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Abstract

How to effectively represent camera pose is an essential
problem in 3D computer vision, especially in tasks such as
camera pose regression and novel view synthesis. Tradi-
tionally, 3D position of the camera is represented by Carte-
sian coordinate and the orientation is represented by Euler
angle or quaternions. These representations are manually
designed, which may not be the most effective representa-
tion for downstream tasks. In this work, we propose an
approach to learn neural representations of camera poses
and 3D scenes, coupled with neural representations of lo-
cal camera movements. Specifically, the camera pose and
3D scene are represented as vectors and the local camera
movement is represented as a matrix operating on the vector
of the camera pose. We demonstrate that the camera move-
ment can further be parametrized by a matrix Lie algebra
that underlies a rotation system in the neural space. The
vector representations are then concatenated and generate
the posed 2D image through a decoder network. The model
is learned from only posed 2D images and corresponding
camera poses, without access to depths or shapes. We con-
duct extensive experiments on synthetic and real datasets.
The results show that compared with other camera pose rep-
resentations, our learned representation is more robust to
noise in novel view synthesis and more effective in camera
pose regression.

1. Introduction

With the advance of deep neural network (DNN), there
has been a series of successful works that employ DNN in
camera pose estimation [17, 16, 2, 28, 1, 21] or object pose
estimation [5]. In contrast, novel view synthesis is in the
opposite direction that maps the camera pose and 3D scene
representation back to the posed 2D image under certain
view [0, 32]. A fundamental problem in both lines of work
is to find effective representations of the camera pose [41].
Existing methods include representing the agent’s position

in 3D Cartesian coordinate, and the 3D orientation can be
represented by Euler angle, axis-angle, SO(3) rotation ma-
trices, quaternions or log quaternions. These representa-
tions are mainly defined in manually designed coordinates
where each dimension has highly abstract semantics, which
could be suboptimal when involved in the optimization with
deep neural networks. It is desirable to have learning-based
representations for camera poses.

Recently, [9] proposes a representational model of
grid cells in the entorhinal cortex of mammalian brains.
Grid cells have been found participating in mental self-
navigation and they fire at strikingly regular hexagon grids
of positions when the agent moves within an open field. The
representational model in [9] consists of a vector represen-
tation of agent’s self-position, coupled with a matrix repre-
sentation of agent’s self-motion. When the agent undergoes
a certain self-motion in the 2D space, the vector of self-
position is rotated by the matrix of self-motion on a 2D sub-
manifold in the mental space. Such a model achieves self-
navigation and learns hexagon grid patterns of grid cells,
which has the promise to be biologically plausible.

Inspired by [9, 8], we propose an approach towards
learning neural representation of camera pose, coupled with
representation of local camera movement. Specifically,
given 2D posed images of a 3D scene and their correspond-
ing camera poses, we assume a shared vector representation
for the underlying 3D scene and a distinct vector representa-
tion for the camera pose of each 2D image. When the cam-
era has a local displacement, the vector of 3D scene remains
unchanged while the vector of camera pose is rotated by the
matrix representation of camera movement (Figure 1). We
further parametrize the matrix representation by matrix Lie
group and the corresponding matrix Lie algebra. The vector
representations of camera poses and matrix presentations of
camera movements can be shared across multiple scenes,
so that they can be learned from multiple scenes to boost
performance. The vectors of 3D scene and camera pose are
concatenated together to generate the 2D image through a
decoder network (Figure 2). The model is learned with only
posed 2D images and camera poses, without extra knowl-
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Figure 1: Tllustration of our proposed pose representation. Take
axis x as an example. The agent’s position on axis x is mapped to

a high dimensional vector and the agent’s movement along axis x
is modeled as a rotation of the vector.

edge such as depths or shapes. We perform various experi-
ments on synthetic and real datasets in the context of novel
view synthesis and camera pose regression.

The contributions of our work include:

1. We propose a method for learning neural camera pose
representation coupled with neural camera movement
representation.

2. We associate this representational model with the
agent’s visual input through a generative model.

3. We demonstrate that the learned neural representation
is effective as the target representation in camera pose
regression.

2. Related work

2.1. Representing camera orientation and position

The simplest way to represent orientation is by Euler
angle. However, as [17, 16] point out, Euler angle wraps
around at 27 and is not injective to 3D rotation, and thus
can be difficult to learn. [1] uses SO(3) rotation matrices to
represent the relative orientation rotation between a pair of
images. SO(3) rotation matrices are an over-parameterized
representation of rotation which has the property of or-
thonormality. However, it is in general difficult to enforce
the orthonormality constraint when learning a SO(3) repre-
sentation through back-propagation. [36, 24] use axis-angle
representation, which represents 3D orientation by the di-
rection of axis of rotation as well as the magnitude of the ro-
tation. Similar to Eluer angles, this representation also has
the problem of repetition around the 27 radians. PoseNet
and its variants [17, 16] propose to use quaternions. Quar-
ernions, or more specfically, quaternions with unit length,
are a 4-D continuous and smooth representation of rota-
tion. MapNet [2] further proposes to use log quaternions to
avoid over-parametrization. These quaternion-based meth-
ods achieve state-of-the-art results in the area of absolute
camera pose regression. [41] argues that these represen-
tations are not continuous and proposes another 5D or 6D

representation for orientation. All these representations are
manually designed and pre-defined. [22] introduces SVD
orthogonalization for 3D rotation. [8] proposes a neural rep-
resentation of position and motion to explain the emergence
of grid cell pattern. However, [8] only considers motion in
2D space and does not take visual input into consideration.
Our method can be seen as a generalization of [8]. Our
method models both position and orientation and their cor-
responding changes in 3D environments, and we associate
position representations with visual inputs. The concept of
position embedding is also used in other areas such as nat-
ural language processing. For example, transformer-based
models such as BERT [4] or GPT [27] have a high dimen-
sional embedding of the position of word in the sentence.
These embeddings [37, 30, 10, 38] can be either learnable
or predefined. We introduce learnable representations for
camera pose in 3D vision. Our rotation loss enforces trans-
lation invariance, which serves as a regularization on the
learned representations.

