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Abstract

The novel coronavirus responsible for COVID-19 was first identified in Hubei Province,

China in December, 2019. Within a matter of months the virus had spread and become a

global pandemic. In addition to international air travel, local travel (e.g. by passenger car)

contributes to the geographic spread of COVID-19. We modify the common susceptible-

exposed-infectious-removed (SEIR) virus spread model and investigate the extent to which

short-term travel associated with driving influences the spread of the virus. We consider the

case study of the US state of Minnesota, and calibrated the proposed model with travel and

viral spread data. Using our modified SEIR model that considers local short-term travel, we

are able to better explain the virus spread than using the long-term travel SEIR model.

Short-term travel associated with driving is predicted to be a significant contributor to the his-

torical and future spread of COVID-19. The calibrated model also predicts the proportion of

infections that were detected. We find that if driving trips remain at current levels, a substan-

tial increase in COVID-19 cases may be observed in Minnesota, while decreasing intrastate

travel could help contain the virus spread.

Introduction

In December, 2019, a novel coronavirus (SARS-CoV-2), that causes the COVID-19 disease,

was first identified in Hubei Provence, China. The virus quickly spread throughout China and,

within several weeks, cases were being reported across Asia. By mid March, 2020, the World

Health Organization (WHO) officially declared COVID-19 a global pandemic [1]. While

many transmission cases are from direct contact within the community [2–4], one factor that

may facilitate this human-to-human transmission is the underlying transportation network,

which acts to propagate the virus between communities. While there is indication that travel is

one mechanism by which the virus has spread globally [5–8], the extent to which local travel

influences the spread of the virus is yet unknown. Specifically, while long-distance travel (e.g.,

by airplane) may help spread the virus over long distances, local travel (e.g., by passenger vehi-

cle) may help accelerate the spread of the virus in a smaller geographic area. By “local” or

“short-term” travel, we refer to an infectious person traveling from city i to city j, infecting oth-

ers at j, then soon thereafter returning to i (as opposed to remaining in j for treatment).
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To study the extent to which local travel influences the spread of COVID-19, we modify the

commonly used susceptible-exposed-infectious-removed (SEIR) [9] to account for increased

transmission risk associated with short-term travel that may result from intrastate travel.

These trips differ from long-distance travel since the travelers may only spend a short time at

their destination, and will likely return to their home by the end of the day or within a day or

two. The augmented model is demonstrated on viral spread data collected for the 87 counties

in the US State of Minnesota (with population 5,639,589) between March 22 and June 22, 2020

and is calibrated with passenger car transportation data obtained during the same time period

that tells the number of individual vehicles driving between counties in the entire state. Like

many other regions, Minnesota is characterized by having one main international airport in

Minneapolis/St. Paul with only smaller regional airports in other cities. Much of the state is

rural. Therefore, although the introduction of COVID-19 into Minneapolis/St. Paul can be

explained through international travel, much of its spread around the state may be more attrib-

uted to short-term road vehicle travel (see spread of COVID-19 in Minnesota in Fig 1 and S1

Video. Minnesota is therefore an ideal case study as well as being representative of short-term

travel behavior in many other regions.

The SEIR model has been widely used to describe viral spread [10–12], including COVID-

19 [13–16]. In the model, every member of the population is considered to be either susceptible
(S) if they have not yet had the virus, exposed (E) if they have come into contact with others

who have had the virus and are incubating the virus but not yet contagious, infectious (I) if

they have the virus and are contagious, or removed (R) if they have either recovered or have

died from the virus. Individual members of the population either remain in the current SEIR

state or progress to the next stage at each computational timestep. Unlike SIR models [17, 18],

the exposed state was included because the incubation period of COVID-19 creates a time lag

between being exposed and becoming infected [19, 20]. Evidence also suggests that individuals

who have recovered from COVID-19 are immune to future infection, at least temporarily [21].

We do not distinguish between the spectrum of asymptomatic to severe infections because the

lack of data on infection severity would make calibration difficult. In our data, many asymp-

tomatic individuals with potential exposure were tested for COVID-19. Viral spread parameter

values are calibrated for each county due to regional differences in population density and

social activity that influence transmission. We consider five distinct time periods that are

based on state-level policies such as stay-at-home orders and business restrictions. The num-

ber of individuals in each stage of the virus per region and per day is defined by a set of differ-

ence equations, governed by both calibrated and exogenous parameters. Calibration was

achieved via gradient descent.

