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ABSTRACT

Wireless security cameras are integral components of security sys-

tems used by military installations, corporations, and, due to their

increased affordability, many private homes. These cameras com-

monly employ motion sensors to identify that something is occur-

ring in their fields of vision before starting to record and notifying

the property owner of the activity. In this paper, we discover that

the motion sensing action can disclose the location of the camera

through a novel wireless camera localization technique we call

MotionCompass. In short, a user who aims to avoid surveillance

can find a hidden camera by creating motion stimuli and sniffing

wireless traffic for a response to that stimuli. With the motion tra-

jectories within the motion detection zone, the exact location of

the camera can be then computed. We develop an Android app to

implement MotionCompass. Our extensive experiments using the

developed app and 18 popular wireless security cameras demon-

strate that for cameras with one motion sensor, MotionCompass

can attain a mean localization error of around 5 cm with less than

140 seconds. This localization technique builds upon existing work

that detects the existence of hidden cameras, to pinpoint their exact

location and area of surveillance.
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1 INTRODUCTION

Due to their �exibility and greatly simplified installation, wireless

security cameras are becoming more widely deployed than tradi-

tional wired cameras to monitor and report trespassing or other

unauthorized activity. In the latest study conducted by Market Re-

search Future in 2020, it is forecasted that the global wireless video

monitoring and surveillance market will increase at a high annual

growth rate of 16.85% over 2017 to 2023 [26].

Some wireless security cameras are made visible as a deterrence

measure, but that visibility may mean (1) they are more susceptible

to damage or theft [13]; (2) burglars may become more interested in

breaking in as they think the camera signals that there are valuables

inside the property [16]; (3) it is easier to avoid being recorded,

e.g., an adversary may find the blind spots (i.e., areas not within

the peripheral vision of the camera) and leverage them to evade

being recorded [21]. For these reasons, people may install wireless

cameras inconspicuously. They are thus naturally attractive targets

to adversaries who want to bypass the surveillance.

The rapid proliferation of wireless cameras also brings privacy

concerns associated with unauthorized video recording [25, 41],

especially considering the progressively smaller size of spy cameras.

These cameras can be kept hidden easily such that their targets

are unaware of their existence. For example, according to a survey

of 2,023 Airbnb guests that was conducted in 2019, 58% of them

were concerned that property owners might install hidden cameras

inside their rooms, and meanwhile as high as 11% said that they had

discovered a hidden camera in their Airbnb [18]. As thus, detection

of wireless cameras is drawing increasing attention for privacy

protection [9, 10, 20, 24, 39].

Traditional ways to detect a wireless camera mainly include

Radio Frequency (RF) scanning, lens detection and physical search.

The latter two methods are cumbersome as they require to inspect

every corner of the target area. RF scanning may work when the

camera is actively transmitting, but existing work (e.g., [19]) can

only detect the existence of wireless cameras but cannot tell their

exact locations.

Personal privacy is improved by identifying if a wireless camera

exists in various locations, such as hotel rooms, Airbnb rentals,
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Figure 1: Motion-activated wireless camera.

and office buildings. However, detection is not sufficient on its

own, as the camera owner may claim it is somewhere outside of

the room or installed by another. We argue that it is significantly

important to pinpoint the locations of hidden wireless cameras.

For example, a victim whose privacy is violated can obtain direct

and solid evidence by finding the physical camera that records. We

also realize that this localization technique is a two-edged sword

in that it can also be utilized by malicious users such as a burglar

localizing a home’s security camera in order to avoid its field of

view or otherwise physically disarm it.

A great portion of wireless cameras are equipped with built-in

motion sensors, such as best-selling ones – Amazon Blink XT2 [3]

and Arlo Pro 2 [1]. Because of the volume of data collected by

wireless cameras, wireless cameras remain in standby mode until

movement is detected, at which point the camera turns on and starts

recording, uploading captured video to the cloud backend server

and sending a notification to the property owner. The network

correspondingly exhibits sudden high wireless traffic, as shown in

Figure 1. The camera will then continue to record until the motion

stops. After that, it reverts to standby mode. As wireless security

cameras installed at different locations have different coverage ar-

eas, we can then determine the camera’s coverage area to find the

location of the camera. Specifically, we artificially induce motion

at a spot (e.g., asking a helper to walk or utilizing a moving ro-

bot/drone); if we observe a correspondingly high wireless traffic,

we know that this spot may be monitored by a camera, and may

determine the camera’s possible area accordingly. With customized

motion trajectories, we can then narrow down until pinpointing

the location of the camera.

In practice, there exist other different types of wireless traffic

�ows generated by non-camera devices, such as laptops, smart-

phones or tablets. Thus, it is challenging to distinguish which

traffic �ows belong to wireless cameras, especially considering

that the wireless local area networks (WLANs) employ encryption

techniques such as WEP, WPA, and WPA2 to prevent information

compromise from casual eavesdropping [34].

Almost all current commodity network devices deploy 802.11

wireless protocols, in which an inherent weakness has been

found, i.e., exposure of link-layer Media Access Control (MAC)

addresses [28]. Each MAC address, which is a persistent globally

unique identifier, discloses the device manufacturer information via

the first three most significant MAC bytes, i.e., the Organizationally

Unique Identifier (OUI). This thus motivates us to utilize OUI of

MAC addresses to detect the existence of wireless camera traffic.

Specifically, as OUI relies on the camera manufacturers and the

main-streammanufacturers of wireless cameras are limited [10], we

can first pre-build a table of OUIs associated with wireless cameras.

Next, with a captured MAC, we compare its OUI with each entry

in the table. If a match is found, we assume that the wireless traffic

with this specific MAC is generated by a wireless camera.

MAC address eavesdropping and analysis can reveal the exis-

tence of wireless cameras while it is unable to reveal their exact

locations. Thus, another challenge is how to design the motion

stimulation so that the camera location can be found. To address

this problem, we correlate the range of arbitrarily generated motion

with the camera location. In particular, we design novel strategies

to first set up a coordinate system and then compute the camera’s

coordinates for determining its location.

In summary, the major contributions of this paper are as follows:

• Unlike previous extensive research in hidden wireless cam-

era detection, this paper is the first to provide a practical

approach to pinpoint a motion-activated wireless camera.

The proposed technique can be carried out with a single

smartphone, and it needs neither professional equipment

nor connecting to the same network with the target camera.

