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Abstract

The novel coronavirus responsible for COVID-19 was first identified in Hubei Province,
China in December, 2019. Within a matter of months the virus had spread and become a
global pandemic. In addition to international air travel, local travel (e.g. by passenger car)
contributes to the geographic spread of COVID-19. We modify the common susceptible-
exposed-infectious-removed (SEIR) virus spread model and investigate the extent to which
short-term travel associated with driving influences the spread of the virus. We consider the
case study of the US state of Minnesota, and calibrated the proposed model with travel and
viral spread data. Using our modified SEIR model that considers local short-term travel, we
are able to better explain the virus spread than using the long-term travel SEIR model.
Short-term travel associated with driving is predicted to be a significant contributor to the his-
torical and future spread of COVID-19. The calibrated model also predicts the proportion of
infections that were detected. We find that if driving trips remain at current levels, a substan-
tial increase in COVID-19 cases may be observed in Minnesota, while decreasing intrastate
travel could help contain the virus spread.

Introduction

In December, 2019, a novel coronavirus (SARS-CoV-2), that causes the COVID-19 disease,
was first identified in Hubei Provence, China. The virus quickly spread throughout China and,
within several weeks, cases were being reported across Asia. By mid March, 2020, the World
Health Organization (WHO) officially declared COVID-19 a global pandemic [1]. While
many transmission cases are from direct contact within the community [2-4], one factor that
may facilitate this human-to-human transmission is the underlying transportation network,
which acts to propagate the virus between communities. While there is indication that travel is
one mechanism by which the virus has spread globally [5-8], the extent to which local travel
influences the spread of the virus is yet unknown. Specifically, while long-distance travel (e.g.,
by airplane) may help spread the virus over long distances, local travel (e.g., by passenger vehi-
cle) may help accelerate the spread of the virus in a smaller geographic area. By “local” or
“short-term” travel, we refer to an infectious person traveling from city i to city j, infecting oth-
ers at j, then soon thereafter returning to i (as opposed to remaining in j for treatment).
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Fig 1. Evolution of COVID-19 infections in Minnesota (see S1 Video for more detail).
https://doi.org/10.1371/journal.pone.0245919.9001

To study the extent to which local travel influences the spread of COVID-19, we modify the
commonly used susceptible-exposed-infectious-removed (SEIR) [9] to account for increased
transmission risk associated with short-term travel that may result from intrastate travel.
These trips differ from long-distance travel since the travelers may only spend a short time at
their destination, and will likely return to their home by the end of the day or within a day or
two. The augmented model is demonstrated on viral spread data collected for the 87 counties
in the US State of Minnesota (with population 5,639,589) between March 22 and June 22, 2020
and is calibrated with passenger car transportation data obtained during the same time period
that tells the number of individual vehicles driving between counties in the entire state. Like
many other regions, Minnesota is characterized by having one main international airport in
Minneapolis/St. Paul with only smaller regional airports in other cities. Much of the state is
rural. Therefore, although the introduction of COVID-19 into Minneapolis/St. Paul can be
explained through international travel, much of its spread around the state may be more attrib-
uted to short-term road vehicle travel (see spread of COVID-19 in Minnesota in Fig 1 and S1
Video. Minnesota is therefore an ideal case study as well as being representative of short-term
travel behavior in many other regions.

The SEIR model has been widely used to describe viral spread [10-12], including COVID-
19 [13-16]. In the model, every member of the population is considered to be either susceptible
(S) if they have not yet had the virus, exposed (E) if they have come into contact with others
who have had the virus and are incubating the virus but not yet contagious, infectious (I) if
they have the virus and are contagious, or removed (R) if they have either recovered or have
died from the virus. Individual members of the population either remain in the current SEIR
state or progress to the next stage at each computational timestep. Unlike SIR models [17, 18],
the exposed state was included because the incubation period of COVID-19 creates a time lag
between being exposed and becoming infected [19, 20]. Evidence also suggests that individuals
who have recovered from COVID-19 are immune to future infection, at least temporarily [21].
We do not distinguish between the spectrum of asymptomatic to severe infections because the
lack of data on infection severity would make calibration difficult. In our data, many asymp-
tomatic individuals with potential exposure were tested for COVID-19. Viral spread parameter
values are calibrated for each county due to regional differences in population density and
social activity that influence transmission. We consider five distinct time periods that are
based on state-level policies such as stay-at-home orders and business restrictions. The num-
ber of individuals in each stage of the virus per region and per day is defined by a set of differ-
ence equations, governed by both calibrated and exogenous parameters. Calibration was
achieved via gradient descent.

