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Abstract

Human trajectory prediction is critical for autonomous
platforms like self-driving cars or social robots. We present
a latent belief energy-based model (LB-EBM) for diverse
human trajectory forecast. LB-EBM is a probabilistic model
with cost function defined in the latent space to account
for the movement history and social context. The low-
dimensionality of the latent space and the high expressivity
of the EBM make it easy for the model to capture the multi-
modality of pedestrian trajectory distributions. LB-EBM is
learned from expert demonstrations (i.e., human trajectories)
projected into the latent space. Sampling from or optimizing
the learned LB-EBM yields a belief vector which is used
to make a path plan, which then in turn helps to predict a
long-range trajectory. The effectiveness of LB-EBM and the
two-step approach are supported by strong empirical results.
Our model is able to make accurate, multi-modal, and social
compliant trajectory predictions and improves over prior
state-of-the-arts performance on the Stanford Drone trajec-
tory prediction benchmark by 10.9% and on the ETH-UCY
benchmark by 27.6%.

1. Introduction
Forecasting the future trajectories of pedestrians is crit-

ical for autonomous moving platforms like self-driving
cars or social robots with which humans are interacting.
It has recently attracted interest from many researchers
[15, 64, 25, 50, 3, 7, 28, 32]. See [49] for an overview.
Trajectory forecast is a challenging problem since human fu-
ture trajectories depend on a multitude of factors such as past
movement history, goals, behavior of surrounding pedestri-
ans. Also, future paths are inherently multimodal. Given the
past trajectories, there are multiple possible future paths. We
propose a latent belief energy-based model (LB-EBM) which
captures pedestrian behavior patterns and subtle social inter-
action norms in the latent space and make multimodal tra-
jectory predictions. LB-EBM is learned from expert demon-
strations (i.e., human trajectories) following the principle of
inverse reinforcement learning (IRL) [36, 11, 12, 17].

Traditional IRL approaches [36] first learn a cost function
from expert demonstrations in an outer loop and then use
reinforcement learning to extract the policy from the learned
cost function in an inner loop. These approaches are often
highly computationally expensive. To avoid such an issue,
GAIL (Generative Adversarial Imitation Learning) [21, 7]
optimizes a policy network directly. GAIL can generate
multimodal action predictions given an expressive policy
generator. The multimodality is however modeled implicitly
and completely relies on the policy generator. Our approach
strikes a middle ground between traditional IRL and GAIL.
We learn an energy-based model (EBM) as the cost function
in a low dimensional latent space and map the EBM distribu-
tion to actions with a policy generator. Similar to traditional
IRL, we learn a cost function but our cost function is defined
in a low dimensional space so that our cost function is eas-
ier to model and learn. Resembling GAIL, we also learn a
policy generator which allows for directly mapping a latent
vector to the action trajectory, while we explicitly learn a
multimodal cost function instead of learning it implicitly and
completely relying on the policy generator.

An EBM [59, 38, 40] in the form of Boltzmann or Gibbs
distribution maps a latent vector to its probability. It has
no restrictions in its form and can be instantiated by any
function approximators such as neural networks. Thus, this
model is highly expressive and learning from human trajec-
tories allows it to capture the multimodality of the trajectory
distribution. Our proposed LB-EBM is defined in a latent
space. An encoder is jointly learned to project human tra-
jectories into the latent space and hence provides expert
demonstrations to the latent cost function.

Furthermore, this cost function accounts for trajectory his-
tory and motion behavior of surrounding pedestrians. Thus
sampling from or optimizing the cost function yields a latent
belief, regarding future trajectory, which considers the cen-
tric agent’s behavior pattern and social context surrounding
this agent. A future trajectory is then forecasted in two steps.
We first use the social-aware latent belief vector to make
a rough plan for future path. It is intuitive that human do
not plan every single future step in advance but we often
have a rough idea about how to navigate through our future

1

ar
X

iv
:2

10
4.

03
08

6v
1 

 [c
s.L

G
]  

7 
A

pr
 2

02
1



path, which is based on one’s belief after observing other
agents’ motion. The belief is inherently related to the agent’s
behavior pattern. This forms the intuitive motivation of our
modeling approach. Conditioned on the plan, the trajectory
is then predicted with the assistance of individual motion
history and social cues. Several recent works take two steps
to make trajectory forecast. They either first estimate the
final goal [32] or make a plan on a coarse grid map [29]. We
take a similar approach. The plan in our approach is defined
to be positions of some well-separated steps in the future
trajectory, which can be easily extracted from the data.

The proposed LB-EBM and other modules are learned
end-to-end. We test our model on the Stanford Drone (SDD)
trajectory prediction benchmark and the ETH-UCY bench-
mark and improves the prior state-of-the-art performance by
10.9% on SDD and 27.6% on ETH-UCY.

Our work has the following contributions.

• We propose a latent belief energy-based model (LB-
EBM), following the principle of IRL, which naturally
captures the multimodal human trajectory distribution.

• Our approach predicts multimodal and social compliant
future trajectories.

• Our model achieves the state-of-the-art on widely-used
human trajectory forecasting benchmarks.

2. Related Work
Agents’ motions depend on their histories, goals, social

interactions with other agents, constraints from the scene
context, and are inherently stochastic and multimodal. Con-
ventional methods of human trajectory forecasting model
contextual constraints by hand-crafted features or cost func-
tions [4, 20, 61]. With the recent success of deep networks,
RNN-based approaches have become prevalent. These works
propose to model interactions among multiple agents by ap-
plying aggregation functions on their RNN hidden states
[1, 15, 19], running convolutional layers on agents’ spatial
feature maps [5, 10, 64, 58], or leveraging attention mecha-
nisms or relational reasoning on constructed graphs of agents
[27, 50, 51, 63, 57]. Some recent studies are, however, re-
thinking the use of RNN and social information in modeling
temporal dependencies and borrowing the idea of transform-
ers into the area [13]. We apply these social interaction
modeling approaches with a few modifications in our work.

