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Quantifying the Traffic Impacts of the COVID-19 Shutdown

Zixuan Liu' and Raphael Stern, A.M.ASCE?

Abstract: The coronavirus disease (COVID-19) pandemic has significantly disrupted transportation and travel patterns across the US and
around the world. A significant driving factor in the significant reduction in travel in the US was the declaration of varying state-, county-,
and city-level stay-at-home orders with varying degrees of reduction. However, it is still not clear how significantly any one of those orders
contributed to the reduction in travel. This article looks at continuous count data from the Minneapolis—St. Paul, Minnesota, area to
quantify the disruption in terms of reductions in traffic volume as well as the abnormality of the disruption to travel patterns. A nearly
50% reduction in total traffic volume is found, and regional trends both in reductions and the gradual recovery toward normal travel
patterns are identified. Furthermore, key dates are identified that led to significant reductions in travel, and this disruptive event is com-
pared with other significantly disruptive events in Minnesota for context. It is found that although the stay-at-home order was a significant
milestone in the fight against COVID-19, traffic volumes had already reduced significantly before the order went into effect, and traffic
volumes had recovered significantly before the order expired. These findings will be helpful in understand the impact of stay-at-home
orders on future outbreaks of COVID-19 or other pandemics. DOI: 10.1061/JTEPBS.0000527. © 2021 American Society of Civil

Engineers.

Introduction

In December 2019, a novel coronavirus (SARS-CoV-2) that causes
COVID-19 was first identified in Wuhan, Hubei Province, China.
The virus quickly spread through provinces in China and caused
major travel disruptions during the Spring Festival celebrations
in late January and early February. By late February, there were
COVID-19 outbreaks in multiple countries, and the World Health
Organization (WHO) declared COVID-19 a global pandemic in
mid-March 2020. Although the COVID-19 pandemic has disrupted
daily life in many aspects, one way in which COVID-19 has sig-
nificantly altered life is the disruption it has caused to both long-
distance travel and local transportation. This is a result of reduced
travel demand, an increase in telecommuting or working from
home, and a patchwork of governmental directives such as stay-
at-home orders that were issued by local, regional, and national
governments.

It is clear that COVID-19 has caused a substantial disruption,
but it is still unclear how significant the change in travel patterns
has been, and how substantial this shift has been when compared
with other disruptive events. Furthermore, the use of differing de-
grees of stay-at-home orders (e.g., complete stay-at-home order
versus allowing some businesses to reopen) has influenced travel
demand at every phase of the COVID-19 pandemic. Understanding
how differing directives have influenced travel patterns, and how
slowly, over time, people return to normality without any substan-
tial change in directive or legislation, will help allow better re-
sponses to future outbreaks or resurgences of the COVID-19
virus or other similar pandemics.
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Understanding the degree of disruption and corresponding resil-
ience of urban transportation networks with regards to disruptive
events has been an area of significant interest. Many efforts focused
on the transportation network disruption caused by natural events
such as extreme weather (Chan and Schofer 2016; Glass et al. 2018;
Gori et al. 2020; Shen and Aydin 2014) or climate change (Markolf
et al. 2019; Pregnolato et al. 2017), whereas others looked at the
resilience of transportation networks to such events. For example,
looking at the transportation system level, Donovan and Work
(2017) used the Mahalanobis distance (Mahalanobis 1936) to quan-
tify the degree abnormality of traffic before, during, and after
Hurricane Sandy in New York City, New York, and used this to
identify when the traffic was most anomalous. Others have focused
on identifying anomalous traffic conditions at the individual link
level using various video detection systems (Athanesious et al.
2019; Dong et al. 2010; Li et al. 2020). However, when it comes
to analysis of a transportation network, these studies all consider a
supply-side disruption, i.e., a reduction in network capacity. In the
case of the COVID-19-related shutdown, the disruption has pri-
marily been a demand-side disruption where fewer people travel
as a result of stay-at-home orders. Therefore, the same network
analysis tools are used to understand how transportation networks
respond to major disruptions, and these methods are applied to the
demand-side disruption at the start of the COVID-19 shutdown.