• We exploit how a motion sensor can act as a compass to

guide us to pinpoint the wireless camera by correlating the

manipulated motion with the resultant wireless traffic gen-

erated by the camera.

• We implement MotionCompass and develop an Android ap-

plication for validating the effectiveness and efficiency.

Roadmap: The rest of the paper is organized as follows. In

Section 2, we introduce preliminaries. Next, in Section 3, we describe

the adversary model and assumptions. Then, Section 4 explains the

detailed wireless camera localization technique. Section 5 presents

experimental results. Section 6 discusses limitations and possible

defenses. Section 7 summarizes related work. At last, Section 8

concludes the paper.

2 PRELIMINARIES

Wireless Security Cameras: Growing awareness of safety and

security has boosted the growth of the wireless camera markets [6].

Generally, wireless cameras process the video/audio streams (e.g.,

compressing them to a smaller size that facilitates transmission)

and then upload them through a WLAN to a cloud backend server.

Data transmission from the camera to the base station or router is

regulated by wireless protocols.

Wireless security cameras are usually equipped with motion or

sound sensors for increased security, so that once motion or sound

is detected, the camera turns on and starts recording, uploading

captured video to the cloud backend server and sending a notifica-

tion to the property owner. Table 1 lists some technical parameters

of popular wireless cameras. Sound-triggered systems often suffer

from high false alarms via barking dogs, loud cars or other ran-

dom noise. In this paper, we focus on localizing motion-activated

wireless cameras, which have been widely adopted for security

surveillance.
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Table 1: Motion sensor equipped wireless cameras.

Model Chipset Alert Protocol Hub

AIVIO Cam MediaTek M* WiFi Yes

Arlo Essential Broadcom M/S** WiFi/B+ No

Arlo Go Broadcom M 3G/4G-LTE No

Arlo Pro 2 Broadcom M/S WiFi/B Yes

Arlo Pro 3 Broadcom M/S WiFi/B Yes

Arlo Ultra Broadcom M/S WiFi/B Yes

Blink Indoor MediaTek M/S WiFi No

Blink XT2 TI M/S WiFi Yes

Blue by ADT Broadcom M WiFi No

Canary Flex TI M WiFi No

Conico Cam TI M WiFi No

EufyCam 2C MediaTek M/S WiFi Yes

Reolink Argus 2 MediaTek M WiFi No

Reolink Argus Pro MediaTek M WiFi No

Reolink Go TI M 3G/4G-LTE No

Ring Door View TI M WiFi No

Ring Spotlight TI M WiFi No

Ring Stickup Cam TI M WiFi No

Simplisafe Cam Telit M WiFi No

Swann Wireless MediaTek M WiFi No

* M: Motion ** S: Sound + B: Bluetooth

Figure 2: Camera detection zone examples.

Motion Sensors: Usually, we cannot keep our eyes glued to

our security camera’s feed on phone or computer, especially when

we have multiple cameras. To get rid of this limitation, a wireless

security camera, incorporating a motion sensor, provides a practical

solution. Figure 2 shows the examples of camera detection zones

for outdoor and indoor environments.

There are various types of motion sensors, such as passive in-

frared (PIR), ultrasonic, microwave, and tomographic. A PIR sensor

includes a pyroelectric film material, which is sensitive to radi-

ated heat power �uctuation [23] and converts infrared radiation

into electrical signals. It can thus detect the presence of humans

or other warm-blooded living beings from the radiation of their

body heat [30]. Due to its properties of small size, low cost, power

efficiency and being able to work in dark environment, PIR sensors

are widely used in battery-powered wireless cameras. Without loss

of generality, in this paper, we explore the localization of wireless

cameras equipped with this type of motion sensors.

3 ATTACK MODEL AND ASSUMPTIONS

We consider a general scenario, where a user deploys a motion-

activated wireless security camera to monitor a target area. The

Figure 3: Three phases of the proposed scheme.

user aims to keep the camera hidden to avoid being noticed. An

adversary aims to pinpoint the location of the camera with the

MotionCompass technique. MotionCompass can also be utilized to

find hidden cameras in untrustworthy hotels or Airbnb rooms,

in which cases the roles of “attacker” and “legitimate user” are

reversed, but for consistency and to prevent confusion, we will use

these roles as just introduced.

We assume the adversary has the capability to sniff the wireless

traffic, and can also safely perform some motion around the camera

without being caught. For example, the adversary can ask a helper

to walk or use a moving robot/drone to introduce manipulated

movement. We also assume that the adversary can move at a known

speed and record the time elapsed so that she can measure the

movement distance. This can be achieved for example by using an

Android app to log all the accelerometer readings for calculating

the speed.

4 CAMERA LOCALIZATION

4.1 Overview

MotionCompass includes three important phases, i.e., camera traffic

finder, camera MAC extraction, and camera traffic manipulation,

as shown in Figure 3.

The first phase determines the wireless traffic associated with

wireless cameras. When the user introduces motion activity within

an interested area, if there is a camera monitoring this area, the

user would observe a wireless traffic pattern that is highly corre-

lated with the movement trajectory. To eliminate the interference

of motion-activated non-camera devices (e.g., smart WiFi motion

sensor [4]), we utilize the second phase, which first collects all

MACs embedded in each traffic �ow and then searches the OUI of

each MAC in a table consisting of all OUIs assigned to cameras. If a

match is found, the MAC would be regarded as belonging to a cam-

era. The extracted MACs would be the input of the final phase, and

all traffic �ows with them would be monitored. The user then per-

forms motion along specifically designed paths, and pinpoints the

camera’s location by correlating the manipulated motion paths with

the wireless traffic that the monitored wireless camera generates.

We show the details for each phase in the following discussion.

4.2 Camera Traffic Finder

Since there are numerous wireless traffic �ows in the air, we need to

shrink the candidates for wireless camera traffic �ow. We propose

to generate motion in the target area to stimulate potential cameras

monitoring the area, and then utilize the resultant wireless traffic

to determine candidate traffic �ows that may be generated by a

wireless security camera.
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Figure 4: Count of newly captured packets when a user walks

past the detection zone of the camera.