Modeling Goals. Recent progress has suggested that
directly modeling goals could significantly decrease the er-
ror for trajectory forecasting. [47] introduces a prediction
method conditioning on agent goals. [32] proposes to first
predict the goal based on agents’ individual histories and
then to forecast future trajectories conditioning on the pre-
dicted goal. [29] introduces a two-step planning scheme,

first in a coarse grid then in a finer one, which can be viewed
as directly modeling goals and sub-goals. We follow the gen-
eral scheme of two-step prediction. The plan in our approach
is defined to be positions of some well-separated steps in
the future trajectory, which can be easily extracted from the
data.

Multimodality. Most recent prediction works have em-
phasized more on modeling the multimodality nature of
human motions. [2, 6] directly predict multiple possible ma-
neuvers and generate corresponding future trajectories given
each maneuver. [25, 22] use Variational Auto-Encoders [8]
and [15, 25, 50, 64] use Generative Adversarial Networks
[14, 33] to learn distributions. Many works [29, 44, 46, 54]
also focus on developing new datasets, proposing different
formulations, utilizing latent variable inference, and explor-
ing new loss functions to account for multimodality. Our
work adopts the likelihood-based learning framework with
variational inference. We propose a novel way to model the
multimodality of human trajectories, by projecting them into
a latent space with variational inference and leveraging the
strength of latent space energy-based model.

Value Function. Human behaviors are observed as ac-
tions, e.g. trajectories, but the actions are actually guided
by hidden value functions, revealing human preference and
cost over different actions. Some previous works explicitly
or implicitly model these types of cost functions as inter-
mediate steps for sampling possible futures. These works
generally follow the reinforcement learning formulation of
value functions Q. [37] directly uses Q-Learning to learn
value functions. [60, 24] formulate trajectory planning and
prediction problems as inverse optimal control and GAIL
(generative adversarial imitation learning) problems. [31]
models social interaction by game theory and attempt to
find the hidden human value by fictitious play. P2TIRL
[7] is learned by a maximum entropy inverse reinforcement
learning (IRL). Our work also follows the basic principle of
inverse reinforcement learning to learn human cost functions
explicitly in a latent space.

Energy-Based Models. The energy function in the EBM
[66, 59, 38, 9, 18] can be viewed as an objective function, a
cost function, or a critic [53]. It captures regularities, rules or
constrains. It is easy to specify, although optimizing or sam-
pling the energy function requires iterative computation such
as MCMC. Recently [40, 41, 42] proposed to learn EBM
in a low dimensional latent space, which makes optimizing
or sampling the energy function much more efficient and
convenient. The current work follows this approach.

3. Model and Learning

3.1. Problem Definition

Let xti ∈ R2 denote the position of a person i at time t
in a scene where there are n people in total. The history
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trajectory of the person i is xxxi = {xti, t = 1, ..., tpast} and
XXX = {xxxi, i = 1, ..., n} collects past trajectories of all people
in a scene. Similarly, the future trajectory of this person at
time t is denoted as yti . yyyi = {yti , t = tpast + 1, ..., tpred}
and YYY = {yyyi, i = 1, ..., n} indicate the future trajectory of
the person i and all future trajectories, respectively. The goal
is to jointly predict the future trajectories of all the agents in
the scene or to learn the probabilistic distribution, p(YYY |XXX).

Directly modeling p(YYY |XXX) is essentially supervised learn-
ing or behavior cloning which often fails to capture the mul-
timodality. Instead, we introduce two auxiliary variables.
The first is zzzi which represents the latent belief of the agent
i after observing the trajectory history of his or her own and
surrounding agents,XXX . LetZZZ = {zzzi, i = 1, ..., n}. zzzi is a la-
tent variable since we cannot observe one’s latent belief. The
other auxiliary variable is pppi which denotes the plan of the
agent i considering the latent belief zzzi and trajectory history
XXX . Similarly, let PPP = {pppi, i = 1, ..., n}. pppi can be either
latent or observed. We choose to use a few well-separated
steps of future trajectory, yyyi, to represent one’s plan, making
it an observable. Thus, we can extract plan from the data
to provide supervision signal, making the learning easier.
With the aforementioned setup, we model the following joint
distribution,

p(ZZZ,PPP ,YYY |XXX) = p(ZZZ|XXX)︸ ︷︷ ︸
LB-EBM

Plan︷ ︸︸ ︷
p(PPP |ZZZ,XXX) p(YYY |PPP ,XXX)︸ ︷︷ ︸

Prediction

. (1)

After learning the model, we can follow the above chain
to make trajectory prediction. A well-learned LB-EBM or
cost function captures expert’s belief distribution given tra-
jectory history and motion behavior of surrounding agents.
Sampling from or optimizing this cost function gives a good
belief representation taking account into individual behavior
pattern and social context. This cost function is inherently
multimodal since it learns from the multimodal human tra-
jectories. We can then make a plan with p(PPP |ZZZ,XXX) (the
plan module) by directly generating a trajectory plan. Lastly,
p(YYY |PPP ,XXX) (the prediction module) makes a trajectory pre-
diction given the plan and past history. In the following
section, we detail each part of the decomposed distribution
and introduce related encoding functions.

3.2. LB-EBM

In our approach, the key step is to learn a cost function
defined in a latent belief space. For a latent belief vector zzzi,
the cost function is defined to be

Cα(zzzi, Psocial(XXX)) (2)

where α denotes the parameters of the cost function. Two rel-
evant encoding modules are, Epast which is used to encode
the trajectory history xxxi of each agent and Psocial which is

a pooling module that aggregates {Epast(xxxi), i = 1, ..., n}
to provide the latent belief space with individual behavior
history and social context. Cα(·) takes [zzzi;Psocial(XXX)] as
the input where [ · ; · ] indicates concatenation.

Assuming we have a well-learned cost function, we can
find a zzzi by minimizing the cost function with respect to
it givenXXX , generate a plan with the latent belief, and then
make the trajectory plan. The cost function is learned from
expert demonstrations projected into the latent space. A
plan, pppi, extracted from an observed future human trajec-
tory, yyyi, can be projected to the latent space. Suppose yyyi
consists of 12 time steps and pppi can take the positions at
the 3rd, 6th, 9th, and 12th time steps as the plan. Denote
the projected latent vector to be zzz+i . α is learned from
{zzz+ij , i = 1, ..., n; j = 1, ..., N} where j indicates the jth
scene with N scenes in total. See section 3.6 for the learning
details. The projection or inference is done by an inference
network Einference. The distribution of the inferred latent
belief is qφ(zzzi|pppi,XXX), which is assumed to be a multivari-
ate Gaussian with a diagonal covariance matrix. In partic-
ular, the mean function µφ(pppi,XXX) and covariance matrix
σ2
φ(pppi;XXX) both takes [Eplan(pppi);Psocial(XXX)] as the input

and share the neural network module except the last layer.
Here Eplan is simply an embedding function which encodes
the plan pppi into a feature space to be ready to concatenate
with Psocial(XXX).

The LB-EBM assumes the following conditional proba-
bility density function

pα(zzzi|Psocial(XXX)) (3)

=
1

Zα(Psocial(XXX))
exp [−Cα(zzzi, Psocial(XXX))]p0(zzzi),

(4)

where Zα(Psocial(XXX)) =
∫
exp [−Cα(zzzi, Psocial(XXX))]dzzzi

is the normalizing constant or partition function and p0(zzzi)
is a known reference distribution, assumed to be standard
Gaussian in this paper. The cost function Cα serves as the
energy function. The latent belief vectors of experts zzz+ij are
assumed to be random samples from pα(zzzi|Psocial(XXX)) and
thus has low cost on Cα(zzzi, Psocial(XXX)).

The joint distribution of the latent belief vectors of agents
in a scene is then defined to be

p(ZZZ|XXX) =
n∏
i=1

pα(zzzi|Psocial(XXX)), (5)

where {zzzi, i = 1, ..., n} given the joint trajectory historyXXX
are independent because an agent cannot observe the belief
of other agents.

To sample from LB-EBM, we employ Langevin dynamics
[35, 65, 39]. For the target distribution pα(zzz|Psocial(XXX)),
the dynamics iterates

zzzk+1 = zzzk + s∇zzz log pα(zzz|Psocial(XXX)) +
√
2sεk, (6)
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Figure 1. An overview of our model on an individual agent i. The past trajectory xi (left side in the figure) is encoded by Epast to get the
individual encoding x′i. The social pooling module Psocial is then applied to get the agent’s history encoding x′′i accounting for social
context. In training, the ground-truth plan pi (right side in the figure) is extracted from the future trajectory yi (e.g., extract the steps 3,
6, 9, 12 from a 12-time-step future as the plan) and then encoded by Eplan to get p′i. The expert plan is then projected into the latent
space, conditional on the trajectory history and social context, x′′i , through the inference module (light blue). It takes x′′i and p′i as input,
parameterized by φ, and is only used in training to output the mean µφ and co-variance matrix σ2

φ for the posterior distribution, qφ, of the
latent vector zi. Purple part denotes the latent belief energy-based model (LB-EBM) module, Cα, defined on the latent belief vector zi
conditional on x′′i . The LB-EBM learns from the posterior distribution of the projected ground-truth plan qφ. A sample from the posterior
(in training) or a sample from LB-EBM (in testing) enters the plan module (yellow) together with x′′i . The plan module is parametrized by β,
which is a regular regression model where the mean µβ is estimated and used as the module prediction. The generated plan together with x′′i
enters the prediction module (red), parameterized by γ. It is also a regular regression model where the mean µγ is estimated and used as the
module prediction, which is also the trajectory forecast of the whole network.

where k indexes the time step of the Langevin dynamics, s
is a small step size, and εk ∼ N(0, I) is the Gaussian white
noise. Note that the index i for zzz is removed for notational
simplicity. ∇zzz log pα(zzz|Psocial(XXX)) can be efficiently com-
puted by back-propagation. Given the low-dimenionality of
the latent space, Langevin dynamics sampling mixes fast. In
practice, we run the dynamics for a fixed number of times
(20). The small number of steps and the small model size of
the LB-EBM make it highly affordable in practice.

3.3. Plan

The distribution of the plan of the agent i is pβ(pppi|zzzi,XXX),
and it is assumed to be a Gaussian distribution with mean
µβ(zzzi,XXX) and an identity covariance matrix. In partic-
ular the mean function takes as input the concatenation
[zzzi;Psocial(XXX)]. The joint distribution of the plans of all
agents in a scene is

p(PPP |ZZZ,XXX) =

n∏
i=1

pβ(pppi|zzzi, Psocial(XXX)), (7)

where pppi is assumed to be independent of {zzzj , j 6= i} given
zzzi and Psocial(XXX) and {pppi, i = 1, ..., n} are assumed to be
independent conditional on {zzzi} and Psocial(XXX).

3.4. Prediction

The prediction distribution is defined similarly as the plan
distribution,

p(YYY |PPP ,XXX) =
n∏
i=1

pγ(yyyi|pppi, Psocial(XXX)), (8)

and pγ(yyyi|pppi, Psocial(XXX)) assumes a Gaussian distribution
with mean µγ(pppi,XXX) and an identity covariance matrix. The
input to the mean function is [Eplan(pppi);Psocial(XXX)].

3.5. Pooling

The trajectory history XXX of agents in a scene is pooled
through self-attention [56]. It allows us to enforce a spatial-
temporal structure on the social interactions among agents.
This enforcement is simply achieved by designing a spatial-
temporal binary mask with prior knowledge. We follow the
mask design of [32]. The pooling mask M is defined to be,

M [i, j] =

0 if min
1≤s,t≤tpast

‖xti − xsj‖2 > d

1 otherwise.
(9)

Adjusting the hyperparameter d allows for varying the social-
temporal adjacency of social interactions.
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3.6. Joint learning

The log-likelihood of data in a single scene, (XXX,YYY ,PPP ),
is

log p(PPP ,YYY |XXX) = log

∫
ZZZ

p(ZZZ,PPP ,YYY |XXX) (10)

which involves the latent variable ZZZ and directly opti-
mizing it involves sampling from the intractable posterior
p(ZZZ|PPP ,XXX). We however can optimize a variational lower
bound of it in an end-to-end fashion to learn the entire net-
work,

L(θ) = Eqφ(ZZZ|PPP,XXX) log pβ(PPP |ZZZ,XXX) (11)

+ Eqdata(YYY |PPP,XXX) log pγ(YYY |PPP ,XXX) (12)
−KL(qφ(ZZZ|PPP ,XXX)||p0(ZZZ)) (13)
− Eqφ(ZZZ|PPP,XXX)Cα(ZZZ,XXX)− logZα(XXX), (14)

where θ collects the parameters of the whole network.
Also note that p0(ZZZ) =

∏
i p0(zzzi) and Cα(ZZZ,XXX) =∑

i Cα(zzzi,XXX). Please see the supplementary for the deriva-
tion details. The gradients of all terms are straightforward
with backpropagation except logZα(XXX). The gradient of
it with respect to α is Ep(ZZZ|XXX)[∇αCα(ZZZ,XXX)]. It involves
sampling from LB-EBM. This is done with Langevin dy-
namics (Equation 6). As we discussed earlier, sampling
from LB-EBM only requires a small number of steps and the
necessary model size is fairly small due to the low dimen-
sionality. Thus the sampling is highly affordable. Although
the loss function −L{θ} is optimized end-to-end, let us take
a close look at the optimization of the cost function given its
core role in our model. Let J (α) be the loss function of the
LB-EBM, the gradient of it with respect to α is,

∇αJ (α) (15)
= Eqφ(ZZZ|PPP,XXX)[∇αCα(ZZZ,XXX)]− Ep(ZZZ|XXX)[∇αCα(ZZZ,XXX)],

(16)

where qφ(ZZZ|PPP ,XXX) projects the expert plan PPP to the latent
belief space. α is updated based on the difference between
the expert beliefs and those sampled from the current LB-
EBM. Thus, the latent cost function is learned to capture
expert beliefs given the trajectory history and surrounding
context.

4. Experiments
We test our model on two widely used pedestrians tra-

jectory benchmarks (see section 4.2 for details) against a
variety competitive baselines. These experiments highlight
the effectiveness of our model with (1) improvements over
the previous state-of-the-art models on the accuracy of tra-
jectory prediction and (2) the prediction of multimodal and
social compliant trajectories as demonstrate in qualitative
analysis.

4.1. Implementation Details and Design Choices

The trajectory generator or policy network is an autore-
gressive model in most prior works [1, 15, 25, 50]. Some
recent works explored the use of a non-autoregressive model
[32, 45]. We choose to use a non-autoregressive model
(MLP) considering its efficiency and the avoidance of expo-
sure bias inherent in autoregressive models. The potential
issue of using an non-autoregressive model is that it might
fail to capture the dependency among different time steps.
However, this is a lesser issue since the proposed LB-EBM
is expressive and multi-modal and might be able to model
the dependency across multiple time steps. Furthermore,
the trajectory prediction is based on a plan over the whole
forecasting time horizon, making an auto-regressive model
further unnecessary.

The dimension of LB-EBM is 16 and is implemented with
3-layer MLP with an hidden dimension of 200. We always
use 20 steps for Langevin sampling from LB-EBM in both
training and inference. It is possible to amortize the sampling
on the learned cost function by learning an auxiliary latent
generator such as using noise contrastive estimation [16].
However, due to the low dimensionality of the latent space,
20 steps are highly affordable. We thus prefer keeping our
model and learning method pure and simple.

In both benchmarks, the model aims to predict the future
12 time steps. The plan is extracted by taking the positions
at the 3rd, 6th, 9th, and 12th time steps.

All other modules in our model are also implemented with
MLPs. The batch size is 512 for the Stanford Drone dataset
and is 70 for all the ETH-UCY datasets. The model is trained
end-to-end with an Adam optimizer with an learning rate
of 0.0003. The model is implemented in Pytorch [43]. Our
code is released at https://github.com/bpucla/
lbebm.

