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Abstract. In this paper we investigate the local limit theorem for additive
functionals of a nonstationary Markov chain with finite or infinite second mo-
ment. The moment conditions are imposed on the individual summands and
the weak dependence structure is expressed in terms of some uniformly mixing
coeflicients.

1 Introduction

A local limit theorem for partial sums (S, ),>1 of a sequence of centered random
variables is a result about the rate of convergence of the probabilities of the type
P(a < S, <b). Local limit theorems have been initially studied for the case
of lattice random variables. The lattice case means that there exists v > 0 and
a € R such that the values of all the variables in the sum S,, are concentrated
on the lattice {a + kv : k € Z}, whereas the nonlattice case means that no such
a and v exists.

This type of limit theorem is a deep result, a fine scale behavior of the
sums S,,. Controlling such probabilities is important for finding recurrence con-
ditions for a random walk, as pointed out in Orey (1966) and further developed
in Mineka and Silverman (1970), Mineka (1972). Theorems of this type are
also useful in combinatorics. Bender (1973) considered asymptotic enumera-
tion, Philipp (1988) considered continued fraction expansion, while Giuliano and
Weber (2016) analyzed random models used in arithmetical number theory. In
dynamical systems Guivarc’h and Hardy (1988), Aaronson and Denker (2001a)
obtained local limit theorems for Gibbs Markov maps. For these reasons, this
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is an area of intense research in probability, dynamical systems, number theory
and analysis.

This field has a rich history, and originates in the classical De Moivre-Laplace
theorem, which is 283 years old and precedes the central limit theorem. The
early results deal with the behavior of P(S, = k), where S, is a sum of i.i.d.
Bernoulli random variables. Among early results on local limit theorems we
mention works by Gnedenko (1948) and Gnedenko and Kolmogorov (1954). For
historical notes we direct the reader to McDonald (2005).

This problem was intensively studied for i.i.d. sequences of random variables
in further works by Shepp (1964), Stone (1965) and Feller (1967), just to name
a few.

Local limit theorems for sums of independent non-identically distributed
random variables serve as a basic mathematical tool in classical statistical me-
chanics and quantum statistics (see Khinchin, 1949, 1951). There are examples
in the literature showing that, in the nonstationary case, the local limit theo-
rems are more delicate than their convergence in distribution counterparts and,
in general require additional assumptions. An important counterexample is
given by Gamkrelidze (1964), pointing out this phenomenon for independent
summands and a variety of sufficient conditions were developed over the years.
We mention especially Rozanov’s condition in the lattice case (1957), Statule-
vicius’s condition (1965) and the Mineka-Silverman condition in the non-lattice
case (1970). They were further developed in Maller (1978) and Shore (1978). A
unified discussion of these conditions can be found in Mukhin (1991).

There are also numerous more recent developments in several directions for
independent structures. Dolgopyat (2016) treated the vector valued sequences
of independent random variables.

Concerning dependent random variables we should mention early works on
Markov chains by Kolmogorov (1962). In the lattice case, for countable state
Markov chains with finite second moments, the local limit theorem is discussed
in Nagaev (1963) and Séva (1995) while the case of infinite variance is ana-
lyzed in Aaronson and Denker (2001a) and Szewczak (2008, 2010). Also in the
stationary case we mention the local limit theorems for Markov chains in the
papers by Hervé and Péne (2010), Ferré et al. (2012). Hafouta and Kifer (2016)
proved a local limit theorem for nonconventional sums for a class of stationary
Markov chains.

Many of the results mentioned above apply to classes of uniformly mix-
ing Markov chains, especially the class known under the name of {—mixing
Markov chains. As noticed in Denker (1992) and Bryc (1990,1992) the concept
of Y—mixing is well suited to derive large deviation results. As examples of
—mixing Markov chains we mention Gibbs-Markov dynamical systems intro-
duced in Aaronson and Denker (2001b), which contain finite state aperiodic
Markov chains and certain recurrent Markov chains with infinite state space.

In this paper we shall continue the study of the local limit theorem for a
class of nonstationary ¥—mixing Markov chains.

We assume now that (§;)k>1 is a Markov chain defined on (2, IC,P) with



values in (S, B(S)) with regular transition probabilities,
Qk(l‘,A) = P(gk S A|§k_1 = .Z‘); Pk(A) = P(fk S A) where A € B(S)

Also, we denote by @, the associated operator defined on Ly (B(S)) by Qrg(z) =
[ 9(y)Q(z, dy).

For some real-valued measurable functions g; on S define

X;=g;(§) (1)

The sequence (X);>1 is assumed centered (E(X;) = 0 for all j > 1) and, unless
otherwise specified, having finite second moments (E(X7) < oo for all j > 1).
Set

anXk, 02 =E(S?) and 72 —ZE (X3).
j=1
We shall assume that there are two constant a > 0 and b < oo with the following

property:
For all k > 2 there is S}, € B(S) with P,_1(S},) = 1 such that for all Ae B(S)
and z € S;, we have

aPy(A) < Qi(z, A) < bPp(A). (2)
Denote 4
_a
Y= b

Clearly b>1and a < 1.