4.2.1 Coarse-grained Activation. Wireless cameras are usually

battery-powered. They sit in standby mode to conserve battery,

and begin to record when they detect motion or sound (i.e., activa-

tion signals). These videos are then sent to the cloud backend server

for secure storage in owners’ library. Also, when the video record-

ing is activated, the camera can send the owner push notifications

or email alerts.

Therefore, in order to observe the wireless traffic of the camera

(i.e., enable the camera to send packets), an attacker can manually

generate the activation signals in a target area. As a result, when the

motion happens to be performed in the motion activity zone, the

camera recording will be then triggered [8]. As shown in Figure 4,

when the camera (Amazon Blink XT2) lies in standby mode, only

a “heartbeat” signal of small size is sent out to the camera base

station or the router at a regular interval in the order of seconds,

indicating normal operation or to synchronize with the other party;

while if human activity is detected, an abnormally high wireless

traffic would be generated accordingly.

4.2.2 Tra�ic Candidates Determination. When the camera is in

standbymode, the microcontroller unit (MCU) consumes less power

and only processes data monitored by the built-in microphone or

motion sensor. Once the activation signal is detected, the MCU

awakens the Complementary Metal Oxide Semiconductor (CMOS)

sensor to start recording until motion stops, and meanwhile enables

wireless networking module to send out recorded video. As a result,

the traffic generated by the wireless camera exhibits a distinguish-

able pattern, i.e., the volume of camera traffic depends on whether

the camera is activated or not.

The specific pattern of camera traffic provides an adversary

an opportunity to correlate the intentional activation with the

existence of the wireless camera. If a monitored wireless traffic

suddenly becomes faster when a motion is performed and slower

when the motion stops, this traffic �ow can be then determined as

a candidate for the camera traffic.

4.3 Camera MAC Extraction

Wireless cameras are powered by systems-on-a-chip (SoCs) from a

few SoC manufacturers such as Broadcom, Ambarella and Texas

Figure 5: Header format of IEEE 802.11 MAC frame.

Figure 6: SVM training result for wireless traffic flows.

Instruments (TI). SoCs typically bundle processors, memories, wire-

less networking capabilities, as well as power management circuits.

As a result, the link-layer Media Access Control (MAC) address of a

wireless camera is determined by corresponding SoC manufacturer

and has the following format: for any six-byte MAC address, the

first half is the Organizationally Unique Identifier (OUI) [17], indi-

cating the device manufacturer; and the second half represents the

unique device ID. MAC address intends to be permanent and glob-

ally unique identification. Thus, the prefix (i.e., OUI) of a wireless

camera’s MAC address is fixed.

The phase of camera MAC extraction aims to extract the MAC

address of the target camera. To achieve this goal, we can compare

the prefix of each MAC extracted from candidate camera traffic

�ows with those publicly available prefixes (e.g., [17]) defined by

SoC suppliers to determine whether the monitored traffic belongs

to a wireless security camera.

4.3.1 Collection of MAC Identifiers. IEEE 802.11 wireless protocols

are utilized in almost all commodity network devices [15], including

wireless cameras. The use of 802.11, however, may cause exposure

of MAC addresses [28], and a wireless eavesdropper within radio

range of a wireless transmitter can capture the corresponding MAC

address. Though the data packets generated by the wireless cam-

era are encrypted [12], the raw wireless frames are broadcasted

over the air and the camera transmits its unencrypted MAC (i.e.,

Source Address) in the header of the 802.11 MAC frame, as shown

in Figure 5.

To capture the raw wireless frames of the camera, we should first

know the channels that the camera operates on. Wireless sniffing

tools (e.g., Airmon-ng toolkit [7] which is open source) can capture

raw 802.11 MAC frames and thus help determine all active channels

nearby. The problem then becomes how to sort out the data frames
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generated by the camera from packets generated by various other

devices that pass the first phase.

4.3.2 Camera MAC Match. As aforementioned, the 3-byte prefix

(i.e., OUI) of a MAC is normally fixed and depends on the manufac-

turer and the type of device. For example, Amazon Blink wireless

cameras use HongHai’s chipset for WiFi communication, and the

OUI of their MACs starts with “1C-BF-CE”, where “1C” denotes the

HongHai company and “BF-CE” indicates the camera department.

The uniqueness of OUI motivates us to firstly build a library

containing OUIs of all cameras on the market, and then utilize it

to determine whether the monitored traffic belongs to a wireless

camera. We refer to such a table as camera-labeled OUI table. Specif-

ically, if the OUI of a MAC extracted from a monitored packet can

be found in the OUI table, this corresponding traffic is regarded as

being generated by a camera.

MAC Spoofing: Though manufacturers assign MAC addresses

using the global standard, it may not be the case that devices will

actually broadcast the OUI-based MAC that is originally �ashed

into the devices. Some devices may enable the user to change the

MAC arbitrarily in software [37, 40]. Thus, the user may use a

non-camera-manufacturer-based OUI for the camera to bypass the

camera traffic detection, or use a camera-manufacturer-based OUI

for a non-camera device to slow down the localization process.

However, recent studies have proposed techniques using a unique

identifier called the Universally Unique IDentifier-Enrollee (UUID-

E), which can successfully recover the device’s original, global MAC

from the spoofed or randomized MAC [27, 28, 37]. Combining with

such techniques to recover real MAC (if MAC spoofing occurs), the

proposed OUI-based traffic analysis still works.

Besides, we can utilize another solution to handle MAC spoofing.

SoCs provide video encoding and data transfer functionality for

wireless cameras. Thus, the traffic patterns of wireless cameras

highly depend on the corresponding SoCs. As most SoCs take simi-

lar encoding methods (e.g., H.264, H.265 and MJPEG), the resultant

traffic patterns are similar as well [10]. This observation motivates

us to first train a Support Vector Machine (SVM) model to clas-

sify traffic patterns, and then utilize it to determine whether each

captured traffic belongs to a wireless camera.

The SVM classifier model is formed using the Scikit-learn li-

braries with Python 3.8.1. We set a threshold based on the aver-

age value of data transmission rates of various wireless devices in

the environment. For each traffic �ow, we extract its data trans-

mission rate along with the difference between this rate and the

threshold. Figure 6 shows the result of running SVM on 400 traffic

�ows coming from both wireless cameras and non-camera devices,

demonstrating the success of distinguishing traffic �ows generated

by wireless cameras.