4.2. Datasets

Stanford Drone Dataset. Stanford Drone Dataset [48]
is a large-scale pedestrian crowd dataset in bird’s eye view.
It consists of 20 scenes captured using a drone in top down
view around the university campus containing several mov-
ing agents such as humans bicyclists, skateboarders and
vehicles. It consists of over 11, 000 unique pedestrians cap-
turing over 185, 000 interactions between agents and over
40, 000 interactions between the agent and scene [48]. We
use the standard train-test split which is widely used in prior
works such as [50, 15, 32].

ETH-UCY. It is a collection of relatively small bench-
mark pedestrian crowd datasets. It consists of five different
scenes: ETH and HOTEL (from ETH) and UNIV, ZARA1,
and ZARA2 (from UCY). The positions of pedestrians are
in world-coordinates and hence the results are reported in
meters. We use the leave-one-out strategy for training and
testing, that is, training on four scenes and testing on the
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fifth one, as done in previous works [15, 26, 32]. We split
the trajectories into segments of 8s and use 3.2s of trajectory
history and a 4.8s prediction horizon, with each time step of
0.4s.

4.3. Baseline Models

We compare the proposed approach based on LB-EBM to
a wide range of baseline models and state-of-the-art works.
The compared work covers very different learning regimes
for modeling human trajectory and accounting for multi-
modality and social interaction. We briefly describe below
the representative baselines.

• S-LSTM [1] is the simplest deterministic baseline based
on social pooling on LSTM states.

• S-GAN-P [15] is a stochastic GAN-based simple base-
line extended from S-LSTM.

• MATF [64] is a GAN-based convolutional network built
upon feature maps of agents and context.

• Desire [25] is an VAE-based sophisticated stochastic
model.

• Sophie [50] is a complex attentive GAN modeling both
social interactions and scene context.

• CGNS [26] uses conditional latent space learning with
variational divergence minimization.

• P2TIRL [7] is learned by maximum entropy inverse
reinforcement learning policy.

• SimAug [28] uses additional 3D multi-view simulation
data adversarially.

• PECNet [32] is a VAE based state-of-the-art model with
goal conditioning predictions.

4.4. Quantitative Results

In this section, we compare and discuss our method’s
performance against the aforementioned baselines based on
the Average Displacement Error (ADE) and Final Displace-
ment Error (FDE) with respect to each time-step t within the
prediction horizon.

ADEi =
1

Tpred

Tpred∑
t=1

dl2(ŷ
t
i , y

t
i)

ADE =
1

n

∑
i

ADEi

FDEi = dl2(ŷ
Tpred

i , y
Tpred

i )

FDE =
1

n

∑
i

FDEi

(17)

where dl2 indicates the Euclidean distance. Following the
evaluation protocol of the prior work [15, 23, 32, 64], we use
Best-of-K evaluation. In particular, the minimum ADE and
FDE from K randomly sampled trajectories are considered
as the model evaluation metrics. And K = 20 is used in
our experiments. Recently, some researchers [22, 52, 55]
propose to use kernel density estimate-based negative log
likelihood (KDE NLL) for evaluation. Since only few papers
reported NLL results on our considered benchmarks and
thus it might not be easy to have a fair comparison with
most baselines, we choose to focus on the widely-adopted
ADE and FDE. Please see the supplementary for the NLL
evaluation of our model.

ADE FDE

S-LSTM [1] 31.19 56.97
S-GAN-P [15] 27.23 41.44

MATF [64] 22.59 33.53
Desire [25] 19.25 34.05
SoPhie [50] 16.27 29.38
CF-VAE [3] 12.60 22.30
P2TIRL [7] 12.58 22.07

SimAug [28] 10.27 19.71
PECNet [32] 9.96 15.88

Ours 8.87 15.61
Table 1. ADE / FDE metrics on Stanford Drone for LB-EBM
compared to baselines are shown. All models use 8 frames as
history and predict the next 12 frames. The lower the better.

Stanford Drone Dataset: Table 1 summarizes the
results of our proposed method against the baselines and
state-of-the-art methods. Our proposed method achieves a
superior performance compared to the previous state-of-
the-art models [3, 7, 32] on ADE by a significant margin
of 10.9%. While our improvement over other baselines
on FDE is clear, the improvement over the PECNet is not
significant. This might be because the PECNet focuses on
optimizing the goal or the final step.

ETH-UCY: Table 2 shows the results for the evaluation
of our proposed method on the ETH/UCY scenes. We use
the leave-one-out evaluation protocol following CGNS [26]
and Social-GAN [15]. We observe that the proposed LB-
EBM outperforms prior methods, including the previous
state-of-the-art [26]. We improve over the state-of-the-art on
the average ADE by 27.6% with the effect being the most on
ETH (44.4%) and least on ZARA1 (9.1%). We also observe
a clear improvement on the FDE.

4.5. Qualitative Results

In this section, we present qualitative results of our pro-
posed method on the Stanford Drone dataset. In Figure 2,
we inspect the results under three different setups across 4
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Figure 2. Qualitative results of our proposed method across 4 different scenarios in the Stanford Drone. First row: The best prediction result
sampled from 20 trials from LB-EBM. Second row: The 20 predicted trajectories sampled from LB-EBM. Third row: prediction results of
agent pairs that has social interactions. The observed trajectories, ground truth predictions and our model’s predictions are displayed in
terms of white, blue and red dots respectively.

different scenarios. Those scenarios are selected involving
various road conditions including crossing, sidewalk and
roundabout. The first row presents the best prediction result,
among 20 random samples drawn from the LB-EBM with

respect to the ADE criterion, for each scenario. Our model is
able to produce predictions that are close to the ground-truth
trajectories in these scenarios. The second row illustrates
the 20 predicted trajectories sampled from our method. By
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ETH HOTEL UNIV ZARA1 ZARA2 AVG