Throughout the paper we shall assume that 72 — co. As we shall see latter,
since we assume a > 0, the condition 72 — oo is equivalent to 02 — 0o (see
subsection 3.2).

In order to obtain our results we shall combine several techniques specifically
designed for obtaining local limit theorems with a bound on the characteristic
function using «y. More precisely, the conditions and techniques are rooted in
Mineka and Silverman (1970) and Maller (1978), who treated the local limit
theorem in the non-lattice setting, for sequences of independent random vari-
ables not identically distributed. We shall prove that if we assume (2), then
the results referring to the local CLT in Maller (1978) and also in Mineka and
Silverman (1970) can be extended from independent sequences of random vari-
ables to the Markovian case. Furthermore we shall also consider the situation
when the variables have infinite variance and are in the domain of attraction of
the normal law.

Our paper is organized as follows. In Section 2 we present the local limit
theorem for nonstationary Markov chains. In Section 3 we present bounds on
the characteristic function of sums, bounds of the variance of sums and proofs
of the main results.

In the following sections, the notation a(n) = o(n) means that a(n)/n — 0
as n — 0o0. Also by = we denote the convergence in distribution.

In the sequel we shall denote by fi(t) the Fourier transform of Xy,

fe(t) = fx,,(t) = E(exp(itXk)).



2 Results

The first condition we shall impose is the usual Lindeberg condition needed to
obtain the CLT.

Lindeberg’s condition. For any € > 0,

% SCE(XZI( Xk 2 e7)) — 0. (3)

n k=1

From Gambkrelidze (1964) we know that this condition is not sufficient for a local
limit theorem. We shall impose a balance-type condition involving moments of
order 2.

Condition C;. There is 0 < ¢ < 1 and ¢ > 0 such that
k1 BQXRI(|X| > 9))

lim sup 5 <ec.
T,
n— o0 n

Next condition is a nonlattice-type condition. Recall that a random variable X
has a nonlattice distribution is equivalent to |fx (¢)] < 1 for all ¢ # 0.

Condition C,. Assume (3) and for all u # 0 there is an open interval O,
containing u and a ng = no(u) such that for all ¢t € O,, and n > ny,

ESIAROP <1 (1)
k=1

Our general local limit theorem is as follows:

Theorem 1 Let (X;);>1 be defined by (1). Assume that Conditions Cy, Cs,
(2) and (3) are satisfied. Then, for any function h on R which is continuous
and with compact support,

lim sup |v27r0,Eh(S, —u) — exp(—uz/Qai)/h(u))\(du)‘ =0, (5)

=00 yeR

where X\ is the Lebesgue measure on the real line.

It is well known that the convergence in (5) implies that for any ¢ and d real
numbers with ¢ < d

lim sup }\/ﬂonP(C—l- u< Sy, <d+u)— (d—c)exp(—u®/207) ‘ =0.

n—00 yeR

In particular, since o,, — oo as n — oo, then for fixed A > 0,

lim sup ’\/ﬂanP(c—i—ugSn §d+u)—(d_c)) =0.



If we further take u = 0, then
lim v270,P(S, € [¢,d]) =d —c.

n—oo

In other words, the sequence of measures v270,P(S,, € [c,d]) of the interval
[c, d] converges to the Lebesgue measure.

As we can easily verify, condition C; is satisfied under stronger condition:
There is 0 < ¢ < 1 and § > 0 such that

B(XRI(|Xk| > 0))
B(X?)

< ¢ for all k, (6)

and also under Mineka and Silverman (1970) condition, namely: For some § > 0
and d > 0,
B(XZI(|Xk| < 0)) > dE(X?) for all k.

Clearly Condition Cj is trivially implied if there is C' > 0 such that | X;| < C
a.s. for all k, or under the near stationarity assumption:

There is a random variable X and constants 0 < ¢; < 1 and ¢o > 1 such
that

alP(|X| > z) <P(|Xi| > z) < coP(|X| > 2z) for all z > 1 and all k£ € N.

Condition C, is satisfied in the stationary case if the marginal distribution
satisfies | fo(¢)| < 1 for all ¢ # 0.

Remark 2 As we can notice from formula (9), instead of the right hand side
of condition (2) we can use a slightly weaker version of it, namely

aPy(A) < Qu(z, A) and / Qs A) Q1 (2, dy) < bPy(A). ()

Remark 3 Theorem 1 can be reformulated for triangular arrays of Markov
chains (&n.i)i<i<n and Xy = gn.i(&n,i). The difference is that in condition
(3) and in Conditions Cy and Cs the we have to replace Xy by X, and fi by
fnk- The relations in (2) become for a >0 and b < 0o

(IPmk(A) < Qn,k(x,A) < an’k(A)

By using Theorem 1 we can treat linear statistics with coefficients which are
uniformly bounded above and stay away from 0.

Corollary 4 Assume that (&;)rez s a strictly stationary Markov chain. For a
measurable function g and k € Z, define X, = g(&). Assume that B(Xy) =0
and B(X?) < oo. Assume that X has a non-lattice distribution and condition
(2) is satisfied. We consider an array of real numbers (an k)r>1 such that there
are two positive constants m, M with 0 < m < |ap k| < M for all n and k.
Define

X = an e Xy

Then, for any function h on R which is continuous and with compact support,
Sp =3y Xne satisfies (5).



Remark 5 Note that the strictly stationary case follows from Corollary 4 if we
take for all 1 < ¢ < n the constants a, , = 1.

With a very similar proof as of Corollary 4 we can treat the linear processes
with short memory.

Corollary 6 Let (Xj)kez be as in Corollary 4. Let (a;)i>1 be a sequence of
real numbers such that Y ., |a;| < oo and m = inf;|A;| > 0, where A; =
ai +az + ... + aj. Construct

Y= aiXpyi and S, = iYk.
k=1

i>1

Assume that Xy has a nonlattice distribution and condition (2) is satisfied.
Then, for any function h on R which is continuous and with compact support,

lim sup |V 270, |A[BA(S, —u) — exp(—uz/QaiAQ)/h(u))\(du)‘ =0,

n—oo wER

where 02 = E(Y."_, X;)? and A =lim;_, A;.

We can also provide a result for the stationary situation when the variance
of the individual summands can be infinite. As an application of the proof of
Theorem 1 we obtain the following corollary:

Corollary 7 Assume that (§)kez is a strictly stationary Markov chain. Define
(Xi)kez by Xi = g(&x) and assume B(Xy) = 0 and H(x) = B(XZI1(|Xo| < @)
is a slowly varying function as x — oo. Assume (2) and Xo has a non-lattice
distribution. Then there is b, — oo such that for any function h on R which is
continuous and with compact support,

lim sup |vV27b,Eh(S, —u) — exp(—u?/2b?) / h(u))\(du)‘ =0.
n—00 yeR
As far as we know this corollary is new, though for Gibbs-Markov processes
the result is provided in Aaronson and Denker (2001a) and for continued fraction
processes can be found in Szewczak (2010).

On the other hand, we can start with a stationary Markov chain (&x)kez
satisfying condition (2) and then construct the nonstationary sequence X, j =
9n.i (&) satisfying our conditions and therefore provide new results. Here below
are two such examples:

Example 1. (Continued fraction expansion) For every irrational number
in (0,1) there is a unique sequence of positive integers x1,xs,x3, ... such that
the following continued fraction expansion holds:

1

1 -
xl+$2+ﬁ



If we introduce on [0, 1] the Gauss probability measure with the density f(z) =
(In2)~Y(14z)~!, then the sequence (1, z2, x3, ...) is a strictly stationary Markov
chain. We know from Lemma 2.1 in Philipp (1988) that one can take for a and
b which appear in condition (2) @ = 0.2 and b = 1.8. Now we can consider X},
defined by (1) as a measurable function of z; and apply both Corollary 4 and
Corollary 7.

Example 2. (Gibbs Markov chains). Let S be a countable set, p : S xS —
[0,1] be an aperiodic, irrreducible stochastic matrix and 7sms > 0 for all s € S,
> ses s = 1. Let T : S¥ — SN be the shift and define the Markov chain in a
canonical way on SN by

P(X) =x1,..,. X = 2p) = 7, P(21,2) . D(Tr—1, Ty )

Let Q C SY such that Q = {z € SV : P(X; = 21, ..., X, = z,,) > 0}. We assume
that there is M > 1 such that for all s,t € S

1
VL <p(s,t) < Mm (8)

Then our condition (2) is satisfied and our results applied for suitable functions
gn,k- Such a chain is called Gibbs-Markov. For other examples of Gibbs Markov
maps see Aaronson and Denker (2001b).

Example 3. In the context of Example 2, a fairly large class of countable
state Markov processes satisfying condition (8) can be constructed by defining
for 4,j € N*

p(i,5) = w5 + (05 — dit15)€i,
where for all ¢+ € N*, §; ; = 1 and for j # 7 we have J; ; = 0. We take 0 < ¢; <
min(1l — m;, m;41). In addition we assume that there is M > 1 such that

E; S (M - 1) min(m77ri+1/M).

For example, let M = 2, m; = 277 and set p(i,j) = 279 + (&; ; — 5i+17j)2’(3+i).

3 Proofs

3.1 Bounds on the characteristic function
The bound on the characteristic function of a Markov chain is inspired by

Lemma 1.5 in Nagaev (1961). It is given in the following proposition.

Proposition 8 Let (X;);>1 be defined by (1). Then

n

[B(exp(iuS,)’ H[ S =15



For proving this proposition we need some preliminary considerations. For «
fixed let us introduce the operator T}, = T,  defined on complex-valued bounded
functions by:

Ty(h)(x) = / h(y) explings(y))Qu(x, dy).

So
T (h)(&k—1) = E([h(&k) exp(iuXy)][Er-1)-

Notice that the values are also complex-valued bounded functions.
For an operator T on Lo (S, B(S)) denote by ||T'||=supys_ <1 [Tk (f)]co-

Lemma 9 For any k € N, u € R we have for all k > 2,
2 v . 2
[|Tp—10Tk||” <1-— 5(1 — |B(exp(iuXk_1)|").
Proof. Without restricting the generality we shall assume that (2) is satisfied.

Let € S, where S € B(S) such that P,_;(S") = 1, for which condition (2)
holds. By the definition of T}’s

Toos o Tu)(z) = [ explinges(v)) [ he) expling(:))Qu(y: d2)Qu (o, dy).

Changing the order of integration
Toor o Tu)(z) = [ 1) expliugn(2)) [ expliugs-r(5))Qu-r (o, dy)@u(v.d2)
= /h(z)exp(iugk(z))m$(dz),

where, for x fixed, m, is the measure defined on B(S) by

ma(A) = / expliugs—1 (1)) Qi (9, A) Qi1 (. dy).

Denote by Var (m;) the total variation of m,. With this notations and because
h is bounded by 1,
|Ti—1 o T (h)(z)| < Var (m,,) .

Now, in order to compute the total variation for m, we start from the following
estimate:

2

(/ @t dr@uistodn) -] [ expling.1)@u: A1 (o)
— [ = costu 901 (6) = -1 6) Qe A)Qu1 (2 d9) Qe A Qi ()
= [[ 250 (301100 — 901 () Q{0 Qi (02 )@y, A) Q1 ()

> atP2() [ [ 250 (§(0-10) — 01 () Proald) Pica (0.



But

[ @t A Qus( ) +| [ explingios (1))Qu(y: A)Quna (v, dy)| < 26Pu(),
©)

So, we obtain
(/ Qk-(y,A)Qk_l(x,dy)) | [ expliugios (1) Quts A)Qucr ()| >
e [[[ 2607 (B 10) s 0D) Por ()P

%Pk( )1 = [fr—1(u)]?).

Therefore
me(A)] < [ Quly Do dy) = JRAL = fia W)
Now we consider (A;);cs a finite partition of S, with sets in B(S). Then

> Ima(A)] < 1= J(1 = e w)P).

i€J

It follows that, for all z € S’,

Var (m,) <1-— g(l — | fe1(w)?),

and Lemma 9 follows. O
Proof of Proposition 8. Note that

E(exp(iuSag)|€o =) =Ty o Th 0 - -+ 0 Toi(1)(x).

So
|E(exp(iuSak)|€o)| < [|T1 0 To|| - - - || Tok—1 0 Tak|| as.

By Lemma 9 we have that, for k£ > 1,

=

(B (exp(iuSar)|€o) H[ 10~ o)) as

Also, by Lemma 9, for k& > 1,

|E(exp(iuSar) o) > < ||T o Ts|* - - [ Tan—2 © Top—1||*||Tor(1)|[?

k
H 1201w as.



and so, by multiplying these two relations we get

2k

|E (exp (iuSax )|€o) |4 H[ 17 15 (w)] )] as.

A similar result can be obtain for [E(exp(iuSax+1)|&0)[*
tion 8 follows. [

. The result in Proposi-

3.2 Mixing conditions and the variance of partial sums

We shall clarify here the relation between a and b in condition (2) and several
mixing coefficients for stochastic processes. Let (2, K, P) be a probability space
and let A, B be two sub c-algebras of K. Define the maximal coefficient of
correlation
p(A,B) = sup |corr (X,Y)] ,
XeLs(A),Y €Ly (B)

where Lo (A) is the space of random variables that are A measurable and square
integrable.

Relevant to our paper are the lower and upper ¥ —mixing coefficients defined
by

! =in P(AN B) an
V(AB) = inf ps A€ Aand B € B PAR(B) > 0.
VA B) =sup ((j); (?) A€ Aand B € B, BAB(B) > 0.

We would also want to mention that the well-known ¢—mixing coeflicient in-
troduced in Blum et al. (1963) can be defined as

(A, B) = max[y* (A, B) — 1,1 — ¢’ (A, B)].

By a result of Bradley (2020) we have the following lemma, which will be useful
to analyze the variance of partial sums.

Lemma 10 (Bradley, 2020)

Proof. For simplicity we denote p = p(A,B) and ¢’ = ¢'(A, B). Without
restricting the generality we assume 1)’ > 0. By the definition of p we have to
show that, for any X € Lo(A) and Y € Lo(B),

BXY)] < (1= ¢)IXT2][Y]]2.

By a measure theoretic argument, for variables with values in a separable Hilbert
space, it is enough to prove this lemma for simple functions with mean zero.
So, let X = >, a;I(A;) and Y = 3770 b;I(B;), where A; € A and B; € B
are partitions of 2 and X and Y have mean 0.

