
Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for
3D Generation, Reconstruction and Classification

Jianwen Xie 1*, Yifei Xu 2*, Zilong Zheng 2, Song-Chun Zhu 2,3,4, Ying Nian Wu 2

1 Cognitive Computing Lab, Baidu Research, Bellevue, WA, USA
2 University of California, Los Angeles (UCLA), CA, USA

3 Tsinghua University, Beijing, China
4 Peking University, Beijing, China

{jianwen, fei960922, z.zheng}@ucla.edu, {sczhu, ywu}@stat.ucla.edu

Abstract

We propose a generative model of unordered point sets,
such as point clouds, in the form of an energy-based model,
where the energy function is parameterized by an input-
permutation-invariant bottom-up neural network. The en-
ergy function learns a coordinate encoding of each point
and then aggregates all individual point features into an
energy for the whole point cloud. We call our model the
Generative PointNet because it can be derived from the dis-
criminative PointNet. Our model can be trained by MCMC-
based maximum likelihood learning (as well as its vari-
ants), without the help of any assisting networks like those
in GANs and VAEs. Unlike most point cloud generators that
rely on hand-crafted distance metrics, our model does not
require any hand-crafted distance metric for the point cloud
generation, because it synthesizes point clouds by matching
observed examples in terms of statistical properties defined
by the energy function. Furthermore, we can learn a short-
run MCMC toward the energy-based model as a flow-like
generator for point cloud reconstruction and interpolation.
The learned point cloud representation can be useful for
point cloud classification. Experiments demonstrate the ad-
vantages of the proposed generative model of point clouds.

1. Introduction
1.1. Background and motivation

Point clouds, as a standard 3D acquisition format used
by devices like Lidar on autonomous vehicles, Kinect for
Xbox and face identification sensor on phones, are getting
increasingly popular for 3D representation in computer vi-
sion. Moreover, compared to other 3D formats such as

*Equal contributions.

voxel grids and 3D meshes, point clouds can provide a com-
pact and detailed representation of a 3D object.

Learning a generative model of 3D point clouds is a
fundamental problem for 3D computer vision because it is
beneficial to 3D point cloud synthesis and analysis tasks,
by providing an explicit probability distribution of point
clouds. Despite the enormous advance of discrimina-
tive models for the tasks of 3D point cloud classification
and segmentation, e.g., PointNet [31], PointNet++ [32],
DeepSet [52], ShapeContextNet [49], PointGrid [24], Dy-
namicGCN [37], and SampleNet [23], the progress in de-
veloping generative models for 3D point clouds has been
lagging. A major challenge in generative modeling of point
clouds is that unlike images, videos and volumetric shapes,
point clouds are not regular structures but unordered point
sets, which makes extending existing paradigms intended
for structured data not straightforward. That is why the ma-
jority of existing works on 3D generative models are based
on volumetric data, e.g., 3D ShapeNet [39], 3D GAN [38],
Generative VoxelNet [44, 45], 3D-INN [16], etc.

With the recent success of a variety of generation tasks
such as image generation and video generation, researchers
have become increasingly interested in point cloud gen-
eration, e.g., [8, 53, 35, 1, 25, 50]. Most of them are
based on well-established frameworks of GAN [11] (e.g.,
[53, 35, 1, 25]), VAE [22] (e.g., [8, 50]), or encoder-decoder
with hand-crafted distance metrics, such as Chamfer dis-
tance or earth mover’s distance [7] for measuring the dis-
similarity of two point clouds (e.g., [8, 53]). In this paper,
we propose a principled generative model for probabilistic
modeling of 3D point clouds. Specifically, the model is a
probability density function directly defined on unordered
point sets, and it is in the form of a deep energy-based
model (EBM) [42] with the energy function parameterized
by an input-permutation-invariant bottom-up deep network
that is suitable for defining energy on an unordered point

1

ar
X

iv
:2

00
4.

01
30

1v
2

 [c
s.C

V
]

7
A

pr
 2

02
1

set. We call the proposed model the Generative PointNet be-
cause, following the theory presented in [42], such a model
can be derived from the discriminative PointNet [31]. The
maximum likelihood estimation (MLE) of our model fol-
lows what Grenander [13] called “analysis by synthesis”
scheme in pattern theory [12]. Specifically, within each
learning iteration, “fake” 3D point cloud examples are gen-
erated by Langevin dynamics sampling, which is a gradient-
based Markov chain Monte Carlo [26, 3] (MCMC) method,
from the current model, and then the model parameters are
updated based on the difference between the “fake” exam-
ples and the “real” observed examples in order to match the
“fake” examples to the “real” observed examples in terms
of some permutation-invariant statistical properties defined
by the energy function.

Instead of implicitly modeling the distribution of points
as a top-down generator [11, 22] (implicit because the
marginal probability density of a generator model requires
integrating out the latent noise vector, which is analytically
intractable) or indirectly learning the model by an adver-
sarial learning scheme where a discriminator is recruited
and simultaneously trained with the generator in a minimax
two-player game, or a variational inference scheme where
an encoder is used as an inference model to approximate
the intractable posterior distribution, we explicitly model
this distribution as an EBM and directly learn the model by
MCMC-based MLE (as well as its variants) without the aid
of any extra network. The MLE, in general, does not suf-
fer from mode collapse and instability issues, which exist in
GANs due to the unbalanced joint training of two models.

Models using encoder-decoders for point cloud genera-
tion typically rely on hand-crafted distance metrics to mea-
sure the dissimilarity between two point sets. However,
the MLE learning of our model corresponds to a statisti-
cal matching between the observed and the generated point
clouds, where the statistical properties are defined by the
derivatives of the energy function with respect to the learn-
ing parameters. Therefore, our model does not rely on hand-
crafted distance metrics.