2.2. Novel view synthesis

Learning neural 3D scene representation is a fundamen-
tal problem in 3D vision, and a compelling way to evaluate
the learned representations is by novel view synthesis. One
line of work [32, 25, 35] incorporates prior knowledge of
rendering such as rotation and projection to enforce the con-
sistency between different views, such as NeRF [25]. An-
other theme [33, 39, 6] learns neural representations purely
from the perception of the agent, without extra 3D prior
knowledge. Our model belongs to the latter. Different from
previous methods, we also learn neural representations of
the camera pose and camera movement, and the represen-
tations of 3D scene and camera pose are disentangled in an
unsupervised manner. [33, 39] infer the scene representa-
tion from a single image or a pair of images, while [6] as-
sumes that the representation can be obtained from a small
batch of images. Compared to these methods, our model is
able to utilize posed images of various scenes to update the
shared camera pose representations.

2.3. Interpretable representation

In generative modeling, learning interpretable latent rep-
resentation is a long-standing target. Specifically, the goal
is to learn latent vectors such that each dimension or sub-
vector is aligned with an independent factor or concept.
This can be done either with supervision [20, 26] or with-
out supervision [1 1, 18, 15]. Besides vector representation,
[23, 39, 14, 7] learns matrix representation of image trans-
formation that operates on the latent vector representation.

Our model is a combination of both vector and matrix
representations. On the one hand, we disentangle the vector
representations of each individual scene and camera pose.
On the other hand, we model the movement of the cam-



era pose by matrix representation, which is in the form
of matrix Lie group and matrix Lie algebra. In terms of
parametrization of the matrix representation, [39] uses pre-
defined and fixed rotation matrix, [23] learns a fixed ma-
trix for each type of variation, and [14] parametrizes 2D
ego-motion operated on 2D images. Different from these
methods, we parametrize the matrix representation of cam-
era movement as a nonlinear function of the movement in
3D that can take continuous values and operate on the vec-
tor representations of 3D scenes.

2.4. Deep pose regression models

Deep pose regression models [29] can be categorized

into absolute camera pose regression (APR) [17, 16, 2]
which directly predicts the camera pose given an input im-
age, and relative camera pose estimation (RPR) [28, 1, 21]

that predicts the pose of a test image relative to one or more
training images. In this work, we adopt the APR setting
while the method can also be easily adapted to the RPR set-
ting. Note that our focus is to compare the effectiveness of
different camera pose representations, which is orthogonal
to the other methods that specifically target at improving the
performance of pose regression.

3. Representational model

Suppose an agent move in a 3D environment with head
rotations. There are at most 6 degrees of freedom (DOF),
i.e., the position of the agent (z,vy, z) and its head orien-
tation (o, 8,7). We denote them as the pose of the agent
p = (x,y,2,a,08,7). Following the idea of [8], we en-
code each DOF by a d-dimensional sub-vector v;(l),l €
{z,y,2,a,5,v}. From the embedding point of view, es-
sentially we embed the 1D domain in R! as a 1D manifold
in a higher dimensional space R?. We limit each sub-vector
to have unit length, i.e., we further assume the 1D manifold
to be a circle. For notation simplicity, we concatenate those
sub-vectors to a pose vector v(p). When the camera makes
amovement dp = (dz, §y, 0z, da, 63, 6y), the camera pose
changes from v(p) to v(p + dp). See Figure 1 for an illus-
tration of our proposed framework.

3.1. Modeling movement as vector rotation

We start from considering an infinitesimal camera move-
ment §p. For each DOF [ € {z,y, z, o, 8,v}, we propose
the following model:

o1+ 61) = My(80)vi(1) + o(d1), (1)

where M, (d1) is a d x d matrix depending on §!. Given that
0l is infinitesimal, the model can be further parametrized as

vi(l 4 d1) = (I + Biol)vi(1) + o(d1), )
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Figure 2: Illustration of our framework. (a) Pose vector for a
given position x is obtained by rotating its nearby grid vector. (b)
Pose vector is fed-in a decoder together with a scene representa-
tion vector to predict image under certain view. (c) The rotation
consistency of our pose representation system is enforced through
pose rotation loss. (d) The decoding ability of our pose represen-
tation system is enforced through image reconstruction loss.

where I is the identity matrix and B; is a d X d ma-
trix that needs to be learned. We assume B; to be skew-
symmetric i,e. B; = —B]. This assumption guarantees
that (I + B;6l)(I + B;61)T = I+ o(61%), i.e., (I + B;dl)
is approximately an orthogonal matrix. From the geomet-
ric perspective, it maps the movement along [ axis in 1D
space to rotation of the vector in the high-dimensional la-
tent space. In practice, we only need to parametrize the
upper triangle of B; as trainable parameters and the lower
triangle of B is taken to be the negative of the upper trian-
gle. We further assume B; to be block-diagonal so that the
total number of parameters can be greatly reduced. If there
are movements on multiple DOFs, we only need to rotate
each sub-vector of DOF independently.

As pointed out by [8], equations 1 and 2 can be jus-
tified as a minimally simple recurrent model. To model
the movement in the latent space, the most general form
isv(1+61) = F(v,(1),0l), i.e., the pose vector for the new
pose is a function of the one for the old pose and the move-
ment. Given that ] is infinitesimal, we can apply the first-
order Taylor expansion: v; (I 4 01) = v; (1) + f(v; (1))l +
o(4l), where we use f(v;(l)) to denote the first derivative
of F(vi(1),6l),1e., f(vi(l)) = %F(vl(l),&)m:o. When
the movement 6! = 0, we should have that F'(v;(),0) =
v;(1). Then a minimally simple model is to assume f(v;(1))
as a linear transformation , i.e. f(v;(1)) = Byv(l), and
v (1 +61) = vi(1) + By (1)ol + o(d1). As we will discuss
in 3.3, for finite movement Ap, we recurrently apply the
model of infinitesimal dp, so that the matrix representation
becomes a matrix Lie group.