The COVID-19 pandemic has already been shown to have
significantly altered transportation and travel behavior. For exam-
ple, Beck and Hensher (2020) studied household travel during the
initial travel restrictions in Australia and found a decrease in house-
hold travel, and Abu-Rayash and Dincer (2020) unsurpris-
ingly found a substantial decline in global air travel during the
COVID-19 pandemic. The COVID-19 pandemic has inspired much
academic research as engineers, state and local governments, and
researchers try to understand how the pandemic has changed, and
will continue to change, travel patterns (Aletta et al. 2020; Lee et al.
2020; Parr et al. 2020; Hendrickson and Rilett 2020). In many
cases, this has led to better air quality in the short term (Xiang
et al. 2020). Looking at pandemics more broadly, others have found
significant disruptions to transportation networks in other pan-
demic outbreaks (Xu et al. 2019). As mentioned previously,
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although many natural disasters cause a disruption to the transpor-
tation network supply by reducing road and airport capacity, the
COVID-19 pandemic has caused a disruption to the demand for
transportation.

With that in mind, this article uses continuous count data from
the city of Minneapolis, Minnesota, as a case study to quantify the
abnormality of traffic conditions during the COVID-19 pandemic.
Specifically, the authors are interested in measuring how likely a
particular traffic volume is based on historic fluctuations in traffic
volumes. This study investigates how each individual change to the
state- and city-level stay-at-home order influenced travel behavior,
as well as how the rising COVID-19 infection level within the state
contributed to the travel disruption. This article discusses and im-
plements statistical tools to quantify degree of abnormality, and
compares the abnormality of the events with other significantly dis-
ruptive events. There is also an investigation into how different re-
gions (e.g., downtown, suburbs, and rural areas) were influenced
differently by the pandemic and resulting stay at home orders. This
provides an early analysis into how the COVID-19 pandemic and
associated government orders affected vehicular travel. The insight
into how the transportation network responds to different mecha-
nisms will be valuable in any future outbreaks of COVID-19 or
other similar viruses.

The remainder of this article is outlined as follows. First, differ-
ent methods for traffic data detection are discussed, followed by a
discussion of quantifying abnormality in traffic data based on these
measurements. Next, a case study using data collected in Minnesota
is introduced, and regional trends in the data during the COVID-19
pandemic are discussed. The experimental data are compared with
previous disruptive events. Finally, it is concluded that the COVID-
19 pandemic has been severely disruptive to travel patterns, with
the degree of disruption and rate of recovery differing by geo-
graphic region.

Traffic Detection

To understand how the COVID-19 pandemic has influenced travel,
the authors are interested in identifying traffic volumes on individ-
ual roadways. Traffic detection has been an area of research for
many decades, with many technologies developed and deployed.
Traffic detection techniques generally can be categorized as one
of three types: (1) in-pavement; (2) overhead detectors; and (3) mo-
bile detectors.

All three types of aforementioned methods provide accurate
traffic detection (Riveiro et al. 2017; Mercader and Haddad 2020;
Cherrett et al. 2005), and the anomaly detection techniques dis-
cussed subsequently could be applied to any of them. However,
because they are the most prevalent detectors installed in urban in-
frastructure, the focus of the methods discussed, as well as the
analysis presented in this article, will focus on vehicle counts,
or continuous count data. These data provide individual vehicle
counts at particular fixed locations in the infrastructure over a short
time interval (e.g., 1 min or 1 h). These data can be used to assess
the usage and performance of the roadway infrastructure and detect
anomalous traffic conditions, as discussed next.

Description of Traffic Data

The data set used in this analysis was collected from the Minnesota
Department of Transportation (Minnesota DOT), which collects
traffic volume (number of vehicles observed) and speed informa-
tion from a series of detectors in the Minneapolis, Minnesota, and
surrounding areas. For this analysis, data from 300 detectors on
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Minnesota roadways were utilized. Only detectors that have valid
data for the duration of the study period (January 4, 2015-July 18,
2020) were used, meaning that there are no missing data. This is
necessary to eliminate detectors that are no longer operational or
are too new to the system to provide reliable historical traffic
counts. However, this data set provides combined counts for pas-
senger vehicles and trucks and does not allow for observing differ-
ent trends for different vehicle types.

