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ABSTRACT

Wireless security cameras are integral components of security sys-
tems used by military installations, corporations, and, due to their
increased affordability, many private homes. These cameras com-
monly employ motion sensors to identify that something is occur-
ring in their fields of vision before starting to record and notifying
the property owner of the activity. In this paper, we discover that
the motion sensing action can disclose the location of the camera
through a novel wireless camera localization technique we call
MotionCompass. In short, a user who aims to avoid surveillance
can find a hidden camera by creating motion stimuli and sniffing
wireless traffic for a response to that stimuli. With the motion tra-
jectories within the motion detection zone, the exact location of
the camera can be then computed. We develop an Android app to
implement MotionCompass. Our extensive experiments using the
developed app and 18 popular wireless security cameras demon-
strate that for cameras with one motion sensor, MotionCompass
can attain a mean localization error of around 5 cm with less than
140 seconds. This localization technique builds upon existing work
that detects the existence of hidden cameras, to pinpoint their exact
location and area of surveillance.
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« Security and privacy — Mobile and wireless security; Pri-
vacy protections.
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1 INTRODUCTION

Due to their flexibility and greatly simplified installation, wireless
security cameras are becoming more widely deployed than tradi-
tional wired cameras to monitor and report trespassing or other
unauthorized activity. In the latest study conducted by Market Re-
search Future in 2020, it is forecasted that the global wireless video
monitoring and surveillance market will increase at a high annual
growth rate of 16.85% over 2017 to 2023 [26].

Some wireless security cameras are made visible as a deterrence
measure, but that visibility may mean (1) they are more susceptible
to damage or theft [13]; (2) burglars may become more interested in
breaking in as they think the camera signals that there are valuables
inside the property [16]; (3) it is easier to avoid being recorded,
e.g., an adversary may find the blind spots (i.e., areas not within
the peripheral vision of the camera) and leverage them to evade
being recorded [21]. For these reasons, people may install wireless
cameras inconspicuously. They are thus naturally attractive targets
to adversaries who want to bypass the surveillance.

The rapid proliferation of wireless cameras also brings privacy
concerns associated with unauthorized video recording [25, 41],
especially considering the progressively smaller size of spy cameras.
These cameras can be kept hidden easily such that their targets
are unaware of their existence. For example, according to a survey
of 2,023 Airbnb guests that was conducted in 2019, 58% of them
were concerned that property owners might install hidden cameras
inside their rooms, and meanwhile as high as 11% said that they had
discovered a hidden camera in their Airbnb [18]. As thus, detection
of wireless cameras is drawing increasing attention for privacy
protection [9, 10, 20, 24, 39].

Traditional ways to detect a wireless camera mainly include
Radio Frequency (RF) scanning, lens detection and physical search.
The latter two methods are cumbersome as they require to inspect
every corner of the target area. RF scanning may work when the
camera is actively transmitting, but existing work (e.g., [19]) can
only detect the existence of wireless cameras but cannot tell their
exact locations.

Personal privacy is improved by identifying if a wireless camera
exists in various locations, such as hotel rooms, Airbnb rentals,
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Figure 1: Motion-activated wireless camera.

and office buildings. However, detection is not sufficient on its
own, as the camera owner may claim it is somewhere outside of
the room or installed by another. We argue that it is significantly
important to pinpoint the locations of hidden wireless cameras.
For example, a victim whose privacy is violated can obtain direct
and solid evidence by finding the physical camera that records. We
also realize that this localization technique is a two-edged sword
in that it can also be utilized by malicious users such as a burglar
localizing a home’s security camera in order to avoid its field of
view or otherwise physically disarm it.

A great portion of wireless cameras are equipped with built-in
motion sensors, such as best-selling ones — Amazon Blink XT2 [3]
and Arlo Pro 2 [1]. Because of the volume of data collected by
wireless cameras, wireless cameras remain in standby mode until
movement is detected, at which point the camera turns on and starts
recording, uploading captured video to the cloud backend server
and sending a notification to the property owner. The network
correspondingly exhibits sudden high wireless traffic, as shown in
Figure 1. The camera will then continue to record until the motion
stops. After that, it reverts to standby mode. As wireless security
cameras installed at different locations have different coverage ar-
eas, we can then determine the camera’s coverage area to find the
location of the camera. Specifically, we artificially induce motion
at a spot (e.g., asking a helper to walk or utilizing a moving ro-
bot/drone); if we observe a correspondingly high wireless traffic,
we know that this spot may be monitored by a camera, and may
determine the camera’s possible area accordingly. With customized
motion trajectories, we can then narrow down until pinpointing
the location of the camera.

In practice, there exist other different types of wireless traffic
flows generated by non-camera devices, such as laptops, smart-
phones or tablets. Thus, it is challenging to distinguish which
traffic flows belong to wireless cameras, especially considering
that the wireless local area networks (WLANS) employ encryption
techniques such as WEP, WPA, and WPA2 to prevent information
compromise from casual eavesdropping [34].

Almost all current commodity network devices deploy 802.11
wireless protocols, in which an inherent weakness has been
found, i.e., exposure of link-layer Media Access Control (MAC)
addresses [28]. Each MAC address, which is a persistent globally
unique identifier, discloses the device manufacturer information via
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the first three most significant MAC bytes, i.e., the Organizationally
Unique Identifier (OUI). This thus motivates us to utilize OUI of
MAC addresses to detect the existence of wireless camera traffic.
Specifically, as OUI relies on the camera manufacturers and the
main-stream manufacturers of wireless cameras are limited [10], we
can first pre-build a table of OUIs associated with wireless cameras.
Next, with a captured MAC, we compare its OUI with each entry
in the table. If a match is found, we assume that the wireless traffic
with this specific MAC is generated by a wireless camera.