3.2. Polar system for position change in 2D

If the movement of the agent is constrained in a 2D en-
vironment, we follow [8] to use a polar coordinate system



to model the change of position, which corresponds to the
egocentric perspective and could be potentially more bio-
logical plausible. Specifically, let * = (z,y) be the po-
sition of the agent in the 2D space, instead of using in-
dividual vector v, and v, to represent the position, we
represent position in a single vector v (x) and the move-
ment is captured by direction ¢ and distance dr. We have
dx = (6x,0y) = (Orcosh, drsin ). The representational
model under this polar coordinate system is:

Vg (x +0x) = (I + B(0)dr)vg(x) + o(dr).  (3)

The B(0) is a function of ¢ and is skew-symmetric. B(6)
models the change of position along the direction 6. If the
agent changes the direction of movement from 6 to 6 + 36,
then we assume

B(0+60) = (I + C60)B(0) +0(50), (4

where C' is another skew-symmetric matrix to learn. The
geometric interpretation is that if the agent changes direc-
tion, B(#) is rotated by another matrix C.

For camera movement in 3D environment, such coupled
representation in polar coordinate will end up with too many
matrix representations to learn. Therefore, we restrict our-
selves in using it only in 2D space, and use the vector-matrix
representations that are disentangled for each DOF as pro-
posed in 3.1 for general 3D movements.

3.3. Matrix Lie group for finite movement

So far we have discussed the formulation for infinitesi-
mal movements above. In this subsection we generalize to
finite movements. Suppose the agent has a finite movement
Al along the axis | € {x,y, z,a, B,7}. We can divide this
movement into N steps, so that as N — oo, % — 0, and

o+ Al) = (L+ B3 + o) V()
— exp(BiAD)v(1). ()

This underlies the relationship between matrix Lie algebra
and matrix Lie group. Specifically, the set of M;(Al) =
exp(B;Al) for Al € R forms a matrix Lie group. The
tangent space of M (Al) at identity is the corresponding
matrix Lie algebra. B; is the basis of this tangent space,
and is also called as the generator matrix.

For a finite but small Al, exp(B;Al) can be approxi-
mated by a second-order Taylor expansion

1
exp(BjAl) = I + B/Al + 5BfAz? +o(Al%).  (6)
For a large finite change in each axis, we can divide it into

a series of small finite changes, expand each change using
second-order Taylor expansion and multiply them together.

3.4. Theoretical understanding of our model

A deep theoretical result from mathematics, namely the
Peter-Weyl theorem [34], inspires our work. It says that for
a compact Lie group, if we can find an irreducible unitary
representation, i.e., each element x of the group is repre-
sented by a unitary (or orthogonal) matrix M (x), then the
matrix elements (M;;(x)) form a set of orthogonal basis
functions for the general functions of . This is a deep gen-
eralization of Fourier analysis. In our case, the learned vec-
tor representation v(x) = M (x)v(0) are linear composi-
tions of the above basis functions, and the elements (v;(x))
serve as a more compact set of basis functions for repre-
senting general functions of . Our method can be used
to represent the pose of the camera and objects in general.
The continuous changes of the pose in the physical space
generally form a Lie group. Our learned vector and matrix
system forms a representation of the pose and its change in
the neural space.

3.5. Implementation of pose representation

Suppose we want to learn the representation of axis I,
whose value ranges in [a, b]. For orientation, the angles is
of range [0°, 360°), while for position, we can predefine
the largest range the agent can move within. We divide this
range into multiple grids and we learn an individual vector
at each grid point. Given an arbitrary position ! € [a, b], we
first find its nearest grid point and the corresponding vector
representation, and then we rotate this vector to the target
position by the matrix representation depending on the dis-
tance between this nearest grid position and the target posi-
tion. See Figure 2. Since we can set the length of grid to
be relatively small, the distance between the grid and tar-
get positions is also small, so that we can use second-order
Taylor expansion in Equation 6 to approximate the matrix
representation.

3.6. Decoding to posed 2D images

To associate the camera pose representation with visual
input, more specifically the posed 2D images, we propose
a decoder or emission model. For each 3D scene, suppose
we are given multiple posed 2D images I and the corre-
sponding camera poses p. Then we assume a shared vector
representation u of the 3D scene, and obtain the vector rep-
resentation of the camera pose v(p) as described in 3.5. We
learn a decoder G that maps u and v(p) to the image space
to reconstruct I

I=Gy(u,v(p)), (7

where ¢ denotes parameters in the decoder network.



4. Learning and inference
4.1. Learning through view synthesis

For a general 3D environment, the unknown parameters
of the proposed model include (1) v(p) for any p on grid
positions, (2) B, for any [ € {z,y, z, o, 5,7}, and (3) pa-
rameters ¢ in Gy. To learn these parameters, we define
a loss function L = A{Lyec + A2 Zle{r,y,z,a,ﬁ,'y} Lot 1,
where

Lrec = [ HI - G¢(ua 'U(p))||2 )
Leoty = By ag [[vi(1 + Al) — exp(By(AD))v ()] (8)

L. is the reconstruction loss for view synthesis, which en-
forces the decoding of the pose and scene representations to
reconstruct the observation. The expectation is estimated by
Monte Carlo samples. L. stands for rotation loss, which
serves to constrain v; so that the learned pose representa-
tions of different poses can be transformed to each other
based on our representational model (Equation 5). The ex-
pectation term in L,o; can be approximated by randomly
sampled pairs of poses p and p+ Ap that are relatively close
to each other, which means that we have infinite amount of
data for this loss term.