The contributions of this paper are as follows. We propose a novel network-based SEIR
model that includes the spread of infections through short-term travel. During the calibration
process, we also aim to predict the infection detection probability. We use this model to
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demonstrate the effects of travel on COVID-19 spread through a case study in Minnesota.
Results show the predicted spread of COVID-19 between March 22 and June 22, 2020. We
analyze the effects of different travel scenarios on infections, and present the calibrated param-
eters. Finally, we predict future infections through December 31, 2020 under several travel and
rate of spread scenarios.

Methodology

We propose a network-based SEIR model augmented with short-term travel exposure by
infected individuals in other nodes. SEIR and similar models have been extensively used to
study outbreaks of infectious diseases [10-12], including COVID-19 [13-16]. Consider a net-
work G = (N, A) where \ is the set of nodes and A is the set of links between nodes. In this
model, short-term travel represents travel between nodes within a single day, and long-term
travel represents individuals who remain at a different node.

Short-term travel model

In the short-term SEIR travel model, infectious individuals at node i may expose people in j
through travel, but are modeled as returning to node i at the end of the day. Let Si(¢), E(f),
I(t), and Ry(t) represent the number of susceptible, exposed, infectious, and removed individu-
als at node i at time ¢. The population at node i is Ni(t) = Si(t) + E{t) + I(t) + Ri(t). The dynam-
ics of the proposed model are given as follows:

S(t+1) = S(t) - p,(DS,(0) Iﬁf(?) - Z £p,(1)S,(1) “f}(é)(lg)“) (1)
B0+ D) =50 a0 i~ B0+ S s it 0
L+ 1) = L) + B (1) — (0 o)

R(t+1) = R(t) + (1) (4

where o is the average incubation time, £ is the average time until recovery or death, p,(t) > 0is
the rate of spread per day at node i at time , y;;(t) is the proportion of individuals at node i
traveling to j at time ¢, and & € [0, 1] is the reduced probability of travel for infectious individu-
als. p;;(t) = 0 because intra-county spread within county i is accounted for using the term
0,(£)S,(¢) If;(—(?) 1;i(t) is less than 1 because not all individuals in i will travel to j. 4;(t) can include
travel by any mode. & is included because symptomatic individuals are less likely to travel. This
model assumes that all exposed individuals eventually become infectious, which is not true in
reality. The observed number of infections does not include exposed individuals who do not
become infectious. When calibrating the model against the observed number of infections, the
parameter p;(f) would be reduced, which models such individuals as not becoming exposed.
Future work could expand the SEIR states and introduce more complex transitions, but the

purpose of this paper is to relate COVID-19 spread to short-term travel.
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The reproductive number r;(¢) is found by taking the number of new infections divided by
the number of infectious individuals at that node, multiplied by the duration of infection ¢:
Ii(t 1 ()L (t)
p(OS01S ey, s, (2
N 2 N0
ri(t) = l (5)

= L(t) + > e, (1)I(1)

JEN

When calibrating the model, we acknowledge that only a fraction of infections were detected.
Let A,(t) be the proportion of infections that are detected. We calibrate A,(), E{(0), p«(#), and &

against reported infections I,(t) by solving the problem

T
min  Z=> Y (L)1) - I,(1)’ (6)
t=0 ieN
s.t. (1)-(4)

Values for o and ¢ are taken from the literature. The objective function is the sum of
squared errors in predicted infections. To avoid overfitting, we define time intervals 7 for
which p;(t) and A(t) are constant, respectively. We impose the additional constraint that p;(t)
is constant for all time steps ¢ € 7, for all time intervals 7z € I1,.. Similarly, A,(t) is constant for
all t € 7 for intervals 7 € IT,. The sets of intervals I1, and IT, are chosen to reduce overfitting.
In the results, I, was chosen based on social distancing or lockdown events, and one A,(t)
value was used per week. In other words, p;(t) and A,(t) are piecewise constant variables.

The calibration problem is likely not convex due to the cubic term p,(t)S,(¢) ;]L(?) in (1). pi()

is a decision variable, and S;(f) and I;(t) are functions of decision variables. Nevertheless, we
apply gradient descent methods to find a local minimum. One important novel feature is the
calibration of A,(t) which predicts the proportion of infections that are detected in addition to
reproductive number and number of infectious individuals.

Data

The daily number of reported infections per county was obtained from the Center for Systems
Science and Engineering at Johns Hopkins University [22]. Reported infections includes both
symptomatic and asymptomatic individuals. We used parameters of 0 = 6.4 and £ = 7 from
[20] for the average incubation and recovery time. Of course, with so little known about
COVID-19, these parameters may not be completely accurate.

