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Abstract

This paper deals with the functional central limit theorem for non-stationary dependent sequences of
random variables satisfying the Lindeberg condition. The dependence condition which we impose is
known under the name of weak strong mixing condition. It is satisfied by a large class of dependent
random variables, including functions of strongly mixing or α-dependent Markov chains.
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1 Introduction

One of the most important limit theorems in probability theory is Donsker’s theorem for triangular
arrays of independent random variables. This is a functional central limit theorem for sequences of
independent random variables satisfying the Lindeberg condition. It is a natural question, rooted
in practical applications, to extend this theorem to dependent structures. This problem appears to
be very difficult in dependent setting. Regarding the central limit theorem only, there are several
remarkable results in the literature. Assuming the Lindeberg condition, a central limit theorem
for ϕ-mixing sequences was obtained by Utev [19]. In [11], Peligrad obtained a similar result for
interlaced mixing sequences, while Rio [15, 16] treated strongly mixing sequences.
In a recent paper Merlevède et al. [9] developed a method, based on martingale approximation, to
deal with the functional central limit theorem for dependent structures. The method proved to be
useful for obtaining the functional central limit theorem for a class of dependent random variables
defined by using as a measure of dependence the maximal coefficient of correlation. The scope
of this paper is to further exploit the tools developed in [9] for obtaining the functional central
limit theorem for non-stationary strongly mixing sequences. As a matter of fact, we shall use a
weak form of strongly mixing coefficients, for including a much larger class of example than the
traditional strong mixing condition introduced by Rosenblatt [17]. We include in this paper several
applications to linear processes with strongly mixing innovations and functions of strongly mixing
or α-dependent Markov chains.
Our paper is organized as follows. In Section 2 we state the main result, we comment on its
conditions and applications, while in Section 3 we include the proofs.
Throughout the paper we shall denote by ‖X‖p the norm in Lp of a random variable namely
‖X‖pp = E(|X|p). For two sequences of real numbers (an) and (bn) the notation an ∼ bn means that
an/bn → 1 as n→∞, whereas the notation an � bn means that there exists a positive constant C
such that for all n, an ≤ Cbn. The notation [x] is used for the integer part of x.
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2 Main result

Let {Xi,n, 1 ≤ i ≤ n} be a triangular array of square integrable (E(X2
i,n) <∞), centered (E(Xi,n) =

0), real-valued random variables. We define the partial sums Sk = Sk,n =
∑k

i=1Xi,n and denote
by σ2

k,n = Var(Sk,n) for k ≤ n. Assume that

σ2
n,n = Var

( n∑
`=1

X`,n

)
= 1 , (1)

and, for 0 ≤ t ≤ 1, define

vn(t) = inf
{
k; 1 ≤ k ≤ n : σ2

k,n ≥ t
}

and Wn(t) =

vn(t)∑
i=1

Xi,n . (2)

We shall also assume that the triangular array satisfies the following Lindeberg condition:

sup
n≥1

n∑
j=1

E(X2
j,n) ≤ C <∞, and lim

n→∞

n∑
k=1

E{X2
k,nI(|Xk,n| > ε)} = 0 , for any ε > 0. (3)

Our aim is to provide sufficient conditions for deriving a functional central limit theorem for the
partial sums process

{
Wn(t), t ∈ (0, 1]

}
. For any integer i ≥ 1, let fi,n(t) = 1{Xi,n≤t}−P(Xi,n ≤ t).

For any non-negative integer k, set

α1,n(k) = sup
i≥0

max
i+k≤u

sup
t∈R

∥∥E(fu,n(t)|Fi,n
)∥∥

1
,

and
α2,n(k) = sup

i≥0
max

i+k≤u≤v
sup
s,t∈R

∥∥E(fu,n(t)fv,n(s)|Fi,n
)
− E

(
fu,n(t)fv,n(s)

)∥∥
1
,

where Fi,n = σ(Xj,n1 ≤ j ≤ i}, F0,n = {∅,Ω} and in the definitions above we extend the triangular
arrays by setting Xi,n = 0 if i > n.