Traffic volume data collected during the first 28 complete weeks
of each year (for 2020, this is from January 5 to July 18) are used,
which corresponds to the time frame of interest relative to COVID-19.
Throughout this article, the 2020 data are referred to as the subject
data set, and the 2015-2019 data are called the baseline data set.
Further filtering was done on all chosen detectors to eliminate those
which had intermittent down times in the observed time frame,
which resulted in a reduced number of sampled detectors of 262.
This filtering of detectors with intermittent downtime was
needed to ensure the result were not skewed by large gaps in the
data for some detectors. Fig. 1 shows the detectors used in this
study and gives a sense for the geographical area covered and
distribution.

A small subset of the subject data set is presented in Table 1 to
provide an example of how the data are stored. The data contain the
average number vehicles observed for each 30-min time period in
the data set. The data were provided in 30-min increments, and
therefore this is the highest granularity that can be observed.

Quantifying Traffic Abnormality

To quantify the traffic abnormality, two separate statistical metrics
are considered: percent change relative to prior years and normal-
ized deviation from the mean relative to prior years. For the purpose
of these metrics, the data will be examined in terms of weekly
averages, Sunday to Saturday, to eliminate the day-of-the-week-
dependent effects such as the presence of increased worker com-
mute traffic on weekday measurements. Considering the weekly
averages allows for observing the overall traffic patterns resulting
from COVID-19.

Percent Change from Prior Year

By computing the percent change in traffic volume at a particular
detector with respect to the same day of the week the previous year,
a simple estimate can be obtained for how substantially traffic vol-
umes have been affected. This is computed as follows:

V()= V4

Ay(1) 7 (1)

where A () = percent change in traffic volume from the historical
baseline traffic flow observed at detector d on day t; V () = traffic
volume observed for detector d on day ¢ being considered in the
subject data set; and V¥ = baseline mean volume for detector d that
has been observed in the past. Eq. (1) is computed for each sensor at
each point in time and then averaged across all sensors in the study
area. Thus, one can also compute the distribution in volume change
for each data point.

Percent change from prior year provides a metric for compari-
son between 2 years. Although there is no theoretical maximum
value, there is a practical maximum value because a particular road-
way cannot go beyond the capacity of the road, which is generally
assumed to be roughly 2,000 vehicles per hour per lane. The mini-
mum value that the percent change can take is —100%, which
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Fig. 1. Locations of the Minnesota DOT traffic detectors used to analyze traffic volume abnormality and response to COVID-19-related government
orders. (Map data from Mapbox and OpenStreetMap and their data sources. To learn more, visit https://www.mapbox.com/about/maps/ and http://

www.openstreetmap.org/copyright.)

Table 1. Example of subject volume data used in this article, with average
being the mean number of vehicles observed by that detector for each
sample period (30 min) on each date

Detector ID Date Average
100 January 5, 2020 396.6522
100 January 6, 2020 592.9130
100 July 18, 2020 383.3912

corresponds to no traffic being observed. This metric helps to iden-
tify trends in the traffic volume patterns, but it does not conclu-
sively signify an anomaly because it does not take typical traffic
volume variation into account.

Normalized Deviation

To quantify the abnormality in the network compared with the
historical baseline data set, the average normalized deviation
from the mean (i.e., z-score) of the detectors is also used,
allowing the percentage change in traffic volume to be contrasted
with the standard deviation observed in the baseline historical
data. The formula to compute the normalized deviation Z,(t),
where d is a specific detector and ¢ is a specific day, is provided
in Eq. (2)
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()—MZ

Zy(1) = 2)
where V() = traffic volume observed for the detector and day in
the subject data set; and ,uZ and O'Z = volume mean and volume
standard deviation, respectively, for the detector in the baseline data
across all days in the historical baseline data set. The historical base-
line data set contains only the date range in the subject 2020 data set.

This metric allows for examining how abnormal the fluctuations
in traffic volume caused by COVID-19 are. Importantly, this metric
provides a detector-level measurement of traffic abnormality. Thus,
this metric, as well as the percentage change metric, are utilized to
identify regional trends in the traffic effects of COVID-19.

For a particular measurement or observation, the normalized
deviation tells how many standard deviations the observed meas-
urement is. Values below zero indicate that the measurement is
lower than average, whereas values above zero indicate the meas-
urement is larger than average. Although there is no theoretical
maximum or minimum value for the normalized deviation, values
of greater than 3 or less than —3 are considered to be abnormal.