If the movement of camera pose is in a 2D space and
we employ the polar coordinate system, then part (2) of the
unknown parameters becomes B, for any [ € {«a, 3,7},
B(0) and C. The loss functioin is defined as L = A\j Lyec +
A2 Zle{a,ﬁw} Lrot,l + )\SLrot,m + )\4Lrot,9, where Ly¢. and
Lyot,; follow equation 8 and

Liotw = B nx |ve(@ + Az) — exp(B(0) Ar)vg(x)]?,
Leoto = Eg | B(6 + A0) — exp(CA0)B@O)|>. (9

For training, we minimize L by iteratively updating the
decoder G4 (as well as our scene representation u) and our
pose representation system v;, M; forl € {z,y, z, o, 8,7}
In practice, the decoder is parameterized by a multi-layer
deconvolutional neural network. Besides the latent vector
on top of the decoder, we also learn a scene-dependent vec-
tor at each following layers using AdaIN [12]. We normal-
ize the scene vector at the top layer of the decoder to have
unit norm so that it has the same magnitude as the pose rep-
resentation. We find this helps optimization. More details
can be found in Supplementary.

4.2. Inference by pose regression

With the learned pose representation, we can then use it
as the target output for camera pose regression. Specifically,
for each DOF, we train a separate inference network E¢; that
maps the observed posed 2D image I to the pose represen-
tation v; (1) . The loss function is defined as the Lo distance
between the inferred and learned pose presentations

Ly = Ex lvi (1) — Ea(D)?. (10)

In practice, Ey; is parameterized by a convolutional neural
network where £ denotes the parameters and we introduce
some scene-dependent parameters using AdalN. For differ-
ent DOFs, the inference networks share common lower lay-
ers but with different top fully-connected layers.

For testing, given an unseen posed image I, we can
get the inferred pose representation ¥; from our inference
model, and decode the predicted pose by:

[ = argmin ||v (1) — f)l||2, l e (z,y,2z,a,8,7v) (11)
!

5. Experiments

In this section, we demonstrate the efficacy of our
learned pose representations in both view synthesis and
pose regression tasks. For view synthesis, we mainly com-
pare with the Generative Query Network(GQN) [6]. For
pose regression, we compare our learned neural representa-
tions of camera pose with other commonly used pose repre-
sentations, including the Euler angle, the sinusoidal repre-
sentation used in GQN, and the quaternions (as well as log
quaternions) representations used in the PoseNet [17, 16]
and MapNet [2], by evaluating the pose estimation accu-
racy. More details of implementation can be found in Sup-
plementary. Our code and pretrained models can be found
at https://github.com/AlvinZhuyx/camera_
pose_representation.

5.1. Datasets

GOQN rooms. GOQN [6] introduces a synthetic dataset
with 2 million synthetic scenes, where each scene contains
various objects, textures, and walls. The agent can navigate
in a 2D space and rotate the head horizontally in the scenes.
Each scene contains 10 rendered 64 x 64 RGB images. We
use the version of the dataset where the camera moves freely
and the objects do not rotate around their axes. We sam-
ple 200, 000 scenes from the dataset. For each scene, we
sample 9 images for training and use the left one image for
testing. Since this dataset contains a large number of sim-
ple scenes with a small number of images for each scene,
instead of learning an individual scene representation vec-
tor for each scene, we learn an encoder to encode the scene
representation online similar to [6]. Since the agent has 2
DOFs for position and 1 DOF for orientation, our pose vec-
tor contains one position sub-vector in the polar coordinate
system and one orientation sub-vector. Each sub-vector has
96 dimensions. We assume that B is block-diagonal with
six blocks, and each block is 16 x 16.

ShapeNet v2. We use the images generated by [32] from
the car category of ShapeNet v2 dataset [3]. This dataset
contains 2,151 object models. For each scene, the instance
locates at the center of a sphere. The virtual agent can move
on the surface of this sphere, with its camera pointing to the
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center. Therefore, the agent has 2 DOFs, and we use 2 ori-
entation angles to denote its position on the sphere. Each
instance contains 500 different views of 128 x 128 rendered
RGB images, where we randomly sample 100 images for
training and leave the others for testing. The pose repre-
sentation contains two sub-vectors of two orientation an-
gles. Each sub-vector has a dimension of 96, and B has six
16 x 16 blocks. We learn an individual scene representation
vector u for each instance.

Gibson Environment. The Gibson Environment [40]
provides tools for rendering images corresponding to dif-
ferent views in a room, which we use to generate a syn-
thetic dataset. We refer to this dataset as Gibson rooms.
Specifically, we select 20 areas of size 2m x 2m from dif-
ferent rooms. For each area, we randomly render about
28k 128 x 128 RGB images of different views. We fix the
camera height and constrain the camera to rotate only hori-
zontally. Compared to GQN rooms and ShapeNet car, this
synthetic dataset contains more realistic and complicated
indoor scenes, which could be more challenging. More-
over, it includes fewer scenes while for each scene, images
from abundant views are provided. Therefore, incorporat-
ing view-based information becomes very important. The
agent has 2 DOFs for position and 1 DOF for orientation,
which corresponds to a position sub-vector in the polar co-
ordinate system and one orientation sub-vector. The dimen-
sions of the sub-vectors and B are the same as the ones for
GQN rooms dataset.

7 Scenes Dataset. Microsoft 7 Scenes [31] is a widely
used dataset for camera pose estimation. It contains RGB-
D images for seven different indoor scenes. Each scene has
several trajectories for training and testing. In our experi-
ment, we follow the training and testing splitin [31], and we
only use RGB images without depth information. We trans-
late and align the position coordinates of scenes and ensure
that all the trajectories locate in a 4m X 1.5m x 3m cuboid.
The agent has 6 DOFs, so the pose representation vector
contains 6 sub-vectors. We assume that each sub-vector has
a dimension of 32, and each B has four 8 x 8 blocks. We
mainly use this dataset for camera pose regression. We re-
size the images to 128 x 128 when training the decoder and
pose representation system. We use shared pose represen-
tations for all the seven scenes and distinct scene represen-
tation for each of them. When performing pose regression,
following [ 16, 2], we train an individual inference model for
each scene and resize the input images so that the shortest
side is of length 256.