MAC address eavesdropping and analysis can reveal the exis-
tence of wireless cameras while it is unable to reveal their exact
locations. Thus, another challenge is how to design the motion
stimulation so that the camera location can be found. To address
this problem, we correlate the range of arbitrarily generated motion
with the camera location. In particular, we design novel strategies
to first set up a coordinate system and then compute the camera’s
coordinates for determining its location.

In summary, the major contributions of this paper are as follows:

e Unlike previous extensive research in hidden wireless cam-
era detection, this paper is the first to provide a practical
approach to pinpoint a motion-activated wireless camera.
The proposed technique can be carried out with a single
smartphone, and it needs neither professional equipment
nor connecting to the same network with the target camera.

e We exploit how a motion sensor can act as a compass to
guide us to pinpoint the wireless camera by correlating the
manipulated motion with the resultant wireless traffic gen-
erated by the camera.

e We implement MotionCompass and develop an Android ap-
plication for validating the effectiveness and efficiency.

Roadmap: The rest of the paper is organized as follows. In
Section 2, we introduce preliminaries. Next, in Section 3, we describe
the adversary model and assumptions. Then, Section 4 explains the
detailed wireless camera localization technique. Section 5 presents
experimental results. Section 6 discusses limitations and possible
defenses. Section 7 summarizes related work. At last, Section 8
concludes the paper.

2 PRELIMINARIES

Wireless Security Cameras: Growing awareness of safety and
security has boosted the growth of the wireless camera markets [6].
Generally, wireless cameras process the video/audio streams (e.g.,
compressing them to a smaller size that facilitates transmission)
and then upload them through a WLAN to a cloud backend server.
Data transmission from the camera to the base station or router is
regulated by wireless protocols.

Wireless security cameras are usually equipped with motion or
sound sensors for increased security, so that once motion or sound
is detected, the camera turns on and starts recording, uploading
captured video to the cloud backend server and sending a notifica-
tion to the property owner. Table 1 lists some technical parameters
of popular wireless cameras. Sound-triggered systems often suffer
from high false alarms via barking dogs, loud cars or other ran-
dom noise. In this paper, we focus on localizing motion-activated
wireless cameras, which have been widely adopted for security
surveillance.
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Table 1: Motion sensor equipped wireless cameras.

Detection
Zone | T

Model Chipset ~ Alert Protocol Hub
AIVIO Cam MediaTek M’ WiFi  Yes
Arlo Essential Broadcom M/S™ WiFi/B*  No
Arlo Go Broadcom M 3G/4G-LTE No
Arlo Pro 2 Broadcom M/S WiFi/B  Yes
Arlo Pro 3 Broadcom M/S WiFi/B  Yes
Arlo Ultra Broadcom M/S WiFi/B  Yes
Blink Indoor MediaTek M/S WiFi  No
Blink XT2 TI M/S WiFi  Yes
Blue by ADT Broadcom M WiFi  No
Canary Flex T M WiFi  No
Conico Cam T M WiFi No
EufyCam 2C MediaTek  M/S WiFi  Yes
Reolink Argus 2 MediaTek M WiFi  No
Reolink Argus Pro  MediaTek M WiFi  No
Reolink Go T M 3G/4G-LTE  No
Ring Door View T M WiFi  No
Ring Spotlight T M WiFi  No
Ring Stickup Cam T M WiFi  No
Simplisafe Cam Telit M WiFi  No
Swann Wireless MediaTek M WiFi  No
"M: Motion S:Sound  * B: Bluetooth
| Camera Camera
Location Location \ Detection
[ ] Zone
e

(b) Camera in a room.

(a) Camera outside a house.

Figure 2: Camera detection zone examples.

Motion Sensors: Usually, we cannot keep our eyes glued to
our security camera’s feed on phone or computer, especially when
we have multiple cameras. To get rid of this limitation, a wireless
security camera, incorporating a motion sensor, provides a practical
solution. Figure 2 shows the examples of camera detection zones
for outdoor and indoor environments.

There are various types of motion sensors, such as passive in-
frared (PIR), ultrasonic, microwave, and tomographic. A PIR sensor
includes a pyroelectric film material, which is sensitive to radi-
ated heat power fluctuation [23] and converts infrared radiation
into electrical signals. It can thus detect the presence of humans
or other warm-blooded living beings from the radiation of their
body heat [30]. Due to its properties of small size, low cost, power
efficiency and being able to work in dark environment, PIR sensors
are widely used in battery-powered wireless cameras. Without loss
of generality, in this paper, we explore the localization of wireless
cameras equipped with this type of motion sensors.

3 ATTACK MODEL AND ASSUMPTIONS

We consider a general scenario, where a user deploys a motion-
activated wireless security camera to monitor a target area. The
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Figure 3: Three phases of the proposed scheme.

user aims to keep the camera hidden to avoid being noticed. An
adversary aims to pinpoint the location of the camera with the
MotionCompass technique. MotionCompass can also be utilized to
find hidden cameras in untrustworthy hotels or Airbnb rooms,
in which cases the roles of “attacker” and “legitimate user” are
reversed, but for consistency and to prevent confusion, we will use
these roles as just introduced.

We assume the adversary has the capability to sniff the wireless
traffic, and can also safely perform some motion around the camera
without being caught. For example, the adversary can ask a helper
to walk or use a moving robot/drone to introduce manipulated
movement. We also assume that the adversary can move at a known
speed and record the time elapsed so that she can measure the
movement distance. This can be achieved for example by using an
Android app to log all the accelerometer readings for calculating
the speed.

4 CAMERA LOCALIZATION
4.1 Overview

MotionCompass includes three important phases, i.e., camera traffic
finder, camera MAC extraction, and camera traffic manipulation,
as shown in Figure 3.