Data and Discussion

In this section, the discussed measures of traffic volume and abnor-
mality to are applied continuous count traffic flow data collected in
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Table 2. Subject data set volume statistics across all detectors and dates

Property Value (vehicles)
Median 379.24
Mean 411.10
Maximum 2,722.35
Standard deviation 255.11

the state of Minnesota. A first view is thereby presented of how the
different stay-at-home orders in Minnesota influenced traffic vol-
umes both in urban and rural areas of the state.

Data Preprocessing and Filtering

All data were cleaned through a preprocessing and filtering step to
identify which sensors were missing data at any point during the
study period (e.g., due to faulty sensors). This preprocessing in-
cluded analysis of the data set to identify any time periods where
data were missing. Sensors that had significant amounts of data
missing were omitted from the analysis, and data were interpolated
for sensors that had brief outages. A summary of average statistics
for all sensors in the cleaned data is presented in Table 2.

General COVID-19 Trends in Minneapolis

To analyze the data on traffic volume, the trends need to be com-
pared with the timeline of events involving COVID-19 in Minne-
apolis. The timeline in Fig. 2 gives a simple representation of which
weeks in which different government orders and COVID-19 mile-
stones occurred. Thus, the timeline shows the start of the week after
each event occurred. Specifically, the stay-at-home order declared
on March 25, 2020, required all nonessential workers to work from
home and only allowed essential travel, but all nonessential busi-
nesses had already been closed. When the stay-at-home order ex-
pired on May 18, nonessential business was permitted again, and
outdoor dining was permitted at restaurants, but employees who
were able to work from home were required to continue working
from home. On June 10, Minnesota entered Phase 3 of the reopen-
ing, which allowed for limited indoor dining at restaurants.

When comparing these changes in state-level policy and signifi-
cant case number milestones with traffic trends, it is important to
consider that some significant events occur toward the end of the
week they are in, and so the effects may not be fully seen until the
following week.

With this timeline in mind, the authors are particularly interested
in significant changes to traffic volume at each of these milestones
to see how the traffic trends reacted, as well as the characteristics
with which traffic returned to normal levels.

A B C D E F G H I J
—AAN— + + + AN AN AN AN
1/05 3/01 3/08 3/15 3/22 4/05 4/26 5/17 6/07 7/12

A: Start of our analysis

B: First case of COVID-19 in Minnesota on the 6th of March

C: State of emergency is declared on the 13th of March

D: Schools are closed on the 15th of March, all non-essential businesses ordered to close on the
16th of March, first death in Minnesota due to COVID-19 on the 21st of March
E: Governor announces stay-at-home order on the 25th of March

F: Stay-at-home order extended on the 8th of April

G: Stay-at-home order extended for second time on the 30th of April

H: Stay-at-home order expires on the 18th of May

I: Phase 3 of Minnesota reopening plan begins on the 10th of June

J: Last week we analyzed, emergency order still in place for Minnesota

Fig. 2. Timeline of COVID-19 events in Minnesota. All listed events
occur the listed date or following 6 days.
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Abnormality of Traffic during COVID-19

From the subject data set, one can observe the relative percent
change in traffic volume seen in Fig. 3(a) when looking at the aver-
age of all detector. Data are only provided for the points in Fig. 3(a),
and the bars represent one standard deviation in reduction across all
sensors in the study area. It can be seen from these results that the
volume fluctuated between —5% and 5% up through the week of
March 1, in which the first COVID-19 case was recorded. The start
of a decrease in traffic volume is observed in the week of March 8,
when the state of emergency was announced in Minnesota, but re-
mains within the +10% range, likely due to the start of that order
occurring towards the end of the week. Following these events, one
can see the traffic volume drops in the city to levels of approximately
50% of the baseline expected traffic volume by the week of March
29, at which time the full stay-at-home order went into effect. The
distribution of the reduction widens after mid-April, when traffic vol-
umes began to rise again, indicating that some areas saw an even
larger reduction in traffic, whereas others were less affected.

Considering this in terms of the z-score averaged from all sen-
sors sampled, presented in Fig. 3(b), one can see that this dip trans-
lates to a full two standard deviations, meaning the traffic volume
decreases are well outside the expected typical variation in magni-
tude seen in the baseline data.