5.2. Novel view synthesis

The first question is whether our learned pose represen-
tation is meaningful. We answer this by testing our learned
representations on novel view synthesis task. The experi-
mental results demonstrate that our learned representations
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Figure 3: Qualitative results for novel view synthesis. Top: GQN
rooms. Middle: ShapeNet car. Bottom: Gibson rooms.

can generate a novel view of a scene of high quality. Fig-
ure 3 shows the qualitative results, and Figure 4 shows the
quantitative results in terms of Peak Signal-to-Noise Ratio
(PSNR). We compare the results with GQN. For GQN, we
use the implementation by [13] and the same training and
testing splits as ours. We use 8 generation layers and set the
shared core option to be False. We add extra convolution
and de-convolution layers when dealing with images of size
128 x 128. The total number of parameters for this GQN
implementation is 114M. In contrast, our model only has
less than 9M parameters.

From Figure 3 and Figure 4 (noise magnitude of 0.0 cor-
responds to novel view synthesis test result), we see that for
GQN rooms dataset, our model gets a bit worse but com-
parable results with the GQN model. For ShapeNet car
dataset, which contains complex instances, our model gen-
erates more consistent and clearer results compared with
GQN. For Gibson rooms dataset, which is more compli-
cated, GQN fails to capture the relationship. The recon-
struction only captures some specific views and does not
generalize to other views. On the other hand, our learned
model is able to generate a query view corresponding to our
pose representation. This is probably because that the 3D
scene representations in our method are learned by all the
2D posed images of the scene.
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Figure 4: Quantitative results for novel view synthesis given different noise magnitudes. In each figure, we plot the PSNR over different
magnitudes of noise introduced to the position vector. For a given noise magnitude «, if the ¢-th element in the position vector has a
standard deviation /3;, then we add a Gaussian Noise N (0, (3;)?) to the corresponding element. Noise magnitude 0.0 corresponds to the
novel view synthesis test result. We compare with GQN on three datasets.

. ShapeNet car GQN rooms Gibson rooms
Representations
orientation T Y orientation T Y orientation

(z,y, @) 7.75° 0.069 0.071 12.00° 0.043m 0.041m 7.03°

(z, y, axis-angle) 11.29° - - - - - -

(z, y, sin(a), cos(a)))  7.29° 0.108 0.104 16.46° 0.033m 0.034m 1.19°
(z,y,q) 4.28° 0.050 0.048 5.34° 0.043m 0.042m 1.21°
(z,y,logq) 5.35° 0.051 0.051 7.44° 0.028m 0.027m 1.17°

ours 2.85° 0.053 0.053 4.07° 0.02Im 0.020m 0.87°

Table 1: Camera pose estimation errors on different datasets. We compare with several camera pose representations. (z, y, ) denotes
the representation that uses x, y, z coordinate to represent position and Euler angle to represent orientation. (x, y, axis-angle) denotes
using axis-angle representation for rotation. Note that for GQN rooms and Gibson rooms datasets, the agent only has one DOF of rotation.
Therefore, the axis-angle representation degrades to one Euler angle representation, and its results should be the same as the Euler angle.
(z, y, sin(a), cos(a)) denotes using sinusoidal functions to represent orientation. (z, y, ¢) denotes the unit quaternions representation
used in [16] while (z, y, log ¢) stands for the logarithm quaternions representation proposed in [2]. Our method uses learned pose vectors
for both camera position and orientation. We report the average prediction error for each dataset. For ShapeNet car dataset, the camera
is located on a sphere, so we only need to predict the orientation angle. For GQN rooms and Gibson rooms datasets, we predict both the
camera position and orientation. For GQN rooms, the range of each scene is from -1.0 to 1.0. For Gibson rooms, we render each scene to
an area of 2m X 2m.

5.3. Robustness to pose noise 5.4. Inference results

Next, we try to answer why we need that representation We further demonstrate that our learned representation is
and what is the advantage of such neural representation over efficient to serve as the target output of pose regression. In
directly using 6 DOFs coordinate representation in terms of the camera pose regression task, the camera position is usu-
novel view synthesis. One critical supporting evidence is ally represented using 3D coordinate (z, y, z) and the cam-
that our learned neural pose representation is more robust era orientation can be represented by various methods. The
to noise. Specifically, Figure 4 shows the changes of PSNR most straightforward one is to use the Euler angle to rep-
for our model versus the GQN model when some Gaussian resent the orientation. Another representation is axis-angle
noise with various magnitudes is added to the pose repre- representation. In [6], the authors use (sin(a),cos(a)) to
sentations. We observe that the performance of the GQN represent each orientation angle. Besides, unit quaternions
model degrades quickly as the magnitude of added noise and logarithm of the unit quaternions are another two popu-
increases. This is not surprising since GQN directly uses lar representations used in pose regression [17, 16, 2]. Com-
coordinate representation for position and orientation and paring with those methods, we used learned neural repre-
thus is vulnerable to noise interference. On the other hand, sentations for both camera position and orientation. We
our learned representation embeds the camera pose to high conduct the pose regression experiments on all four datasets
dimensional space and is further regulated by the rotation we mentioned above. For our representation, Euler Angle

loss, and thus is more robust to noise. representation and (sin(«a), cos(a)) representation we use



Scene PoseNet17[16] PoseNet + logg[2] PoseNet + logq (*) ours

Chess 0.13m, 4.48° 0.11m, 4.29° 0.17m 4.96° 0.12m 4.83°
Fire 0.27m, 11.30°  0.27m, 12.13° 0.36m 11.22° 0.27m 8.91°
Heads 0.17m, 13.00°  0.19m, 12.15° 0.20m 13.35° 0.16m 12.84°
Office 0.19m, 5.55° 0.19m, 6.35° 0.23m 7.05° 0.19m 6.64°
Pumpkin 0.26m, 4.75° 0.22m, 5.05° 0.26m 5.87° 0.22m 5.45°
Red Kitchen  0.23m, 5.35° 0.25m, 5.27° 0.29m 6.10° 0.24m 6.10°
Stairs 0.35m, 12.40°  0.30m,11.29° 0.36m 10.18° 0.29m 10.70°
Average 0.23m, 8.12° 0.22m 8.07° 0.27m 8.39° 0.21m 7.92°

Table 2: Camera pose estimation errors on 7scenes dataset. We compare our results with PoseNet using quaternions (PoseNet17) and
log quaternions (PoseNet + log ¢). The column PoseNet + log g(*) are the results we get by running the code provided by [2]. In the last
column, we show the results using our learned pose representation. Following the convention, we report the median prediction errors here.

mean square error loss for regression. On 7 Scenes dataset,
we also use L; norm loss for our representation. For quater-
nions and log quaternions representations, as suggested by
[2], we use L; norm loss. For axis-angle representation,
we find that for ShapeNet car dataset, using L; norm loss
leads to better results. For Gibson rooms and GQN rooms
datasets, since the agent can only rotate its head horizon-
tally, the axis-angle representation degrades to a single Eu-
ler angle. For the two quaternions-related baselines, we em-
ploy the automatic weight tuning method proposed in [16]
to make a fair comparison. Note that the main focus of this
work is to compare different pose representations, and thus
we do not include other improvement techniques (e.g., in-
cluding unlabeled data or relative pose loss between image
pairs), as we consider them as orthogonal directions to im-
proving the pose representations. More details can be found
in Supplementary.

We first show the comparison results on GQN rooms,
ShapeNet car, and Gibson rooms datasets in Table 1. For
a fair comparison, we keep the same network structure for
all the representations on each dataset and only change the
final output layer. Since the dimension of our learned rep-
resentation is higher than all the baseline representations,
for a fair comparison, we add another fully-connected layer
to these baseline inference networks so that the inference
models have roughly the same number of parameters across
different pose representations. According to Table 1, our
representation consistently outperforms all the other repre-
sentations, especially for orientation regression. For most
configurations, our representation yields the best results in
both orientation and position prediction. On GQN dataset,
the quaternions and log quaternions representation achieve
slightly better results in position prediction. However, their
orientation prediction results are much worse than ours. A
possible explanation is that we embed both the camera posi-
tion and orientation as neural representations, and thus they
are more consistent with each other. Besides, representing
the rotation angles on a hyper-sphere in a high dimensional

space may also make it easier for the model to regress.

We further compare our learned pose representations
with the popular quaternions and log quaternions represen-
tations on 7 Scenes dataset using PoseNet. Following [2],
we use a pre-trained ResNet34 as our feature extractor and
6 parallel fully-connected (FC) layers to predict the 6 pose
sub-vectors. We employ color jittering as data augmenta-
tion and remove the dropout in the FC layers. The results
are shown in Table 2. We compare our results with [16, 2].
We also run the code provided by [2] to re-train their model
and report the results. The difference between the reported
values and the reproduced results is probably due to the ran-
domness and different versions of software . Following the
convention on this dataset, we report the median errors of
location and orientation predictions. The result shows that,
on average, our model outperforms all the baselines.

6. Conclusion and Future Work

We propose a framework for learning neural vector rep-
resentations for both camera poses and 3D scenes, coupled
with neural matrix representation for camera movements.
The model is learned through novel view synthesis and can
be used for camera pose regression. Our learned represen-
tation proves to be more robust against pose noise in the
novel view synthesis task and works well as the estimation
target for camera pose regression. We hope that our work
can motivate further interest and study on learning neural
representations for camera poses and joint representations
for camera poses and 3D scenes. An interesting future di-
rection is how to combine our method with the recent work
of NeRF [25], which uses sinusoidal functions of very high
frequencies. Our model can be adapted to this new genera-
tive model structure and may be able to learn more flexible
camera pose representation.

'The code of [2] is originally implemented in python 2.7 and PyTorch
0.4.0 while we make minor adaptation to enable it to run in python 3.6 and
PyTorch 1.2.0
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Appendix

A. Training details

In this section, we describe the details about the struc-
ture of our neural networks and the hyperparameters we use
in the experiments. The main differences among the net-
work structures we use on different datasets depend on: (i)
the size of the image we are dealing with: the larger image
needs more blocks; (ii) the complexity of the scenes. For
7Scenes and Gibson rooms dataset, the scenes are highly
complex. Therefore we apply instance normalization to
multiple layers, which is dependent on scenes, besides the
vector representation of the scene at the top layer. For
the GQN rooms dataset, which includes a huge amount of
scenes, we employ an encoder to calculate the scene repre-
sentations online. We use Adam[ 9] as optimizer for all the
experiments with 81 = 0.9 and By = 0.999. The learning
rate for each setting is introduced in each later section.

A.1. GQN rooms dataset

Generative experiment. Since this dataset contains a
huge amount of scenes, and each scene only has few im-
ages, we encode the scene representations online instead of
learning an individual vector representation for each scene.
The encoder structure is shown in Figure 8a. Specifically,
the encoder encodes the scenes as a scene vector that is fed
to the top layer of the decoder, and it also encodes the pa-
rameters of instance normalization [ 1 2] that is applied to the
multiple layers of the generator. Following [6], to summa-
rize information across multiple images of the same scene,
we sum up the encoded vectors and parameters of these im-
ages. The decoder structure is shown in Figure 8b. We
discretize the square space into 20 x 20 grids and learn a
position vector at each grid. Similarly, we discretize the
orientation into 36 grids (10° per grid) and learn an orienta-
tion vector at each grid. The training takes about four days
on a single Titan RTX GPU.

We train the model for one million iterations. At each
iteration, we randomly sample 30 scenes, each containing
ten images. We use the first six images of each scene to
encode the scene representation and concatenate it with the
other three images’ pose representations. We use the con-
catenated representations to reconstruct the three images.