4.4 Camera Traffic Manipulation

Camera traffic manipulation aims to shrink the possible candidates

of the target camera determined in the previous phase into one and

also pinpoint its exact location. We begin by setting up a listener

to monitor the traffic transmitted from all candidate cameras and

then observe the traffic change of each channel when we provoke

the system with manipulated environmental motion. We then build
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Figure 7: Total packet count vs. motion duration.

a model to correlate the camera location with the motion pattern,

which directly affects the traffic generated by the camera.

4.4.1 Network Tra�ic Monitoring by MACs. By setting up a packet

monitor with existing tools, we can listen to the traffic coming from

candidate cameras. Specifically, we detect if the traffic volume is

changed and record the change of packet count.

If we purposely introduce human activity in a selected area,

where a motion-activated camera happens to monitor, the camera

will become awakened and generate traffic volume corresponding

to the time that the manipulated activity lasts. On the other hand,

if the monitored traffic has no change, we can determine that the

candidate camera is not monitoring the area where the activity is

performed. Motivated by this observation, we develop a customized

algorithm to shrink the possible camera candidates and localize the

target camera by feeding manipulated stimuli to the motion sensor

and observing resultant traffic volume variation.

4.4.2 Camera Localization. Empirically, we find the longer the

motion duration is, the more (cumulative) packets the camera gen-

erates. We install an Amazon Blink XT2 camera and Arlo Pro 2

camera on the wall with a downward angle and monitor the activity

in the detection area, respectively. For each scenario, we monitor

the traffic generated by the camera and record the correspond-

ing amount of the transmitted packets when a user passes nearby

within different durations (i.e., manually producing activity within

the coverage range of the motion sensor).

Figure 7 presents the variation of total packet count with the

motion duration for the two different cameras. The obtained packet

count shows a nearly linear correlation with the motion duration.

For example, when the human activity within the detection zone

lasts for 1 second, the packet counts for Blink XT2 camera and

Arlo Pro 2 camera are 100 and 155 respectively, and also for every

2 seconds, the corresponding packet counts for the two cameras

increase by an average of 80 and 197 (i.e., network throughput

maintains almost constant).

Camera Activation Detection: The discovered correlation be-

tween exposure time (the duration when the camera is activated)

and total packet count can be then explored to determine whether

the camera is activated by a user when she is able to sniff wireless
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Figure 8: Two-step procedure for the special case.

traffic and obtain the total packet count. Specifically, in this work,

we consider a linear function approximation architecture where

the count 𝑁 of network packets generated by a wireless camera is

approximated as

𝑁 = 𝑎 + 𝑅 · Δ𝑡, (1)

where 𝑎 is a constant, 𝑅 represents the throughput (i.e., the rate

at which the activated camera generates packets), and Δ𝑡 denotes

exposure time.

With the linear model, we can determine whether the user per-

forming the specified motion is still in the detection range of the

motion sensor. Specifically, if the observed total packet count does

not fit the linear model with a significant deviation, the performed

motion at this time will be determined as out of the detection range

of the motion sensor.

Typically, the field of view of a PIR sensor is at 105◦ or 110◦

horizontally and 80◦ vertically. If more PIR sensors are utilized

simultaneously, the corresponding detection range can be wider.

For example, Arlo Ultra camera has dual PIR sensors and has a

horizontal angle of view of 150◦ [2]. We consider a camera deployed

on a vertical wall (which aligns with most practical scenarios). Note

for other cases, we can regard that the camera is deployed on

a virtual wall (i.e., a plane perpendicular to the �oor). Thus, the

camera localization problem can be converted to computing the

coordinates of the camera, when the bottom left corner of the wall

is regarded as the Origin.

4.4.3 Coordinates Calculation: Special Case. In order to obtain the

maximum horizontal breadth, the camera body is often mounted

perpendicular to the wall. Also, in the general case, the camera can

be swiveled in any direction, and it can be mounted at any angle to

the wall as long as its view is not obstructed by the wall. We first

address the special case when the camera is mounted perpendicular

to the wall.

We propose a two-step procedure to pinpoint the camera. As

shown in Figure 8, a user can perform motion along two paths with

an average speed of 𝑣 and simultaneously monitor the wireless

traffic, including,

1. Moving parallel to the wall from left to right (or in the oppo-

site way), as shown in Figure 8 (a): when the traffic indicates

that the user enters and leaves the detection range, the re-

spective locations are marked as𝐴 and 𝐵; the user also tracks

the corresponding time 𝑡1 and 𝑡2 for calculating the walking

distance 𝑠 within the detection range, i.e., 𝑠 = |𝐴𝐵 |=𝑣 · (𝑡2−𝑡1).

Figure 9: Calculation of 𝑐𝑥 for the special case.

2. Vertically getting out of the detection range with the start

location at the midpoint𝑀 of the line segment𝐴𝐵, as shown

in Figure 8 (b): when it is determined that the user leaves the

detection range, the location is marked as 𝐷 ; similarly, the

start time and the time the user leaves the detection range are

recorded as 𝑡3 and 𝑡4, and the new walking distance 𝑠 ′ within

the detection range can be computed as 𝑠 ′= |𝑀𝐷 |=𝑣 · (𝑡4−𝑡3).

With step 1, we can obtain the 𝑥-axis coordinate 𝑐𝑥 of the cam-

era location (i.e., point 𝐶). For better understanding the calculation

process, we plot the motion path 1 in the 𝑥𝑧-plane, as shown in Fig-

ure 9, where 𝐶 ′ denotes the projection of the camera location onto

the 𝑥-axis. Assume that the horizontal distance between location 𝐴

and the 𝑧-axis is 𝑎𝑥 , and the distance between location 𝐴 and the

wall is 𝑎𝑧 . Both 𝑎𝑥 and 𝑎𝑧 can be easily measured by the user. Thus,

we can calculate the camera’s 𝑥-coordinate as

𝑐𝑥 = 𝑎𝑥 + 𝑠/2. (2)

With only motion path 1, we cannot determine the height 𝑐𝑦 of

the camera location. Thus, we perform motion path 2 beginning

with𝑀 towards the outer edge of the detection range (i.e., the line

𝑀𝐷 is perpendicular to the 𝑥-axis). To demonstrate how to calculate

𝑐𝑦 , similarly, we plot the plane through the points 𝐶 ,𝑀 , and 𝐷 , as

shown in Figure 10.