About the learning algorithm, as mentioned above, the
MLE learning algorithm follows an “analysis by synthesis”
scheme, which iterates the following two steps. Synthe-
sis step: generate the “fake” synthesized examples from the
current model. Analysis step: update the model parame-
ters based on the difference between the “real” observed
examples and the “fake” synthesized examples. See the
recent paper [29] for a thorough investigation of various
implementation schemes for learning the EBM. The fol-
lowing are different implementations of the synthesis step.
(i) Persistent chain [42], which runs a finite-step MCMC
such as Langevin dynamics [27] from the synthesized ex-
amples generated from the previous learning iteration. (ii)
Contrastive divergence chain [15], which runs a finite step

MCMC from the observed examples. (iii) Non-persistent
short-run MCMC [30], which runs a finite-step MCMC
from Gaussian white noise. It is possible to learn an unbi-
ased model using scheme (i), but the learning can be time-
consuming. Scheme (ii) learns a biased model that usually
cannot generate realistic synthesized examples. (iii) has
been recently proposed by [30]. Even though the learned
model may still be biased, similar to contrastive divergence,
the learning is very efficient, and the short-run MCMC ini-
tialized from noise can generate realistic synthesized exam-
ples. Moreover, the noise-initialized short-run Langevin dy-
namics may be viewed as a flow-like model [5, 6, 21] or
a generator-like model [11, 22] that transforms the initial
noise to the synthesized example. Interestingly, the learned
short-run dynamics is capable of reconstructing the ob-
served examples and interpolating different examples, sim-
ilar to the flow model and the generator model [30].

In our work, we adopt the learning scheme (iii). We
show that the learned short-run MCMC can generate real-
istic point cloud patterns, and it can reconstruct observed
point clouds and interpolate between point clouds. More-
over, even though it learns a biased model, the learned en-
ergy function and features are still useful for classification.

1.2. Related work

Energy-based modeling and learning. Energy-based
generative ConvNets [42] aim to learn an explicit prob-
ability distribution of data in the form of the EBM, in
which the energy function is parametrized by a modern
convolutional neural network and the MCMC sampling is
based on Langevin dynamics. Compelling results on learn-
ing complex data distributions with the energy-based gen-
erative ConvNets [42] have been shown on images [42],
videos [47, 48, 14] and 3D voxels [44, 45]. Some alterna-
tive sampling strategies to make the training of the models
more effective have been studied. For example, [9] pro-
poses a multi-grid method for learning energy-based gener-
ative ConvNet models. Cooperative learning or CoopNets
[41, 40, 43] trains a generative ConvNet with a generator as
an amortized sampler via MCMC teaching. [30] proposes
to learn a non-convergent, non-mixing, and non-persistent
short-run MCMC, and treats this short-run MCMC as a
learned generator model. Recent advances show that the
generative ConvNet can be trained with a VAE, e.g., [14, 46]
or a flow-based model, e.g., [10, 28]. However, the models
in the works mentioned above are only suitable for data with
regular structures. Learning EBMs for 3D point clouds,
which are unordered point sets, has not been investigated
prior to our paper.

Deep learning for point clouds. Deep learning meth-
ods have been successfully applied to point clouds for dis-
criminative tasks including classification and segmentation,
such as [31, 32, 52]. PointNet [31] is a pioneering dis-

2

criminative deep net that directly processes point clouds
for classification, by designing permutation invariant net-
work architecture to deal with unordered point sets. As to
generative models of point clouds, [8] uses VAEs and [53]
uses adversarial auto-encoders with heuristic loss functions
measuring the dissimilarity between two point sets, e.g.,
Chamfer distance (CD) or earth mover’s distance (EMD),
for the point cloud generation. GANs for point clouds are
explored in [25, 1, 35]. For example, [25] and [1] learn
a GAN on raw point cloud data, while [25] learns a GAN
on the latent space of an auto-encoder that is pre-trained
with CD or EMD loss on raw data. [35] proposes to gen-
erate point clouds via a GAN with graph convolution that
extracts localized information from point clouds. [50] stud-
ies point cloud generation using continuous normalizing
flows trained with variational inference. Our paper learns an
EBM of point clouds via MCMC-based MLE. The proposed
model, which we call Generative PointNet (or GPointNet),
can be derived from the discriminative PointNet. Our model
enables us to get around the complexities of training GANs
or VAEs, or the troubles of crafting distance metrics for
measuring similarity between two point sets.

1.3. Contributions

The key contributions of our work are as follows.
Modeling: We propose a novel EBM to explicitly rep-

resent the probability distribution of an unordered point set,
e.g., a 3D point cloud, by designing a input-permutation-
invariant bottom-up network as the energy function. This is
the first generative model that provides an explicit density
function for point cloud data. It will shed a new light not
only on the area of 3D deep learning but also in the study of
unordered set modeling.

Learning: Under the proposed EBMs, we propose to
adopt an unconventional short-run MCMC to learn our
model and treat the MCMC as a flow-based generator
model, such that it can be used for point cloud reconstruc-
tion and generation simultaneously. Usually EBM is unable
to reconstruct data. This is the first EBM that can perform
point cloud reconstruction and interpolation.

Uniqueness: Compared with existing point cloud gen-
erative models, our model has the following unique prop-
erties: (1) It does not rely on an extra assisting network for
training; (2) It can be derived from the discriminative Point-
Net; (3) It unifies synthesis and reconstruction in a single
framework; (4) It unifies an explicit density (i.e., EBM) and
an implicit density (i.e., short-run MCMC as a latent vari-
able model) of the point cloud in a single framework.

Performance: Our energy-based framework obtains
competitive performance with much fewer parameters com-
pared with the state-of-art point cloud generative models,
such as GAN-based and VAE-based approaches, in the tasks
of synthesis, reconstruction and classification.