Linear * [1] 1.33 / 2.94 0.39 / 0.72 0.82 / 1.59 0.62 / 1.21 0.77 / 1.48 0.79 / 1.59
SR-LSTM-2 * [63] 0.63 / 1.25 0.37 / 0.74 0.51 / 1.10 0.41 / 0.90 0.32 / 0.70 0.45 / 0.94

S-LSTM [1] 1.09 / 2.35 0.79 / 1.76 0.67 / 1.40 0.47 / 1.00 0.56 / 1.17 0.72 / 1.54
S-GAN-P [15] 0.87 / 1.62 0.67 / 1.37 0.76 / 1.52 0.35 / 0.68 0.42 / 0.84 0.61 / 1.21

SoPhie [50] 0.70 / 1.43 0.76 / 1.67 0.54 / 1.24 0.30 / 0.63 0.38 / 0.78 0.54 / 1.15
MATF [64] 0.81 / 1.52 0.67 / 1.37 0.60 / 1.26 0.34 / 0.68 0.42 / 0.84 0.57 / 1.13
CGNS [26] 0.62 / 1.40 0.70 / 0.93 0.48 / 1.22 0.32 / 0.59 0.35 / 0.71 0.49 / 0.97

PIF [30] 0.73 / 1.65 0.30 / 0.59 0.60 / 1.27 0.38 / 0.81 0.31 / 0.68 0.46 / 1.00
STSGN [62] 0.75 / 1.63 0.63 / 1.01 0.48 / 1.08 0.30 / 0.65 0.26 / 0.57 0.48 / 0.99

GAT [23] 0.68 / 1.29 0.68 / 1.40 0.57 / 1.29 0.29 / 0.60 0.37 / 0.75 0.52 / 1.07
Social-BiGAT [23] 0.69 / 1.29 0.49 / 1.01 0.55 / 1.32 0.30 / 0.62 0.36 / 0.75 0.48 / 1.00

Social-STGCNN [34] 0.64 / 1.11 0.49 / 0.85 0.44 / 0.79 0.34 / 0.53 0.30 / 0.48 0.44 / 0.75
PECNet [32] 0.54 / 0.87 0.18 / 0.24 0.35 / 0.60 0.22 / 0.39 0.17 / 0.30 0.29 / 0.48

Ours 0.30 / 0.52 0.13 / 0.20 0.27 / 0.52 0.20 / 0.37 0.15 / 0.29 0.21 / 0.38
Table 2. ADE / FDE metrics on ETH-UCY for the proposed LB-EBM and baselines are shown. The models with * mark are non-probabilistic.
All models use 8 frames as history and predict the next 12 frames. Our model achieves the best average error on both ADE and FDE metrics.
The lower the better.

visualizing the results, we can see that LB-EBM is able to
generate multi-modal and diverse predictions. Further, we
display the prediction results of a pair of agents with so-
cial interactions in the third row. Interaction details such as
“straight going together”, “turning together”, “yielding” and
“collision avoidance” are captured by our proposed model. It
demonstrates the effectiveness of our LB-EBM to model the
agent-wise interactions for trajectory predictions.

4.6. Ablation Study

We conduct ablation studies to examine the important
components of our model. In particular, we ablate each
component of the overall learning objective as specified
in Equation 11 - 14. The results are summarized in Ta-
ble 3. Equation 11 is the basic reconstruction term and has
to be kept. But we can replace Equation 11 and 12 with
Eqφ(ZZZ|YYY ,XXX) log p(YYY |ZZZ,XXX). That is, the model predicts the
full trajectory directly without generating a plan first. It is
corresponding to EBM without Plan in Table 3. Equation 13
and 14 together are the KL divergence between the varia-
tional posterior qφ(ZZZ|PPP ,XXX) and the EBM prior pα(ZZZ|XXX)
(note that p0(ZZZ) is the base distribution for the EBM). We
can replace pα(ZZZ|XXX) with a Gaussian distribution condi-
tional onXXX , corresponding to the Gaussian with Plan condi-
tion. The previous two changes together lead to the Gaussian
without Plan condition. The ablation results indicate the ef-
fectiveness of the latent belief EBM and two-step approach.

In addition, we evaluate the model without the social
pooling such that LB-EBM makes predictions only based on
an agent’s own action history (see the EBM with Plan without
Social condition in Table 3). The decreased performance in
ADE and FDE of this condition indicates that LB-EBM is
effective to take into account social cues when provided.

Time Steps ADE FDE

Gaussian without Plan 18.61 27.55
EBM without Plan 10.28 18.60
Gaussian with Plan 9.53 16.32

EBM with Plan without Social 9.23 16.57
EBM with Plan 8.87 15.61

Table 3. ADE / FDE metrics on Stanford Drone for different abla-
tion conditions. The lower the better.

5. Conclusion
In this work, we present the LB-EBM for diverse human

trajectory forecast. LB-EBM is a probabilistic cost function
in the latent space accounting for movement history and so-
cial context. The low-dimensionality of the latent space and
the high expressivity of the EBM make it easy for the model
to capture the multimodality of pedestrian trajectory distribu-
tions. LB-EBM is learned from expert demonstrations (i.e.,
human trajectories) projected into the latent space. Sampling
from or optimizing the learned LB-EBM is able to yield a
social-aware belief vector which is used to make a path plan.
It then helps to predict a long-range trajectory. The effective-
ness of LB-EBM and the two-step approach are supported
by strong empirical results. Our model is able to make accu-
rate, multimodal, and social compliant trajectory predictions
and improves over prior state-of-the-arts performance on the
Stanford Drone trajectory prediction benchmark by 10.9%
and on the ETH-UCY benchmark by 27.6%.
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Appendix A: Learning
Model Formulation

Recall that XXX = {xxxi, i = 1, ..., n} indicates the past
trajectories of all agents in the scene. Similarly, YYY indicates
all future trajectories. ZZZ represents the latent belief of agents.
PPP denotes the plans. We model the following generative
model,

pψ(ZZZ,PPP ,YYY |XXX) = pα(ZZZ|XXX)︸ ︷︷ ︸
LB-EBM

Plan︷ ︸︸ ︷
pβ(PPP |ZZZ,XXX) pγ(YYY |PPP ,XXX)︸ ︷︷ ︸

Prediction

.

