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Abstract

This paper deals with the functional central limit theorem for non-stationary dependent sequences of
random variables satisfying the Lindeberg condition. The dependence condition which we impose is
known under the name of weak strong mixing condition. It is satisfied by a large class of dependent
random variables, including functions of strongly mixing or a-dependent Markov chains.
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1 Introduction

One of the most important limit theorems in probability theory is Donsker’s theorem for triangular
arrays of independent random variables. This is a functional central limit theorem for sequences of
independent random variables satisfying the Lindeberg condition. It is a natural question, rooted
in practical applications, to extend this theorem to dependent structures. This problem appears to
be very difficult in dependent setting. Regarding the central limit theorem only, there are several
remarkable results in the literature. Assuming the Lindeberg condition, a central limit theorem
for p-mixing sequences was obtained by Utev [19]. In [11], Peligrad obtained a similar result for
interlaced mixing sequences, while Rio [15, 16] treated strongly mixing sequences.

In a recent paper Merlevede et al. [9] developed a method, based on martingale approximation, to
deal with the functional central limit theorem for dependent structures. The method proved to be
useful for obtaining the functional central limit theorem for a class of dependent random variables
defined by using as a measure of dependence the maximal coefficient of correlation. The scope
of this paper is to further exploit the tools developed in [9] for obtaining the functional central
limit theorem for non-stationary strongly mixing sequences. As a matter of fact, we shall use a
weak form of strongly mixing coefficients, for including a much larger class of example than the
traditional strong mixing condition introduced by Rosenblatt [17]. We include in this paper several
applications to linear processes with strongly mixing innovations and functions of strongly mixing
or a-dependent Markov chains.

Our paper is organized as follows. In Section 2 we state the main result, we comment on its
conditions and applications, while in Section 3 we include the proofs.

Throughout the paper we shall denote by [ X||, the norm in L, of a random variable namely
| XI5 = E(|X|?). For two sequences of real numbers (a,) and (by,) the notation a,, ~ b, means that
an /b, — 1 as n — oo, whereas the notation a,, < b, means that there exists a positive constant C
such that for all n, a,, < Cb,. The notation [z] is used for the integer part of x.
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2 Main result

Let {X;n,1 <i < n} be a triangular array of square integrable (]E(an) < 00), centered (E(X;,) =

0), real-valued random variables. We define the partial sums Sj, = Si, = Zle Xin and denote
by o2, = Var(Sy,,) for k < n. Assume that

afm = Var(ZXg,n> =1, (1)
(=1

and, for 0 <t <1, define

vn (t)
vp(t) = inf{k‘; 1<k<n: ai,n > t} and W, (t) = Z Xin - (2)
i=1

We shall also assume that the triangular array satisfies the following Lindeberg condition:

n

SliII)ZE(Xf”) < (C < o0, and nILH;oZE{XIEWI“XkM >¢e)} =0, for any € > 0. (3)
Nzt j=1 k=1

Our aim is to provide sufficient conditions for deriving a functional central limit theorem for the
partial sums process {Wn(t),t € (0, 1]} For any integer i > 1, let f;n(t) = 11x, <y —P(Xin < ).
For any non-negative integer k, set

a1, (k) = sup max su]g HIE(fun(t)LFm)‘
€

i>0 t+k<uy L’

and
agp(k) =sup max  sup ||[E(fun(t)fon(s)Fin) = E(fun(t)fon(s))]];

i>0 i+k<usv g 1eR
where F; , = 0(X; 1 < j <i}, Fon = {0,Q2} and in the definitions above we extend the triangular
arrays by setting X; , = 0if i > n.

We shall now introduce two conditions that combine the tail distributions of the variables with
their associated a-dependent coefficients:

n n o1 (1)
lim limsup / Q3 pu)du =0 4
Jim s 3235 [ Gt 4)
and )
n az n(m
lim limsu 2 (w)du=0, )
Jim s [0 )

where Q) is the quantile function of Xy, i.e., the inverse function of t — P(| Xy .| > t).

Under the conditions above, the following result holds:

Theorem 2.1 Suppose that (1), (3), (4) and (5) hold. Then {Wy,(t),t € (0,1]} converges in
distribution in D([0,1]) (equipped with the uniform topology) to W, where W is a standard Brownian
motion.