10



Denote
R(A;Bj) = (1 = ¢')""P(A;B)) — (1 = ¢') " '9'P(A;)P(B;)

and note that, by the definition of ¢, for all ¢ and j we have that R(A;B;) > 0.
Also

n

> R(A;B;) = P(B) and i R(A;Bj) = P(A;).

i=1 j=1

Moreover, we have the decomposition
P(A;B;j) = 'P(A)P(B;) + (1 — ¢)") R(A; B;).

Now, since BE(X) = 0, clearly Y., a;P(4;) = 0 and therefore, by the above
identity,

E(XY) =Y aibjP(AiB;) = Y aib; (V'P(A)P(B)) + (1 — V') R(4;B;))
0,J ]
= (1=¢') ) aib;R(A;By).
4,J
It follows that
BXY)| < (1—¢)> |aib;|R(A;B;).
0,J
So, by applying Holder’s inequality twice,

1/2

1/2
Z|aibj\R(AiBj) < Z|az‘| (ZR(AZ-B]-)) (Zb?R(AiBj))
1/2

4 %

1/2
< [ZZ |ai|* R(A; Bj) [ZZMJ-FR(AiBj)]

1/2

= [IX]l2A1Y[]2-

= [Z Jai[P(A;)

1/2
{Z |b;|*P(B;)

O

For a sequence X = (X )x>1 of random variables 95, (X) = inf,,>1 ¢'(F{", F3,.),

Vi (X) = sup, > V7 (F1", Ft) and pp(X) =sup,,>q o(F1", Fi5,, ), where Fi =
O'(Xj,k' § ] S m)
For a Markov chain £ = (£x)x>1 the definitions simplify

7/12 = ’ni’Lrlzfl ¢/(0(£m)a (Ekym)),

Vi = sup ¥ (0(&m), 0 (Ektm))s pre = sup p(0(&m), 0 (Ek+m))-
m>1 m>1

11



By Theorem 7.4 (a,c and d) in Bradley (2007)

Pk+m S PkPm
wk—i-'m S ¢kw'm
L=ty < (1= ) (1 — ¥p)-

So, by Theorem 7.5 in Bradley (2007) we know that:
If there is n > 1 such that p,, < 1, then p,, — 0 at least exponentially fast.
If there is n > 1 such that ¢, > 0, then p,, — 0 at least exponentially fast.
If there is n > 1 such that ¢/, > 0, then 1 — ¢! — 0 at least exponentially
fast.
Notice that, in terms of conditional probabilities, we also have the following
equivalent definitions:

Y1(§) =supesssup sup Qi(z, A)/Pp(A).
k r AeB(S)

Vi) = supessinf inf  Qu(a, 4)/Py(4).

Note that, by (2) we can take a = 9} (£) > 0 and b = 9} (§) < oo. In particular
we have 1 — ¢, (¢) < (1 — a)®¥ — 0 exponentially fast. On the other hand
condition (7) becomes in terms of ¥ —mixing coefficients

0 < 1(¢) and ¥3(£) < oo. (11)

For a Markov chain of random variables, saying that 1, < 1 is equivalent to
Y] > 0 and ¥ < 2, which implies our condition (2).

Therefore in all our results we can use the language of upper and lower ¥—
mixing coefficients and use instead of (2) or (7), the mixing condition (11). Of
course, our results also hold if ¥; < 1.

If we consider now measurable functions of a Markov chain X = (g(&x))x>1,
by the definition of the mixing coefficients, we notice that a < 9{(X) and
7 (X) < b. Assume the variables are centered and have finite second moments.
Recall that 77 = >0 var(X;) and o = E(S7). From Proposition 13 in
Peligrad (2012) we know that for functions of Markov chains

L=p % :
1+p1 T,% 1—p1

By combining this inequality with Lemma 10 we obtain, for a > 0,

a
2—a

< <

3\3\3 ‘ :qto
IS

12



3.3 Preliminary general local CLT

Here we give a general local limit theorem. Its proof is based on the inversion
formula for Fourier transform, which is a traditional argument for this type of
behavior. Its statement is practically obtained by arguments in Section 4 in
Hafouta and Kifer (2016).