A general rule of thumb is to install the security camera at a

downward angle for better monitoring the target area. Let 𝛼 de-

note the camera installation angle, which is the angle between the

camera optical axis (i.e., the direction that the camera faces) and

the ground. Also, we use 𝛿 to represent the vertical angle of the

camera. The camera optical axis divides 𝛿 into two equal angles.

With step 1, we can calculate the 𝑧-coordinate𝑚𝑧 of point𝑚, which

is equal to 𝑎𝑧 . Meanwhile, we utilize 𝛾 to denote angle ∠𝐷𝐶𝐶 ′. We

thus have
{

𝛾 = ( 𝜋2 − 𝛼) + 𝛿
2

tan𝛾 = 𝑚𝑧+𝑠
′

𝑐𝑦

. (3)

We can then compute the camera’s 𝑦-coordinate as

𝑐𝑦 =

𝑎𝑧 + 𝑠
′

tan[(𝜋 − 2𝛼 + 𝛿)/2]
. (4)

4.4.4 Coordinates Calculation: General Case. As aforementioned,

the camera is not always mounted perpendicular to the wall. The

camera body may be pivoted to the left or right. As a result, with

the above two-step procedure, the camera may not have the same

𝑥-axis coordinate with the midpoint 𝑀 of motion path 1. This is
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Figure 10: Calculation of 𝑐𝑦 for the special case.

Figure 11: Improved procedure for the general case.

because the line𝑀𝐶 ′ (𝐶 ′ is the projection of the camera location 𝐶

onto the 𝑥-axis) is not necessarily perpendicular to the 𝑥-axis.

We then propose an improved two-step procedure for determin-

ing the coordinates of the camera. Specifically,

1. As shown in Figure 11(a), the user moves from left to right (or

vice versa) twice and generates two parallel motion paths.

Similarly, the user records the locations when she enters

and leaves the detection range for each motion path. Four

points 𝐴, 𝐵, 𝐴′ and 𝐵′ are obtained, and the midpoints of

the line segments 𝐴𝐵 and 𝐴′𝐵′ are denoted with𝑀 and𝑀 ′.

The walking distance |𝐴𝐵 | is denoted as 𝑠 . The user then

draws a line through𝑀 and𝑀 ′, and it intersects the 𝑥-axis

at the point 𝐶 ′ (i.e., the projection of point 𝐶 onto the 𝑥-

axis). With the points 𝐴, 𝐵 and 𝐶 ′, the user can measure

angle ∠𝐴𝐶 ′𝐵 and find its angle bisector. The user can draw

another line parallel to the 𝑥-axis and through point𝑀 , and

it will intersect the above angle bisector at a point, denoted

with𝑀 ′′.

2. As shown in Figure 11(b), the user then gets out of the de-

tection range with the start location at point𝑀 ′′ along the

angle bisector (i.e., line 𝐶 ′𝑀 ′′) of angle ∠𝐴𝐶 ′𝐵. When it

is determined that the user leaves the detection range, the

location is marked as 𝐷 . The start time and the time the

user leaves the detection range are recorded as 𝑡5 and 𝑡6.

The walking distance 𝑠 ′ in this step can be measured as

𝑠 ′ = |𝑀 ′′𝐷 | = 𝑣 · (𝑡6 − 𝑡5).

With the first step, we can calculate the 𝑥-axis coordinate 𝑐𝑥 of the

camera. As shown in Figure 12, the user can measure the angle 𝜃

between the first or second motion path and the 𝑥-axis, and the

Figure 12: Calculation of 𝑐𝑥 for the general case.

angle 𝜖 between 𝐶 ′𝐴 and 𝐴𝐵. Thus, we have tan(𝜖 + 𝜃 ) =
𝑎𝑧

𝑐�−𝑎�
,

and obtain

𝑐𝑥 = 𝑎𝑥 +
𝑎𝑧

tan(𝜖 + 𝜃 )
. (5)

Meanwhile, we can calculate the 𝑧-coordinate 𝑚𝑧 of point 𝑀 as

𝑚𝑧 = 𝑎𝑧 −
𝑠
2 · sin𝜃 . As the line 𝑀𝑀 ′′ is parallel to the 𝑥-axis, the

𝑧-coordinate𝑚′′
𝑧 of point𝑚′′ is equal to𝑚𝑧 . Let 𝛽 =

∠𝐴𝐶′𝐵
2 , and we

then have ∠𝑂𝐶 ′𝑀 ′′
= ∠𝑂𝐶 ′𝐴 + ∠𝐴𝐶 ′𝑀 ′′

= 𝜖 + 𝜃 + 𝛽 . As a result,

we obtain |𝐶 ′𝑀 ′′ | =
𝑚𝑧

sin(𝜖+𝜃+𝛽)
.

The calculation process of the camera’s 𝑦-coordinate 𝑐𝑦 is sim-

ilar to that in the special case. �𝐶𝐶 ′𝐷 is a right triangle where

angle ∠𝐶𝐶 ′𝐷 is the right angle, and the angle ∠𝐷𝐶𝐶 ′ (i.e., 𝛾 ) is

the same for both cases, i.e., 𝛾 = ( 𝜋2 − 𝛼) + 𝛿
2 . We then have

tan𝛾 =

|𝐶′𝑀′′ |+ |𝑀′′𝐷 |
|𝐶′𝐶 |

, and thus obtain

𝑐𝑦 =

(2𝑎𝑧 − 𝑠 · sin𝜃 )/(2 · sin(𝜖 + 𝜃 + 𝛽)) + 𝑠 ′

tan[(𝜋 − 2𝛼 + 𝛿)/2]
. (6)

5 EXPERIMENTAL EVALUATION

We implement MotionCompass on the Android platform. Figure 13

shows the designed user interface (UI). The default mode for a smart-

phone’s network interface card (NIC) is managed mode, in which it

only listens to the traffic that comes for it and discards any packets

not destined for it. While MotionCompass needs to listen to all the

wireless traffic nearby, the NIC needs to be in monitor mode. We

achieve the monitor mode function based on Airmon-ng tools and

the Android device running the Kali NetHunter, which is a popular

open-source Android ROM penetration testing platform [32].