Following the week of March 29, the downward trend in traffic
volumes begins to reverse, maintaining a steady recovery trend of
approximately 3% per week, reaching an apparent plateau from the
week of June 21 at 10%—15% below the baseline traffic volume,
which is small enough to be within half a standard deviation in
typical traffic volume fluctuations. In other words, by June 21,
the traffic volume, although still affected, had stabilized at roughly
10% below typical traffic volumes.

With this, one can describe the magnitude of the effects on traf-
fic volumes that COVID-19 and the government orders have had, as
well as how unlikely these are to be due to regular volume varia-
tions based on previous years’ data. The COVID-19-related shut-
down reduced traffic volume on average throughout the city by
50%. However, these effects proved to be only temporary, after
which the traffic volume began to recover at a slow but steady pace.
Although the decrease in traffic volumes coincides with the enact-
ment of the stay-at-home order in Minnesota, one can observe that
this recovery in traffic volumes occurred independently of the re-
peal of the stay-at-home and reduced operation orders that were put
in place.

The timeline in Fig. 2 and reduction in traffic volume in Fig. 3
indicate that most significant changes in traffic volume occurred
after the first case of COVID-19 was detected in Minnesota (Point
B) as well as the state of emergency being declared in Minnesota
(Point C). By time the governor issued a stay-at-home order in
Minnesota (Point E), traffic volumes had already dropped signifi-
cantly from the initial traffic volumes. Traffic volumes began
slowly climbing again when the stay-at-home order was extended
(Point F), and continued to climb at a steady rate through the
second extension of the stay-at-home order (Point G), as well as
the end of the shelter-in-place order (Point H). This shows that,
although important in influencing traffic volumes, the stay-at-home
order was not the primary factor influencing traffic volumes.
Instead, it is possible that fear of COVID-19, or some other factor,
was the primary driving factor in reducing traffic volumes in
Minnesota. However, it is important to point out that the data count
individual vehicles and do not disaggregate between passenger ve-
hicles and trucks. Therefore, although passenger vehicle volumes
decreased, it is not known how the increase in trucking during the
COVID-19 pandemic influenced these traffic counts.
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Fig. 3. Percent change in traffic volumes and normalized deviation of traffic volumes from expected volume (z-score) during the COVID-19 pan-
demic in 2020: (a) percent change in traffic volume from baseline traffic volumes, averaged for all detectors, where bars represent one standard
deviation in measurements across all sensors in the study area; and (b) normalized deviation from typical traffic volumes during baseline during

COVID-19, averaged for all detectors.

Regional Trends in COVID-19 Data

Next, regional variation in traffic volumes as a result of the COVID-19
pandemic and corresponding state mandates such as the stay-at-
home order and partial stay-at-home order are investigated.

Traffic Abnormality during COVID-19 in the Urban Core
Fig. 4 shows that the general trend in traffic volume up to the end of
March, excluding several outliers, appears to be similar across the
different detectors. Following that, however, the detectors begin
diverging into two distinct recovery groups, one group recovering
at roughly the rate described previously of 3% recovery per week,
and the other trailing behind at a much slower rate of approximately
1.5% per week. Both these groups appear to respond in similar
ways at the earlier times of interest, including both before the first
recorded case of COVID-19 in Minneapolis, as well as when the
volume first decreased in March. However, there are visible differ-
ences among several groups of detectors in their rate of recovery
back toward normal values after reaching the lowest observed per-
cent change.

© ASCE

04021014-5

To get a better understanding of these data and to be able to
identify any spatial patterns in where these slow-to-recover detec-
tors are located, the data are plotted geographically in Fig. 5 with
each circle indicating the percent change in traffic volume from the
baseline traffic data at a particular sensor (located at that geographic
location). Although these data are continuous in time, a sampling
of four distinct time periods in the COVID-19 timeline are plotted
in Fig. 5. At the beginning of March, prior to any government or-
ders, the general distribution for the traffic volume appears to be
mostly in line with the baseline data set. There is a small section
of detectors that already have decreased traffic volume, likely due
to proximity to the Minneapolis St. Paul International (MSP) Air-
port, as well as a section with slightly elevated traffic in the north-
east of the city.