The first phase determines the wireless traffic associated with
wireless cameras. When the user introduces motion activity within
an interested area, if there is a camera monitoring this area, the
user would observe a wireless traffic pattern that is highly corre-
lated with the movement trajectory. To eliminate the interference
of motion-activated non-camera devices (e.g., smart WiFi motion
sensor [4]), we utilize the second phase, which first collects all
MACs embedded in each traffic flow and then searches the OUI of
each MAC in a table consisting of all OUIs assigned to cameras. If a
match is found, the MAC would be regarded as belonging to a cam-
era. The extracted MACs would be the input of the final phase, and
all traffic flows with them would be monitored. The user then per-
forms motion along specifically designed paths, and pinpoints the
camera’s location by correlating the manipulated motion paths with
the wireless traffic that the monitored wireless camera generates.
We show the details for each phase in the following discussion.

4.2 Camera Traffic Finder

Since there are numerous wireless traffic flows in the air, we need to
shrink the candidates for wireless camera traffic flow. We propose
to generate motion in the target area to stimulate potential cameras
monitoring the area, and then utilize the resultant wireless traffic
to determine candidate traffic flows that may be generated by a
wireless security camera.
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Figure 4: Count of newly captured packets when a user walks
past the detection zone of the camera.

4.2.1 Coarse-grained Activation. Wireless cameras are usually
battery-powered. They sit in standby mode to conserve battery,
and begin to record when they detect motion or sound (i.e., activa-
tion signals). These videos are then sent to the cloud backend server
for secure storage in owners’ library. Also, when the video record-
ing is activated, the camera can send the owner push notifications
or email alerts.

Therefore, in order to observe the wireless traffic of the camera
(i.e., enable the camera to send packets), an attacker can manually
generate the activation signals in a target area. As a result, when the
motion happens to be performed in the motion activity zone, the
camera recording will be then triggered [8]. As shown in Figure 4,
when the camera (Amazon Blink XT2) lies in standby mode, only
a “heartbeat” signal of small size is sent out to the camera base
station or the router at a regular interval in the order of seconds,
indicating normal operation or to synchronize with the other party;
while if human activity is detected, an abnormally high wireless
traffic would be generated accordingly.

4.2.2  Traffic Candidates Determination. When the camera is in
standby mode, the microcontroller unit (MCU) consumes less power
and only processes data monitored by the built-in microphone or
motion sensor. Once the activation signal is detected, the MCU
awakens the Complementary Metal Oxide Semiconductor (CMOS)
sensor to start recording until motion stops, and meanwhile enables
wireless networking module to send out recorded video. As a result,
the traffic generated by the wireless camera exhibits a distinguish-
able pattern, i.e., the volume of camera traffic depends on whether
the camera is activated or not.

The specific pattern of camera traffic provides an adversary
an opportunity to correlate the intentional activation with the
existence of the wireless camera. If a monitored wireless traffic
suddenly becomes faster when a motion is performed and slower
when the motion stops, this traffic flow can be then determined as
a candidate for the camera traffic.

4.3 Camera MAC Extraction

Wireless cameras are powered by systems-on-a-chip (SoCs) from a
few SoC manufacturers such as Broadcom, Ambarella and Texas
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Figure 5: Header format of IEEE 802.11 MAC frame.
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Figure 6: SVM training result for wireless traffic flows.

Instruments (TI). SoCs typically bundle processors, memories, wire-
less networking capabilities, as well as power management circuits.
As aresult, the link-layer Media Access Control (MAC) address of a
wireless camera is determined by corresponding SoC manufacturer
and has the following format: for any six-byte MAC address, the
first half is the Organizationally Unique Identifier (OUI) [17], indi-
cating the device manufacturer; and the second half represents the
unique device ID. MAC address intends to be permanent and glob-
ally unique identification. Thus, the prefix (i.e., OUI) of a wireless
camera’s MAC address is fixed.

The phase of camera MAC extraction aims to extract the MAC
address of the target camera. To achieve this goal, we can compare
the prefix of each MAC extracted from candidate camera traffic
flows with those publicly available prefixes (e.g., [17]) defined by
SoC suppliers to determine whether the monitored traffic belongs
to a wireless security camera.

4.3.1  Collection of MAC Identifiers. IEEE 802.11 wireless protocols
are utilized in almost all commodity network devices [15], including
wireless cameras. The use of 802.11, however, may cause exposure
of MAC addresses [28], and a wireless eavesdropper within radio
range of a wireless transmitter can capture the corresponding MAC
address. Though the data packets generated by the wireless cam-
era are encrypted [12], the raw wireless frames are broadcasted
over the air and the camera transmits its unencrypted MAC (i.e.,
Source Address) in the header of the 802.11 MAC frame, as shown
in Figure 5.

To capture the raw wireless frames of the camera, we should first
know the channels that the camera operates on. Wireless sniffing
tools (e.g., Airmon-ng toolkit [7] which is open source) can capture
raw 802.11 MAC frames and thus help determine all active channels
nearby. The problem then becomes how to sort out the data frames
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generated by the camera from packets generated by various other
devices that pass the first phase.

4.3.2  Camera MAC Match. As aforementioned, the 3-byte prefix
(i.e., OUI) of a MAC is normally fixed and depends on the manufac-
turer and the type of device. For example, Amazon Blink wireless
cameras use HongHai’s chipset for WiFi communication, and the
OUI of their MACs starts with “1C-BF-CE”, where “1C” denotes the
HongHai company and “BF-CE” indicates the camera department.

The uniqueness of OUI motivates us to firstly build a library
containing OUIs of all cameras on the market, and then utilize it
to determine whether the monitored traffic belongs to a wireless
camera. We refer to such a table as camera-labeled OUI table. Specif-
ically, if the OUI of a MAC extracted from a monitored packet can
be found in the OUI table, this corresponding traffic is regarded as
being generated by a camera.

MAC Spoofing: Though manufacturers assign MAC addresses
using the global standard, it may not be the case that devices will
actually broadcast the OUI-based MAC that is originally flashed
into the devices. Some devices may enable the user to change the
MAC arbitrarily in software [37, 40]. Thus, the user may use a
non-camera-manufacturer-based OUI for the camera to bypass the
camera traffic detection, or use a camera-manufacturer-based OUI
for a non-camera device to slow down the localization process.
However, recent studies have proposed techniques using a unique
identifier called the Universally Unique IDentifier-Enrollee (UUID-
E), which can successfully recover the device’s original, global MAC
from the spoofed or randomized MAC [27, 28, 37]. Combining with
such techniques to recover real MAC (if MAC spoofing occurs), the
proposed OUI-based traffic analysis still works.

Besides, we can utilize another solution to handle MAC spoofing.
SoCs provide video encoding and data transfer functionality for
wireless cameras. Thus, the traffic patterns of wireless cameras
highly depend on the corresponding SoCs. As most SoCs take simi-
lar encoding methods (e.g., H.264, H.265 and MJPEG), the resultant
traffic patterns are similar as well [10]. This observation motivates
us to first train a Support Vector Machine (SVM) model to clas-
sify traffic patterns, and then utilize it to determine whether each
captured traffic belongs to a wireless camera.

The SVM classifier model is formed using the Scikit-learn li-
braries with Python 3.8.1. We set a threshold based on the aver-
age value of data transmission rates of various wireless devices in
the environment. For each traffic flow, we extract its data trans-
mission rate along with the difference between this rate and the
threshold. Figure 6 shows the result of running SVM on 400 traffic
flows coming from both wireless cameras and non-camera devices,
demonstrating the success of distinguishing traffic flows generated
by wireless cameras.

4.4 Camera Traffic Manipulation

Camera traffic manipulation aims to shrink the possible candidates
of the target camera determined in the previous phase into one and
also pinpoint its exact location. We begin by setting up a listener
to monitor the traffic transmitted from all candidate cameras and
then observe the traffic change of each channel when we provoke
the system with manipulated environmental motion. We then build
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Figure 7: Total packet count vs. motion duration.

a model to correlate the camera location with the motion pattern,
which directly affects the traffic generated by the camera.

4.4.1  Network Traffic Monitoring by MACs. By setting up a packet
monitor with existing tools, we can listen to the traffic coming from
candidate cameras. Specifically, we detect if the traffic volume is
changed and record the change of packet count.

If we purposely introduce human activity in a selected area,
where a motion-activated camera happens to monitor, the camera
will become awakened and generate traffic volume corresponding
to the time that the manipulated activity lasts. On the other hand,
if the monitored traffic has no change, we can determine that the
candidate camera is not monitoring the area where the activity is
performed. Motivated by this observation, we develop a customized
algorithm to shrink the possible camera candidates and localize the
target camera by feeding manipulated stimuli to the motion sensor
and observing resultant traffic volume variation.

4.4.2 Camera Localization. Empirically, we find the longer the
motion duration is, the more (cumulative) packets the camera gen-
erates. We install an Amazon Blink XT2 camera and Arlo Pro 2
camera on the wall with a downward angle and monitor the activity
in the detection area, respectively. For each scenario, we monitor
the traffic generated by the camera and record the correspond-
ing amount of the transmitted packets when a user passes nearby
within different durations (i.e., manually producing activity within
the coverage range of the motion sensor).

Figure 7 presents the variation of total packet count with the
motion duration for the two different cameras. The obtained packet
count shows a nearly linear correlation with the motion duration.
For example, when the human activity within the detection zone
lasts for 1 second, the packet counts for Blink XT2 camera and
Arlo Pro 2 camera are 100 and 155 respectively, and also for every
2 seconds, the corresponding packet counts for the two cameras
increase by an average of 80 and 197 (i.e., network throughput
maintains almost constant).

Camera Activation Detection: The discovered correlation be-
tween exposure time (the duration when the camera is activated)
and total packet count can be then explored to determine whether
the camera is activated by a user when she is able to sniff wireless
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traffic and obtain the total packet count. Specifically, in this work,
we consider a linear function approximation architecture where
the count N of network packets generated by a wireless camera is
approximated as

N=a+R-At, (1)

where a is a constant, R represents the throughput (i.e., the rate
at which the activated camera generates packets), and At denotes
exposure time.

With the linear model, we can determine whether the user per-
forming the specified motion is still in the detection range of the
motion sensor. Specifically, if the observed total packet count does
not fit the linear model with a significant deviation, the performed
motion at this time will be determined as out of the detection range
of the motion sensor.

Typically, the field of view of a PIR sensor is at 105° or 110°
horizontally and 80° vertically. If more PIR sensors are utilized
simultaneously, the corresponding detection range can be wider.
For example, Arlo Ultra camera has dual PIR sensors and has a
horizontal angle of view of 150° [2]. We consider a camera deployed
on a vertical wall (which aligns with most practical scenarios). Note
for other cases, we can regard that the camera is deployed on
a virtual wall (i.e., a plane perpendicular to the floor). Thus, the
camera localization problem can be converted to computing the
coordinates of the camera, when the bottom left corner of the wall
is regarded as the Origin.

4.4.3 Coordinates Calculation: Special Case. In order to obtain the
maximum horizontal breadth, the camera body is often mounted
perpendicular to the wall. Also, in the general case, the camera can
be swiveled in any direction, and it can be mounted at any angle to
the wall as long as its view is not obstructed by the wall. We first
address the special case when the camera is mounted perpendicular
to the wall.

We propose a two-step procedure to pinpoint the camera. As
shown in Figure 8, a user can perform motion along two paths with
an average speed of v and simultaneously monitor the wireless
traffic, including,

1. Moving parallel to the wall from left to right (or in the oppo-
site way), as shown in Figure 8 (a): when the traffic indicates
that the user enters and leaves the detection range, the re-
spective locations are marked as A and B; the user also tracks
the corresponding time #; and t; for calculating the walking
distance s within the detection range, i.e., s =|AB|=0v-(t2—11).
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Figure 9: Calculation of ¢y for the special case.

2. Vertically getting out of the detection range with the start
location at the midpoint M of the line segment AB, as shown
in Figure 8 (b): when it is determined that the user leaves the
detection range, the location is marked as D; similarly, the
start time and the time the user leaves the detection range are
recorded as 3 and 4, and the new walking distance s” within
the detection range can be computed as s’ =|MD|=v- (t4—13).

With step 1, we can obtain the x-axis coordinate cy of the cam-
era location (i.e., point C). For better understanding the calculation
process, we plot the motion path 1 in the xz-plane, as shown in Fig-
ure 9, where C’ denotes the projection of the camera location onto
the x-axis. Assume that the horizontal distance between location A
and the z-axis is ay, and the distance between location A and the
wall is a. Both ay and a; can be easily measured by the user. Thus,
we can calculate the camera’s x-coordinate as
)

With only motion path 1, we cannot determine the height ¢, of
the camera location. Thus, we perform motion path 2 beginning
with M towards the outer edge of the detection range (i.e., the line
MD is perpendicular to the x-axis). To demonstrate how to calculate
cy, similarly, we plot the plane through the points C, M, and D, as
shown in Figure 10.

A general rule of thumb is to install the security camera at a
downward angle for better monitoring the target area. Let o de-
note the camera installation angle, which is the angle between the
camera optical axis (i.e., the direction that the camera faces) and
the ground. Also, we use § to represent the vertical angle of the
camera. The camera optical axis divides J into two equal angles.
With step 1, we can calculate the z-coordinate m, of point m, which
is equal to a,. Meanwhile, we utilize y to denote angle /DCC’. We

Y
tany=

We can then compute the camera’s y-coordinate as

Cx = ax +5/2.

thus have

Il
—
N
|
S
<
+
[avl

mg+s’ . (3)

o= a,+s’
Y7 tan[(zr — 22 +6)/2]

©

4.4.4 Coordinates Calculation: General Case. As aforementioned,
the camera is not always mounted perpendicular to the wall. The
camera body may be pivoted to the left or right. As a result, with
the above two-step procedure, the camera may not have the same
x-axis coordinate with the midpoint M of motion path 1. This is
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Figure 11: Improved procedure for the general case.

because the line MC’ (C’ is the projection of the camera location C
onto the x-axis) is not necessarily perpendicular to the x-axis.

We then propose an improved two-step procedure for determin-
ing the coordinates of the camera. Specifically,

1. As shown in Figure 11(a), the user moves from left to right (or
vice versa) twice and generates two parallel motion paths.
Similarly, the user records the locations when she enters
and leaves the detection range for each motion path. Four
points A, B, A” and B’ are obtained, and the midpoints of
the line segments AB and A’B’ are denoted with M and M’.
The walking distance |AB| is denoted as s. The user then
draws a line through M and M’, and it intersects the x-axis
at the point C’ (i.e., the projection of point C onto the x-
axis). With the points A, B and C’, the user can measure
angle /AC’B and find its angle bisector. The user can draw
another line parallel to the x-axis and through point M, and
it will intersect the above angle bisector at a point, denoted
with M”.

2. As shown in Figure 11(b), the user then gets out of the de-
tection range with the start location at point M"” along the
angle bisector (i.e., line C’M"’) of angle /AC’B. When it
is determined that the user leaves the detection range, the
location is marked as D. The start time and the time the
user leaves the detection range are recorded as t5 and f.
The walking distance s’ in this step can be measured as
s"=|M"D|=v- (ts — t5).

With the first step, we can calculate the x-axis coordinate cy of the
camera. As shown in Figure 12, the user can measure the angle 0
between the first or second motion path and the x-axis, and the
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Figure 12: Calculation of c, for the general case.

az
Cx—ay’

angle € between C’A and AB. Thus, we have tan(e + 0) =
and obtain

P
* " tan(e +06)

©)

Cx =

Meanwhile, we can calculate the z-coordinate m; of point M as
m; = az — 5 - sinf. As the line MM" is parallel to the x-axis, the
z-coordinate m// of point m’’ is equal to m;. Let f§ = ZASB, and we
then have ZOC’M"" = LOC’A+ LAC'M"" =€+ 0 + f. As a result,
. IAf| — m

we obtain |C'M"’| = —sin(e+29+ﬂ)'

The calculation process of the camera’s y-coordinate c is sim-
ilar to that in the special case. ACC’D is a right triangle where
angle /CC’D is the right angle, and the angle £DCC’ (ie., y) is

the same for both cases, ie., y = % —-a) + g We then have
_ |[C’M"|+IM"D| .
tany = o and thus obtain

_ (2a; —s-sin0)/(2-sin(e+ 0+ f)) + s’
v= tan[ (7 — 2a +0)/2]

(6)

5 EXPERIMENTAL EVALUATION

We implement MotionCompass on the Android platform. Figure 13
shows the designed user interface (UI). The default mode for a smart-
phone’s network interface card (NIC) is managed mode, in which it
only listens to the traffic that comes for it and discards any packets
not destined for it. While MotionCompass needs to listen to all the
wireless traffic nearby, the NIC needs to be in monitor mode. We
achieve the monitor mode function based on Airmon-ng tools and
the Android device running the Kali NetHunter, which is a popular
open-source Android ROM penetration testing platform [32].

5.1 Evaluation Setup

The adversary first scans the possible MACs for wireless cameras
and then performs manual motion to stimulate the camera. By
measuring the distances of performed motion paths, as well as the
initial parameters, such as the coordinates (ay, a;) of the start point
within the camera detection range when the attacker introduces
motion along the first motion path, and the angle 6 between the
first motion path and the wall, the adversary can then calculate the
exact location of the camera.

Testing Cameras: We test 18 most popular wireless cameras, as
shown in Table 2. Those cameras can be divided into two groups:
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Table 2: The list of wireless security cameras we test.

CameraID  Model Amount of PIR Sensors
1 AIVIO Cam 1
2 Arlo Essential 1
3 Arlo Pro 2 1
4 Arlo Pro 3 1
5 Blink Indoor 1
6 Blink XT2 1
7 Blue by ADT 1
8 Canary Flex 1
9 Conico Cam 1
10 EufyCam 2C 1
11 Reolink Argus 2 1
12 Reolink Argus Pro 1
13 Ring Door View 1
14 Simplisafe Cam 1
15 Swann Wireless 1
16 Arlo Ultra 2
17 Ring Spotlight 2
18 Ring Stickup Cam 2

G1 consisting of cameras (ID 1-15) with one motion sensor, and G2
including cameras (ID 16-18) with two motion sensors.
Testing Scenarios: two scenarios are tested.

e Outdoor: we conduct the experiment outside a typical Amer-
ican single-family house. The camera is installed at five dif-
ferent locations with different fields of view on the front
outside wall (with a width of 10 m and a height of 5.5 m).

e Indoor: we select a bedroom to perform the experiment. We
also place the camera at five different locations: two in the
top-left and top-right corners of an inside wall (with a width
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Figure 14: Layout of the experimental environments.

of 5.5 m and a height of 2 m), one on top of the headboard,
and two sitting on the nightstands beside the bed.

Figure 14 shows the selected positions for the camera in respective

environment. The camera can be mounted at different angles along

the wall. We do not consider the cases when most areas in the cam-

era’s field of view are obstructed by the wall, as recording capability

of the camera is highly restricted under these circumstances.
Metrics: We use the following two metrics.

e Localization error: This is measured as the Euclidean distance
between the camera’s estimated position and its correspond-
ing true location.

e Localization time: This is the amount of time spent on ob-
taining the exact location of the camera.

5.2 Case Study

In this example, a Blink XT2 camera is installed at Location 2 of the
house, as shown in Figure 14 (a). MotionCompass is then launched
for 10 times. We manually rotate the camera horizontally or verti-
cally to make the camera aim at different areas for each time.

During an example test, the user determines there exists a wire-
less camera monitoring the target area (i.e., the drive way of the
house). Figure 15 shows the traffic flow generated by different de-
vices. The user initiates the continuous movement in the target
area. We observe a strong correlation between the camera traffic
throughput and the motion. The count of newly generated packets
matches with the newly performed motion. However, non-camera
traffic flows do not have an obvious relationship with the motion.
By comparing MAC addresses, we further find the non-camera
traffic flows 1 and 2 belong to an iPhone in use and an Android
device in standby mode, respectively. For all 10 tests, the camera
traffic is identified successfully.

We compare estimated x- and y-coordinate of the camera with
their respective true values, and also calculate the localization error.
Figure 16 shows the localization error along with errors in x- and
y-coordinate. We observe that the localization error is consistently
below 9.2 cm. In most tests, the error in x-coordinate is slightly
smaller than that in y-coordinate. Also, the average errors in the
two coordinates are 4.2 cm and 4.9 cm, respectively. These results
show that MotionCompass can achieve a high accuracy. Figure 17
shows the localization time for each test. We can see the camera can
be localized within a range of 125 to 142 seconds, demonstrating
the efficiency of MotionCompass.

Impact of Camera’s Initial Angle: The camera may have a
non-right angle along the wall in the xz-plane (i.e., ground). We
refer to such an angle between the wall and the camera as the initial
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angle, denoted with 1/. The motion sensor of the Blink XT2 camera
has an about 105° horizontal angle of view. The initial angle can
be thus adjusted from 52.5° to 90°; otherwise, the field of view
would be obstructed by the wall. We vary ¢ from 90° to 55°, with
decrements of 5°. For each i/, we perform 10 attempts to localize
the camera.

Figure 18 shows the localization errors for different initial angles.
We can see the localization error remains consistently small for
different /. Specifically, the median localization error ranges from
5.7 to 8.0 cm, and the average localization error is just 5.2 cm.
Figure 19 presents the corresponding localization time. We can
observe the median localization time ranges from 130 to 136 seconds.
These results demonstrate that MotionCompass is robust to the
change of the initial angle.

Impact of Movement Speed: We change the user’s movement
speed v from 0.2 m/s to 1.0 m/s, with increments of 0.2. For each o,
we perform 10 attempts of MotionCompasss to localize the camera.
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Figure 17: Localization time.

Figure 20 illustrates the localization errors when the movement
speed varies. We observe the localization error slightly increases
with the value of v, demonstrating the robustness of MotionCompass
to the speed variation. Specifically, when v = 0.2 m/s, the mean
localization error is 3.6 cm, while it increases to 10.7 cm for v =
1.0 m/s. This is because a higher speed would naturally result in
larger error in distance measurement. On the other hand, with a
higher speed, the localization can be finished in a shorter time.
Figure 21 shows the relationship between the localization time and
the movement speed. We observe that the median localization time
equals 150 seconds when v is 0.2 m/s, and it drops to 117 seconds
when v is increased to 1.0 m/s.

5.3 Overall Localization Performance

We test all cameras in both indoor and outdoor environments. For
localizing each camera at every selected location, we perform 25
trials. Thus, we have 18X2x5x25 = 4,500 attempts in total. For
each attempt, we compute the localization error and record the
time spent on finishing the task (i.e., localization time).