2.1 Discussions

1. Discussion on the mizing coefficients. Note that for any i € N, aq (i) < a2,(i). In addition
both these coefficients are decreasing in i. So, obviously we can assume instead of conditions (4)
and (5) the unique condition

nn az,n(7)

lim lims 2 (u)du = 0. 6
Jim_ lg;ng /O Qi (u)du (6)

Furthermore, these strong mixing-type coefficients are weaker than those which are often used in
the literature. Let us recall that the traditional coefficient introduced and studied by Rosenblatt
[17] is defined as

)

(k) = supsup IP(AN B) — P(A)P(B)

where the second supremum is taken over all A € F;,, and B € o(Xj,,j > k + i). Equivalently
this coefficient can be rewritten as

1
an(k) = gsupsup[[E(Y|Fin) ~EY)];,

where the Y's are random variables measurable with respect to o(Xj,,j > k + i) and bounded
by one (see [3, Th. 4.4]). We can see from this definition that as,(k) < 2a,(k) and we use not
more than two variables in the future and not all the functions but rather only the indicators. This
weaker form is important since it will allow us to cover a larger class of stochastic processes than
the strong mixing sequences.

2. Discussion on mizing rates and moments. We can de-couple the mixing coefficients from the
variables. Denote by
a1(i) = sup oy ,(7) and an,(u) = Z Lfucar (i)} -
n

>m

Then, we apply the Cauchy-Schwarz inequality and take into account that Q. (U) is distributed
as X}, for U uniformly distributed. For some § > 0 we obtain

ai,n (i) 1 5/(2+4
S [ @tawdn < ([ a2 xR
i>m 0

Now, by computations on page 12 in Rio [16] this inequality shows that condition (4) is satisfied if
the following couple of conditions are satisfied:

n
supz | Xk nll31s < 0o and Zi2/5a1(i) < 0o where 0 < 0 < 0. (7)
" k=1 i>1

Moreover, condition (5) holds provided the first part of (7) is satisfied and

lim limsup ag,(m)=0. (8)
m—=00 n—oo

We have then established the following corollary:

Corollary 2.2 Assume that conditions (1), (3), (7) and (8)are satisfied for some é € (0,00]. Then
the conclusion of Theorem 2.1 holds.



Remark. In the corollary above, we can assume instead of the second part of condition (3) that
max)<k<n || Xknll24s = 0, as n — oo,

3. Discussion on the CLT for S,. Our result obviously implies that W,, (1) satisfies the CLT. It is
important to mention that the CLT also holds for S,, = > }'_; X} . To see it, according to Theorem
3.1 in Billingsley [1] it is enough to show that

vn (1) n
lim B( Y X - ZXM)Q ~0. 9)
k=1 k=1

Note first that condition (3) implies that max;<r<p, || Xn|l2 = 0. Hence, by the definition of v, (1),

we have
vn (1)

2
Jm B3 Xin) =1
(see the proof of (5.35) in [9] for more details). Since o2, = 1, the proof of (9) is then reduced to
show that
’Un(l) n
nh_}rroloCov< Z Xk, Z Xk,n) =0.
k=1 J=vn(1)+1

But this easily follows under the conditions of Theorem 2.1 via Rio’s covariance inequality [14].
Note that in [15], Rio also proved a CLT for S,, under (1) and the following conditions

n_ool
lim sup max Uk:n < oo and lim Z/ a,  (w)QF, (u)(a,  (u)Qrm(u) Al)du =0 (10)
n—oo 1<k< n—00 — Jo ’ ’
instead of conditions (3), (4) and (5). Above &, '(u) = Y1) ly<a,(i)- Some easy computations
show that if (3) and (4) (with @, (7) replacing aj,(i)) are satisfied then so is the second part of
(10). On another hand, even if our conditions and the Rio’s ones are very similar in nature, we
cannot prove that they are equivalent (even if in all our examples and applications they give the
same conditions). However, our conditions lead to the functional central limit theorem, are easier
to verify and we specify a weaker version of the strong mixing coefficients.

4. Forms of stationarity.
(i) If we assume that o2 = nh(n), where h(n) is a slowly varying function such that lim inf,, . h(n) >
0, and that the sequence is not triangular, (i.e. for all k, X, = X}) then, we can construct the

process Wy (t) = >, ] | Xi/opn and the conclusion of Theorem 2.1 holds for W, (t) under its assump-
tions.