Theorem 11 Assume that not all the variables have values in some fized lattice.
Assume that b,, — oo and
Sn/bn = N(0,1). (13)

In addition, suppose that for each L >0

n—oo

S,
lim lim sup / ’Eexp (zu—n) ‘du =0. (14)
T—oo T<|u|<Lb, bn,
Then, for any function h on R which is continuous and with compact support,

lim sup |VZrb,EA(S, — u) — exp(—u?/252) / h(w)A(du)| = 0.
n— oo uER

By decomposing the integral in (14) into two parts, on {T" < |u| < db,, } and

on {6b, < |u| < Lb,}, and changing the variable in the second integral we easily

argue that in order to prove this theorem it is enough to show that for each L
fixed there is 0 < 6 < L such that

(Dy) lim lim sup/ ‘Eexp (zu&)‘du =0
T<|u|<bn6 b,

T—o00 Nn—00 n

and
(D3) lim bn/ |E exp(iuSy)|du = 0.
n—oo 5<|ul<L
3.4 Proof of Theorem 1

We start the proof by mentioning that, by using Condition (1.1) in Maller
(1978) and the Lindeberg’s condition (3), Condition C; can be verified under
the following condition (its proof is postponed to the end of the paper in Lemma
15):

Condition A. There is 6 > 0 and ng € N such that for 1 < |u| < é7, and
n > ng

%Z (1 - |fk(7_£)|2) > g(u) and exp(—g(u)) is integrable on R. (15)
k=1 "

Furthermore, under the Lindeberg’s condition, Condition Cs implies:

13



Condition B. For u # 0 there is ¢(u), an open interval O, containing v and
a ng = no(u) such that for all t € O,,, and n > ng

n

(1= |fe(®)]?) > c(u) > 1. (16)

ln Tn) ‘
In order to see that Condition Cy implies Condition B, we note that the Lin-

deberg’s condition (3) entails

. Tn+1
lim 2+t — 1,

n—oo Ty

This gives that, for any d > 1 and all n sufficiently large

Tn _ Tn . Tn—1 . Tno+1 S dn_no.
Tno Tn—1 Tn—2 Tng
Therefore,
Int, < (n—mng)lnd+1In1,, =nlnd+ o(1)
and then

n

~ > (- 10 2 o (1= ).

k=1

So, (16) is satisfied if we show that for |t — u| < e, we have:

ﬁ("z'ﬁ“ DS

This is equivalent to showing that for ¢ such that |t — u| < & and n > ng we

have
1 ) 8
S IA®P <1—ZInd+o(1).
n ¥
k=1
If we select now d > 1 close enough to 1, we see that Condition Cy implies
Condition B.

Therefore, Theorem 1 will immediately follow from the following Proposition:

Proposition 12 Let (X;);>1 be defined by (1). Assume that Conditions A, B,
(2) and (3) are satisfied. Then (5) holds.

Proof. For proving this proposition we shall verify the conditions of Theorem
11. The first step is to obtain the CLT. With this aim, we shall apply The-
orem 2.1 in Peligrad (1996). From Bradley (1997), we know that every lower
t—mixing Markov chain (condition implied by a > 0) satisfies a mixing con-
dition called interlaced p—mixing, which is precisely the mixing condition we
need to apply Theorem 2.1 in Peligrad (1996). Moreover, by (12) and the fact

14



that a > 0, condition 02 — oo is equivalent to 72 — oo. This means that the
Lindeberg’s condition (3) is equivalent to

1
= ZE XEI(|X| > €0,)) — 0, as n — 0.

”kl

Furthermore, also from (12), we deduce that
1 « 2 —a
"

and therefore, all the conditions in Theorem 2.1 Peligrad (1996) are satisfied
and we obtain for this case that

&:>N(0,1).

On

An alternative way to prove the CLT is to use (12) and then Theorem 6.48 from
Merlevede et al. (2019) in the Markov setting.

According to the discussion after the statement of Theorem 11, it remains
to verify conditions (Dy) and (Dz). We begin by changing the variable in (D;)
and, using (12) and the fact that a > 0, we obtain that (D;) is equivalent to

Sn
hm lim sup / ‘Eexp (zu—) ‘du =0.
T—oo  n—ooJT<|u|<r,6 Tn

By Proposition 8 combined with Condition A, for any 1 < |u| < d7y,,

e (1022)| < ﬁh—@wn<nwi
32 (- I8F)

< exp(—g(u)).

Integrating both sides of this inequality on the intervals T' < |u| < 07, we obtain

/T<u|<67'n

Eexp (zu&> ’du < / exp(—g(u))du
Tn T<|u| <,

(o)
<[ ew(-glu)du
|u|>T
Whence, taking first limsup,, and then T' — oo, condition (D) is verified.
We move now to verify (Ds). Because the interval [d, L] is compact, (Ds)
is verified if we can show that for any |u| fixed in [d, L] we can find an open
interval O, such that

on sup |Eexp(itS,)| — 0 as n — oo.
|t|€O0.,

15



By using (12), it is enough to show that

Tn, sup |Eexp(itS,)] — 0 as n — oo. (17)
|t|€O.,

By Proposition 8, for any t,

Tn|E exp(itS,)|

IN

AL - 2a-1nmp)]

Now (17) is satisfied, provided that

In 7, <1— inf % . (1—|fk(t)|2)> — —c0.
k=1

|t|€eO., In T,

Since 7, — 00, we obtain in this case that (Ds) follows from Condition B.
U

We would like to mention that Condition B is satisfied under condition (1.3)
of Mineka and Silverman (1970) (which is an adaptation of a condition due to
Rozanov, 1957): For u # 0 there is an € = e(u) > 0, for which

1 n

e > P(X; - a; € Au,e)) — 0, (18)
j=1

where a; is a bounded sequence of constants satisfying infi< ;<o P(|X; — a;| <

0) > 0 for every § > 0 and A(u,e) = {z : |z|] < M,|zu — 7m| > ¢}, for

each integer m with |m| < M, where M > 0 is fixed, large enough such that

infi<j<oo P(|X;| < M) > 0 (the existence for such an M is a part of the as-

sumption).