5.1 Evaluation Setup

The adversary first scans the possible MACs for wireless cameras

and then performs manual motion to stimulate the camera. By

measuring the distances of performed motion paths, as well as the

initial parameters, such as the coordinates (𝑎𝑥 , 𝑎𝑧) of the start point

within the camera detection range when the attacker introduces

motion along the first motion path, and the angle 𝜃 between the

first motion path and the wall, the adversary can then calculate the

exact location of the camera.

Testing Cameras:We test 18 most popular wireless cameras, as

shown in Table 2. Those cameras can be divided into two groups:
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Figure 13: The UI snapshot of MotionCompass when one

camera on a wall is localized.

Table 2: The list of wireless security cameras we test.

Camera ID Model Amount of PIR Sensors

1 AIVIO Cam 1

2 Arlo Essential 1

3 Arlo Pro 2 1

4 Arlo Pro 3 1

5 Blink Indoor 1

6 Blink XT2 1

7 Blue by ADT 1

8 Canary Flex 1

9 Conico Cam 1

10 EufyCam 2C 1

11 Reolink Argus 2 1

12 Reolink Argus Pro 1

13 Ring Door View 1

14 Simplisafe Cam 1

15 Swann Wireless 1

16 Arlo Ultra 2

17 Ring Spotlight 2

18 Ring Stickup Cam 2

G1 consisting of cameras (ID 1-15) with one motion sensor, and G2

including cameras (ID 16-18) with two motion sensors.

Testing Scenarios: two scenarios are tested.

• Outdoor: we conduct the experiment outside a typical Amer-

ican single-family house. The camera is installed at five dif-

ferent locations with different fields of view on the front

outside wall (with a width of 10 m and a height of 5.5 m).

• Indoor: we select a bedroom to perform the experiment. We

also place the camera at five different locations: two in the

top-left and top-right corners of an inside wall (with a width

Figure 14: Layout of the experimental environments.

of 5.5 m and a height of 2 m), one on top of the headboard,

and two sitting on the nightstands beside the bed.

Figure 14 shows the selected positions for the camera in respective

environment. The camera can be mounted at different angles along

the wall. We do not consider the cases when most areas in the cam-

era’s field of view are obstructed by the wall, as recording capability

of the camera is highly restricted under these circumstances.

Metrics:We use the following two metrics.

• Localization error : This is measured as the Euclidean distance

between the camera’s estimated position and its correspond-

ing true location.

• Localization time: This is the amount of time spent on ob-

taining the exact location of the camera.

5.2 Case Study

In this example, a Blink XT2 camera is installed at Location 2 of the

house, as shown in Figure 14 (a). MotionCompass is then launched

for 10 times. We manually rotate the camera horizontally or verti-

cally to make the camera aim at different areas for each time.

During an example test, the user determines there exists a wire-

less camera monitoring the target area (i.e., the drive way of the

house). Figure 15 shows the traffic �ow generated by different de-

vices. The user initiates the continuous movement in the target

area. We observe a strong correlation between the camera traffic

throughput and the motion. The count of newly generated packets

matches with the newly performed motion. However, non-camera

traffic �ows do not have an obvious relationship with the motion.

By comparing MAC addresses, we further find the non-camera

traffic �ows 1 and 2 belong to an iPhone in use and an Android

device in standby mode, respectively. For all 10 tests, the camera

traffic is identified successfully.

We compare estimated 𝑥- and 𝑦-coordinate of the camera with

their respective true values, and also calculate the localization error.

Figure 16 shows the localization error along with errors in 𝑥- and

𝑦-coordinate. We observe that the localization error is consistently

below 9.2 cm. In most tests, the error in 𝑥-coordinate is slightly

smaller than that in 𝑦-coordinate. Also, the average errors in the

two coordinates are 4.2 cm and 4.9 cm, respectively. These results

show that MotionCompass can achieve a high accuracy. Figure 17

shows the localization time for each test. We can see the camera can

be localized within a range of 125 to 142 seconds, demonstrating

the efficiency of MotionCompass.

Impact of Camera’s Initial Angle: The camera may have a

non-right angle along the wall in the 𝑥𝑧-plane (i.e., ground). We

refer to such an angle between the wall and the camera as the initial

222



MotionCompass: Pinpointing Wireless Camera Via Motion-activated Tra�ic MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA

0 10 20 30 40

Time (sec)

0

50

100

150

200

C
o
u
n
t 
o
f 
N

e
w

 P
a
c
k
e
ts

 (
p
k
ts

)

Camera traffic

Non-camera traffic 1

Non-camera traffic 2

Figure 15: Identifying camera traffic. Figure 16: Localization accuracy. Figure 17: Localization time.
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Figure 18: Localization error

vs. initial angle (𝜓 ).
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Figure 19: Localization time

vs. initial angle (𝜓 ).
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Figure 20: Localization error

vs. speed (𝑣).
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Figure 21: Localization time

vs. speed (𝑣).

angle, denoted with𝜓 . The motion sensor of the Blink XT2 camera

has an about 105◦ horizontal angle of view. The initial angle can

be thus adjusted from 52.5◦ to 90◦; otherwise, the field of view

would be obstructed by the wall. We vary𝜓 from 90◦ to 55◦, with

decrements of 5◦. For each𝜓 , we perform 10 attempts to localize

the camera.

Figure 18 shows the localization errors for different initial angles.

We can see the localization error remains consistently small for

different𝜓 . Specifically, the median localization error ranges from

5.7 to 8.0 cm, and the average localization error is just 5.2 cm.

Figure 19 presents the corresponding localization time. We can

observe themedian localization time ranges from 130 to 136 seconds.

These results demonstrate that MotionCompass is robust to the

change of the initial angle.

Impact of Movement Speed: We change the user’s movement

speed 𝑣 from 0.2 m/s to 1.0 m/s, with increments of 0.2. For each 𝑣 ,

we perform 10 attempts of MotionCompasss to localize the camera.

Figure 20 illustrates the localization errors when the movement

speed varies. We observe the localization error slightly increases

with the value of 𝑣 , demonstrating the robustness ofMotionCompass

to the speed variation. Specifically, when 𝑣 = 0.2 m/s, the mean

localization error is 3.6 cm, while it increases to 10.7 cm for 𝑣 =

1.0 m/s. This is because a higher speed would naturally result in

larger error in distance measurement. On the other hand, with a

higher speed, the localization can be finished in a shorter time.