(ii) Let us assume that > ;| Qr, is decreasing to @, and denote by «i(i) = sup, a1,(i) and
as(i) = sup,, @2, (7). Then, by monotonicity, conditions (4) and (5) are implied respectively by

Z/ u)du < oo and (i) — 0. (11)

1>0
while condition (5) is implied by
ag(i) — 0. (12)

(iii) Let us assume now that there is @), a quantile function, such that Q, < @ and also that

lim,, 00 02/n = 02 > 0. Then the functional CLT holds for W, (t) = > ;" ] | Xkn/+/n under (11).
For this case the limiting process will be |o|W, where W is a standard Brownian motion.



(iv) If (X;)jez, is a strictly stationary sequence of random variables, our Theorem 2.1 reduces to
the invariance principle for Sy, /+/n. In this case, as in the point (iii), the conditions on the mixing
coefficients reduces to (12) where now @ is the quantile function of | X|. This fact can be easily seen
by a change of time, taken into account that in this case we have 02 /n — o2. The constant |o| in
the limiting process could be unfortunately 0. It will be strictly positive if we assume that 02 — oo

and if we impose instead of the first part of (11) rather the condition ZiZIifoal(i) Q*(u)du < oo
(See Lemma 1 in Bradley [2]).

5. Discussion on the minimality of mizing conditions for the CLT. There are numerous coun-
terexample to the CLT, involving stationary strong mixing sequences, in papers by Davydov [4],
Bradley [2], Doukhan et al. [7], Haggstrom [8] among others. We know that in the stationary case
our conditions reduce to the minimal ones. These examples show that we cannot just assume that
only the moments of order 2 are finite. Furthermore the mixing rate is minimal in some sense (see

[7)-

2.2 Examples and Applications

1. Functions of a-dependent Markov chains. Let Y; ,, = fi n(X;) where X = (X;);ez is a stationary
Markov process with Kernel operator K and invariant measure v and, for each ¢ and n, f;,, is such
that v(fi,) = 0 and v(f?,) < co. Let o7 = Var(3iL, Yin) and X;, = 0,'Yi,. Note that the
weak dependent coefficients o (i) of X can be rewritten as follows: Let BVj be the class of bounded
variation functions h such that ||, <1 (where |h|, is the total variation norm of the measure dh).
Then ]
i) = 3 sup v(IK() ~u(f)).
feBV;
Now, as(i) will have the same order of magnitude as a4 (7) if the space BVj is invariant under the
iterates K™ of K, uniformly in n, i.e., there exists a positive constant C' such that, for any function
fin BVj and any n > 1,
K" ()l < CIfle-

There are many Markov chains such that as(n) — 0, as n — oo, but which are not mixing in the
sense of Rosenblatt. For instance, let 7', be a GPM map, as defined in [5], that is an expanding
map of [0, 1] with a neutral fixed point at 0; the behavior of the map around 0 is described by the
parameter v € (0,1). It is well-known that the Markov chain (X;);>¢ associated with T, is not
strong mixing but it is proved in [5] that it is such that ao(k) < Ck'~1/7. Moreover, the invariant
measure v of (X;);>o is equivalent to the Lebesgue measure on [0, 1] and its density h satisfies
0<c<a2Vh(z) <C < .

Then, in what follows, we assume that (X;);>0 is the Markov chain associated with 7, and that,
for any n fixed, f,, is monotonic on some open interval and 0 elsewhere. It follows that the weak
dependence coefficients associated with (X;,) are such that ag,(k) < Ck'='/7, where C is a
positive constant not depending on n. By applying Corollary 2.2, we derive that if the triangular
array (Xj,) satisfies the Lindeberg condition (3) and if

2y
1—2v’

2/(2+9)
) < oo for some ¢ >

1 ¢ !
v € (0,1/2) and sup — Z (/ fzjlré(q;)xﬂda:
0

(o
nzl %n

then the conclusion of Theorem 2.1 is satisfied for the triangular array (X;,) defined above.

2. Linear statistics. We shall use our result to establish limit theorems for statistics of the type

Sp = dn;X;, (13)
j=1



where d,, j are real valued weights and (X;) is a strictly stationary sequence of centered real-valued
r.v.’s in 2. This model is also useful to analyze linear processes with dependent innovations and
regression models. It was studied in Peligrad and Utev [12], Rio [15] and also in Peligrad and Utev
[13] where a central limit theorem was obtained by using a stronger form of the mixing coefficients.
Our general approach shows that we can weaken the mixing coefficients for this result and in
addition we provide a functional central limit theorem.