The contributions of this paper are as follows. We propose a novel network-based SEIR

model that includes the spread of infections through short-term travel. During the calibration

process, we also aim to predict the infection detection probability. We use this model to

Fig 1. Evolution of COVID-19 infections in Minnesota (see S1 Video for more detail).

https://doi.org/10.1371/journal.pone.0245919.g001

PLOS ONE Effects of short-term travel on COVID-19 spread

PLOS ONE | https://doi.org/10.1371/journal.pone.0245919 January 22, 2021 2 / 16

https://doi.org/10.1371/journal.pone.0245919.g001
https://doi.org/10.1371/journal.pone.0245919


demonstrate the effects of travel on COVID-19 spread through a case study in Minnesota.

Results show the predicted spread of COVID-19 between March 22 and June 22, 2020. We

analyze the effects of different travel scenarios on infections, and present the calibrated param-

eters. Finally, we predict future infections through December 31, 2020 under several travel and

rate of spread scenarios.

Methodology

We propose a network-based SEIR model augmented with short-term travel exposure by

infected individuals in other nodes. SEIR and similar models have been extensively used to

study outbreaks of infectious diseases [10–12], including COVID-19 [13–16]. Consider a net-

work G ¼ ðN ;AÞ whereN is the set of nodes andA is the set of links between nodes. In this

model, short-term travel represents travel between nodes within a single day, and long-term

travel represents individuals who remain at a different node.

Short-term travel model

In the short-term SEIR travel model, infectious individuals at node i may expose people in j
through travel, but are modeled as returning to node i at the end of the day. Let Si(t), Ei(t),
Ii(t), and Ri(t) represent the number of susceptible, exposed, infectious, and removed individu-

als at node i at time t. The population at node i is Ni(t) = Si(t) + Ei(t) + Ii(t) + Ri(t). The dynam-

ics of the proposed model are given as follows:

Siðt þ 1Þ ¼ SiðtÞ � riðtÞSiðtÞ
IiðtÞ
NiðtÞ

�
X

j2N

xriðtÞSiðtÞ
mjiðtÞIjðtÞ
NjðtÞ

ð1Þ

Eiðt þ 1Þ ¼ EiðtÞ þ riðtÞSiðtÞ
IiðtÞ
NiðtÞ

�
1

s
EiðtÞ þ

X

j2N

xriðtÞSiðtÞ
mjiðtÞIjðtÞ
NjðtÞ

ð2Þ

Iiðt þ 1Þ ¼ IiðtÞ þ
1

s
EiðtÞ �

1

‘
IiðtÞ ð3Þ

Riðt þ 1Þ ¼ RiðtÞ þ
1

‘
IiðtÞ ð4Þ

where σ is the average incubation time, ℓ is the average time until recovery or death, ρi(t)� 0 is

the rate of spread per day at node i at time t, μij(t) is the proportion of individuals at node i
traveling to j at time t, and ξ 2 [0, 1] is the reduced probability of travel for infectious individu-

als. μii(t) = 0 because intra-county spread within county i is accounted for using the term

riðtÞSiðtÞ
IiðtÞ
NiðtÞ

. μij(t) is less than 1 because not all individuals in i will travel to j. μij(t) can include

travel by any mode. ξ is included because symptomatic individuals are less likely to travel. This

model assumes that all exposed individuals eventually become infectious, which is not true in

reality. The observed number of infections does not include exposed individuals who do not

become infectious. When calibrating the model against the observed number of infections, the

parameter ρi(t) would be reduced, which models such individuals as not becoming exposed.

Future work could expand the SEIR states and introduce more complex transitions, but the

purpose of this paper is to relate COVID-19 spread to short-term travel.
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The reproductive number ri(t) is found by taking the number of new infections divided by

the number of infectious individuals at that node, multiplied by the duration of infection ℓ:

riðtÞ ¼

riðtÞSiðtÞ
IiðtÞ
NiðtÞ

þ
X

j2N

xriðtÞSiðtÞ
mjiðtÞIjðtÞ
NjðtÞ

IiðtÞ þ
X

j2N

xmjiðtÞIjðtÞ
‘ ð5Þ

When calibrating the model, we acknowledge that only a fraction of infections were detected.

Let λi(t) be the proportion of infections that are detected. We calibrate λi(t), Ei(0), ρi(t), and ξ
against reported infections Î iðtÞ by solving the problem

min Z ¼
XT

t¼0

X

i2N

ðIiðtÞliðtÞ � Î iðtÞÞ
2

ð6Þ

s.t. (1)–(4)

Values for σ and ℓ are taken from the literature. The objective function is the sum of

squared errors in predicted infections. To avoid overfitting, we define time intervals π for

which ρi(t) and λi(t) are constant, respectively. We impose the additional constraint that ρi(t)
is constant for all time steps t 2 π, for all time intervals π 2Pρ. Similarly, λi(t) is constant for

all t 2 π for intervals π 2Pλ. The sets of intervals Pρ and Pλ are chosen to reduce overfitting.

In the results, Pρ was chosen based on social distancing or lockdown events, and one λi(t)
value was used per week. In other words, ρi(t) and λi(t) are piecewise constant variables.

The calibration problem is likely not convex due to the cubic term riðtÞSiðtÞ
IiðtÞ
NiðtÞ

in (1). ρi(t)
is a decision variable, and Si(t) and Ii(t) are functions of decision variables. Nevertheless, we

apply gradient descent methods to find a local minimum. One important novel feature is the

calibration of λi(t) which predicts the proportion of infections that are detected in addition to

reproductive number and number of infectious individuals.

Data

The daily number of reported infections per county was obtained from the Center for Systems

Science and Engineering at Johns Hopkins University [22]. Reported infections includes both

symptomatic and asymptomatic individuals. We used parameters of σ = 6.4 and ℓ = 7 from

[20] for the average incubation and recovery time. Of course, with so little known about

COVID-19, these parameters may not be completely accurate.

Daily county-to-county trips were obtained through StreetLight (www.streetlightdata.com/

) for the state of Minnesota. StreetLight is a transportation data company providing travel data

based on mobile phone location records. These data are based on mobile phone records and

represent an estimate of every trip that occurred in Minnesota during the specified time peri-

ods. Due to data processing limitations, we obtained four periods of county-to-county travel.

The first period, from January 1, 2020 to March 12, 2020, is representative of pre-pandemic

travel. From March 13, 2020 to May 17, 2020, working from home became normal and lock-

downs were implemented. The final period of data obtained is from May 18, 2020 through

May 31, 2020. Data after May 31, 2020 was not available, so the county-to-county travel for the

period of March 15, 2020 through May 31, 2020 was used until the end of the time horizon.

This may differ somewhat from the actual travel in June. The number of trips per day was fur-

ther adjusted by the daily vehicle miles traveled recorded in the Minneapolis/St. Paul metro-

politan region. The resulting number of intrastate trips per day is shown in Fig 2.
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March 22, 2020 was chosen as the start date because the number of infections was relatively

low, yet present. If an earlier start date were chosen, where infections were still primarily

spreading from travel from outside of Minnesota, calibrating the model would be difficult due

to limited data on interstate and international travel. March 22 is late enough in the pandemic

that global travel restrictions were in place, yet early enough that Minnesota had few reported

cases in most counties. Consequently, most spread of COVID-19 through Minnesota is

expected to occur through intrastate travel or exposures within the same zone. Fig 3a shows

the initial reported infections in each county on March 22. Besides Minneapolis/St. Paul and

Rochester, very few infections were reported. Most counties have 0 or close to 0 infections.

Infections were estimated through June 22, 2020. In contrast to the initial time of March 22,

2020, at the end date of the time horizon, infections have spread across much of the state.

Therefore, this starting infection pattern is useful because it tests the ability for the models to

predict the spread of COVID-19 through intrastate travel.

Results

We present results from the proposed short-term travel model. Fig 4a compares the total num-

bers of predicted, reported, and reported cases scaled by the detection probability λi(t). Overall,

the total number of predicted cases seems to be a good fit for
X

i2N

Î iðtÞ
liðtÞ

. Given the COVID-19

Fig 2. Total county-to-county trips per day.

https://doi.org/10.1371/journal.pone.0245919.g002

Fig 3. Reported infections by county. (a) March 22, 2020. (b) June 22, 2020.

https://doi.org/10.1371/journal.pone.0245919.g003
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testing availability in Minnesota, the differences between
X

i2N

ÎðtÞ and
X

i2N

Î iðtÞ
liðtÞ

seem quite rea-

sonable. The model appears to be generally a good predictor of the variation in cases for indi-

vidual counties as well. For example, Fig 4b and 4c compare the reported Î iðtÞ, Î iðtÞliðtÞ, and

the predicted Ii(t) for Hennepin and Ramsey Counties, which correspond to the major cities of

Minneapolis and St. Paul. Fig 3 and S1 Video. illustrate the predicted spread of COVID-19

across Minnesota through intrastate travel over time.

Effects of travel on COVID-19 spread

We now demonstrate the importance of intrastate travel on COVID-19 spread. Using county-

to-county travel data from Minnesota, as well as observed reduction in vehicle miles traveled,

we estimated the number of daily trips between every pair of counties (Fig 1) and calibrated the

SEIR model accordingly. The number of daily trips from i to j, τij(t) is converted to μij(t) via

mijðtÞ ¼
tijðtÞ
NiðtÞ

ð7Þ

Overall, the average number of daily county-to-county trips reduced from 3.03m prior to

March 12 to 2.19m then to 1.74m after March 26. However, there were still many daily county-

to-county trips. The average number of daily trips started to increase again in late April.

In the calibrated model, 22.1% of predicted infections were caused by infectious individuals

traveling to other counties. Fig 5 shows the total predicted infections when all county-to-

county travel is removed, with all other parameters kept constant. Because of the exponential

growth in infections, travel reductions result in major differences in COVID-19 spread. We

Fig 4. Comparison of predicted and reported infected individuals. Black vertical lines show the intervals in ∏ρ. (a)

Total reported and predicted infections. (b) Hennepin County (Minneapolis). (c) Ramsey County (St. Paul).

https://doi.org/10.1371/journal.pone.0245919.g004
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also study the county-specific cumulative number of cases SIi ¼ 1

s

XT

t¼0

IiðtÞ, found by taking the

sum of all cases over time, and dividing by the case duration σ. The greatest change in the

number of cases occurred in and around the Minneapolis/St. Paul metropolitan region. This

may be due to high daily travel between these counties which includes some daily commuting

trips. It could also be due to a higher population density or other characteristics. Fig 6a shows

the percent of cases between March 22, 2020 and June 22, 2020 resulting from travel. With no

travel, far fewer infections are reported, not only in rural counties, but also in the suburban

counties around Minneapolis/St. Paul.

Fig 6b shows the percent change in infections if travel remained at 12.7m trips per day

instead of reducing as observed. Fig 5 predicts a significant increase in the number of cases,

from around 7,000 to 11,000 at the peak. In contrast, if travel remained at April 1–7 levels

(Fig 1) instead of gradually increasing, we predict slightly fewer infections. Fig 5 shows the

county-specific percent changes in cumulative infections. These results suggest that reductions

Fig 5. Effects of travel on COVID-19 infections.

https://doi.org/10.1371/journal.pone.0245919.g005

Fig 6. Percent change in infections for different travel scenarios. The “observed” scenario is the base travel scenario.

(a) [Observed]—[No travel]. (b) [Pre-pandemic travel]—[Observed].

https://doi.org/10.1371/journal.pone.0245919.g006
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in intrastate county due to work-from-home and other lockdown policies had a significant

effect on reducing COVID-19 spread. As travel started to increase again, infections corre-

spondingly increased as well.

As part of the model calibration, we estimated the parameter ξ, the probability that a person

who is infectious will continue their normal county-to-county travel. The calibrated value of ξ
was 31.0%, which is not dissimilar to reported asymptomatic proportions. For instance, [23]

estimated that 17.9% of infections were asymptomatic.

Calibrated parameters

We analyze the reproductive number and infection detection probability parameters of the cal-

ibrated model. To avoid overfitting, only 5 different rate of spread parameters ρi(t) were used

per county. These periods span the intervals between the dates March 22, March 27, April 27,

May 18, June 10, and June 22, 2020, which were chosen based on COVID-19 policy changes

from the Minnesota government. Different detection probability parameters per county were

also used due to the possibility of different testing availability and individual behaviors in dif-

ferent counties. For instance, testing might have been less available in certain rural counties.

We used a single detection probability per week per county to reduce overfitting. If data on the

number of undetected COVID-19 infections were available, we could compare our predicted

detection probabilities with such data to check whether overfitting occurs. Unfortunately,

these data are not available, and therefore, we cannot be sure to what extent overfitting may be

occurring.

The calibrated model predicts the daily reproductive number, i.e. the number of infections

per additional infection. We calibrated the model with different probabilities of infection for

each of several intervals corresponding to policy events. We plot the estimated average repro-

ductive number �rðtÞ, weighted by county population, in Fig 7. Note that although only 5 rate

of spread variables were used, the reproductive number varies each time step because it also

depends on the number of susceptible individuals in the population. The initial low value

results from the low overall number of cases, but the average reproductive number soon

jumped to almost 3 per infection. On March 27, 2020, the stay-at-home order started, and the

reproductive number was observed to decrease to around 1.5. After some workplaces reopened

on April 27, the calibrated reproductive number jumps to around 2 before decreasing in May.

However, when businesses and restaurants started reopening on June 10, the reproductive

number increased to around 1. Overall, these reproductive numbers correspond to the change

in cases shown in Fig 4a. Fig 8a shows reproductive numbers per county on May 1, 2020. High

Fig 7. Calibrated reproductive number and detection probability.

https://doi.org/10.1371/journal.pone.0245919.g007
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COVID-19 reproduction was observed in the 7 counties around Minneapolis/St. Paul, as well

as in some of the rural counties around the state. The different reproductive numbers per

county can be explained by different behaviors throughout the state. In rural counties, social

distancing may be easier than in urban or suburban counties. Indeed, the reproductive num-

ber seems high around major cities such as Minneapolis/St. Paul.

Fig 7 also shows the predicted average detection probability�ðtÞ, also weighted by county

population. Overall, the average detection probability was initially around 50%, which gradu-

ally increased to around 75%–80% of cases. To avoid overfitting, a single λi(t) value was esti-

mated per week. Although it is difficult to predict the number of undetected infections from

only the reported infections, asymptomatic transmission is a known characteristic of COVID-

19 [24]. Mild or asymptomatic infections that remain undetected would still cause transmis-

sion to others, which would be detected at a probability of λi(t). In other words, the balance

between the exponential growth of infections at the reproductive number and the linear detec-

tion probability λi(t) admits calibration. For instance, if λi(t) was incorrectly estimated to be 1,

then the growth in the number of infections over subsequent days could lead to a higher error

in calibration objective (6).

Without extensive testing of the general population, the true detection probability is

unknown in most datasets which makes an accuracy comparison difficult. However, consider-

ing the observation of [23] of 17.9% infections being asymptomatic, a 75%–80% detection

probability is reasonable and can easily include individuals with asymptomatic or mild cases.

Testing was available for symptomatic individuals in Minnesota, as well as asymptomatic indi-

viduals working in medical care. The calibrated detection probabilities also improved how well

the model fit the data. λi(t) = 1 for several nodes and time periods, suggesting that if λi(t) = 1

were the best fit, it would have been chosen. Fig 8b shows the average detection probability per

county. Estimated detection probabilities seem to be higher in Minneapolis/St. Paul than some

of the surrounding suburban counties. This could be due to different behaviors or characteris-

tics of people, such as people in urban areas having more comorbidities resulting in more

severe cases.

Fig 8. Calibrated parameters by county (see S1 Video for more detail). (a) Reproductive number, r, on May 1, 2020.

(b) Average detection probability, λ.

https://doi.org/10.1371/journal.pone.0245919.g008
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Sensitivity analyses

Overfitting is a potential issue with this model calibration. To reduce the impact of overfitting,

a constant value of λi(t) was used for 1-week intervals in most of the results. Here, we study the

impact of overfitting by using a constant value of λi(t) for 2-week intervals. We calibrated all

model parameters again using these new λ intervals. Fig 9 compares the calibrated parameters

with the “base” case of 1-week λ intervals. Only small variations in ri(t) are observed in Fig 9a.

Larger variations in λi(t) are shown in Fig 9b, but overall λi(t) remains fairly similar for much

of the time horizon. The calibrated value of ξ with 2-week λ intervals was 0.307, which is close

to ξ = 0.310 with 1-week λ intervals. The small variations in ri(t) suggest that the predicted

number of infectious individuals would not change much.

Parameter values of σ = 6.4 and ℓ = 7 were taken from [20]. However, these values are based

on early work on COVID-19, and the true values of these parameters could be different. To

examine the sensitivity of the results to variations in σ and ℓ, we recalibrated the model with

±10% variations to σ and ℓ. The resulting calibrated values of ri(t) and λi(t) are shown in

Fig 10. Only small differences are observed in the calibrated parameters. This suggests that the

reproductive numbers and detection probabilities are fairly robust against small changes in σ

Fig 9. Effect of 2-week λ intervals on calibrated parameters. (a) Effects on reproductive number. (b) Effects on

detection probability.

https://doi.org/10.1371/journal.pone.0245919.g009

Fig 10. Sensitivity of calibrated parameters to variations in σ and ℓ. (a) Sensitivity of ri(t) to σ. (b) Sensitivity of λi(t)
to σ. (c) Sensitivity of ri(t)(t) to ℓ. (d) Sensitivity of λi(t) to ℓ.

https://doi.org/10.1371/journal.pone.0245919.g010
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and ℓ. Table 1 presents the sensitivity of ξ with respect to these variations in σ and ℓ. ξ remained

fairly similar, except when ℓ was increased to 7.7. With ℓ = 7.7, infectious individuals remain

contagious in the model for 10% longer, so the observed COVID-19 spread could be achieved

with less daily travel per infectious individual.

Projected infections

We use the model to predict the daily number of infected individuals through December 31,

2020 under three travel scenarios: 1) observed county-to-county travel from May and June; 2)

travel reductions observed in April (Fig 1); and 3) no travel between counties. We note that

since the “observed travel” scenario does not include travel observations past June, it is difficult

to project whether travel would remain at summer levels or change in the fall. Pre-pandemic

travel was not included because observed travel increased to nearly pre-pandemic levels by the

end of June (Fig 1).

Fig 11a shows the number of projected cases using the rate of spread from June 21. Com-

pared with the observed travel scenarios, the no travel scenario fares far better, peaking at

28,082 active infections compared with 68,523 active infections. The travel reductions in April

cause a large decrease in the number of infections, though not as large as removing travel

entirely. The relatively small peak is primarily due to the smaller reproductive number in late

June (Fig 7). By December 31, 2020, 1,104,440 total infections are expected. In contrast, if the

rate of spread from April 1 is used, the number of infections is far higher (Fig 11b), peaking at

187,014 active infections on September 9, and with 2,595,072 individuals infected by Decem-

ber 31, 2020. Overall, Fig 11 shows that reducing travel can have a significant impact on the

number of cases, but reducing the reproductive number is far more important. For reference,

the total population of Minnesota as used in this study is 5,639,589.

Predicted numbers of removed individuals

People who can no longer become infected due to already having been infected with COVID-

19 (or from a vaccine, when one is developed) are counted as removed. Although it is not clear

how long immunity lasts [25], we assume that removed individuals remain removed for at

least the 12 month duration of the predictions here. Having a large population of removed

individuals is vital to returning to pre-pandemic activities. Our data includes reported recover-

ies and deaths from COVID-19. Fig 12a compares the predicted and reported number of

removed individuals. As of June 22, 2020, 30,450 individuals were reported to be removed,

and 48,470 individuals were predicted to be removed. With a statewide population of 5.64 mil-

lion, that corresponds to 0.54% and 0.86% of the population, respectively. The distribution of

the removed population is far from uniform, though, as shown in Fig 12b. Several urban and

suburban counties around the Minneapolis/St. Paul region have 2% or more of their popula-

tion predicted to be removed, but that proportion is closer to 0% for many of the more rural

counties.

Table 1. Sensitivity of ξ with respect to σ and ℓ.

σ ℓ ξ
6.4 7 0.310

7.04 7 0.312

5.76 7 0.310

6.4 7.7 0.234

6.4 6.3 0.323

https://doi.org/10.1371/journal.pone.0245919.t001
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Fig 12. Predictions of removed (either recovered or deceased) individuals. (a) Comparison of predicted and

reported removed individuals. (b) Percent of removed population.

https://doi.org/10.1371/journal.pone.0245919.g012

Fig 11. Projected cases. (a) Predicted infections using rate of spread of June 21. (b) Predicted infections using rate of

spread of April 1.

https://doi.org/10.1371/journal.pone.0245919.g011
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Long-term vs. short-term travel

We also calibrated a long-term travel model—a networked SEIR model where individuals who

travel remain at their destination for multiple days [26]. The long-term and short-term model

differed in how they modeled travel behavior. In the long-term model, Eqs (1)–(4) are replaced

with

Siðt þ 1Þ ¼ SiðtÞ � riðtÞSiðtÞ
IiðtÞ
NiðtÞ

þ
X

j2N

SjðtÞmjiðtÞ � SiðtÞmijðtÞ
� �

ð8Þ
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�
1
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1
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1

‘
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X
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1

‘
IiðtÞ þ

X

j2N
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Calibration objective function (6), including the detection probability λi(t), was used for both

models. Gradient descent was used to calibrate both models. After 200 iterations, reductions

in the objective value were less than 0.1% per iteration. The short-term model had a 23.4%

error in predicting infections, where error is defined as
X

i2N

XT

t¼0

jIiðtÞ� Î iðtÞ=liðtÞ
Î iðtÞ

. The long-term

model had a 36.9% error in predicting infections. This suggests that a short-term travel model

is a better predictor for the spread of COVID-19 from intrastate driving trips. The average

computation time per iteration was 104.2s on a desktop computer with an Intel i5–8600k CPU

clocked at 3.60 GHz with 16.0 GB of memory, which suggests the method may be scaled to

larger networks.

Conclusions

We proposed and calibrated a novel network SEIR model for the spread of COVID-19 from

short-term travel (e.g. daily commute trips). Infectious individuals at node i can infect both

susceptible individuals at node i, and susceptible individuals at node j, based on exogenous

travel rates from i to j. This model also includes a calibrated detection probability parameter

λi(t), representing the proportion of infections that are actually detected. These two modifica-

tions to the standard SEIR model [9] may be useful for studying COVID-19. Since COVID-19

is known to have large numbers of asymptomatic or mild yet contagious infections [23, 24,

27], substantial numbers of infectious individuals have undetected infections and may travel

normally while infectious, spreading COVID-19 to new geographic regions.

A case study in Minnesota, which has substantial county-to-county travel but relatively few

counties with interstate or international airline travel, shows the importance of intrastate travel

in spreading COVID-19. If travel were removed, the number of cases is predicted to peak at

1,870 compared to the actual 6,982. If travel did not decrease from pre-pandemic levels, that

peak is predicted to rise to 11,028. Even returning to April 1–7 travel levels results in a substan-

tial reduction in predicted infections for the remainder of the year. Consequently, we conclude

that short-term travel has a significant impact on COVID-19 spread, and efforts to reduce
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typical daily short-term travel, like commuting, could achieve large reductions in both the

number of cases and the geographic spread of COVID-19.

We also demonstrate the potential to predict the infection detection probability through

calibrated SEIR models. Because asymptomatic or mild infections are still contagious, estimat-

ing the true number of infections may be valuable compared with predicting the spread of

COVID-19 only from reported infections. Although extensive testing of the general population

[28, 29] is the best way to estimate the detection probability, this calibration method may pro-

vide a useful alternative when such testing is unavailable. In addition, including the detection

probability may achieve a higher model accuracy than calibrating only against reported infec-

tions, which ignores the spread of COVID-19 from undetected infections. Overfitting may

lead to inaccuracies when the model is used for forward prediction. We explored overfitting by

adjusting the duration of the intervals for which λi(t) is constant, but it is difficult to verify the

accuracy without other sources of data.

Although the results provide novel data on the relationship between short-term travel and

COVID-19 spread, there are a number of opportunities for improvement. The incubation and

recovery rate parameters were based on [20], but more accurate parameters may later become

available after further study. The SEIR model could be extended with more states and transi-

tions to capture the variation in disease progression among individuals. Differences in the pop-

ulation demographics among counties might affect infection characteristics as well. The

calibrated model predicts reasonable county-specific detection probabilities, but verifying

these against widespread testing of the population would lend further validation if such data-

sets were available. Our travel data provided only the total number of trips between pairs of

counties, but different trip types are likely to affect infection spread differently. For instance,

home-to-work trips may result in more person-to-person contact than some recreational

travel. Including interstate and international travel which were responsible for the original

spread of COVID-19 to Minnesota might further improve the model accuracy.
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