2. Generative PointNet
2.1. Energy-based model for unordered point sets

Suppose we observe a set of 3D shapes {Xi, i =
1, ..., N} from a particular category of objects. Each shape
is represented by a set of 3D points X = {xk, k =
1, ...,M}, where each point x is a vector of its 3D coor-
dinate plus optional extra information such as RGB color,
etc. In this paper, the points we discuss only contain 3D
coordinate information for simplicity.

We define an explicit probability distribution of shape,
each shape itself being a 3D point cloud, by the following
energy-based model

pθ(X) =
1

Z(θ)
exp [fθ(X)] p0(X), (1)

where fθ(X) is a scoring function that maps the input X
to a score and is parameterized by a bottom-up neural net-
work, p0(X) ∝ exp(−||X ||2/2s2) is the Gaussian white
noise reference distribution (s is a hyperparameter and set to
be 0.3 in our paper), Z(θ) =

∫
exp[fθ(X)]p0(X)dX is the

analytically intractable normalizing constant, which ensures
the sum of all the probabilities in the distribution is equal
to 1. The energy function Eθ(X) = −fθ(X) + ||X||2/2s2
containing parameters θ defines the energy of the point
cloud X , and the point cloud X with a low energy is as-
signed a high probability.

Since each point cloud input X is a set of unordered
points, the energy function, Eθ(X), defined on a point set
needs to be invariant to M ! permutations of the point set
in point feeding order. Because ||X||2/2s2 is already nat-
urally invariant to the point permutation, we only need
to parameterize fθ(X) by an input-permutation-invariant
bottom-up deep network in order to obtain a proper Eθ(X)
that can handle unordered points. Specifically, we design
fθ(X) by applying a symmetric function on non-linearly
transformed points in the set, i.e., fθ({x1, ..., xM}) =
g({h(x1), .., h(xM)}), where h is parameterized by a
multi-layer perceptron network and g is a symmetric func-
tion, which is an average pooling function followed by a
multi-layer perceptron network. The network architecture
of the scoring function fθ is illustrated in Figure 1. Please
read the caption for the details of the network.

2.2. Maximum likelihood

Suppose we observe a collection of 3D point clouds
X = {Xi, i = 1, ..., N} from a particular category of
object. Let qdata be the distribution that generates the ob-
served examples. The goal of learning pθ is to estimate the
parameter θ from the observations X . For a large N , the
maximum likelihood estimation of θ,

max
θ

[
1

N

N∑
i=1

log pθ(Xi)

]
≈ max

θ
Eqdata [log pθ(X)]

3

Figure 1: Architecture of the scoring function of the Generative PointNet. The scoring function fθ(X) is an input-
permutation-invariant bottom-up deep network, which takes n unordered points as input, encodes each point into features
by multilayer perceptron (MLP) with numbers of channels 64, 128, 256, 512 and 1,024 at each layer respectively, and then
aggregates all point features to a global feature by average pooling, and eventually outputs scalar energy by multilayer per-
ceptron with numbers of channels 512, 256, 64 and 1 at each layer respectively. Layer Normalization [2] is used with ReLU
for layers before average pooling, while only ReLU is used for layers after average pooling.

is equivalently to minimize the Kullback-Leibler (KL)-
divergence KL(qdata‖pθ) over θ, where the KL divergence
is defined as KL(q|p) = Eq[log(q(x)/p(x))]. We can up-
date θ by gradient ascent. The gradient of the log-likelihood
or, equivalently, the negative KL divergence is computed by

− ∂

∂θ
KL(qdata(X)‖pθ(X))

= Eqdata

[
∂

∂θ
fθ(X)

]
− Epθ

[
∂

∂θ
fθ(X)

]
(2)

≈ 1

n

n∑
i=1

[
∂

∂θ
fθ(Xi)

]
− 1

n

n∑
i=1

[
∂

∂θ
fθ(X̃i)

]
, (3)

where {X̃i, i = 1, ..., n} are n point clouds generated from
the current distribution pθ by an MCMC method, such as
Langevin dynamics. Eq.(3) refers to the MCMC approxi-
mation of the analytically intractable gradient due to the in-
tractable expectation term Epθ [·] in Eq.(2), and leads to the
mini-batch “analysis by synthesis” learning algorithm. At
iteration t, we randomly sample a batch of observed exam-
ples from the training data set {Xi, i = 1, ..., n} ∼ qdata,
and generate a batch of synthesized examples from the
current distribution {X̃i, i = 1, ..., n} ∼ pθ by MCMC
sampling. Then we compute the gradient ∆(θt) accord-
ing to Eq.(3) and update the model parameter θ by θt+1 =
θt + γt∆(θt) with a learning rate γt.

2.3. MCMC sampling with Langevin dynamics

To sample point clouds from the distribution pθ(X) by
Langevin dynamics, we iterate the following step:

Xτ+1 = Xτ −
δ2

2

∂

∂X
Eθ(Xτ) + δUτ , (4)

where τ indexes the time step, δ is the step size, and Uτ ∼
N (0, I) is the Gaussian white noise. Since fθ is a differen-
tiable function, the term of gradient of Eθ(Xτ) with respect

to X can be efficiently computed via back-propagation. As
to MCMC initialization, the following are three options. (1)
Initialize long-run non-persistent MCMC from noise point
clouds. (2) Initialize persistent MCMC from noise point
clouds, and within each subsequent learning iteration, run a
finite-step MCMC starting from the synthesized point cloud
generated in the previous learning iteration. (3) Following
Contrastive Divergence [15], one may initialize the MCMC
from the training examples sampled from the training data
set within each learning iteration.

3. Short-run MCMC as generator model
Learning pθ requires MCMC sampling to generate syn-

thesized point clouds. The learned pθ is multi-modal be-
cause pdata is usually multi-modal, which is due to the com-
plexity of the point cloud patterns and the large scale of the
data set. The property of multimodality is likely to cause
different MCMC chains to get trapped by the local modes.
Thus the MCMC sampling of pθ may take a long time to
mix, regardless of the initial distribution and the length of
the Markov chain. Following the recent work on learn-
ing EBM [30], instead of running a long-run convergent
MCMC to sample from pθ, we only run non-convergent,
non-persistent short-run MCMC toward pθ for a fixed num-
ber of stepsK, starting from a fixed initial distribution, such
as Gaussian white noise distribution p0.

We use Mθ to denote the transition kernel of the K steps
of MCMC toward pθ(X). For a given initial probability dis-
tribution p0, the resulting marginal distribution of the sam-
ple X after running K steps of MCMC starting from p0 is
denoted by

qθ(X) = Mθp0(X) =

∫
p0(Z)Mθ(X|Z)dZ (5)

Since qθ(X) is not convergent, the X is highly depen-
dent to Z. qθ(X) can be considered a generator model, a

4

ch
ai

r
to

ile
t

ta
bl

e
ba

th
tu

b

Figure 2: Generating 3D point clouds of objects. Each row shows one experiment, where the first three point clouds are three
examples randomly selected from the training set. The rest are synthesized point clouds sampled from the short-run Langevin
dynamics. The number of points in each example is 2,048. From top to bottom: chair, toilet, table, and bathtub.

flow-based model, or a latent variable model with Z being
the continuous latent variables in the following form

X = Mθ(Z, ξ), Z ∼ p0(Z), (6)

where Z and X have the same number of dimensions, and
Z follows a known prior (Gaussian) distribution p0. Mθ

is a short-run Langevin dynamics including K Langevin
steps in Eq.(4), which can be considered a K-layer resid-
ual network with noise injected into each layer and weight
sharing at each layer. Let ξ be all the randomness in Mθ

due to the layer-wise injected noise. The model represented
by a short-run MCMC shown in Eq.(6) can be trained by
the “analysis by synthesis” scheme, where we update θ ac-
cording to Eq.(3) and synthesize {X̃} according to Eq.(6).
Training θ with a short-run MCMC is no longer a maxi-
mum likelihood estimator but a moment matching estimator
(MME) that solves the following estimating equation

Eqdata

[
∂

∂θ
fθ(X)

]
= Epθ

[
∂

∂θ
fθ(X)

]
. (7)

Even though the learned pθ based on short-run MCMC is
pθ̂MEE

rather than pθ̂MLE
, the qθ̂MEE

is still a valid generator
that is useful for 3D point cloud generation and reconstruc-
tion. As to reconstruction, given a testing 3D point cloud
X , we can reconstruct X by finding Z to minimize the re-
construction error L(Z) = ‖X −Mθ(Z)‖2, where Mθ(Z)
is a noise-disabled version of Mθ(Z, ξ) (after learning, the
noise term is negligible compared to the gradient term).
This can be easily achieved by running gradient descent on
L(Z), with Z initialized from Z0 ∼ p0. Even though we
abandon pθ in Eq.(1) and keep qθ in Eq.(5) eventually, pθ is
crucial because q is derived from p and we learn q under p.
In other works, p serves as an incubator of qθ̂MEE

.
When the model pθ is learned from a large scale data

set and only a limited budge of MCMC can be affordable,

learning a short-run MCMC as a generator model toward pθ
for point cloud generation and construction will be a trade-
off between MCMC efficiency and MLE accuracy.

The learning method based on noise-initialized short-run
MCMC is similar to contrastive divergence [15], which ini-
tializes a finite-step MCMC from each observed example
within each learning iteration. Contrastive divergence also
learns a bias model, but the learned model is usually inca-
pable of synthesis, much less reconstruction and interpo-
lation. For noise-initialized short-run Langevin, it is pos-
sible to optimize tuning parameters such as step size δ to
minimize the bias caused by short-run MCMC. Also, the
learning algorithm of our model seeks to match the expec-
tations of Φθ(X) = ∂

∂θfθ(X) over the observed data and
synthesized data. In the recent literature on the theoretical
understanding of deep neural networks, the expectation of
〈Φθ(X),Φθ(X

′)〉, where the expectation is with respect to
the random initialization of θ, is called the neural tangent
kernel [17], and it plays a central role in understanding the
optimization and generalization of deep and wide networks.
It is possible to define a metric based on such a kernel. We
shall study these issues in our future work.

4. Experiments
We conduct experiments to test the proposed GPointNet

model for point cloud modeling on a variety of tasks below.
The code and more results can be found at: http://www.
stat.ucla.edu/~jxie/GPointNet.

4.1. Synthesis

We evaluate our model for 3D point cloud synthesis on
the ModelNet10, a 10-category subset of ModelNet [39]
which is commonly used as a benchmark for 3D object anal-
ysis. We first create a point cloud dataset by sampling points
uniformly from the mesh surface of each object in the Mod-

5

http://www.stat.ucla.edu/~jxie/GPointNet
http://www.stat.ucla.edu/~jxie/GPointNet

Model JSD (↓)
MMD (↓) Coverage (↑)

CD EMD CD EMD

ni
gh

ts
ta

nd

r-GAN 2.679 1.163 2.394 50.00 38.37
l-GAN 1.000 0.746 1.563 44.19 39.53
PointFlow 0.240 0.888 1.451 55.81 39.53
Ours 0.590 0.692 1.148 59.30 61.63
Training Set 0.263 0.793 1.096 60.40 52.32

to
ile

t

r-GAN 3.180 2.995 2.891 17.00 16.00
l-GAN 1.253 1.258 1.481 21.00 28.00
PointFlow 0.362 0.965 1.513 39.00 33.00
Ours 0.386 0.816 1.265 44.00 37.00
Training Set 0.249 0.823 1.116 48.00 51.00

m
on

ito
r

r-GAN 2.936 1.524 2.021 21.00 24.00
l-GAN 1.653 0.915 1.349 28.00 27.00
PointFlow 0.326 0.831 1.288 37.00 32.00
Ours 0.780 0.803 1.213 40.00 38.00
Training Set 0.283 0.554 0.938 48.00 53.00

ch
ai

r

r-GAN 2.772 1.709 2.164 23.00 28.00
l-GAN 1.358 1.419 1.480 23.00 26.00
PointFlow 0.278 0.965 1.322 42.00 51.00
Ours 0.563 0.889 1.280 56.00 57.00
Training Set 0.365 0.858 1.190 54.00 59.00

ba
th

tu
b

r-GAN 3.014 2.478 2.536 26.00 30.00
l-GAN 0.928 0.865 1.324 32.00 38.00
PointFlow 0.350 0.593 1.320 50.00 44.00
Ours 0.460 0.660 1.108 58.00 50.00
Training Set 0.344 0.652 0.980 56.00 52.00

Model JSD (↓)
MMD (↓) Coverage (↑)

CD EMD CD EMD

so
fa

r-GAN 1.866 2.037 2.247 13.00 23.00
l-GAN 0.681 0.631 1.028 43.00 44.00
PointFlow 0.244 0.585 1.313 34.00 33.00
Ours 0.647 0.547 1.089 39.00 45.00
Training Set 0.185 0.467 0.904 56.00 56.00

be
d

r-GAN 1.973 1.250 2.441 27.00 21.00
l-GAN 0.646 0.539 0.992 48.00 44.00
PointFlow 0.219 0.544 1.230 50.00 35.00
Ours 0.461 0.552 1.004 50.00 50.00
Training Set 0.169 0.516 0.927 57.00 55.00

ta
bl

e

r-GAN 3.801 3.714 2.625 8.00 14.00
l-GAN 4.254 1.232 2.166 14.00 9.00
PointFlow 1.044 1.630 1.535 16.00 29.00
Ours 0.869 0.640 1.000 44.00 37.00
Training Set 0.703 1.218 1.182 31.00 38.00

de
sk

r-GAN 3.575 2.712 3.678 22.09 22.09
l-GAN 2.233 1.139 2.345 38.37 25.58
PointFlow 0.327 1.254 1.548 38.37 46.51
Ours 0.454 1.223 1.567 56.98 52.33
Training Set 0.329 1.055 1.332 53.48 50.00

dr
es

se
r

r-GAN 1.726 1.299 1.675 36.05 30.23
l-GAN 0.648 0.642 1.010 45.35 43.02
PointFlow 0.270 0.715 1.349 46.51 37.21
Ours 0.457 0.485 0.988 53.49 52.33
Training Set 0.215 0.551 0.882 56.98 54.65

Table 1: Comparison of quality of point cloud synthesis on the ModelNet10. ↓: the lower the better, ↑: the higher the better.
MMD-CD scores are multiplied by 100; MMD-EMD scores and JSDs are multiplied by 10.

elNet10 dataset, and then scale them into a range of [-1,1].
We train one single model for each category of point clouds.
The number of training examples in each category ranges
from 100 to 900. Each point cloud contains 2,048 points.

The network structure of the scoring function fθ(X) is
visualized in Figure 1. It first encodes each 3-dimensional
point coordinate in Euclidean space to a 1,024-dimensional

Model Category CD EMD Category CD EMD
Ours

night stand
0.378 0.685

sofa
0.427 0.703

PointFlow 0.464 0.990 0.389 0.888
Ours

toilet
0.396 0.708

bed
0.361 0.670

PointFlow 0.456 0.992 0.372 0.914
Ours

monitor
0.371 0.705

table
0.318 0.621

PointFlow 0.441 0.957 0.581 1.008
Ours

chair
0.337 0.719

desk
0.391 0.697

PointFlow 0.510 1.028 0.500 1.063
Ours

bathtub
0.321 0.612

dresser
0.329 0.645

PointFlow 0.289 0.825 0.415 0.942

Table 2: Comparison of performance in reconstruction on
the ModelNet10. CD scores are multiplied by 100 and
EMD scores are multiplied by 10. The lower the better.

point feature by an MLP, then uses an average pooling layer
to aggregate information from all the points to a single
1,024-dimensional global point cloud feature, and maps it
to the score by another MLP. The scoring function is input-
permutation-invariant because the MLP for point encoding
is shared by all unordered points and also the output of the
symmetric function, which is an average pooling layer fol-
lowed by an MLP, is not affected by the point feeding order.

We use Adam [20] for optimization with an initial learn-
ing rate 0.005, β1 = 0.9 and β2 = 0.999. We decay the
learning rate by 0.985 for every 50 iterations. The mini-
batch size is 128. The number of paralleled MCMC chains
is 128. We run K = 64 Langevin steps, with the step size
δ = 0.005. To avoid exploding gradients in MCMC, we clip
the gradient values to a range [-1,1] at each Langevin step.
We run 2,000 iterations for training. To further improve
training, we inject additive Gaussian noises with stand de-
viation 0.01 to the observed examples at each iteration.

To quantitatively evaluate the performance of genera-
tive models of point clouds, we adopt three metrics that
are also used in [1, 50], i.e., Jensen-Shannon Divergence
(JSD), Coverage (COV) and Minimum Matching Distance
(MMD). When evaluating COV and MMD, two point

6

In
pu

t
O

ur
s

Po
in

tF
lo

w

Figure 3: Point cloud reconstruction. A short-run MCMC as a generator is learned
from chair, table, toilet and bathtub, respectively. The learned generator is applied
to reconstruction by inferring the latent Z to minimize the reconstruction error.

C
ha

ir
To

ile
t

Figure 4: Point cloud interpolation between the generated examples at two ends.
The transition in each row displays the sequence of Mθ(Zρ) with the linear in-
terpolated latent variable Zρ = ρZ1 + (1 − ρ)Z2, where ρ ∈ [0, 1]. The left and
right point clouds are Mθ(Z1) and Mθ(Z2), respectively.

Method Full Generation
r-GAN 7.22 6.91
l-GAN 1.97 1.71
PointFlow 1.61 1.06
Ours 1.39

Table 3: A comparison of model sizes.
Our method has only one network for
both learning and generation.(Million)

Method Accuracy
SPH [18] 79.8%
LFD [4] 79.9%
PANORAMA-NN [33] 91.1%
VConv-DAE [34] 80.5%
3D-GAN [38] 91.0%
3D-WINN [16] 91.9%
3D-DescriptorNet [44] 92.4%
Primitive GAN [19] 92.2%
FoldingNet [51] 94.4%
l-GAN [1] 95.4%
PointFlow [50] 93.7%
Ours 93.7%

Table 4: A comparison of accuracy
of 3D object classification on the 10-
category ModelNet10 dataset.

clouds are measured by either Chamfer distance (CD) or
earth mover’s distance (EMD). We compare our model with
some baseline generative models for point clouds, including
PointFlow [50], l-GAN, and r-GAN, in Table 1. We report
the performance of the baselines using their official codes.
Figure 2 displays some examples of point clouds generated
by our model for categories chair, toilet, table, and bathtub.

4.2. Reconstruction

We demonstrate the reconstruction ability of the GPoint-
Net model for 3D point clouds. We learn our model with
a short-run MCMC as a generator. Given a testing point
cloud object, we reconstruct it with the learned generator
by minimizing the reconstruction error as we discussed in
Section 3. Figure 3 displays some examples of reconstruct-
ing unobserved examples. The first row displays the orig-
inal point clouds to reconstruct, the second row shows the
corresponding reconstructed point clouds obtained by the
learned model, and the third row shows the results obtained
by a baseline, PointFlow [50], which is a VAE-based frame-
work. For VAE, the reconstruction can be easily achieved
by first inferring the latent variables of the input example
and then mapping the inferred latent variables back to the
point cloud space via the generator. Table 2 shows a quan-
titative comparison of our method with PointFlow for point
cloud reconstruction. CD and EMD metrics are adopted to

measure the quality of the reconstruction. On the whole,
our method outperforms the baseline.

As to model complexity, we also compare the numbers
of parameters of different models in Table 3. Due to the
usage of extra networks in learning, models based on GAN
and VAE have different sizes of parameters in training and
generation stages. Our model does not use an auxiliary net-
work, thus it has less parameters.

4.3. Interpolation

We demonstrate the interpolation ability of our model.
We learn the model with short-run MCMC. We first sample
two noise point clouds Z1 and Z2 from Gaussian distribu-
tion as two samples from the latent space. Then we perform
linear interpolation in the latent space Zρ = (1− ρ) · Z1 +
ρ · Z2, with ρ discretized into 8 values within [0, 1]. We
generate point clouds by Xρ = Mθ(Zρ). Figure 4 shows
two results of interpolation between Z1 and Z2 by show-
ing the sequences of generated point clouds {Xρ}. Smooth
transition and physically plausible intermediate generated
examples suggest that the generator learns a smooth latent
space for point cloud embedding.

4.4. Representation learning for classification

The learned point encoder h(x) in the scoring function
fθ(X) can be useful for point cloud feature extraction, and

7

the features can be applied to supervised learning. We eval-
uate h by performing a classification experiment on the
ModelNet10 dataset. We first train a single GPointNet on
the training examples from all categories in an unsuper-
vised manner. The network fθ(X) is the same as the one
used in the previous sections, except that we add one layer
with 2,048 channels before the average pooling and one
layer with 1,024 channels after the average pooling. We
replace the average pooling layer by a max-pooling layer in
the learned scoring function and use the output of the max-
pooling as point cloud features. Such a point cloud feature
extractor is also permutation-invariant. We train an SVM
[36] classifier from labeled data based on the extracted fea-
tures for classification. We evaluate the classification accu-
racy of the SVM on the testing data using the one-versus-all
rule. Table 4 reports 11 published results on this dataset ob-
tained by other baselines. Our method is on a par with other
methods in terms of classification accuracy on this dataset.

We conduct experiments to test the robustness of the
classifier. We consider the following three types of data cor-
ruptions: (1) Type 1: missing points, where we randomly
delete points from each point cloud. (2) Type 2: added
points, where we add extra points that are uniformly dis-
tributed in the cube [−1, 1]3 into each point cloud. (3) Type
3: point perturbation, where we perturb each point of each
point cloud by adding a Gaussian noise. We report classifi-
cation accuracy of the classifier on the corrupted version of
ModelNet10 test set. Figure 5 shows the results. The classi-
fication performance decreases as the corruption level (e.g.,
missing point ratio, added point ratio, and standard devia-
tion of point perturbation) increases. In the case of missing
points, even though 94% points are deleted in each testing
example, the classifier can still perform with an accuracy
90.20%. In the extreme case where we only keep 20 points
(1%) in each point cloud, the accuracy becomes 53.19%.

0.0 0.2 0.4 0.6 0.8 1.0
Missing Point Ratio

55

60

65

70

75

80

85

90

95

Te
st
in
g
Ac

cu
ra
cy
 (%

)

0.0 0.2 0.4 0.6 0.8 1.0
Added Point Ratio

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

Te
st
in
g
Ac

cu
ra
cy
 (%

)

10−3 10−2 10−1 100

Standard Deviation for Adding Noise

20

40

60

80

Te
st
in
g
Ac

cu
ra
cy
 (%

)

Figure 5: Robustness Test. The model is tested on Model-
Net10 test set with three types of point corruptions. Clas-
sification accuracies are reported across different levels of
corruptions. Left: missing points. Middle: added points.
Right: point perturbation.

4.5. Visualization of point encoding function

The scoring function learns a coordinate encoding of
each point and then aggregates all individual point codes
into a score for the point set. The coordinate encoding func-
tion is implemented by an MLP, learning to encode each

3-dimensional point to a 2,048-dimensional vector in the
model that we use for classification. To better understand
what each encoding function learns, we visualize each fil-
ter at different layers of the MLP by showing the points in
the point cloud domain that give positive filter responses.
In Figure 6, we randomly visualize 4 filters at each layer.
The results suggest that different filters at different layers
learn to detect points in different shapes of regions. Filters
at a higher layer usually detect points in regions with more
complicated shapes than those at a lower layer.

layer 1 layer 2 layer 3 layer 4 layer 5 layer 6

Figure 6: Visualization of point encoding functions. The
point encoding function is implemented by a MLP. Each
filter at different layers of the MLP is visualized by showing
the points that have positive filter responses. Four filters
randomly selected at each layer are visualized.

5. Conclusion
This paper studies the deep energy-based modeling and

learning of unordered 3D point clouds. We propose a prob-
ability density of 3D point clouds, which is unordered point
sets, in the form of the energy-based model where the en-
ergy function is parameterized by an input-permutation-
invariant deep neural network. The model can be trained via
MCMC-based maximum likelihood learning, without the
need of recruiting any other assisting network. The learn-
ing process follows “analysis by synthesis” scheme. Exper-
iments show that the model can be useful for 3D generation,
reconstruction, interpretation, and classification.

Acknowledgment
The work is supported by NSF DMS-2015577,

DARPA XAI project N66001-17-2-4029, ARO project
W911NF1810296, ONR MURI project N00014-16-1-
2007, and XSEDE grant ASC180018. We thank Erik Ni-
jkamp for insightful discussions about short-run MCMC for
EBM and neural tangent kernel.

8

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative
models for 3D point clouds. In International Conference on
Machine Learning (ICML), pages 40–49, 2018. 1, 3, 6, 7

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 4

[3] Adrian Barbu and Song-Chun Zhu. Monte Carlo Methods.
Springer, 2020. 2

[4] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming
Ouhyoung. On visual similarity based 3d model retrieval.
In Computer Graphics Forum, volume 22, pages 223–232.
Wiley Online Library, 2003. 7

[5] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE:
non-linear independent components estimation. In Yoshua
Bengio and Yann LeCun, editors, International Conference
on Learning Representations (ICLR) Workshop, 2015. 2

[6] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.
Density estimation using real NVP. In International Con-
ference on Learning Representations (ICLR), 2017. 2

[7] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3D object reconstruction from a sin-
gle image. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 605–613, 2017. 1

[8] Matheus Gadelha, Rui Wang, and Subhransu Maji. Multires-
olution tree networks for 3D point cloud processing. In Eu-
ropean Conference on Computer Vision (ECCV), pages 103–
118, 2018. 1, 3

[9] Ruiqi Gao, Yang Lu, Junpei Zhou, Song-Chun Zhu, and Ying
Nian Wu. Learning generative ConvNets via multi-grid mod-
eling and sampling. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 9155–9164, 2018. 2

[10] Ruiqi Gao, Erik Nijkamp, Diederik P Kingma, Zhen Xu, An-
drew M Dai, and Ying Nian Wu. Flow contrastive estimation
of energy-based models. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 7518–7528,
2020. 2

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems (NIPS), pages 2672–
2680, 2014. 1, 2

[12] Ulf Grenander. A unified approach to pattern analysis. In Ad-
vances in Computers, volume 10, pages 175–216. Elsevier,
1970. 2

[13] Ulf Grenander and Michael I Miller. Pattern Theory: From
Representation to Inference. Oxford University Press, 2007.
2

[14] Tian Han, Erik Nijkamp, Xiaolin Fang, Mitch Hill, Song-
Chun Zhu, and Ying Nian Wu. Divergence triangle for joint
training of generator model, energy-based model, and infer-
ential model. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 8670–8679, 2019. 2

[15] Geoffrey E Hinton. Training products of experts by
minimizing contrastive divergence. Neural Computation,
14(8):1771–1800, 2002. 2, 4, 5

[16] Wenlong Huang, Brian Lai, Weijian Xu, and Zhuowen Tu.
3D volumetric modeling with introspective neural networks.
In The Thirty-Third AAAI Conference on Artificial Intelli-
gence (AAAI), pages 8481–8488, 2019. 1, 7

[17] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neu-
ral tangent kernel: Convergence and generalization in neural
networks. In Advances in Neural Information Processing
Systems (NeurIPS), pages 8571–8580, 2018. 5

[18] Michael Kazhdan, Thomas Funkhouser, and Szymon
Rusinkiewicz. Rotation invariant spherical harmonic repre-
sentation of 3D shape descriptors. In Symposium on Geome-
try Processing, volume 6, pages 156–164, 2003. 7

[19] Salman H Khan, Yulan Guo, Munawar Hayat, and Nick
Barnes. Unsupervised primitive discovery for improved 3d
generative modeling. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 9739–9748,
2019. 7

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 6

[21] Durk P Kingma and Prafulla Dhariwal. Glow: Generative
flow with invertible 1x1 convolutions. In Advances in Neu-
ral Information Processing Systems (NIPS), pages 10215–
10224, 2018. 2

[22] Diederik P. Kingma and Max Welling. Auto-encoding varia-
tional bayes. In International Conference on Learning Rep-
resentations (ICLR), 2014. 1, 2

[23] Itai Lang, Asaf Manor, and Shai Avidan. Samplenet: differ-
entiable point cloud sampling. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 7578–
7588, 2020. 1

[24] Truc Le and Ye Duan. Pointgrid: A deep network for 3d
shape understanding. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 9204–9214,
2018. 1

[25] Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poc-
zos, and Ruslan Salakhutdinov. Point cloud GAN. arXiv
preprint arXiv:1810.05795, 2018. 1, 3

[26] Jun S Liu. Monte Carlo Strategies in Scientific Computing.
Springer Science & Business Media, 2008. 2

[27] Radford M Neal et al. MCMC using hamiltonian dynamics.
Handbook of Markov Chain Monte Carlo, 2(11):2, 2011. 2

[28] Erik Nijkamp, Ruiqi Gao, Pavel Sountsov, Srinivas Vasude-
van, Bo Pang, Song-Chun Zhu, and Ying Nian Wu. Learn-
ing energy-based model with flow-based backbone by neural
transport mcmc. arXiv preprint arXiv:2006.06897, 2020. 2

[29] Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and
Ying Nian Wu. On the anatomy of MCMC-based maximum
likelihood learning of energy-based models. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence (AAAI),
pages 5272–5280, 2020. 2

[30] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian
Wu. Learning non-convergent non-persistent short-run
MCMC toward energy-based model. In Advances in Neu-
ral Information Processing Systems (NeurIPS), pages 5233–
5243, 2019. 2, 4

9

[31] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3D classification
and segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 652–660, 2017. 1, 2

[32] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. PointNet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in Neural Informa-
tion Processing Systems (NIPS), pages 5099–5108, 2017. 1,
2

[33] Konstantinos Sfikas, Theoharis Theoharis, and Ioannis
Pratikakis. Exploiting the PANORAMA representation for
convolutional neural network classification and retrieval. In
10th Eurographics Workshop on 3D Object Retrieval, 2017.
7

[34] Abhishek Sharma, Oliver Grau, and Mario Fritz. VConv-
DAE: Deep volumetric shape learning without object labels.
In European Conference on Computer Vision (ECCV), pages
236–250. Springer, 2016. 7

[35] Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Learn-
ing localized generative models for 3D point clouds via
graph convolution. In International Conference on Learn-
ing Representations (ICLR), 2019. 1, 3

[36] Vladimir Vapnik. The Nature of Statistical Learning Theory.
Springer, 2000. 8

[37] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph CNN for learning on point clouds. Acm Transactions
On Graphics (TOG), 38(5):1–12, 2019. 1

[38] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of
object shapes via 3D generative-adversarial modeling. In
Advances in Neural Information Processing Systems (NIPS),
pages 82–90, 2016. 1, 7

[39] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D
shapenets: A deep representation for volumetric shapes. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1912–1920, 2015. 1, 5

[40] Jianwen Xie, Yang Lu, Ruiqi Gao, and Ying Nian Wu. Co-
operative learning of energy-based model and latent variable
model via MCMC teaching. In Thirty-Second AAAI Con-
ference on Artificial Intelligence (AAAI), pages 4292–4301,
2018. 2

[41] Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, and
Ying Nian Wu. Cooperative training of descriptor and gen-
erator networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 42(1):27–45, 2020. 2

[42] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu. A
theory of generative ConvNet. In International Conference
on Machine Learning (ICML), pages 2635–2644, 2016. 1, 2

[43] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu,
and Ying Nian Wu. Cooperative training of fast thinking
initializer and slow thinking solver for conditional learning.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 2021. 2

[44] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang,
Song-Chun Zhu, and Ying Nian Wu. Learning descriptor

networks for 3D shape synthesis and analysis. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8629–8638, 2018. 1, 2, 7

[45] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang,
Song-Chun Zhu, and Ying Nian Wu. Generative VoxelNet:
learning energy-based models for 3D shape synthesis and
analysis. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI), 2020. 1, 2

[46] Jianwen Xie, Zilong Zheng, and Ping Li. Learning energy-
based model with variational auto-encoder as amortized
sampler. In The Thirty-Fifth AAAI Conference on Artificial
Intelligence (AAAI), 2021. 2

[47] Jianwen Xie, Song-Chun Zhu, and Ying Nian Wu. Synthe-
sizing dynamic patterns by spatial-temporal generative Con-
vNet. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7093–7101, 2017. 2

[48] Jianwen Xie, Song-Chun Zhu, and Ying Nian Wu. Learning
energy-based spatial-temporal generative ConvNets for dy-
namic patterns. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 43(2):516–531, 2021. 2

[49] Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. At-
tentional shapecontextnet for point cloud recognition. In
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 4606–4615, 2018. 1

[50] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge
Belongie, and Bharath Hariharan. PointFlow: 3D point cloud
generation with continuous normalizing flows. In IEEE In-
ternational Conference on Computer Vision (ICCV), pages
4541–4550, 2019. 1, 3, 6, 7

[51] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingnet: Point cloud auto-encoder via deep grid deformation.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 206–215, 2018. 7

[52] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-
abas Poczos, Ruslan R Salakhutdinov, and Alexander J
Smola. Deep sets. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 3391–3401, 2017. 1, 2

[53] Maciej Zamorski, Maciej Zięba, Rafał Nowak, Wojciech
Stokowiec, and Tomasz Trzciński. Adversarial autoen-
coders for generating 3D point clouds. arXiv preprint
arXiv:1811.07605, 2018. 1, 3

10