We shall assume that the sequence of constants satisfy the following two conditions:

Zdi,i — ¢* and Z<d”’j —dpj-1)> =0 asn — oo, (14)
i=1 i=1

where ¢ > 0. Also, we note that the condition

ai(i)
Z/ Q(w)du < 50 (15)
i>0 70

implies condition (2) in [13] (see Corollary 7 there) and therefore the sequence (X)) has a continuous
spectral density, f(z). By first part of (3) in Theorem 1 in the same paper,

lim Var(Sy,)

n 2
n—o0 3 dy, i

Also let us note that, by Lemma 12.12 in [10], we know that (14) implies

— 27 f(0).

max |dp ;| — 0.
1<i<n

Therefore the Lindeberg condition is satisfied.

In order to apply our Theorem 2.1 we have only to verify conditions (4) and (5). Since for U a

uniform random variable on [0, 1] the variable |d,, ;|Q(U) is distributed as |d, ; X;| and so as Qp ;(U)

where @, ; is the quantile function of |d,, ; X;|, we can easily see that condition (4) is verified under

(14) and (15). Also, we have

" proz(m) " roz(m) n az(m)
3 / 2 (wdu < / i PQA () < 3 2 / Q(w)du,
=170 =170 i=1 0

which leads to (5) if we assume
az(m) — 0. (16)

Gathering all these arguments, by applying Theorem 2.1 we obtain the following result:

Theorem 2.3 Let S, = Z?:l dn ;X ;,where d,, ; are real valued weights and (X;) is a strictly sta-
tionary sequence. Assume that (14), (15) and (16) are satisfied. Then S, converges in distribution
to \/2mf(0)|c|N where N is a standard Gaussian random variable. Let ”l%,n =SF @ .. Define

i=1"n,z

vn (t)
v (t) = inf {k:; 1<k<n: v%n > c2t} and Wy (t) = Z dp i X .
i=1
Then Wy(+) converges weakly to /27 f(0)|c|W where W is the standard Brownian motion.

We shall apply this result to the model of the nonlinear regression with fixed design. Our goal is
to estimate the function ¢(x) such that

y(z) = l(x) +&(2),



where ¢ is an unknown function and £(x) is the noise. If we fix the design points z,; we get

Yoi = y(@ni) = Uxn;) + &i(wn,)

According to [13], the nonparametric estimator of ¢(x) is defined to be

= wni(@)Vni = Y wni(@) (L) + &i(Tna)), (17)
=1 =1

where

s = () S (P

We shall apply Theorem 2.3 to find necessary conditions for the convergence of the estimator
én(x) To fix the ideas we shall consider the following setting: The kernel K is a density function,
continuous with compact support [0, 1]. The design points will be z,,; = i/n and (§;(xn1), ... i(Tni))
is distributed as (X1, ..., Xy), where (X, )ncz is a stationary sequence of centered sequence of
random variables satisfying (15) and (16). We shall find the normal asymptotic limit for

. ~1/2
= (Z wiﬂ(x)) <én($) —E( An(x))> :
i=1

According to Theorem 2.3, in order to obtain the central limit theorem we have just to verify the
conditions satisfied by the sequence of constants (14). Re-denoting

dpi = wp(x (Zw ) 1/2,

we have to show that "

(zn: wz’z(:n)) - Z(wn,i - wn,171)2 — 0.
i=1

i=1
Simple computations show that

n n . nh .
nthZﬂ»(m) ~ % K2<Z/nh_ w) ~ %ZK2($> — /01 K?(v)dv = 2.
i=1 j=1

=1

Furthermore

nhi(wm —wpi)? ~ nilh zn: <K<z/nh—x> — K((z’—l)h/n—a;>>2
i=1 =1

Ly K J K J L 2< K K LY)y? 0
~ a2 (K (G) ~ K G =) <sup (K@) = (2= 7)) =0

since K is uniformly continuous and nh — oo.
So, we shall unify our computation in the following Theorem.

Theorem 2.4 Assume for x fived that £, (x) in defined by (17) and the sequence (X;) is a station-
ary sequence satisfying (15), (16). Assume that the kernel K is a density, it is square integrable,
has compact support and is continuous. Assume nh — oo and h — 0. Then vVnh(l,(z) —E(ly(2)))
converges in distribution to \/2m f(0)|c|N where N is a standard Gaussian random variable and c?
1s the second moment of K.