We shall now introduce two conditions that combine the tail distributions of the variables with
their associated α-dependent coefficients:

lim
m→∞

lim sup
n→∞

n∑
k=1

n∑
i=m

∫ α1,n(i)

0
Q2
k,n(u)du = 0 (4)

and

lim
m→∞

lim sup
n→∞

n∑
k=1

∫ α2,n(m)

0
Q2
k,n(u)du = 0 , (5)

where Qk,n is the quantile function of Xk,n i.e., the inverse function of t 7→ P(|Xk,n| > t).

Under the conditions above, the following result holds:
Theorem 2.1 Suppose that (1), (3), (4) and (5) hold. Then

{
Wn(t), t ∈ (0, 1]

}
converges in

distribution in D([0, 1]) (equipped with the uniform topology) to W, where W is a standard Brownian
motion.
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2.1 Discussions

1. Discussion on the mixing coefficients. Note that for any i ∈ N, α1,n(i) ≤ α2,n(i). In addition
both these coefficients are decreasing in i. So, obviously we can assume instead of conditions (4)
and (5) the unique condition

lim
m→∞

lim sup
n→∞

n∑
k=1

n∑
i=m

∫ α2,n(i)

0
Q2
k,n(u)du = 0. (6)

Furthermore, these strong mixing-type coefficients are weaker than those which are often used in
the literature. Let us recall that the traditional coefficient introduced and studied by Rosenblatt
[17] is defined as

ᾱn(k) = sup
i

sup
∣∣P(A ∩B)− P(A)P(B)

∣∣ ,
where the second supremum is taken over all A ∈ Fi,n and B ∈ σ(Xj,n, j ≥ k + i). Equivalently
this coefficient can be rewritten as

ᾱn(k) =
1

4
sup
i≥0

sup
Y

∥∥E(Y |Fi,n)− E
(
Y
)∥∥

1
,

where the Y ′s are random variables measurable with respect to σ(Xj,n, j ≥ k + i) and bounded
by one (see [3, Th. 4.4]). We can see from this definition that α2,n(k) ≤ 2ᾱn(k) and we use not
more than two variables in the future and not all the functions but rather only the indicators. This
weaker form is important since it will allow us to cover a larger class of stochastic processes than
the strong mixing sequences.

2. Discussion on mixing rates and moments. We can de-couple the mixing coefficients from the
variables. Denote by

α1(i) = sup
n
α1,n(i) and am(u) =

∑
i≥m

1{u<α1(i)} .

Then, we apply the Cauchy-Schwarz inequality and take into account that Qk,n(U) is distributed
as Xk,n for U uniformly distributed. For some δ > 0 we obtain

∑
i≥m

∫ α1,n(i)

0
Q2
k,n(u)du ≤

(∫ 1

0
a(2+δ)/δ
m (u)du

)δ/(2+δ)
‖Xk,n‖22+δ.

Now, by computations on page 12 in Rio [16] this inequality shows that condition (4) is satisfied if
the following couple of conditions are satisfied:

sup
n

n∑
k=1

‖Xk,n‖22+δ <∞ and
∑
i≥1

i2/δα1(i) <∞ where 0 < δ ≤ ∞. (7)

Moreover, condition (5) holds provided the first part of (7) is satisfied and

lim
m→∞

lim sup
n→∞

α2,n(m) = 0 . (8)

We have then established the following corollary:

Corollary 2.2 Assume that conditions (1), (3), (7) and (8)are satisfied for some δ ∈ (0,∞]. Then
the conclusion of Theorem 2.1 holds.
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Remark. In the corollary above, we can assume instead of the second part of condition (3) that
max1≤k≤n ‖Xk,n‖2+δ → 0, as n→∞.