(18)

Maximum Likelihood Learning

Let qdata(PPP ,YYY |XXX)qdata(XXX) be the data distribution that
generates the (multi-agent) trajectory example, (PPP ,YYY ,XXX),
in a single scene. The learning of parameters ψ
of the generative model pψ(ZZZ,PPP ,YYY |XXX) can be based
on minψDKL(qdata(PPP ,YYY |XXX) ‖ pψ(PPP ,YYY |XXX)) where
DKL(q(x) ‖ p(x)) = Eq[log q(x)/p(x)] is the Kullback-
Leibler divergence between q and p (or from q to p
since DKL(q(x) ‖ p(x)) is asymmetric). If we ob-
serve training examples {(PPP j ,YYY j ,XXXj), j = 1, .., N} ∼
qdata(PPP ,YYY |XXX)qdata(XXX), the above minimization can be ap-
proximated by maximizing the log-likelihood,

N∑
j=1

log pψ(PPP j ,YYY j |XXXj) =

N∑
j=1

log

∫
ZZZj

pψ(ZZZj ,PPP j ,YYY j |XXXj)

(19)

which leads to the maximum likelihood estimate (MLE).
Then the gradient of the log-likelihood of a single scene can
be computed according to the following identity,

∇ψ log pψ(PPP ,YYY |XXX) =
1

pψ(PPP ,YYY |XXX)
∇ψ

∫
ZZZ

pψ(ZZZ,PPP ,YYY |XXX)

(20)

=

∫
ZZZ

pψ(ZZZ,PPP ,YYY |XXX)

pψ(PPP ,YYY |XXX)
∇ψ log pψ(ZZZ,PPP ,YYY |XXX) (21)

=

∫
ZZZ

pψ(ZZZ|XXX)pψ(PPP |ZZZ,XXX)pψ(YYY |PPP ,XXX)

pψ(PPP |XXX)pψ(YYY |PPP ,XXX)
∇ψ log pψ(ZZZ,PPP ,YYY |XXX)

(22)

= Epψ(ZZZ|PPP,XXX)∇ψ log pψ(ZZZ,PPP ,YYY |XXX). (23)

The above expectation involves the posterior pψ(ZZZ|PPP ,XXX)
which is however intractable.

Variational Learning

Due to the intractiablity of the maximum likelihood learn-
ing, we derive a tractable variational objective. Define

qφ(ZZZ,PPP ,YYY |XXX) = qdata(PPP ,YYY |XXX)qφ(ZZZ|PPP ,XXX) (24)

where qφ(ZZZ|PPP ,XXX) is a tractable variational distribution, par-
ticularly, a Gaussian with a diagnoal covariance matrix used
in this work. Then our variational objective is defined to be
the tractable KL divergence below,

DKL(qφ(ZZZ,PPP ,YYY |XXX) ‖ pψ(ZZZ,PPP ,YYY |XXX)) (25)

where qφ(ZZZ,PPP ,YYY |XXX) involves either the data distribution
or the tractable variational distribution. Notice that,

DKL(qφ(ZZZ,PPP ,YYY |XXX) ‖ pψ(ZZZ,PPP ,YYY |XXX)) (26)
= DKL(qdata(PPP ,YYY |XXX) ‖ pψ(PPP ,YYY |XXX)) (27)
+DKL(qφ(ZZZ|PPP ,XXX) ‖ pψ(ZZZ|PPP ,XXX)) (28)

(29)

which is an upper bound of
DKL(qdata(PPP ,YYY |XXX) ‖ pψ(PPP ,YYY |XXX)) due to the
non-negativity of KL divergence, in particular,
DKL(qφ(ZZZ|PPP ,XXX) ‖ pψ(ZZZ|PPP ,XXX)), and equivalently
a lower bound of the log-likelihood.

We next unpack the generative model pψ(ZZZ,PPP ,YYY |XXX)
and have,

DKL(qφ(ZZZ,PPP,YYY |XXX) ‖ pψ(ZZZ,PPP,YYY |XXX)) (30)
= DKL(qdata(PPP,YYY |XXX)qφ(ZZZ|PPP,XXX) ‖ pα(ZZZ|XXX)pβ(PPP |ZZZ,XXX)pγ(YYY |PPP,XXX))

(31)
= Eqdata(XXX)Eqdata(PPP,YYY |XXX)qφ(ZZZ|PPP,XXX) log

qφ(ZZZ|PPP,XXX)

pα(ZZZ|XXX)
(32)

+ Eqdata(XXX)Eqdata(PPP,YYY |XXX)qφ(ZZZ|PPP,XXX) log
qdata(PPP |YYY ,XXX)

pβ(PPP |ZZZ,XXX)
(33)

+ Eqdata(XXX)Eqdata(PPP,YYY |XXX)qφ(ZZZ|PPP,XXX) log
qdata(YYY |XXX)

pγ(YYY |PPP,XXX)
(34)

Expressions 32, 33, 34 are the major objectives for learning
the LB-EBM, plan, and prediction modules respectively.
They are the "major" but not "only" ones since the whole
network is trained end-to-end and gradients from one module
can flow to the other. We next unpack each of the objectives
(where Eqdata(XXX) is omitted for notational simplicity).