3. Functions of a triangular stationary Markov chain. For any positive integer n, (& p)i>0 is an
homogeneous Markov chain with state space N and transition probabilities given by

]P)(fl,n = i’foyn =17+ 1) =1 and ]P)(fl,n = i’f(),n = 0) = Di+1n for ¢ > 1,

where, for i > 2, p; n, = q/ (0% ?) With @ > 0, cq Y ;50 1/i%72 = 1/2, (v,)n>1 a sequence of positive
reals and p1, =1 —1/(2vy,). (&.n)i>0 has a stationary distribution 7, = (7} ,);j>0 satisfying

—1
To,n = <Z ipi,n) and Tin = TO,n Z Din for 7> 1
i>1 1>2j+1

Let Yin = I¢; ,=0 — Ton- Let b = Var( > b1 Ykm) and set X, ,/b,. Note that

n n—1
Var( Z Yk,n) =nmon(1l —mopn) + 2 Z(n — k)mon (P(f/m = 0|6 =0) — 7To’n> .
k=1 k=1

Assume now that a > 1. Usual computations imply that there exists o > 0 such that b2 ~ o?nv;; L.

It is easy to see that the first part of condition (3) is satisfied whereas the second part holds provided
that vy, /n — 0. Now an(k) < 3255k D isi01 Pin < 1/(vnk®) (see [4, Th. 5] and [3, Chap. 30]).
Hence (6) holds by taking into account that Qyn(u) < 1/b,. Then, provided that a > 1 and
Un/n — 0, (Xkn)k>o satisfies the functional central limit theorem given in Theorem 2.1.

3 Proof of Theorem 2.1

Without loss of generality, we assume that Xj,,, = 0 for £ > n and F},,, = F,, for k > n. Moreover,
by abuse of notation, we will often avoid the index n. In particular, we shall write X}, = X}, ,, and
Fi = Fin, and use the notation

E;(X) = E(X|F;).

For each n, let also S, = >"}_; X and Sy = 0.
Let m be a fixed positive integer such that m < n. Let us then define

m—1

1
0 = — Y B Xepr+ -+ Xei)
i—1

and

k—1
1
Y/ = —By(Sepm — S0), B =) V"
¢=0

According to the proof of [9, Lemma 5.3], since (3) is assumed, the theorem will follow provided

limy;, 500 lim SUpp>1 Z?;Ol H}/émH% =0,

(H) := < limyn o0 limsup,,>; || maxi<k<, [R|[l2 =0,

limy, 00 thUanl Zz;tl) HHZLH?HYICWLH? =0,

and that

<

W)
lim lim supIP’(‘ (X2, + 2X5n00,) — t‘ > 5) =0. (18)

m—00
n—00
k=1



Moreover, recall that Fy, = {Q,0} and then Eg,(-) = E(-). Hence, according to Proposition 3.2
in [9], under the Lindeberg condition (3), condition (18) is satisfied as soon as

lim limsup’ Z (X2.,) + 2E(X, . 07" ))—t‘ —0 (19)

m—00 n—oo

and, for any non-negative integer ¢,

Jim lim sup Z 1Ex—bn (Xkn Xrten) — B( Xk nXkren)|l1 = 0. (20)

b—00 n—oo k—b11

In the rest of the proof, we show that (H), (19) and (20) are satisfied under the conditions of our
theorem. With this aim, we start with the following lemma whose proof is given later.

Lemma 3.1 For any integer £ > 0 and any positive integer m,

o1 ,n (%)

an (Stom— SO <C3 S e

k=1 i=1

Let us verify the first condition in (H). We have

1
Y773 = =5 NEe(Seim — SOI3.

Hence, by Lemma 3.1,

n—1 n—1

1 Oéln
W= 5 S RS = S0l < 330 [
£=0

(=1 i=1
Qn u)du + Qn
<y @ Z [2/4 [ e

Taking first the supremum over n and then the limit over m and taking into account the first part
of condition (3) and condition (4), it follows that

lim hmsupmz Y3 =0, (21)

m—00

which proves in particular the first condition in (H).
]

Now, by the Dedecker-Rio’s maximal inequality [6], we have

I jmax |7 I3 < Z 3 +Z Ve Ex (R = RO -

As previously showed, taking first the supremum over n and then the limit over m, the first term

in the right-hand side is going to zero. To handle the second term, we note that, by the properties
of the conditional expectations and Inequality (4.6) in Rio [16],

ot n(i—k)
(1B (X)) (X)) [[1 < [ B (X5) Xill1 <</0 Qi (1) Qjm(u)du



Therefore

n—1 k+m n—1 {+m 1,0 (i—k)