The fact that condition (18) implies Condition B was proven by Mineka
and Silverman (1970). Under condition (18), Mineka and Silverman (1970), on
the top of page 595, showed that for each u there is a positive constant K,
independent on k such that for all ¢ such that |t —u| < €/4M, and for all k € N
we have

O ~1 <~ {KuB(Xy € A(u,2)).

Also, from Corollary 1 in Mineka and Silverman (1970), (18) can be replaced by
the stronger condition: the variables Xj’s have uniformly bounded densities, or
by Corollary 2 in the same paper, (18) is satisfied if there are three rationally
independent numbers dy,ds,ds such that infi<g<oo P(| Xk — d;| < §) > 0 for
j =1,2,3. Therefore we can make the following remark:
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Remark 13 Theorem 1 also hold with Condition Cy replaced by condition (18).

3.5 Proof of Corollary 4

First of all we notice that, for any array X,, = (X, »)x defined in this corollary,
the mixing coefficients satisfy a < ¢'(X,) and ¢¥*(X,,) < b. According to The-
orem 1, it is enough to verify Lindeberg’s condition in (3) as well as conditions
(6) and CQ.

Note that 72 = Y"p_; a2 ;B(X3) — 0o as n — co. Hence, by stationarity,
Lindeberg’s condition becomes: for any ¢ > 0,

B(XGI(|Xo| = emn))
B(X3)

— 0 as n — oo,

1 n
72 a2 B(X2I(|Xo| > em,)) =

On the other hand (6) becomes: there is § > 0 such that

E(X31(lan.rXo| > 9))
B(X3)

E(X3I(|Xo| > 6/M))
B(X3)

< < c for all k,

which is obviously satisfied for § large enough.
It remains to verify Condition Cs. Fix u # 0, we have to find an open
interval O,, containing |u| and a constant ¢(u) such that for any |t| € U we have

|IEe>(p(z'7fCL717;€X())|2 = \fo(anykt)|2 <c(u) < L.

As a matter of fact, if 0 < ¢ < |u] < d, then for any ¢ satisfying 0 < ¢ < [t| < d,
by the boundness of (a, ), we also have 0 < mc < |an xt| < Md. Now, since
the distribution of &y is nonlattice, for any v such that 0 < me < |v| < Md and
because fp is continuous on the compact set [—Md, —mc] U [me, Md] we can
find some constant C(c,d) such that

[fo(v)] < C(e,d) <1

3.6 Proof of Corollary 6
By Theorem 5 in Peligrad and Utev (2006), we know that

1

—S, = AN(0,1) as n — oo,

UTL
We also have

B(S7)
2

Un,

— A% as n — o0,
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whence, by (12), we can find two constants ¢; > 0 and ¢z > 0 such that
ein < E(S?%) < con.
Recall that A; = a1 + - -+ + a; and write

Sn = Z bn,iXia

i>2

where we used the notation b, ; = A;_; for 2 <i <nand b, ; = a;—p +---+
a1 =Ai1—Ai_p g fori>n+1.

Let K, be a positive integer such that K,, > n and n®/2 >k, lae] =0, as
n — o0o. Let S, = Z?:J;K” by X;. For any t € R,

[B(exp(itSy)) — B(exp(itSy))| < 2[t|B(|Sn — Snl)
<2E(Xol) D bl < 2nltE(Xol) D lael-

iZ'IL+Kn ZZK'IL

Hence, for each L > 0 and any sequence (b, ),
. . . Sn
lim lim sup ‘Eexp (w—) )du
T—oo  n—ooJr<|u|<Lb, bn

S
= lim lim sup/ ‘Eexp (zu—")‘du
T—oo n—o00 JT<|u|<Lby, bn,

Applying now Proposition 8 to S, = Z?;K" by, X, it follows

n+K,
Blexp(iu$)l* < [T 150~ 17busuwlP)]
<TI0 - 20—l < e[~ 2300 - f(4wP)]

From now on we can proceed exactly as in the proof of Corollary 4. Indeed, the
proof is reduced to verify condition (3) and to establish Conditions C; and Cs
via the observation that m < |Ax| < A for all k > 1. O

3.7 Proof of Corollary 7

Its proof is based on the next proposition whose proof is similar to that of
Proposition 12 and is left to the reader.