We leave the last image for testing. For the rotation loss, we
randomly sample 4000 pairs of poses for each iteration. The
learning rate of the pose representations and matrix repre-
sentations of camera movements is 0.01, and the learning
rate for the encoder, decoder, and scene representations is
0.0001. Here, we update all the learnable parameters to-
gether. We set A1 as 0.05, A2, A3 as 100 and A4 as 0.8.

For the baseline GQN network, we also train the model
for one million steps. At each step, we feed in a batch of
64 scenes. The other parameters follow the original imple-
mentation.

Inference experiment. We show the inference model
structure in Figure 8c. Like the generative experiment, we
use an encoder to encode the scene and the parameters of
instance normalization online. The encoder structure is the
same as the encoder used in the generation task, except
that we do not encode a vector representation at the top
layer but encode another set of instance norm parameters
(74, p4). We set the learning rate as 0.0001 for all the pa-
rameters. We train the inference model for 100,000 steps.
At each iteration, we feed in 30 scenes. For this dataset,
we use the homoscedastic uncertainty method proposed in
[16] to automatically tune the weight between pose predic-
tion loss of position and orientation. We set the initial guess

for logarithmic weight of position loss as Spes = —log 20
and the initial guess for logarithmic weight of orientation
loss as Sori = —logh (so that exp(—Spos) = 20 and

exp(—Seori) = 5). We use the same inference model struc-
ture for baseline models, except that we add another fully-
connected (FC) layer with size 196 to these models to make
sure that they have approximately the same amount of pa-
rameters as the model trained on our representations. We
also train these models for 100,000 iterations with the same
batch size. We tune the learning rate for each baseline
model to make a fair comparison and use the same automat-
ically weight tuning method for the two quaternions-related
baselines. The initial guess for the logarithm weight of po-
sition loss is set to 0.0, and the one of orientation loss is set
to -3.0 as suggested by [16]. For our model and each of the
baseline models, the training takes about 5 hours on a single
Titan RTX GPU.

A.2. ShapeNet car

Generative experiment. This dataset contains 2151 dif-
ferent cars. The heads of the cars are aligned to the same
orientation, and the background is blank. Given the sim-
plicity of this dataset, we do not use instance normalization.
The vector representation of scenes is of 128 dimensions,
and we learn a separate vector representation for each scene
instead of obtaining by an encoder. The structure of the
generator model is shown in Figure 9a. For our pose rep-
resentation system, we discretize the orientation for 0° to
360° into 36 grids and learn individual orientation vectors

at each grid.

For each scene, we randomly sample 50 pairs of images
for each scene as the training set and leave the others as the
test set. The camera poses of the two images in each pair is
close to each other, so that the change from one to another
can be approximated by Taylor expansion of the matrix Lie
groups as discussed in section 3.3, which means that we can
apply the camera poses of the two images to the rotation
loss. We train our model for 160,000 iterations, i.e., 1500
epochs. We randomly sample 20 scenes at each iteration,
and for each instance, we sample 10 images (5 pairs). For
the rotation loss, we randomly sample additional 200 pairs
of camera poses to compute the loss. The learning rate is
set to 0.0001. We set A\; as 0.05 and A\ as 50. We itera-
tively update the decoder for one time and pose representa-
tion system for three times at each iteration. The training
takes about four days on a single Titan RTX GPU.

For the baseline GQN model, we trained the model for
500,000 steps. At each step, we randomly sample a batch of
36 scenes. We randomly sample 15 images for each scene
to infer the scene representation and another image as the
reconstruction target. We use the same train-test split as our
model for each scene here.

Inference experiment Since the head direction for each
car is aligned to the same direction, the pose regression task
should follow the same rule across different scenes. Thus,
we do not include scene-related parameters in our inference
model. The structure of our inference model is shown in
Figure 9b. For each scene, we randomly sample 250 images
as the training set and the rest 250 images as the test set. We
train our model and all the baseline models for 500 epochs.
At each iteration, we use 10 scenes, and we randomly sam-
ple 20 images from each scene. The learning rate is set to
0.001. We simply set the weights of prediction losses of the
two rotation vectors as 1.0 without further automatic tuning.
For each baseline representation, we use the same inference
model structure and add another fully-connected (FC) layer
with size 256. We tune the learning rate carefully to make
a fair comparison, and we use the automatic weight tuning
method for the two quaternions-related baseline methods.
The initial guess for the logarithmic weight of orientation
loss is set to -3.0 as suggested by [16]. The training for our
model and each of the baseline models takes about 8 hours
on a single Titan RTX GPU.

A.3. Gibson rooms dataset

Generative experiment. This dataset contains complex
scenes. We apply instance normalization at multiple layers,
which is dependent on the scene. The structure is shown
in Figure 10a. The scene vector representation is of 768
dimensions, and the dimensions of instance normalizations
are summarized in Figure 10a. We discretize the 2m x 2m
square space into 40 x 40 grids. We discretize the two ori-



entation angles into grids so that each grid is 10°.

For each scene, we randomly sample half of the data
as the training set and the rest as the test set. We train
our model for 500k steps. At each iteration, we randomly
choose four scenes. For each scene, we randomly sample
50 images. For the rotation loss, we randomly sample an-
other 3000 pairs of poses. We use a learning rate of 0.0001
for training the generator and a learning rate of 0.01 for the
pose representation. We iteratively update the generator pa-
rameters for one time and update the pose representation
two times at each iteration. We set \; as 0.01, Ao, A3 as 100
and A4 as 0.8. The training takes about five days on a single
Titan RTX GPU.

For the baseline GQN model, we train the model for
500k steps. At each iteration, we randomly sample and pre-
dict 36 images. To predict each image, we randomly pick
15 images from the same scene to infer the scene represen-
tations.