Expression 32 drives the learning of the LB-EBM.

Eqdata(PPP,YYY |XXX)qφ(ZZZ|PPP,XXX) log
qφ(ZZZ|PPP,XXX)

pα(ZZZ|XXX)
(35)

= Eqdata(PPP,YYY |XXX)qφ(ZZZ|PPP,XXX) log
qφ(ZZZ|PPP,XXX)

p0(ZZZ) exp[−Cα(ZZZ,XXX)]/Zα(XXX)

(36)
= DKL(qφ(ZZZ|PPP,XXX) ‖ p0(ZZZ)) (37)
+ Eqdata(PPP,YYY |XXX)qφ(ZZZ|PPP,XXX)Cα(ZZZ,XXX) + logZα(XXX) (38)

where Zα(XXX)=
∫
ZZZ

exp(−Cα(ZZZ,XXX))p0(ZZZ)=Ep0(ZZZ)(−Cα(ZZZ,XXX)).

LetJ (α) = Eqdata(XXX)Eqdata(PPP,YYY |XXX)qφ(ZZZ|PPP,XXX)Cα(ZZZ,XXX)+
Eqdata(XXX) logZα(XXX), which is the objective for LB-EBM
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learning and follows the philosophy of IRL. And its gradient
is,

∇αJ (α) (39)
= Eqdata(XXX)Eqdata(PPP,YYY |XXX)qφ(ZZZ|PPP,XXX)[∇αCα(ZZZ,XXX)] (40)

− Eqdata(XXX)Epα(ZZZ|XXX)[∇αCα(ZZZ,XXX)] (41)

Thus, α is learned based on the distributional difference
between the expert beliefs and those sampled from the
current LB-EBM. The expectations over qdata(XXX) and
qdata(PPP ,YYY |XXX) are approximated with a mini-batch from
the empirical data distribution. The expectation over
qφ(ZZZ|PPP ,XXX) is approximated with samples from the varia-
tional distribution through the reparameterization trick. The
expectation over pα(ZZZ|XXX) is approximated with samples
from Langevin dynamics guided by the current cost func-
tion.

Expression 33 drives the learning of the plan module.

(33) = −Eqdata(XXX)Eqdata(PPP,YYY |XXX)qφ(ZZZ|PPP,XXX) log pβ(PPP |ZZZ,XXX)

(42)

−H(PPP |YYY ,XXX) (43)

where H(PPP |YYY ,XXX) is the conditional entropy of
qdata(PPP |XXX,YYY ) and is a constant with respect to the
model parameters. Thus minimizing 33 is equivalent to
maximizing the log-likelihood of pβ(PPP |ZZZ,XXX).

Expression 34 drives the learning of the prediction mod-
ule.

(34) = −Eqdata(XXX)Eqdata(PPP,YYY |XXX)qφ(ZZZ|PPP,XXX) log pγ(YYY |PPP ,XXX)

(44)

−H(YYY |XXX) (45)

where H(YYY |XXX) is the conditional entropy of qdata(YYY |XXX)
and is constant with respect to the model parameters. We
can minimize Expression 44 for optimizing the prediction
module. In the learning, PPP is sampled from the data distribu-
tion qdata(PPP ,YYY |XXX). In practice, we find sampling PPP from
the generative model pβ(PPP |ZZZ,XXX) instead facilitates learning
of other modules, leading to improved performance. The
objective for learning the prediction module then becomes,

−Eqdata(XXX)Eqdata(YYY |XXX)Eqφ(ZZZ|XXX)Epβ(PPP |ZZZ,XXX) log pγ(YYY |PPP ,XXX)
(46)

where

Eqφ(ZZZ|XXX) (47)

=

∫
PPP

qdata(PPP |YYY ,XXX)qφ(ZZZ|PPP ,XXX) (48)

= Eqdata(PPP |YYY ,XXX)qφ(ZZZ|PPP ,XXX). (49)

Appendix B: Negative Log-Likelihood Evalua-
tion

Although Best-of-K on ADE and FDE (e.g., K = 20) is
widely-adopted [15, 23, 32, 64], some researchers [22, 52,
55] recently propose to use kernel density estimate-based
negative log likelihood (KDE NLL) to evaluate trajectory
prediction models. This metric computes the negative log-
likelihood of the groud-truth trajectory at each time step with
kernel density estimates and then averages over all time steps.
We compare the proposed LB-EBM to previous works with
published results on NLL. They are displayed in Table 4. Our
model performs better than S-GAN [15] and Trajectron [22]
but underperforms Trajectron++1 [52]. It might be because
Trajectron++ use a bivariate Gaussian mixture to model the
output distribution, while our model employs a unimomal
Gaussian following most previous works. Our model can
also be extended to adopt Gaussian mixture as the output
distribution and we leave it for future work.

S-GAN Trajectron Trajectron++ Ours

ETH 15.70 2.99 1.80 2.34
Hotel 8.10 2.26 -1.29 -1.16
Univ 2.88 1.05 -0.89 0.54
Zara1 1.36 1.86 -1.13 -0.17
Zara2 0.96 0.81 -2.19 -1.58

Average 5.80 1.79 -0.74 -0.01
Table 4. NLL Evaluation on ETH-UCY for the proposed LB-EBM
and baselines are shown. The lower the better.

1Trajectron++ is a concurrent work to ours and was discovered in the
reviewing process.
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