We compute the mean localization error and time for a camera
in G1 (with one motion sensor) or G2 (with two motion sensors),
as shown in Figures 22 and 23. We see three tendencies. First, the
performance is consistent across different locations in each environ-
ment. The mean localization error is always below 9.2 cm and the
mean localization time stays less than 178 seconds. Second, in both
environments, on average, a camera in G2 causes a larger localiza-
tion error and requires longer localization time than a camera in G1.
This is because a camera in G2 has a larger motion detection zone.
The attacker thus has to walk longer to create the simulating mo-
tion, and also a larger localization error may be introduced. Finally,
for each group of cameras, the mean localization error is larger
and the mean localization time is longer in outdoor environment
compared with indoor. This appears due to the fact that the outdoor
environment provides a wider space and the user may spend longer
time generating the simulating motion.

Figures 24 and 25 show the localization errors for different cam-
eras in the indoor and outdoor environments. We can see that for
all cameras under both scenarios, a high localization accuracy can
be always achieved. Specifically, in the outdoor environment, the
median localization error has a range of 3.7 to 6.5 cm for cameras 1-
15, and 7.8 to 9.2 cm for cameras 16-18. Meanwhile, MotionCompass
is able to achieve a minimum localization error ranging from 1.0
to 2.3 cm for cameras 1-15, while for cameras 16-18, the achieved
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Figure 25: Indoor localization error.

minimum localization error varies from 3.1 to 4.5 cm. In the indoor
environment, the localization error is slightly smaller than that in
the outdoor environment overall. These observations convincingly
show MotionCompass works for different cameras in both environ-
ments, and cameras with two motion sensors cause slightly higher
localization errors than cameras with one motion sensor.

Figure 26 plots the empirical cumulative distribution functions
(CDFs) of the localization errors Dj, and Dy for different groups
of cameras under indoor and outdoor environments. We can see for
cameras in G1, Dj, and Doy are less than 9.0 cm with probabilities
98.1% and 92.0%; for cameras in G2, D;, and Dy, are less than
12.0 cm with probabilities 94.5% and 88.8%. These results again
demonstrate that outdoor environment or more motion sensors
may lead to a higher localization error, but also confirm conclusively
that MotionCompass is robust against different environments and
cameras. Figure 27 plots CDFs of the localization time T;, and
Tout for G1 and G2 under both environments. Overall, the outdoor
environment or more motion sensors cause longer localization time.
Specifically, Tj, and Tyy; are less than 137 and 161 seconds with
probability 90.0% for G1, and they are less than 166 and 185 seconds
for G2 with the same probability.

5.4 Localization of Multiple Cameras

In some situations, there are multiple wireless cameras with over-
lapped fields of view in an area. The proposed method monitors
and analyzes the wireless traffic based on MAC. Therefore, we can
simultaneously monitor multiple traffic flows, each of which be-
longs to a corresponding wireless camera, and different cameras
will not interfere with each other’s localization.

Figure 26: CDFs of D;, and Doy;.

224

Figure 27: CDFs of T;, and Tyy;.

Table 3: Localization time vs. camera count.

Localization time (seconds)
Camera count — -
Average | Minimum | Maximum

1 132 126 149
2 276 252 295
3 387 368 412
4 510 501 559
5 622 609 677

To verify the effectiveness of pinpointing multiple cameras, we
deploy different numbers (1 to 5) of cameras in the tested room.
For multiple cameras, we manually adjust their fields of view and
make them partially overlapped. For each camera count, Motion-
Compass is launched for 25 attempts. We randomly change the
location of each camera every attempt. We find MotionCompass can
successfully find each camera with a small localization error, similar
with which we obtain for localizing a single camera. Table 3 shows
the mean, minimum, and maximum localization time for different
numbers of cameras. We observe the localization time is almost
proportional to the camera count, demonstrating that performing
localization of multiple cameras equals performing localization of
a single camera for multiple times.

5.5 User Study

We recruited 5 volunteers and asked each of them to perform Mo-
tionCompass to figure out the location of a hidden wireless camera
randomly selected and deployed in the aforementioned outdoor or
indoor environment. Every participant performed 25 attempts for
each environment. For each deployment, we make sure that the
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Table 4: Localization time for different users.

Localization time (seconds)
User ID — -
Average | Minimum | Maximum

U1 135 129 146
U2 141 130 147
U3 143 133 152
U4 137 128 145
U5 140 127 151

camera’s field of view is not obstructed by the wall and it monitors
an area that the participant can arrive at. We compare the local-
ization result and the true location of the camera to quantify the
localization error.

Figure 28 shows the obtained localization errors for different
users under outdoor and indoor environments. We can observe that
the maximum localization error for each user is always below 10.0
cm, while for some users (e.g., user 2 in the indoor environment),
they can achieve a localization error of as small as 1.0 cm. Mean-
while, in the outdoor environment, the mean localization error
ranges from 3.8 to 7.0 cm for all users; and such a range becomes
4.5 t0 6.9 cm in the indoor environment. These results demonstrate
that the localization accuracy of MotionCompass is quite consis-
tent among different users. Table 4 presents the mean, minimum,
and maximum localization time for different users. We also see a
consistent average localization time for all users varying between
135 and 143 seconds, indicating a user can normally localize the
camera with less than 150 seconds. This verifies the practicality of
the proposed camera localization strategy.

6 DISCUSSIONS

6.1 Limitations

The Requirements of WiFi and Motion Stimuli. MotionCom-
pass sniffs in 802.11 (WiFi) networks and it does not work for
cameras using cellular connections. Also, it requires to generate
motion in the target area in order to activate the wireless camera.
The attacker can walk in disguise or ask a helper to perform motion.
Alternatively, she can utilize a moving robot/drone to introduce
motion. Such methods, however, inevitably bring extra hardware
cost and require the attacker to operate the drone/robot flexibly.
We leave exploring the impact of different motion stimuli to our
future work.