Fig. 5(b), which represents the lowest traffic volume, shows a
regional trend in terms of how significant of a volume reduction is
observed. Specifically, the southwest of the city sees the 50% de-
crease in volume identified previously; however, the northeastern
side instead sees a closer to 30%—40% decrease in volume, with a
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Fig. 4. Percent change in traffic volume by detector.

small section even maintaining close to baseline levels of traffic
volume. It is possible that this smaller reduction in traffic volume
in northeast Minneapolis is a result of the many industrial facilities
in that part of the city, which continued to operate even during the
COVID-19 shutdown and stay-at-home order.

Finally, looking at the distribution of traffic volume impacts dur-
ing the recovery, one can see that the regional distribution of traffic
volume change generally follows the same pattern, with the south-
west remaining 20%—40% below prepandemic traffic volumes, and
the northeast of the city recovering more rapidly and seeing traffic
volumes 10%—0% below the baseline. This is likely because of the
predominately suburban makeup of the southwest of the city, where
many professionals continued to work from home even after the
stay-at-home order ended. This recovery is visualized in Fig. 6,
where the percent recovery from prepandemic traffic volume levels
is plotted for July 2020. This highlights the divide in the recovery
rates between the two regions of the city.

Traffic Abnormality in Rural Areas

In contrast to the urban traffic detectors, data were also collected
from 15 detectors along Interstate I-94 in a rural part of the state
near St. Cloud, Minnesota. The data from these detectors were pre-
processed using the same procedure as for the remaining data, and
these data were not included in the baseline data for the urban
analysis. The detectors, and their volume percentage shifts relative
to the baseline data for the same detectors, can be seen mapped in
Fig. 7. Fig. 8 shows that the traffic volume prior to COVID-19 was
roughly in line with that observed in the greater metro area, and the
timing of the responses were similar as well, with a initial decrease
in the week of March 8, followed by a continuous drop until reach-
ing just 50% of the baseline data values.

The data demonstrate that this location reached its minimum
traffic volume slightly later than the greater metro area, on March
29 instead of March 22. Starting in the week of May 5, a similar
steady increase in traffic volume is observed, although the rate of
increase appears to be closer to 4%—5% per week, which implies
these rural areas increased more quickly than the urban parts of
Minnesota. An interesting observation is that the traffic volume ac-
tually appears to have exceeded the traffic volume prior to March,
reaching what appears to be a plateau at a 0%—10% elevation from
the baseline data. However, only a limited amount of data were
collected at this location, and therefore additional data would need
to be collected to make broader claims about how traffic in rural
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and urban areas responded differently to the COVID-19-related
travel restrictions.

Statistical Significance of Disruption

This study tests the hypothesis that the traffic volume is signifi-
cantly different from the baseline data against the null hypothesis
that COVID-19 did not cause a statistically significant disruption in
traffic volumes. This analysis is conducted on a day-by-day basis,
and the resulting probability of observing these particular traffic
volumes on a particular day under the assumption that traffic vol-
umes are the same during the COVID-19 pandemic as they were in
the baseline data set is plotted in Fig. 3(b). The vertical axis on the
right of the figure gives the corresponding probability for the null
hypothesis that the traffic volumes during COVID-19 are drawn
from the same distribution as the traffic volumes in the baseline
traffic data against the alternate hypothesis that traffic volumes
are statistically different.

Based on the results presented in Fig. 3(b), the probability of
observing such traffic volumes under the null hypothesis that traffic
volumes under normal circumstances goes below 95% beginning
the week of March 8, when the state of emergency was declared
in Minnesota and before the stay-at-home order was enacted.
Traffic volumes remained statistically significantly low compared
with typical traffic volumes for the duration of the analysis period
despite the significant rebound in traffic volumes observed in June
and July.

Comparison with Past Disruptive Events

To identify how significant these effects are compared with other
events that have caused traffic disruptions, historic traffic data
are also examined to put the COVID-19-related disruption into
perspective. The events considered are part of the variability ob-
served in the baseline data considered for the COVID-19 impacts
analysis. Specifically, the authors consider the disruptive traffic
events that occurred when Minneapolis hosted the Superbowl foot-
ball event and the time before and after the game during the time
period from January 14 to February 24, 2018, as well as several
major snow events during that time period. Traffic volumes during
this event are examined on a day-by-day basis in Fig. 9. This figure
shows the percent change in traffic volume from the corresponding
day of the week in the baseline data set to account for day-of-week
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traffic volume fluctuations. Fig. 9 shows an approximately 0%—
10% increase in traffic volume compared with the previous year,
similar to what was observed in pre-COVID-19 results in preceding
sections.