Daily county-to-county trips were obtained through StreetLight (www.streetlightdata.com/
) for the state of Minnesota. StreetLight is a transportation data company providing travel data
based on mobile phone location records. These data are based on mobile phone records and
represent an estimate of every trip that occurred in Minnesota during the specified time peri-
ods. Due to data processing limitations, we obtained four periods of county-to-county travel.
The first period, from January 1, 2020 to March 12, 2020, is representative of pre-pandemic
travel. From March 13, 2020 to May 17, 2020, working from home became normal and lock-
downs were implemented. The final period of data obtained is from May 18, 2020 through
May 31, 2020. Data after May 31, 2020 was not available, so the county-to-county travel for the
period of March 15, 2020 through May 31, 2020 was used until the end of the time horizon.
This may differ somewhat from the actual travel in June. The number of trips per day was fur-
ther adjusted by the daily vehicle miles traveled recorded in the Minneapolis/St. Paul metro-
politan region. The resulting number of intrastate trips per day is shown in Fig 2.
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Fig 2. Total county-to-county trips per day.
https://doi.org/10.1371/journal.pone.0245919.9002

March 22, 2020 was chosen as the start date because the number of infections was relatively
low, yet present. If an earlier start date were chosen, where infections were still primarily
spreading from travel from outside of Minnesota, calibrating the model would be difficult due
to limited data on interstate and international travel. March 22 is late enough in the pandemic
that global travel restrictions were in place, yet early enough that Minnesota had few reported
cases in most counties. Consequently, most spread of COVID-19 through Minnesota is
expected to occur through intrastate travel or exposures within the same zone. Fig 3a shows
the initial reported infections in each county on March 22. Besides Minneapolis/St. Paul and
Rochester, very few infections were reported. Most counties have 0 or close to 0 infections.
Infections were estimated through June 22, 2020. In contrast to the initial time of March 22,
2020, at the end date of the time horizon, infections have spread across much of the state.
Therefore, this starting infection pattern is useful because it tests the ability for the models to
predict the spread of COVID-19 through intrastate travel.

Results

We present results from the proposed short-term travel model. Fig 4a compares the total num-
bers of predicted, reported, and reported cases scaled by the detection probability A,(f). Overall,

the total number of predicted cases seems to be a good fit for Z i’—((g Given the COVID-19
ieN

i

(a) March 22, 2020 (b) June 22, 2020
Fig 3. Reported infections by county. (a) March 22, 2020. (b) June 22, 2020.
https://doi.org/10.1371/journal.pone.0245919.9003
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Fig 4. Comparison of predicted and reported infected individuals. Black vertical lines show the intervals in IT,.. (a)
Total reported and predicted infections. (b) Hennepin County (Minneapolis). (c) Ramsey County (St. Paul).

https://doi.org/10.1371/journal.pone.0245919.g004

testing availability in Minnesota, the differences between Zf (t) and Z i‘x—i?) seem quite rea-
ieN ieN
sonable. The model appears to be generally a good predictor of the variation in cases for indi-

vidual counties as well. For example, Fig 4b and 4c compare the reported I,(t), I,(t)\,(t), and
the predicted I(¢) for Hennepin and Ramsey Counties, which correspond to the major cities of
Minneapolis and St. Paul. Fig 3 and S1 Video. illustrate the predicted spread of COVID-19

across Minnesota through intrastate travel over time.

Effects of travel on COVID-19 spread

We now demonstrate the importance of intrastate travel on COVID-19 spread. Using county-
to-county travel data from Minnesota, as well as observed reduction in vehicle miles traveled,
we estimated the number of daily trips between every pair of counties (Fig 1) and calibrated the
SEIR model accordingly. The number of daily trips from i to j, 7;(t) is converted to y;(f) via
7,(¢)

() = A
w0 =30

i

(7)

Overall, the average number of daily county-to-county trips reduced from 3.03m prior to
March 12 to 2.19m then to 1.74m after March 26. However, there were still many daily county-
to-county trips. The average number of daily trips started to increase again in late April.

In the calibrated model, 22.1% of predicted infections were caused by infectious individuals
traveling to other counties. Fig 5 shows the total predicted infections when all county-to-
county travel is removed, with all other parameters kept constant. Because of the exponential
growth in infections, travel reductions result in major differences in COVID-19 spread. We
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Fig 5. Effects of travel on COVID-19 infections.
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T

also study the county-specific cumulative number of cases XI, = %ZI .(t), found by taking the

=0
sum of all cases over time, and dividing by the case duration ¢. The greatest change in the
number of cases occurred in and around the Minneapolis/St. Paul metropolitan region. This
may be due to high daily travel between these counties which includes some daily commuting
trips. It could also be due to a higher population density or other characteristics. Fig 6a shows
the percent of cases between March 22, 2020 and June 22, 2020 resulting from travel. With no
travel, far fewer infections are reported, not only in rural counties, but also in the suburban
counties around Minneapolis/St. