1)

and then

1

ln �n

nX
k=1

(1� jfk(t)j2) �
1

ln d+ o(1)

�
1� 1

n

nX
k=1

jfk(t)j2
�
:

So, (16) is satis�ed if we show that for jt� uj � "; we have:

1

ln d+ o(1)

�
1� 1

n

nX
k=1

jfk(t)j2
�
� 8



:

This is equivalent to showing that for t such that jt � uj � " and n > n0 we
have

1

n

nX
k=1

jfk(t)j2 � 1�
8



ln d+ o(1):

If we select now d > 1 close enough to 1, we see that Condition C2 implies
Condition B.

Therefore, Theorem 1 will immediately follow from the following Proposition:

Proposition 12 Let (Xj)j�1 be de�ned by (1). Assume that Conditions A, B,
(2) and (3) are satis�ed. Then (5) holds.

Proof. For proving this proposition we shall verify the conditions of Theorem
11. The �rst step is to obtain the CLT. With this aim, we shall apply The-
orem 2.1 in Peligrad (1996). From Bradley (1997), we know that every lower
 �mixing Markov chain (condition implied by a > 0) satis�es a mixing con-
dition called interlaced ��mixing, which is precisely the mixing condition we
need to apply Theorem 2.1 in Peligrad (1996). Moreover, by (12) and the fact
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that a > 0; condition �2n ! 1 is equivalent to �2n ! 1: This means that the
Lindeberg�s condition (3) is equivalent to

1

�2n

nX
k=1

E(X2
kI(jXkj � "�n))! 0; as n!1:

Furthermore, also from (12), we deduce that

1

�2n

nX
k=1

E(X2
k) �

2� a
a

and therefore, all the conditions in Theorem 2.1 Peligrad (1996) are satis�ed
and we obtain for this case that

Sn
�n

) N(0; 1):

An alternative way to prove the CLT is to use (12) and then Theorem 6.48 from
Merlevède et al. (2019) in the Markov setting.

According to the discussion after the statement of Theorem 11, it remains
to verify conditions (D1) and (D2). We begin by changing the variable in (D1)
and, using (12) and the fact that a > 0; we obtain that (D1) is equivalent to

lim
T!1

lim sup
n!1

Z
T�juj��n�

���E exp�iuSn
�n

����du = 0:
By Proposition 8 combined with Condition A, for any 1 � juj < ��n,���E exp�iuSn

�n

���� � nY
k=1

h
1� 


2

�
1�

��fk� u
�n

���2�i 14
� exp�


2

1

4

nX
k=1

�
1�

��fk� u
�n

���2�
� exp(�g(u)):

Integrating both sides of this inequality on the intervals T � juj � ��n we obtainZ
T�juj���n

���E exp�iuSn
�n

����du � Z
T�juj���n

exp(�g(u))du

�
Z 1

juj>T
exp(�g(u))du:

Whence, taking �rst lim supn and then T !1; condition (D1) is veri�ed.
We move now to verify (D2) : Because the interval [�; L] is compact, (D2)

is veri�ed if we can show that for any juj �xed in [�; L] we can �nd an open
interval Ou such that

�n sup
jtj2Ou

jE exp(itSn)j ! 0 as n!1:
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By using (12), it is enough to show that

�n sup
jtj2Ou

jE exp(itSn)j ! 0 as n!1: (17)

By Proposition 8, for any t,

�njE exp(itSn)j � �n

nY
k=1

h
1� 


2
(1� jfk(t)j2)

i1=4
� �n exp

�
� a4

8b

nX
k=1

(1� jfk(t)j2)
�

� exp
h
ln �n �




8

nX
k=1

(1� jfk(t)j2)
i
:

Now (17) is satis�ed, provided that

ln �n

 
1� inf

jtj2Ou

1

ln �n




8

nX
k=1

(1� jfk(t)j2)
!
! �1:

Since �n !1, we obtain in this case that (D2) follows from Condition B.
�

We would like to mention that Condition B is satis�ed under condition (1.3)
of Mineka and Silverman (1970) (which is an adaptation of a condition due to
Rozanov, 1957): For u 6= 0 there is an " = "(u) > 0; for which

1

ln �n

nX
j=1

P(Xj � aj 2 A(u; "))!1; (18)

where ai is a bounded sequence of constants satisfying inf1�j�1 P(jXj � aj j <
�) > 0 for every � > 0 and A(u; ") = fx : jxj < M; jxu � �mj � "g; for
each integer m with jmj � M; where M > 0 is �xed, large enough such that
inf1�j�1 P(jXj j < M) > 0 (the existence for such an M is a part of the as-
sumption).