3. Discussion on the CLT for Sn. Our result obviously implies that Wn(1) satisfies the CLT. It is
important to mention that the CLT also holds for Sn =

∑n
k=1Xk,n. To see it, according to Theorem

3.1 in Billingsley [1] it is enough to show that

lim
n→∞

E
( vn(1)∑
k=1

Xk,n −
n∑
k=1

Xk,n

)2
= 0. (9)

Note first that condition (3) implies that max1≤k≤n ‖Xk,n‖2 → 0. Hence, by the definition of vn(1),
we have

lim
n→∞

E
( vn(1)∑
k=1

Xk,n

)2
= 1

(see the proof of (5.35) in [9] for more details). Since σ2
n,n = 1, the proof of (9) is then reduced to

show that

lim
n→∞

Cov
( vn(1)∑
k=1

Xk,n,
n∑

j=vn(1)+1

Xk,n

)
= 0 .

But this easily follows under the conditions of Theorem 2.1 via Rio’s covariance inequality [14].
Note that in [15], Rio also proved a CLT for Sn under (1) and the following conditions

lim sup
n→∞

max
1≤k≤n

σ2
k,n <∞ and lim

n→∞

n∑
k=1

∫ 1

0
ᾱ−1
n (u)Q2

k,n(u)(ᾱ−1
n (u)Qk,n(u) ∧ 1)du = 0 (10)

instead of conditions (3), (4) and (5). Above ᾱ−1
n (u) =

∑n−1
i=0 1u<ᾱn(i). Some easy computations

show that if (3) and (4) (with ᾱn(i) replacing α1,n(i)) are satisfied then so is the second part of
(10). On another hand, even if our conditions and the Rio’s ones are very similar in nature, we
cannot prove that they are equivalent (even if in all our examples and applications they give the
same conditions). However, our conditions lead to the functional central limit theorem, are easier
to verify and we specify a weaker version of the strong mixing coefficients.

4. Forms of stationarity.
(i) If we assume that σ2

n = nh(n), where h(n) is a slowly varying function such that lim infn→∞ h(n) >
0, and that the sequence is not triangular, (i.e. for all k, Xk,n = Xk) then, we can construct the

process Wn(t) =
∑[nt]

k=1Xk/σn and the conclusion of Theorem 2.1 holds for Wn(t) under its assump-
tions.

(ii) Let us assume that
∑n

k=1Qk,n is decreasing to Q, and denote by α1(i) = supn α1,n(i) and
α2(i) = supn α2,n(i). Then, by monotonicity, conditions (4) and (5) are implied respectively by

∑
i≥0

∫ α1(i)

0
Q2(u)du <∞ and α2(i)→ 0 . (11)

while condition (5) is implied by
α2(i)→ 0. (12)

(iii) Let us assume now that there is Q, a quantile function, such that Qk,n ≤ Q and also that

limn→∞ σ
2
n/n = σ2 > 0. Then the functional CLT holds for Wn(t) =

∑[nt]
k=1Xk,n/

√
n under (11).

For this case the limiting process will be |σ|W , where W is a standard Brownian motion.
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(iv) If (Xj)j∈Z , is a strictly stationary sequence of random variables, our Theorem 2.1 reduces to
the invariance principle for S[nt]/

√
n. In this case, as in the point (iii), the conditions on the mixing

coefficients reduces to (12) where now Q is the quantile function of |X0|. This fact can be easily seen
by a change of time, taken into account that in this case we have σ2

n/n→ σ2. The constant |σ| in
the limiting process could be unfortunately 0. It will be strictly positive if we assume that σ2

n →∞
and if we impose instead of the first part of (11) rather the condition

∑
i≥1 i

∫ α1(i)
0 Q2(u)du < ∞

(See Lemma 1 in Bradley [2]).

5. Discussion on the minimality of mixing conditions for the CLT. There are numerous coun-
terexample to the CLT, involving stationary strong mixing sequences, in papers by Davydov [4],
Bradley [2], Doukhan et al. [7], Häggström [8] among others. We know that in the stationary case
our conditions reduce to the minimal ones. These examples show that we cannot just assume that
only the moments of order 2 are finite. Furthermore the mixing rate is minimal in some sense (see
[7]).