Z”Yk Ex(R™ — RP)|l1 < — Z XM / Qi (1) Q. (u)du

k=0 j=k+1 ¢=k i=0+1

Easy computations yield

n—1 1 -1 k+m m—1 a1 n (1)
S IVER(RE — R < —QZ Z > / Qi (1)Qj ()
k=0 k=0 j=k =
n—1 k 1,0
b YOy / Y Qun ()@ ()
=k+1i=k+m

= Il(m,n) + Is(m,n).

Using that 2Q;4xn(u)Qjn(u) < ka o (u) + an(u) and the fact that X;, = 0 for i > n, we easily
derive

As a consequence we have

a1, (1)

hi(m z/@m IS T @t

J=1i=[m1/4]4

Taking first the supremum over n and then the limit over m, by (4) and the first part of condition
(3), we get

lim limsup Ii(m,n) =0.

m—r0o0 n>1
On the other hand, using again that 2Q; ,(u)Qjn(u) < Q7 (u) + Q7 ,(u) and that X,, = 0 for
i > n, we infer that

n i—-m n n a1.n(7)
ZZ/ )du+;ZZ/01 2 (w)du
i=m k=0 j=1li=m
<ZZ/ ol du .
j=1li=m

Hence, by condition (4), it follows that

lim limsup Is(m,n) =0.
m—00 n>1

So, overall, the second part of condition (H) holds.
We show now that the third part of condition (H) is satisfied. We have

n—1 m—1n—1
m m 1
A(m,n) =Y 107 211YZ" 12 < 3 > NE(Seri = So)l2lEe(Sesm — Se)ll2
=0 i=1 (=0
1 m—1 n—1 ) 1/2 n—1 , 1/2
< — 3 (D IEelSeri = S01B) " (D IEe(Sesm — SOI3)
i=1 (=0 =0

10



Hence, by Lemma 3.1,

m—-1 n i o1 n (k) 2, a1,n (k) /
Alm,n) < (2 b Q) (S [ @ wan)
i=1 1h=1 70 =1k=1 70
1 n o m alnk)
nlj{:}{;k i Q7 ,(w)du,

1k

Therefore, as previously showed, by condition (4), the third part of condition (H) holds.

It remains to prove that (19) and (20) are satisfied. The proof of (19) follows by using the same
arguments as those developed at the end of the proof of Theorem 4.1 in [9] and, in particular, that
the Lindeberg’s condition (3) and the definition of v, (t) imply

]E(S?Jn(t),n) — 1, as n — o0.

We prove now that (20) is satisfied. According to the computations made on page 204 in [10] to
handle their term || By, o|/1, we have, for any non-negative ¢ and any k > b+ 1,

a2,n(b)
UEp s (Xion X tm) — E(Xion X en) |1 < 27 / Qi (1) Qs ()l
0

Since X, = 0 for ¢ > n, it follows that

n
> B (X Xpttn) — B(X g Xpron) 1 < 2° Z/ Q’”‘

k=b41
which proves (20) by taking into account (5).
To end the proof of the theorem, it remains to prove Lemma 3.1

Proof of Lemma 3.1. By Rio’s covariance inequality [14], we have

IBe(Sem — Se)ll3 = Cov(E¢(Seqm — Se)s Sem — )
1 ¢+m

<</ > lycar (-0 Qin(WQE, (50— (W) du
0 j=e+1
l+m

1/2
< 8t 501 [ (3 Lucansts-a@uatw)) an) "

J=l+1

Hence
1 m m

IEe(Serm — So)ll3 < 2/ D ucan o @jren () Qrron(u)du.

=1 k=j

Using that 2Q;1¢,(u)Qkten(u) < QJZJF&n(u) + Q%M’n(u), we get

1 m
HEZ(SZ-i-m - SZ)”% < / Z 1u<a1 n(k) Z Q]-i-f n du + / Z k1u<a1,n(k)Qz+é,n(u)du
k=1

Since X, = 0 for ¢ > n, it follows that

a1 n(

n—1
S ESerm — SOIE < Y / Q2 (u
=0

/=1 i=1

which ends the proof of the lemma. [J
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