Figure 21 shows the relationship between the localization time and

the movement speed. We observe that the median localization time

equals 150 seconds when 𝑣 is 0.2 m/s, and it drops to 117 seconds

when 𝑣 is increased to 1.0 m/s.

5.3 Overall Localization Performance

We test all cameras in both indoor and outdoor environments. For

localizing each camera at every selected location, we perform 25

trials. Thus, we have 18×2×5×25 = 4, 500 attempts in total. For

each attempt, we compute the localization error and record the

time spent on finishing the task (i.e., localization time).

We compute the mean localization error and time for a camera

in G1 (with one motion sensor) or G2 (with two motion sensors),

as shown in Figures 22 and 23. We see three tendencies. First, the

performance is consistent across different locations in each environ-

ment. The mean localization error is always below 9.2 cm and the

mean localization time stays less than 178 seconds. Second, in both

environments, on average, a camera in G2 causes a larger localiza-

tion error and requires longer localization time than a camera in G1.

This is because a camera in G2 has a larger motion detection zone.

The attacker thus has to walk longer to create the simulating mo-

tion, and also a larger localization error may be introduced. Finally,

for each group of cameras, the mean localization error is larger

and the mean localization time is longer in outdoor environment

compared with indoor. This appears due to the fact that the outdoor

environment provides a wider space and the user may spend longer

time generating the simulating motion.

Figures 24 and 25 show the localization errors for different cam-

eras in the indoor and outdoor environments. We can see that for

all cameras under both scenarios, a high localization accuracy can

be always achieved. Specifically, in the outdoor environment, the

median localization error has a range of 3.7 to 6.5 cm for cameras 1-

15, and 7.8 to 9.2 cm for cameras 16-18. Meanwhile,MotionCompass

is able to achieve a minimum localization error ranging from 1.0

to 2.3 cm for cameras 1-15, while for cameras 16-18, the achieved
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Figure 22: Mean localization error. Figure 23: Mean localization time.
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Figure 24: Outdoor localization error.

1 2 3 4 5 6 7 8 9 101112131415161718

Camera ID

0

5

10

15

L
o

c
a

liz
a

ti
o

n
 E

rr
o

r 
(c

m
)

Figure 25: Indoor localization error.
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Figure 26: CDFs of 𝐷𝑖𝑛 and 𝐷𝑜𝑢� .
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Figure 27: CDFs of �𝑖𝑛 and �𝑜𝑢� .

minimum localization error varies from 3.1 to 4.5 cm. In the indoor

environment, the localization error is slightly smaller than that in

the outdoor environment overall. These observations convincingly

show MotionCompass works for different cameras in both environ-

ments, and cameras with two motion sensors cause slightly higher

localization errors than cameras with one motion sensor.

Figure 26 plots the empirical cumulative distribution functions

(CDFs) of the localization errors 𝐷𝑖𝑛 and 𝐷𝑜𝑢� for different groups

of cameras under indoor and outdoor environments. We can see for

cameras in G1, 𝐷𝑖𝑛 and 𝐷𝑜𝑢� are less than 9.0 cm with probabilities

98.1% and 92.0%; for cameras in G2, 𝐷𝑖𝑛 and 𝐷𝑜𝑢� are less than

12.0 cm with probabilities 94.5% and 88.8%. These results again

demonstrate that outdoor environment or more motion sensors

may lead to a higher localization error, but also confirm conclusively

that MotionCompass is robust against different environments and

cameras. Figure 27 plots CDFs of the localization time �𝑖𝑛 and

�𝑜𝑢� for G1 and G2 under both environments. Overall, the outdoor

environment or more motion sensors cause longer localization time.

Specifically, �𝑖𝑛 and �𝑜𝑢� are less than 137 and 161 seconds with

probability 90.0% for G1, and they are less than 166 and 185 seconds

for G2 with the same probability.

5.4 Localization of Multiple Cameras

In some situations, there are multiple wireless cameras with over-

lapped fields of view in an area. The proposed method monitors

and analyzes the wireless traffic based on MAC. Therefore, we can

simultaneously monitor multiple traffic �ows, each of which be-

longs to a corresponding wireless camera, and different cameras

will not interfere with each other’s localization.

Table 3: Localization time vs. camera count.

Camera count
Localization time (seconds)

Average Minimum Maximum

1 132 126 149

2 276 252 295

3 387 368 412

4 510 501 559

5 622 609 677

To verify the effectiveness of pinpointing multiple cameras, we

deploy different numbers (1 to 5) of cameras in the tested room.

For multiple cameras, we manually adjust their fields of view and

make them partially overlapped. For each camera count, Motion-

Compass is launched for 25 attempts. We randomly change the

location of each camera every attempt. We findMotionCompass can

successfully find each camera with a small localization error, similar

with which we obtain for localizing a single camera. Table 3 shows

the mean, minimum, and maximum localization time for different

numbers of cameras. We observe the localization time is almost

proportional to the camera count, demonstrating that performing

localization of multiple cameras equals performing localization of

a single camera for multiple times.

5.5 User Study

We recruited 5 volunteers and asked each of them to perform Mo-

tionCompass to figure out the location of a hidden wireless camera

randomly selected and deployed in the aforementioned outdoor or

indoor environment. Every participant performed 25 attempts for

each environment. For each deployment, we make sure that the
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Figure 28: Localization errors for di�erent users.

Table 4: Localization time for di�erent users.

User ID
Localization time (seconds)

Average Minimum Maximum

U1 135 129 146

U2 141 130 147

U3 143 133 152

U4 137 128 145

U5 140 127 151

camera’s field of view is not obstructed by the wall and it monitors

an area that the participant can arrive at. We compare the local-

ization result and the true location of the camera to quantify the

localization error.

Figure 28 shows the obtained localization errors for different

users under outdoor and indoor environments. We can observe that

the maximum localization error for each user is always below 10.0

cm, while for some users (e.g., user 2 in the indoor environment),

they can achieve a localization error of as small as 1.0 cm. Mean-

while, in the outdoor environment, the mean localization error

ranges from 3.8 to 7.0 cm for all users; and such a range becomes

4.5 to 6.9 cm in the indoor environment. These results demonstrate

that the localization accuracy of MotionCompass is quite consis-

tent among different users. Table 4 presents the mean, minimum,

and maximum localization time for different users. We also see a

consistent average localization time for all users varying between

135 and 143 seconds, indicating a user can normally localize the

camera with less than 150 seconds. This verifies the practicality of

the proposed camera localization strategy.