The fact that condition (18) implies Condition B was proven by Mineka
and Silverman (1970). Under condition (18), Mineka and Silverman (1970), on
the top of page 595, showed that for each u there is a positive constant Ku

independent on k such that for all t such that jt� uj < "=4M; and for all k 2 N
we have

jfk(t)j2 � 1 � �
1

4
Ku"

2P(Xk 2 A(u; ")):

Also, from Corollary 1 in Mineka and Silverman (1970), (18) can be replaced by
the stronger condition: the variables Xk�s have uniformly bounded densities, or
by Corollary 2 in the same paper, (18) is satis�ed if there are three rationally
independent numbers d1; d2; d3 such that inf1�k�1 P (jXk � dj j < �) > 0 for
j = 1; 2; 3: Therefore we can make the following remark:
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Remark 13 Theorem 1 also hold with Condition C2 replaced by condition (18).

3.5 Proof of Corollary 4

First of all we notice that, for any array Xn = (Xn;k)k de�ned in this corollary,
the mixing coe¢ cients satisfy a <  0(Xn) and  �(Xn) < b: According to The-
orem 1, it is enough to verify Lindeberg�s condition in (3) as well as conditions
(6) and C2.

Note that �2n =
Pn

k=1 a
2
n;kE(X2

0 ) ! 1 as n ! 1: Hence, by stationarity,
Lindeberg�s condition becomes: for any " > 0;

1

�2n

nX
k=1

a2n;kE(X2
0I(jX0j � "�n)) =

E(X2
0I(jX0j � "�n))

E(X2
0 )

! 0 as n!1;

On the other hand (6) becomes: there is � > 0 such that

E(X2
0I(jan;kX0j > �))

E(X2
0 )

� E(X2
0I(jX0j > �=M))

E(X2
0 )

< c for all k;

which is obviously satis�ed for � large enough.
It remains to verify Condition C2. Fix u 6= 0; we have to �nd an open

interval Ou containing juj and a constant c(u) such that for any jtj 2 U we have

jE exp(itan;kX0)j2 = jf0(an;kt)j2 � c(u) < 1:

As a matter of fact, if 0 < c < juj < d; then for any t satisfying 0 < c < jtj < d;
by the boundness of (an;k); we also have 0 < mc < jan;ktj < Md: Now, since
the distribution of �0 is nonlattice, for any v such that 0 < mc � jvj �Md and
because f0 is continuous on the compact set [�Md;�mc] [ [mc;Md] we can
�nd some constant C(c; d) such that

jf0(v)j � C(c; d) < 1:

�

3.6 Proof of Corollary 6

By Theorem 5 in Peligrad and Utev (2006), we know that

1

vn
Sn ) AN(0; 1) as n!1;

We also have
E(S2n)
v2n

! A2 as n!1;
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whence, by (12), we can �nd two constants c1 > 0 and c2 > 0 such that
c1n � E(S2n) � c2n:

Recall that Ai = a1 + � � �+ ai and write

Sn =
X
i�2

bn;iXi;

where we used the notation bn;i = Ai�1 for 2 � i � n and bn;i = ai�n + � � � +
ai�1 = Ai�1 �Ai�n�1 for i � n+ 1.

Let Kn be a positive integer such that Kn � n and n3=2
P

`�Kn
ja`j ! 0, as

n!1. Let ~Sn =
Pn+Kn

i=2 bn;iXi. For any t 2 R,

jE(exp(itSn))� E(exp(it ~Sn))j � 2jtjE(jSn � ~Snj)

� 2jtjE(jX0j)
X

i�n+Kn

jbn;ij � 2njtjE(jX0j)
X
`�Kn

ja`j :

Hence, for each L > 0 and any sequence (bn),

lim
T!1

lim sup
n!1

Z
T�juj�Lbn

���E exp�iuSn
bn

����du
= lim

T!1
lim sup

n!1

Z
T�juj�Lbn

���E exp�iu ~Sn
bn

����du :
Applying now Proposition 8 to ~Sn =

Pn+Kn

i=2 bn;iXi, it follows

jE(exp(iu ~Sn)j4 �
n+KnY
j=1

[1� 


2
(1� jf(bn;ju)j2)]

�
n�1Y
j=1

[1� 


2
(1� jf(Aju)j2)] � exp

h
� 


2

n�1X
j=1

(1� jf(Aju)j2)
i
.

From now on we can proceed exactly as in the proof of Corollary 4. Indeed, the
proof is reduced to verify condition (3) and to establish Conditions C1 and C2
via the observation that m < jAkj < A for all k � 1. �

3.7 Proof of Corollary 7

Its proof is based on the next proposition whose proof is similar to that of
Proposition 12 and is left to the reader.