Customized Activity Zone or Occlusion Effects. Our ex-
periment is performed with cameras in default and recommended
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settings (i.e., with the maximum activity zone). In practice, some
wireless cameras do not support activity zone customization (e.g.,
Canary Flex, Conico Cam, and AIVIO Cam), and some (e.g., Arlo
Pro 2) allow users to create one or multiple activity zones under
certain circumstances. For example, Arlo cameras allow users who
subscribe to Arlo Smart plans or who connect the camera to con-
tinuous power to create up to 3 zones [5]. Additionally, there may
be obstacles occluding the camera’s vision; this is actually quite
similar conceptually to activity zone customization as it involves
reducing the space surveyed by the camera.

We discuss two customization scenarios. First, the owner only
creates one activity zone: if the customized activity zone has a
slightly smaller size compared with the default one (or if there is a
small obstacle), we expect that MotionCompass will still work, but
with a small sacrifice in localization accuracy as the attacker can
estimate the default activity zone with the measured one; when the
customized activity zone is too small (or there is a large obstacle
blocking most of the zone), MotionCompass may fail, however, such
a setting leaves a significant security risk as the camera can only
alert the motion within a small area. Second, the owner creates
multiple activity zones: the attacker can first determine all separated
activity zones through stimulating motion and resultant wireless
traffic, and then utilize such information to estimate the default
activity zone and further pinpoint the camera.

Cameras without Uploading Videos. Cameras with local SD
cards may not upload any videos. Thus, no real-time wireless cam-
era traffic would be generated, leading to the failure of Motion-
Compass. Meanwhile, such cameras also prevent their owners from
receiving the recording notifications in time.

Wide-angle Cameras. If a wide-angle camera covers the whole
room, the relationship between the intercepted wireless traffic and
the performed motion path cannot be obtained. Thus, MotionCom-
pass fails. However, using such a mode (with full field of vision),
the camera would be triggered frequently. As a result, the battery
may be depleted quite quickly.

6.2 Defense Strategies

MotionCompass explores the relationship between motion and wire-
less traffic to localize the camera. An intuitive solution is thus to
disrupt the attacker from obtaining this relationship. The camera
owner may manually turn off the motion sensor (e.g., [33]) so that
the camera goes into standby mode and will not respond to any
motion. However, this solution is impractical as it will make the
camera lose the capability of timely sensing intrusion and sending
an alert. Also, if the camera always maintains active, the battery
will be drained quickly.

A practical defense is to randomize the recording length. Since
we cannot predict when the motion occurs, and need to make sure
that the owner can receive the alert in time, we cannot add extra
recording or delay the recording at the beginning of the motion.
Instead, we can continue to record for an extra random period
once the motion stops. As a result, the attacker obtains inaccurate
localization results. This technique, however, will speed up the
camera’s power consumption.

Alternatively, we can postpone uploading motion-induced video.
Once the motion is detected, current wireless cameras not only
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instantly send an alert, but also start recording and immediately up-
load recorded video. With this defense, the camera is still activated
by any motion in the activation zone, while it only sends the alert
and stores the recording locally. In this way, the motion detection
capability is not affected. Meanwhile, the attacker only observes
short wireless traffic for the introduced motion in the activation
zone. As there is no longer a determined relationship between the
motion trajectory and the resultant wireless traffic, the attacker
is unable to pinpoint the camera. However, this defense also has
disadvantages, such as requiring the camera to be equipped with a
large local memory.

7 RELATED WORK

Traffic Analysis: Traffic analysis can achieve various applications,
including detecting drones [31, 35], inferring apps [36, 38], mon-
itoring misbehaving apps [42], enforcing network access restric-
tions [14], identifying actions on apps [11], and detecting hidden
wireless cameras [10]. Unlike existing traffic analysis based ap-
proaches (e.g., [10, 36, 38, 42]), which utilize the inherent traffic
patterns (side-channel information leaks) to detect devices or apps
which generate them, our work correlates the traffic pattern with
human activities.

Hidden Wireless Camera Detection: There are emerging re-
search efforts performing hidden wireless camera detection due to
their popularity and the privacy concerns associated with unautho-
rized videotaping [9, 10, 22, 24, 29, 39]. For example, [10] proposes a
hidden wireless camera detection approach by utilizing the intrinsic
traffic patterns of flows from wireless cameras. [24] investigates
the responsive traffic variation corresponding to the light condition
change to determine whether the traffic is produced by a wireless
camera. [29] proposes to detect wireless cameras by monitoring
network traffic that indicates the characteristics of corresponding
audio transmission. All those traffic pattern based techniques, how-
ever, can only detect the existence of traffic flows belonging to
wireless cameras, and they cannot tell the exact location of the
camera. In contrast, our work not only detects wireless camera
traffic but also pinpoints the location of the camera.

Besides, [22] utilizes exterior received signal strength (RSS) mea-
surements to localize wireless cameras behind the wall with room-
level accuracy (i.e., a median error of around 4-5 meters). With this
method, the adversary does not need to communicate with the tar-
get. As the RSS-based approach and our method deal with wireless
camera localization in different scenarios leveraging different tools,
they can be complementary.

8 CONCLUSION

We leverage wireless traffic stimulated by specifically designed
motion, and propose MotionCompass, a lightweight technique for
pinpointing the location of a wireless camera. Its novelty stems
from identifying and proving the motion activation property of
wireless cameras may disclose the camera’s location. By generating
customized movement which stimulates the camera to emit wireless
traffic, and correlating the motion trajectory with observed wireless
traffic, MotionCompass can achieve robust camera localization. We
develop an Android app to implement MotionCompass, and verify its
effectiveness and efficiency via extensive real-world experiments.
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