6 DISCUSSIONS

6.1 Limitations

The Requirements of WiFi and Motion Stimuli. MotionCom-

pass sniffs in 802.11 (WiFi) networks and it does not work for

cameras using cellular connections. Also, it requires to generate

motion in the target area in order to activate the wireless camera.

The attacker can walk in disguise or ask a helper to perform motion.

Alternatively, she can utilize a moving robot/drone to introduce

motion. Such methods, however, inevitably bring extra hardware

cost and require the attacker to operate the drone/robot �exibly.

We leave exploring the impact of different motion stimuli to our

future work.

Customized Activity Zone or Occlusion E�ects. Our ex-

periment is performed with cameras in default and recommended

settings (i.e., with the maximum activity zone). In practice, some

wireless cameras do not support activity zone customization (e.g.,

Canary Flex, Conico Cam, and AIVIO Cam), and some (e.g., Arlo

Pro 2) allow users to create one or multiple activity zones under

certain circumstances. For example, Arlo cameras allow users who

subscribe to Arlo Smart plans or who connect the camera to con-

tinuous power to create up to 3 zones [5]. Additionally, there may

be obstacles occluding the camera’s vision; this is actually quite

similar conceptually to activity zone customization as it involves

reducing the space surveyed by the camera.

We discuss two customization scenarios. First, the owner only

creates one activity zone: if the customized activity zone has a

slightly smaller size compared with the default one (or if there is a

small obstacle), we expect that MotionCompass will still work, but

with a small sacrifice in localization accuracy as the attacker can

estimate the default activity zone with the measured one; when the

customized activity zone is too small (or there is a large obstacle

blocking most of the zone),MotionCompass may fail, however, such

a setting leaves a significant security risk as the camera can only

alert the motion within a small area. Second, the owner creates

multiple activity zones: the attacker can first determine all separated

activity zones through stimulating motion and resultant wireless

traffic, and then utilize such information to estimate the default

activity zone and further pinpoint the camera.

Cameras without Uploading Videos. Cameras with local SD

cards may not upload any videos. Thus, no real-time wireless cam-

era traffic would be generated, leading to the failure of Motion-

Compass. Meanwhile, such cameras also prevent their owners from

receiving the recording notifications in time.

Wide-angle Cameras. If a wide-angle camera covers the whole

room, the relationship between the intercepted wireless traffic and

the performed motion path cannot be obtained. Thus, MotionCom-

pass fails. However, using such a mode (with full field of vision),

the camera would be triggered frequently. As a result, the battery

may be depleted quite quickly.

6.2 Defense Strategies

MotionCompass explores the relationship between motion and wire-

less traffic to localize the camera. An intuitive solution is thus to

disrupt the attacker from obtaining this relationship. The camera

owner may manually turn off the motion sensor (e.g., [33]) so that

the camera goes into standby mode and will not respond to any

motion. However, this solution is impractical as it will make the

camera lose the capability of timely sensing intrusion and sending

an alert. Also, if the camera always maintains active, the battery

will be drained quickly.

A practical defense is to randomize the recording length. Since

we cannot predict when the motion occurs, and need to make sure

that the owner can receive the alert in time, we cannot add extra

recording or delay the recording at the beginning of the motion.

Instead, we can continue to record for an extra random period

once the motion stops. As a result, the attacker obtains inaccurate

localization results. This technique, however, will speed up the

camera’s power consumption.

Alternatively, we can postpone uploading motion-induced video.

Once the motion is detected, current wireless cameras not only
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instantly send an alert, but also start recording and immediately up-

load recorded video. With this defense, the camera is still activated

by any motion in the activation zone, while it only sends the alert

and stores the recording locally. In this way, the motion detection

capability is not affected. Meanwhile, the attacker only observes

short wireless traffic for the introduced motion in the activation

zone. As there is no longer a determined relationship between the

motion trajectory and the resultant wireless traffic, the attacker

is unable to pinpoint the camera. However, this defense also has

disadvantages, such as requiring the camera to be equipped with a

large local memory.

7 RELATED WORK

Traffic Analysis: Traffic analysis can achieve various applications,

including detecting drones [31, 35], inferring apps [36, 38], mon-

itoring misbehaving apps [42], enforcing network access restric-

tions [14], identifying actions on apps [11], and detecting hidden

wireless cameras [10]. Unlike existing traffic analysis based ap-

proaches (e.g., [10, 36, 38, 42]), which utilize the inherent traffic

patterns (side-channel information leaks) to detect devices or apps

which generate them, our work correlates the traffic pattern with

human activities.

Hidden Wireless Camera Detection: There are emerging re-

search efforts performing hidden wireless camera detection due to

their popularity and the privacy concerns associated with unautho-

rized videotaping [9, 10, 22, 24, 29, 39]. For example, [10] proposes a

hidden wireless camera detection approach by utilizing the intrinsic

traffic patterns of �ows from wireless cameras. [24] investigates

the responsive traffic variation corresponding to the light condition

change to determine whether the traffic is produced by a wireless

camera. [29] proposes to detect wireless cameras by monitoring

network traffic that indicates the characteristics of corresponding

audio transmission. All those traffic pattern based techniques, how-

ever, can only detect the existence of traffic �ows belonging to

wireless cameras, and they cannot tell the exact location of the

camera. In contrast, our work not only detects wireless camera

traffic but also pinpoints the location of the camera.

Besides, [22] utilizes exterior received signal strength (RSS) mea-

surements to localize wireless cameras behind the wall with room-

level accuracy (i.e., a median error of around 4-5 meters). With this

method, the adversary does not need to communicate with the tar-

get. As the RSS-based approach and our method deal with wireless

camera localization in different scenarios leveraging different tools,

they can be complementary.

8 CONCLUSION

We leverage wireless traffic stimulated by specifically designed

motion, and propose MotionCompass, a lightweight technique for

pinpointing the location of a wireless camera. Its novelty stems

from identifying and proving the motion activation property of

wireless cameras may disclose the camera’s location. By generating

customizedmovement which stimulates the camera to emit wireless

traffic, and correlating the motion trajectory with observed wireless

traffic, MotionCompass can achieve robust camera localization. We

develop an Android app to implementMotionCompass, and verify its

effectiveness and efficiency via extensive real-world experiments.
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