Inference experiment. The inference structure is shown
in Figure 10b. We trained the inference model for 25000
steps for both our representation and the baseline represen-
tations. At each step, we randomly sample 4 scenes with
50 images from each scene. The learning rate for the model
with our representation is 0.001. For this dataset, we find
that simply set the weight of position prediction loss as 20
and set the weight of orientation prediction loss as 10 is
good enough. So we do not employ the automatic weight
tuning mechanism here. We tuned the learning rate for each
baseline model, and we applied the homoscedastic uncer-
tainty method to tune the weight for the quaternions-related
representations automatically. The initial guess for the log-
arithm weight of position loss is set to 0.0, and the one of
orientation loss is set to -3.0. For each baseline represen-
tation, we use the same inference model structure and add
another fully-connected (FC) layer with size 192.The initial
guess follows [16]. For our model and each of the baseline
models, the training takes about 5.5 hours on a single Titan
RTX GPU.

A.4. 7Scenes

Generative experiment. For this dataset, we use the
same generator structure as for the Gibson Room dataset
(see Figure 10a). Since this dataset contains less data than
the Gibson Room dataset, we set the dimension of the scene
vector representation to 96. We discretize the whole region
(4m x 1.5m x 3m) into grids so that each grid is of 0.Im
x 0.1m x 0.1m. The orientation is discretized into grids so
that each grid is of 10°.

We update the model for 100,000 steps. At each step, we
randomly sample 16 pairs of images from each scene, and
we randomly sample 3000 extra pairs of poses to estimate
the rotation loss. We use the learning rate 0.0001 for the
generator and 0.001 for the pose representation system. We

iteratively update the generator for one time and pose repre-
sentation system for two times at each iteration. We set \;
as 0.009 and Az as 50. The training takes about one day on
a single Titan RTX GPU.

Inference experiment. For the inference model, we use
the same structure proposed in [2], i.e., we use a pre-trained
ResNet34 as the basic feature extractor. We learn a separate
module containing several FC layers on the top of the ex-
tracted features to predict each pose vectors. Following [2],
we train an individual inference model for each scene. We
use learning rate 0.00005 and train the model of each scene
for 60 epochs. To isolate the effect of different representa-
tions, we use PoseNet as the model for all the representa-
tions, without other techniques such as adding pair losses
or unlabeled data. We consider these techniques to be or-
thogonal to the improvement in pose representation. We
employ the automatic weight tuning method as [2] to tune
the weight between the three position vectors and three ori-
entation vectors. We set the initial guess for the logarithm
weight of three position vectors’ losses the initial guess for
logarithm weight of three orientation vectors’ losses as -
3.0. We employ 0.7 color jitter as data augmentation and
remove the dropout in the final FC layer. Our model takes
about 3.7 hours for training all the 7 scenes on a single Ti-
tan RTX GPU. For the baseline model, we use the released
code of [2] and we use the default setting with python 3.6
and torch 1.2.0, which trains the models on each scene for
300 epochs with a learning rate of 0.0001. It takes about 13
hours to train the baseline models on the entire 7 scenes on
a single Titan RTX GPU.

B. Additional training results
B.1. Generative results

We show more novel view synthesis results for GQN
rooms, ShapeNet car and Gibson rooms in Figures 11, 12,
13.

B.2. Reconstructed image under different noise
magnitude

In Figure 5, we show the reconstructed images at differ-
ent noise levels using our model with learned camera pose
representation and GQN (which uses predefined low dimen-
sional sinusoidal function to represent rotation). We can
see that our model can reconstruct image with correct pose
even with high noise while the poses in the reconstructed
images of GQN model change a lot as noise increases. This
agrees with our observations from the psnr curves and fur-
ther prove that our learned camera pose representation is
more robust to noise.
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Figure 5: Reconstructed image at different noise levels. Top: Results from GQN (which uses low dimensional sin(c«), cos(a) to represent
angles); Bottom: Our results with learned camera pose representation. From left to right: Gradually increasing the noise added to the

camera pose representation.

B.3. Learning the camera pose representation by a
fully connected neural network

As a comparison, we replace our proposed camera pose
representation by a fully connected neural network on
ShapeNet car dataset. Specifically, we encode each angle by
a 2-layer fully-connected neural network. The first layer has
a length of 128 the second layer has a length of 96 (which
is same to our embedding). We use leaky relu as the acti-
vation function. As shown in Figure 6, this embedding is
also a high-dimensional one but it doesn’t has the transla-
tion invariance [38] as in our learned representation. Figure
7 shows the PSNR over the magnitude of noise added to
representations. The representation using a fully connected
neural network works better than the plain low dimension
embedding used in GQN in terms of robustness to noise.
But it still performs worse than our design, which is regu-
lated by the rotation loss. As for the camera pose estima-
tion, using the representation from a fully connected neural
network gives a testing error of 3.63°, which is lower than
the results of all the other hand designed representations but
still higher than the result of our design (with testing error
2.85°). The results show that learning a high-dimenstional
representation is better than the low-dimensional hand de-
signed ones and enforcing the translation invariance using
rotation loss can further improve the results.

100 150 200 250 300 350 o 50 100 150 200 250 300 350

a. 0 ours b. 8 fully-connected

7100 125 150 175 0 25 %0 75 100 125 150 175

c. ¢ ours d. ¢ fully-connected

Figure 6: Inner product of the learned camera pose representa-
tion. Each figure shows the inner product matrix between the cam-
era pose representation at different positions (check [38] for more
details). Left: our camera pose representation; Right: Camera pose
representation from a fully connected neural network. Top: Em-
bedding for angle 6; Bottom: Embedding for angle ¢.
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Figure 7: PSNR over magnitude of noise added to representa-
tions, learned from ShapeNet car dataset.
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Figure 8: Network structures for GQN rooms dataset. v and 3 denote the parameters of instance normalization.
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Figure 9: Network structures for ShapeNet car dataset.
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shares the same decoder structure with Gibson room dataset while its inference model is the same as [2].



(a) Ground Truth (b) GQN (c) Ours

Figure 11: Additional novel view synthesis results on GQN rooms dataset.
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Figure 12: Additional novel view synthesis results on ShapeNet v2 car dataset.
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Figure 13: Additional novel view synthesis results on Gibson rooms dataset.