Four significant reductions in traffic volume (defined as
dropping below the norm from the baseline data) can be observed;
these occurred on the January 22, as well February 3, 19, and 24.
The reduction on February 3 corresponds with the Superbowl the
following day, with a peak reduction in traffic volume of about 5%
compared with the up to 50% reduction observed in the COVID-19
effects. The other three events in this figure do appear to present a
much more significant effect on the traffic volume, ranging from
10% to 20%. This reduction in travel corresponds to inclement
weather events on January 22, February 19, February 22, and
February 24, 2018, including snow and cold weather reaching
as low as —20°F (—29°C). With this perspective of a major disrup-
tive event such as hosting the Superbowl in Minneapolis, the data
show that from the perspective of traffic reduction, COVID-19 and
the corresponding shutdown has been roughly five times as disrup-
tive as the Superbowl on a single day. Yet the COVID-19-related
impacts to traffic volumes in the Minneapolis area persisted for sev-
eral months and have still not fully recovered at the time of writing.

Data from these disruptive events, as well as other events that
occurred during the baseline time period, are included in the base-
line data set. These events represent variability in traffic volumes
and provide variability in the data. Without past disruptive events
like the ones highlighted previously, the apparent impact of the
COVID-19 pandemic would be more significant. By including
these disruptive events, the analysis incorporates the fact that, occa-
sionally, disruptive events occur.
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Disruption in Weekly Traffic Cycles

Finally, it is considered how the weekly traffic variation shifted as a
result of the COVID-19 pandemic. For this analysis, daily traffic
volumes are considered and the percent change in traffic volume
by day-of-week are compared with the prepandemic baseline data.
Thus, it can be seen how substantially traffic volumes have changed
on a day-by-day basis, i.e., traffic volumes on a particular Tuesday
during the COVID-19 pandemic are compared with the expected
prepandemic baseline expected traffic volumes for a Tuesday.
The resulting percent change in traffic volume is plotted in Fig. 10.
As can be seen in the daily traffic volumes, traffic volumes are
roughly unchanged from the baseline data until roughly March
7, with the exception of large dips in traffic volumes on January
18 and February 14 that correspond to snow and low-temperature
events, respectively, in the Minneapolis area. From roughly March
15 onward, one can see a drastic decrease in traffic volume, as dis-
cussed previously.

During the recovery period beginning roughly the second week
of April, one can observe a strong cyclic variation each week,
meaning that large deviations from the typical weekly traffic pat-
terns appear. Because these data have been normalized by the
day of week, this pattern indicates that traffic volume distribution
within the week also changed, i.e., trips are distributed differently
throughput the week than prior to the pandemic. This is likely
the result of increased telecommuting, with many people staying
at home during the week. Thus, although the COVID-19 pandemic
and corresponding government orders significantly impacted traffic
volume, they also impacted travel patterns in terms of types of trips
being conducted as people stopped commuting to a regular work
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Fig. 8. Percent change in traffic volume along I-94 over time, averaged
for all detectors. The bars represent one standard deviation in reduc-
tions across sensors in the study area.

place and instead gained the freedom to conduct many activities
such as shopping on a more flexible schedule. This is also demon-
strated in Table 3, where the mean change in traffic volume by day
of week is presented for before the COVID-19 pandemic, during
the shutdown, and during the subsequent recovery.

Table 3 indicates that after March 15, traffic was substantially
reduced across all days. However, this reduction on a per-day basis
was greater on weekend days than during the week. This is also true
for Thursday and Friday, which follow the weekend trend and saw
significant reductions in travel volume. This is also seen in Fig. 10,
which shows both the overall trend as well as the weekly cyclic
traffic volume. The day-to-day variability in weekly traffic volumes
indicate that although many professionals worked from home
for most of the week (e.g., a roughly 20% reduction in travel on
Monday, Tuesday, and Wednesday), many of the employees who
were still going in to the office on some days would work from
home Thursday and Friday. The data also seem to suggest that
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Table 3. Percent change in traffic volume from baseline data, averaged across all sensors in study area, by day of week

Time period Sunday (%) Monday (%) Tuesday (%) Wednesday (%) Thursday (%) Friday (%) Saturday (%)
All data —19.7 —11.9 —11.4 —11.4 —20.8 —26.2 —20.6
Pre-March 15 —-3.8 1.6 1.8 1.2 0.0 —-2.5 -3.7
Post-March 15 —28.6 —19.5 —18.8 —19.3 —-32.3 -394 -30.0

Note: Prior to March 15, 2020, relatively little change is seen. During the COVID-19 pandemic, Thursday and Friday see the largest decreases in traffic

volumes.

weekend activities were greatly reduced because people seemingly
did not attend gatherings on weekends, which resulted in a roughly
30% reduction in vehicle volume.