2.2 Examples and Applications

1. Functions of α-dependent Markov chains. Let Yi,n = fi,n(Xi) where X = (Xi)i∈Z is a stationary
Markov process with Kernel operator K and invariant measure ν and, for each i and n, fi,n is such
that ν(fi,n) = 0 and ν(f2

i,n) < ∞. Let σ2
n = Var(

∑n
i=1 Yi,n) and Xi,n = σ−1

n Yi,n. Note that the
weak dependent coefficients α1(i) of X can be rewritten as follows: Let BV1 be the class of bounded
variation functions h such that |h|v ≤ 1 (where |h|v is the total variation norm of the measure dh).
Then

α1(i) =
1

2
sup
f∈BV1

ν
(
|Ki(f)− ν(f)|

)
.

Now, α2(i) will have the same order of magnitude as α1(i) if the space BV1 is invariant under the
iterates Kn of K, uniformly in n, i.e., there exists a positive constant C such that, for any function
f in BV1 and any n ≥ 1,

|Kn(f)|v ≤ C|f |v .

There are many Markov chains such that α2(n) → 0, as n → ∞, but which are not mixing in the
sense of Rosenblatt. For instance, let Tγ be a GPM map, as defined in [5], that is an expanding
map of [0, 1] with a neutral fixed point at 0; the behavior of the map around 0 is described by the
parameter γ ∈ (0, 1). It is well-known that the Markov chain (Xi)i≥0 associated with Tγ is not
strong mixing but it is proved in [5] that it is such that α2(k) ≤ Ck1−1/γ . Moreover, the invariant
measure ν of (Xi)i≥0 is equivalent to the Lebesgue measure on [0, 1] and its density h satisfies
0 < c ≤ xγh(x) ≤ C <∞.
Then, in what follows, we assume that (Xi)i≥0 is the Markov chain associated with Tγ and that,
for any n fixed, fn is monotonic on some open interval and 0 elsewhere. It follows that the weak
dependence coefficients associated with (Xi,n) are such that α2,n(k) ≤ Ck1−1/γ , where C is a
positive constant not depending on n. By applying Corollary 2.2, we derive that if the triangular
array (Xi,n) satisfies the Lindeberg condition (3) and if

γ ∈ (0, 1/2) and sup
n≥1

1

σ2
n

n∑
i=1

(∫ 1

0
f2+δ
i,n (x)x−γdx

)2/(2+δ)
<∞ for some δ >

2γ

1− 2γ
,

then the conclusion of Theorem 2.1 is satisfied for the triangular array (Xi,n) defined above.

2. Linear statistics. We shall use our result to establish limit theorems for statistics of the type

Sn =

n∑
j=1

dn,jXj , (13)
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where dn,j are real valued weights and (Xj) is a strictly stationary sequence of centered real-valued
r.v.’s in L2. This model is also useful to analyze linear processes with dependent innovations and
regression models. It was studied in Peligrad and Utev [12], Rio [15] and also in Peligrad and Utev
[13] where a central limit theorem was obtained by using a stronger form of the mixing coefficients.
Our general approach shows that we can weaken the mixing coefficients for this result and in
addition we provide a functional central limit theorem.
We shall assume that the sequence of constants satisfy the following two conditions:

n∑
i=1

d2
n,i → c2 and

n∑
i=1

(dn,j − dn,j−1)2 → 0 as n→∞ , (14)

where c2 > 0. Also, we note that the condition∑
i≥0

∫ α1(i)

0
Q2(u)du <∞ (15)

implies condition (2) in [13] (see Corollary 7 there) and therefore the sequence (Xj) has a continuous
spectral density, f(x). By first part of (3) in Theorem 1 in the same paper,

lim
n→∞

Var(Sn)∑n
i=1 d

2
n,i

→ 2πf(0) .

Also let us note that, by Lemma 12.12 in [10], we know that (14) implies

max
1≤i≤n

|dn,i| → 0 .