In the next proposition (X )rez is as in Theorem 1, with the exception that
we do not assume that X; has finite second moment. For this case we have:

Proposition 14 Assume that there is a sequence of constants b, — oo such

that g
b—" = N(0,1). (19)
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Assume that Conditions A and B are satisfied with T, replaced by b, and
that condition (2) holds. Then, for any function h on R which is continuous
and with compact support,

lim_ sup V27b, EBh(S,, — u) — exp(—u?/20%) / h(u))\(du)‘ =0. (20)

We should notice that Maller (1978), on the pages 106-107, verified Condition
A (with 7, replaced by b,,) under the assumptions: for every z > 0

sup P(|X;| > byx) = 0asn — oo (21)
1<j<n

and

Condition A;. Denote

V(@) =Y B [(Xik — B(XRI(|Xe| < 2))2T(1Xk] < )] .
k=1
There are constants ¢ > 0, ng € N and § > 0 such that for all n > ng and x > §
we have

2? Y ny P(|Xg| > ) <
Vi (z) -

In order to prove Corollary 7, we shall verify the conditions in Proposition
14. First of all, by Lemma 10, we notice that we can apply Theorem 1 in
Bradley (1988). Alternatively, one can also use Theorem 2.1 in Peligrad (1990).
It follows that we can find a sequence of positive constants b, — oo, such that

Sn,
g N(0,1).
It is well known that saying that H(z) is a slowly varying function as ¢ — oo
is equivalent to
lim 2’P(|X| > )
e H(w)

Also clearly, since the variables have mean 0, lim, ., B(XoI(|Xo| < 2) = 0,
hence Condition A; is satisfied. Obviously condition (21) is also satisfied and
these two properties are precisely what Maller (1978, pp 107-108) used to show
that Condition A is satisfied, with 7,, replaced by b,,.

Now by Theorem 18.1.1 in Ibragimov and Linnik (1971), b,, = n'/?h(n),where
h(n) as slowly varying at infinity. So

=0. (22)

. by
lim
n—0o0 bn—l

=1 (23)
By the same type of arguments used for showing that Condition Cy implies

condition B, starting from (23) we show that Condition B is satisfied with 7,
replaced by b,,. The proof of this corollary is now complete. [
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3.8 On the relation between Conditions C; and A

Lemma 15 Let (X;);>1 satisfying (19) and (21). Then Condition Cy implies
Condition A.

Proof. It is enough to show that Condition C; implies Condition (1.2) in Maller
(1978) and then apply his proof on pages 107-108. This condition makes used
of the symmetrization method. We shall use the notations: X'k = X — X§
with (X}) an independent copy of (X}). We have to verify there are constants
¢, ng € N and ¢ > 0 such that for all n > ng and x > ¢ we have

? 22:1 ]P)(|Xk‘ > )
D e BRI Xy <) —

By the Markov inequality the expression in the left hand side is dominated by

Sho BORI(%el > )
272 — Yy BORRI(IX] > 2)

Now, by a desymmetrization argument and monotonicity this quantity is smaller

than N )
8> et B(XGI(|Xk| > 2/2)

272 — 8> 0 B(XEI(| Xk| > z/2)’

which is uniformly bounded under Condition Cj.

3.9 Triangular arrays. A second look.

In our Remark 3 we have already mentioned an extension to a triangular array
(&n,i)1<i<n of Markov chains and X,, ; = gni({n,:). Now we discuss the situation
when the mixing coefficients are different from line to line, i.e. for a,, > 0 and
by, < 00

aank(A) S Qn,k(xa A) S ann,k:(A); (24)

where P, ;(A) = P(énx € A) and Qix(z, A) = P(€pp+1 € Alénr = 7). A
natural problem is to ask if we can allow a,, — 0. This question is motivated by
a remarkable result concerning the central limit theorem for triangular arrays
of Markov chains, which is due to Dobrushin’s (1956) and further developed
in several papers including Gudynas (1977) and Peligrad (2012). Actually, the
mixing coefficient needed for a CLT is more general, larger than a, in (24).
Practically, a CLT holds under the condition:

1 n
o ZE(X?L,kIOXn,H > ea,Ty)) — 0 as n — oo. (25)

" k=1

By using the proof of Proposition 12, we can give the following technical suffi-
cient conditions for the local limit theorem with mixing coefficients which are
not uniformly bounded.
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Theorem 16 Assume that (&,)1<i<n 5 a triangular array of Markov chains
and Xy ; = gn.i(€ni), where B(X, ;) = 0, B(X ;) < oo and condition (25) is
satisfied. Assume a,7> — oo and there is § > 0 and ng € N such that for

1< |u|l < o1, and n > ng

4 n
In Z(l —|fn k(£)|2) > g(u) and exp(—g(u)) is integrable on R.
8by, — T
Also assume that for u # 0 there is c(u), an open interval O, containing u and
a ng = ng(u) such that for allt € Oy, and n > ng

m;(l —fur®)) = e(uw) > 1.

Then (5) holds.

In particular, this theorem can be applied to row-wise stationary triangular
arrays. They are useful to study the local stationary Markov chains as defined,
for instance, in Truquet (2019).
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