Conclusions

In conclusion, the analysis presented in this study considers differ-
ent measures of traffic volume impacts and abnormalities and ap-
plies them to the case study of traffic volumes in Minneapolis
before, during, and after the COVID-19-related stay-at-home order
in Minnesota. Percent change from a baseline data set, as well as a
normalized change (i.e., z-score), are used to quantify abnormal-
ities of individual sensors. However, due to the type of data
collected, only trends in the overall traffic volume can be identified,
and how traffic volumes in different vehicle classes (e.g., passenger
vehicles versus trucks) evolved over the course of the COVID-19
pandemic could not be determined.

The analysis shows that the COVID-19 pandemic and associ-
ated stay-at-home order had a significant impact on traffic volumes.
Specifically, in urban areas, traffic decreased by up to 50% from
baseline expected traffic volumes at the start of the stay-at-home
order. One interesting finding is that the recovery in terms of traffic
volume during the first set of state-level restrictions in the spring
and summer of 2020 was somewhat independent from the repeal of
government orders restricting movement in Minnesota. Specifi-
cally, the individual levels of restriction being repealed did not
directly lead to higher traffic volumes. Instead, traffic volumes
continuously increased from the lowest point in March 2020. This
suggests that although government restrictions played a significant
role in reducing traffic at the start of the pandemic, other factors
were more significant in determining people’s travel patterns after
the first wave of restrictions expired.

Adding to the evidence that the government orders themselves
were not the most significant factor in influencing traffic volumes,
traffic volumes had already reduced significantly before the stay-at-
home order was issued in Minnesota, and they began rebounding
when the stay-at-home order was first extended. By the time
the stay-at-home order fully expired, traffic volumes had regained
roughly half of the reduction seen due to COVID-19. Thus,
although significant in dictating travel patterns, the stay-at-home
order was not the significant driving factor influencing traffic vol-
umes. Instead, the initial uncertainty when the first cases of
COVID-19 were announced in Minnesota seems to have influenced
traffic volumes more significantly and, over time, people began
traveling again regardless of whether or not they were under a
stay-at-home order.

When comparing the disruption to traffic of the COVID-19 pan-
demic with the disruptive event when Minneapolis hosted the
Superbowl in February 2018, it was found that from the perspective
of traffic volume reduction, the COVID-19 pandemic has been
roughly five times as disruptive as the Superbowl, every day.
Furthermore, although the duration of the Superbowl disruption
was short, the disruption of the COVID-19 pandemic has been
longstanding.
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Another finding is that although traffic reduced for all days of
the week, traffic was particularly impacted on Thursday, Friday,
Saturday, and Sunday. This is likely a result of people reducing
their leisure activities. The reductions in traffic volume on
Thursdays and Fridays are likely the result of some professionals
commuting for part of the week (Monday—Wednesday) and work-
ing remotely for the rest of the week (Thursday and Friday) in an
effort to reduce contact.

Based on the findings on this research, although stay-at-home
orders clearly reduced travel and corresponding traffic volumes,
other factors such as fear of the pandemic may have been more
significant driving factors in dictating traffic volumes. Thus,
although the stay-at-home order and fear of COVID-19 were able
to reduce travel and likely reduced the spread of the virus in
Minnesota, this effect was temporary because people started to in-
crease travel activity before the stay-at-home order was repealed.

Providing this understanding of how significant traffic volumes
were disrupted as a result of the COVID-19 pandemic and associ-
ated stay-at-home order will help in understanding the impact of
similar measures in the future to combat the spread of COVID-19
in future outbreaks or other pandemics. The analysis presented
in this study provides a first view at the data to help understand
how significant the disruption to mobility was as a result of
COVID-19.
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