Therefore the Lindeberg condition is satisfied.
In order to apply our Theorem 2.1 we have only to verify conditions (4) and (5). Since for U a
uniform random variable on [0, 1] the variable |dn,i|Q(U) is distributed as |dn,iXi| and so as Qn,i(U)
where Qn,i is the quantile function of |dn,iXi|, we can easily see that condition (4) is verified under
(14) and (15). Also, we have

n∑
i=1

∫ α2(m)

0
Q2
i,n(u)du ≤

n∑
i=1

∫ α2(m)

0
|dn,i|2Q2(u)du ≤

n∑
i=1

|dn,i|2
∫ α2(m)

0
Q2(u)du ,

which leads to (5) if we assume
α2(m)→ 0. (16)

Gathering all these arguments, by applying Theorem 2.1 we obtain the following result:

Theorem 2.3 Let Sn =
∑n

j=1 dn,jXj ,where dn,j are real valued weights and (Xj) is a strictly sta-
tionary sequence. Assume that (14), (15) and (16) are satisfied. Then Sn converges in distribution
to
√

2πf(0)|c|N where N is a standard Gaussian random variable. Let v2
k,n =

∑k
i=1 d

2
n,i. Define

vn(t) = inf
{
k; 1 ≤ k ≤ n : v2

k,n ≥ c2t
}

and Wn(t) =

vn(t)∑
i=1

dn,iXi .

Then Wn(·) converges weakly to
√

2πf(0)|c|W where W is the standard Brownian motion.

We shall apply this result to the model of the nonlinear regression with fixed design. Our goal is
to estimate the function `(x) such that

y(x) = `(x) + ξ(x),
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where ` is an unknown function and ξ(x) is the noise. If we fix the design points xn,i we get

Yn,i = y(xn,i) = `(xn,i) + ξi(xn,i).

According to [13], the nonparametric estimator of `(x) is defined to be

ˆ̀
n(x) =

n∑
i=1

wn,i(x)Yn,i =
n∑
i=1

wn,i(x)(`(xn,i) + ξi(xn,i)), (17)

where

wn,i = K
(xn,i − x

h

)
/

n∑
i=1

K
(xn,i − x

h

)
.

We shall apply Theorem 2.3 to find necessary conditions for the convergence of the estimator
ˆ̀
n(x). To fix the ideas we shall consider the following setting: The kernel K is a density function,

continuous with compact support [0, 1]. The design points will be xn,i = i/n and (ξi(xn,1), ...ξi(xn,i))
is distributed as (X1, ..., Xn), where (Xn)n∈Z is a stationary sequence of centered sequence of
random variables satisfying (15) and (16). We shall find the normal asymptotic limit for

Vn(x) =

(
n∑
i=1

w2
n,i(x)

)−1/2 (
ˆ̀
n(x)− E(ˆ̀

n(x))
)
.

According to Theorem 2.3, in order to obtain the central limit theorem we have just to verify the
conditions satisfied by the sequence of constants (14). Re-denoting

dn,i = wn,i(x)
( n∑
i=1

w2
n,i(x)

)−1/2
,

we have to show that ( n∑
i=1

w2
n,i(x)

)−1
n∑
i=1

(wn,i − wn,i−1)2 → 0.

Simple computations show that

nh
n∑
i=1

w2
n,i(x) ∼ 1

nh

n∑
i=1

K2
( i/n− x

h

)
∼ 1

nh

nh∑
j=1

K2
( j

nh

)
→
∫ 1

0
K2(v)dv = c2.

Furthermore

nh

n∑
i=1

(wn,i − wn,i−1)2 ∼ 1

nh

n∑
i=1

(
K
( i/n− x

h

)
−K(

(i− 1)/n− x
h

))2

∼ 1

nh

nh∑
i=1

(
K
( j

nh

)
−K

( j

nh
− 1

nh
)
)2
≤ sup

x

(
K(x)−K

(
x− 1

nh

))2
→ 0,

since K is uniformly continuous and nh→∞.
So, we shall unify our computation in the following Theorem.