In the next proposition (Xk)k2Z is as in Theorem 1, with the exception that
we do not assume that Xk has �nite second moment. For this case we have:

Proposition 14 Assume that there is a sequence of constants bn ! 1 such
that

Sn
bn
) N(0; 1): (19)
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Assume that Conditions A and B are satis�ed with �n replaced by bn and
that condition (2) holds. Then, for any function h on R which is continuous
and with compact support,

lim
n!1

sup
u2R

���p2�bnEh(Sn � u)� exp(�u2=2b2n)Z h(u)�(du)
��� = 0: (20)

We should notice that Maller (1978), on the pages 106-107, veri�ed Condition
A (with �n replaced by bn) under the assumptions: for every x > 0

sup
1�j�n

P(jXj j > bnx)! 0 as n!1 (21)

and

Condition Ã1: Denote

V 2n (x) =
nX
k=1

E
�
(Xk � E(XkI(jXkj � x))2I(jXkj � x)

�
:

There are constants c > 0, n0 2 N and � > 0 such that for all n > n0 and x > �
we have

x2
Pn

k=1 P(jXkj > x)

V 2n (x)
� c :

In order to prove Corollary 7, we shall verify the conditions in Proposition
14. First of all, by Lemma 10, we notice that we can apply Theorem 1 in
Bradley (1988). Alternatively, one can also use Theorem 2.1 in Peligrad (1990).
It follows that we can �nd a sequence of positive constants bn !1; such that

Sn
bn
) N(0; 1):

It is well known that saying that H(x) is a slowly varying function as x!1
is equivalent to

lim
x!1

x2P(jXj > x)

H(x)
= 0: (22)

Also clearly, since the variables have mean 0, limx!1 E(X0I(jX0j < x) = 0;
hence Condition Ã1 is satis�ed. Obviously condition (21) is also satis�ed and
these two properties are precisely what Maller (1978, pp 107-108) used to show
that Condition A is satis�ed, with �n replaced by bn:

Now by Theorem 18.1.1 in Ibragimov and Linnik (1971), bn = n1=2h(n);where
h(n) as slowly varying at in�nity. So

lim
n!1

bn
bn�1

= 1: (23)

By the same type of arguments used for showing that Condition C2 implies
condition B, starting from (23) we show that Condition B is satis�ed with �n
replaced by bn. The proof of this corollary is now complete. �
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3.8 On the relation between Conditions C1 and A

Lemma 15 Let (Xj)j�1 satisfying (19) and (21). Then Condition C1 implies
Condition A.

Proof. It is enough to show that Condition C1 implies Condition (1.2) in Maller
(1978) and then apply his proof on pages 107-108. This condition makes used
of the symmetrization method. We shall use the notations: ~Xk = Xk � X�

k

with (X�
k) an independent copy of (Xk): We have to verify there are constants

c, n0 2 N and � > 0 such that for all n > n0 and x > � we have

x2
Pn

k=1 P(j ~Xkj > x)Pn
k=1 E( ~X2

kI(j ~Xkj � x)
� c:

By the Markov inequality the expression in the left hand side is dominated byPn
k=1 E( ~X2

kI(j ~Xkj > x)

2�2n �
Pn

k=1 E( ~X2
kI(j ~Xkj > x)

:

Now, by a desymmetrization argument and monotonicity this quantity is smaller
than

8
Pn

k=1 E(X2
kI(jXkj > x=2)

2�2n � 8
Pn

k=1 E(X2
kI(jXkj > x=2)

;

which is uniformly bounded under Condition C1.

3.9 Triangular arrays. A second look.

In our Remark 3 we have already mentioned an extension to a triangular array
(�n;i)1�i�n of Markov chains and Xn;i = gn;i(�n;i). Now we discuss the situation
when the mixing coe¢ cients are di¤erent from line to line, i.e. for an > 0 and
bn <1

anPn;k(A) � Qn;k(x;A) � bnPn;k(A), (24)

where Pn;k(A) = P(�n;k 2 A) and Qn;k(x;A) = P(�n;k+1 2 Aj�n;k = x): A
natural problem is to ask if we can allow an ! 0: This question is motivated by
a remarkable result concerning the central limit theorem for triangular arrays
of Markov chains, which is due to Dobrushin�s (1956) and further developed
in several papers including Gudynas (1977) and Peligrad (2012). Actually, the
mixing coe¢ cient needed for a CLT is more general, larger than an in (24).
Practically, a CLT holds under the condition:

1

an�2n

nX
k=1

E(X2
n;kI(jXn;kj � "an�n))! 0 as n!1: (25)

By using the proof of Proposition 12, we can give the following technical su¢ -
cient conditions for the local limit theorem with mixing coe¢ cients which are
not uniformly bounded.
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Theorem 16 Assume that (�n;i)1�i�n is a triangular array of Markov chains
and Xn;i = gn;i(�n;i); where E(Xn;i) = 0, E(X2

n;i) < 1 and condition (25) is
satis�ed. Assume an�2n ! 1 and there is � > 0 and n0 2 N such that for
1 � juj � ��n and n > n0

a4n
8bn

nX
k=1

(1�
��fn;k( u

�n
)
��2) > g(u) and exp(�g(u)) is integrable on R.

Also assume that for u 6= 0 there is c(u), an open interval Ou containing u and
a n0 = n0(u) such that for all t 2 Ou, and n > n0

a4n
8(ln �n)bn

nX
k=1

(1� jfn;k(t)j2) � c(u) > 1:

Then (5) holds.

In particular, this theorem can be applied to row-wise stationary triangular
arrays. They are useful to study the local stationary Markov chains as de�ned,
for instance, in Truquet (2019).
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