Theorem 2.4 Assume for x fixed that ˆ̀
n(x) in defined by (17) and the sequence (Xj) is a station-

ary sequence satisfying (15), (16). Assume that the kernel K is a density, it is square integrable,
has compact support and is continuous. Assume nh→∞ and h→ 0. Then

√
nh(ˆ̀

n(x)−E(ˆ̀
n(x)))

converges in distribution to
√

2πf(0)|c|N where N is a standard Gaussian random variable and c2

is the second moment of K.
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3. Functions of a triangular stationary Markov chain. For any positive integer n, (ξi,n)i≥0 is an
homogeneous Markov chain with state space N and transition probabilities given by

P(ξ1,n = i|ξ0,n = i+ 1) = 1 and P(ξ1,n = i|ξ0,n = 0) = pi+1,n for i ≥ 1,

where, for i ≥ 2, pi,n = ca/(vni
a+2) with a > 0, ca

∑
i≥2 1/ia+2 = 1/2, (vn)n≥1 a sequence of positive

reals and p1,n = 1− 1/(2vn). (ξi,n)i≥0 has a stationary distribution πn = (πj,n)j≥0 satisfying

π0,n =
(∑
i≥1

ipi,n

)−1
and πj,n = π0,n

∑
i≥j+1

pi,n for j ≥ 1.

Let Yi,n = Iξi,n=0 − π0,n. Let b2n = Var
(∑n

k=1 Yk,n

)
and set Xi,n/bn. Note that

Var
( n∑
k=1

Yk,n

)
= nπ0,n(1− π0,n) + 2

n−1∑
k=1

(n− k)π0,n

(
P(ξk,n = 0|ξ0,n = 0)− π0,n

)
.

Assume now that a > 1. Usual computations imply that there exists σ2 > 0 such that b2n ∼ σ2nv−1
n .

It is easy to see that the first part of condition (3) is satisfied whereas the second part holds provided
that vn/n → 0. Now ᾱn(k) �

∑
j≥k

∑
i≥j+1 pi,n � 1/(vnk

a) (see [4, Th. 5] and [3, Chap. 30]).
Hence (6) holds by taking into account that Qk,n(u) ≤ 1/bn. Then, provided that a > 1 and
vn/n→ 0, (Xk,n)k>0 satisfies the functional central limit theorem given in Theorem 2.1.

3 Proof of Theorem 2.1

Without loss of generality, we assume that Xk,n = 0 for k > n and Fk,n = Fn,n for k > n. Moreover,
by abuse of notation, we will often avoid the index n. In particular, we shall write Xk = Xk,n and
Fk = Fk,n, and use the notation

Ej(X) = E(X|Fj) .

For each n, let also Sn =
∑n

k=1Xk and S0 = 0.
Let m be a fixed positive integer such that m < n. Let us then define

θm` =
1

m

m−1∑
i=1

E`(X`+1 + . . .+X`+i) ,

and

Y m
` =

1

m
E`(S`+m − S`) , Rmk =

k−1∑
`=0

Y m
` .

According to the proof of [9, Lemma 5.3], since (3) is assumed, the theorem will follow provided

(H) :=


limm→∞ lim supn≥1

∑n−1
`=0 ‖Y m

` ‖22 = 0 ,

limm→∞ lim supn≥1 ‖max1≤k≤n |Rmk |‖2 = 0 ,

limm→∞ lim supn≥1

∑n−1
k=0 ‖θmk ‖2‖Y m

k ‖2 = 0 ,

and that

lim
m→∞

lim sup
n→∞

P
(∣∣∣ vn(t)∑

k=1

(
X2
k,n + 2Xk,nθ

m
k,n

)
− t
∣∣∣ > ε

)
= 0 . (18)
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Moreover, recall that F0,n = {Ω, ∅} and then E0,n(·) = E(·). Hence, according to Proposition 3.2
in [9], under the Lindeberg condition (3), condition (18) is satisfied as soon as

lim
m→∞

lim sup
n→∞

∣∣∣ vn(t)∑
k=1

(
E(X2

k,n) + 2E(Xk,nθ
m
k,n)
)
− t
∣∣∣ = 0 (19)

and, for any non-negative integer `,

lim
b→∞

lim sup
n→∞

n∑
k=b+1

‖Ek−b,n(Xk,nXk+`,n)− E(Xk,nXk+`,n)‖1 = 0 . (20)

In the rest of the proof, we show that (H), (19) and (20) are satisfied under the conditions of our
theorem. With this aim, we start with the following lemma whose proof is given later.

Lemma 3.1 For any integer ` ≥ 0 and any positive integer m,

n−1∑
`=0

‖E`(S`+m − S`)‖22 ≤ C
n∑
k=1

m∑
i=1

i

∫ α1,n(i)

0
Q2
k,n(u)du .

Let us verify the first condition in (H). We have

‖Y m
` ‖22 =

1

m2
‖E`(S`+m − S`)‖22 .

Hence, by Lemma 3.1,

m
n−1∑
`=0

‖Y m
` ‖22 =

1

m

n−1∑
`=0

‖E`(S`+m − S`)‖22 �
1

m

n∑
`=1

m∑
i=1

i

∫ α1,n(i)

0
Q2
`,n(u)du

� 1√
m

n∑
`=1

∫ 1

0
Q2
`,n(u)du+

n∑
`=1

n∑
i=[m1/4]+1

∫ α1,n(i)

0
Q2
`,n(u)du .

Taking first the supremum over n and then the limit over m and taking into account the first part
of condition (3) and condition (4), it follows that

lim
m→∞

lim sup
n≥1

m
n−1∑
`=0

‖Y m
` ‖22 = 0 , (21)

which proves in particular the first condition in (H).
Now, by the Dedecker-Rio’s maximal inequality [6], we have

‖ max
1≤k≤n

|Rmk |‖22 �
n−1∑
k=0

‖Y m
k ‖22 +

n−1∑
k=0

‖Y m
k Ek(Rmn −Rmk )‖1 .

As previously showed, taking first the supremum over n and then the limit over m, the first term
in the right-hand side is going to zero. To handle the second term, we note that, by the properties
of the conditional expectations and Inequality (4.6) in Rio [16],

‖Ek(Xj)Ek(Xi)‖1 ≤ ‖Ek(Xj)Xi‖1 �
∫ α1,n(i−k)

0
Qi,n(u)Qj,n(u)du .
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Therefore

n−1∑
k=0

‖Y m
k Ek(Rmn −Rmk )‖1 �

1

m2

n−1∑
k=0

k+m∑
j=k+1

n−1∑
`=k

`+m∑
i=`+1

∫ α1,n(i−k)

0
Qi,n(u)Qj,n(u)du .

Easy computations yield

n−1∑
k=0

‖Y m
k Ek(Rmn −Rmk )‖1 �

1

m2

n−1∑
k=0

k+m∑
j=k+1

m−1∑
i=1

i

∫ α1,n(i)

0
Qi+k,n(u)Qj,n(u)du

+
1

m

n−1∑
k=0

k+m∑
j=k+1

n∑
i=k+m

∫ α1,n(i−k)

0
Qi,n(u)Qj,n(u)du

:= I1(m,n) + I2(m,n) .

Using that 2Qi+k,n(u)Qj,n(u) ≤ Q2
i+k,n(u) +Q2

j,n(u) and the fact that Xi,n = 0 for i > n, we easily
derive

I1(m,n) ≤ 1

m

n∑
j=1

m−1∑
i=1

i

∫ α1,n(i)

0
Q2
j,n(u)du .

As a consequence we have

I1(m,n) ≤ 1√
m

n∑
j=1

∫ 1

0
Q2
j,n(u)du+

n∑
j=1

n∑
i=[m1/4]+1

∫ α1,n(i)

0
Q2
j,n(u)du .

Taking first the supremum over n and then the limit over m, by (4) and the first part of condition
(3), we get

lim
m→∞

lim sup
n≥1

I1(m,n) = 0 .

On the other hand, using again that 2Qi,n(u)Qj,n(u) ≤ Q2
i,n(u) + Q2

j,n(u) and that Xi,n = 0 for
i > n, we infer that

I2(m,n) ≤ 1

2

n∑
i=m

i−m∑
k=0

∫ α1,n(i−k)

0
Q2
i,n(u)du+

1

2

n∑
j=1

n∑
i=m

∫ α1,n(i)

0
Q2
j,n(u)du

≤
n∑
j=1

n∑
i=m

∫ α1,n(i)

0
Q2
j,n(u)du .

Hence, by condition (4), it follows that

lim
m→∞

lim sup
n≥1

I2(m,n) = 0 .

So, overall, the second part of condition (H) holds.
We show now that the third part of condition (H) is satisfied. We have

A(m,n) :=
n−1∑
`=0

‖θm` ‖2‖Y m
` ‖2 ≤

1

m2

m−1∑
i=1

n−1∑
`=0

‖E`(S`+i − S`)‖2‖E`(S`+m − S`)‖2

≤ 1

m2

m−1∑
i=1

( n−1∑
`=0

‖E`(S`+i − S`)‖22
)1/2( n−1∑

`=0

‖E`(S`+m − S`)‖22
)1/2

.
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Hence, by Lemma 3.1,

A(m,n)� 1

m2

m−1∑
i=1

( n∑
`=1

i∑
k=1

k

∫ α1,n(k)

0
Q2
`,n(u)du

)1/2( n∑
`=1

m∑
k=1

k

∫ α1,n(k)

0
Q2
`,n(u)du

)1/2

� 1

m

n∑
`=1

m∑
k=1

k

∫ α1,n(k)

0
Q2
`,n(u)du ,

Therefore, as previously showed, by condition (4), the third part of condition (H) holds.
It remains to prove that (19) and (20) are satisfied. The proof of (19) follows by using the same
arguments as those developed at the end of the proof of Theorem 4.1 in [9] and, in particular, that
the Lindeberg’s condition (3) and the definition of vn(t) imply

E(S2
vn(t),n)→ t , as n→∞.

We prove now that (20) is satisfied. According to the computations made on page 204 in [10] to
handle their term ‖Bk,0‖1, we have, for any non-negative ` and any k ≥ b+ 1,

‖Ek−b,n(Xk,nXk+`,n)− E(Xk,nXk+`,n)‖1 ≤ 24

∫ α2,n(b)

0
Qk,n(u)Qk+`,n(u)du .

Since Xi,n = 0 for i > n, it follows that

n∑
k=b+1

‖Ek−b,n(Xk,nXk+`,n)− E(Xk,nXk+`,n)‖1 ≤ 25
n∑
k=1

∫ α2,n(b)

0
Q2
k,n(u)du ,

which proves (20) by taking into account (5).
To end the proof of the theorem, it remains to prove Lemma 3.1

Proof of Lemma 3.1. By Rio’s covariance inequality [14], we have

‖E`(S`+m − S`)‖22 = Cov
(
E`(S`+m − S`), S`+m − S`

)
�
∫ 1

0

`+m∑
j=`+1

1u<α1,n(j−`)Qj,n(u)Q|E`(S`+m−S`)|(u)du

� ‖E`(S`+m − S`)‖2
(∫ 1

0

( `+m∑
j=`+1

1u<α1,n(j−`)Qj,n(u)
)2
du
)1/2

,

Hence

‖E`(S`+m − S`)‖22 � 2

∫ 1

0

m∑
j=1

m∑
k=j

1u<α1,n(k)Qj+`,n(u)Qk+`,n(u)du .

Using that 2Qj+`,n(u)Qk+`,n(u) ≤ Q2
j+`,n(u) +Q2

k+`,n(u), we get

‖E`(S`+m − S`)‖22 �
∫ 1

0

m∑
k=1

1u<α1,n(k)

k∑
j=1

Q2
j+`,n(u)du+

∫ 1

0

m∑
k=1

k1u<α1,n(k)Q
2
k+`,n(u)du .

Since Xi,n = 0 for i > n, it follows that

n−1∑
`=0

‖E`(S`+m − S`)‖22 �
n∑
`=1

m∑
i=1

i

∫ α1,n(i)

0
Q2
`,n(u)du ,

which ends the proof of the lemma. �
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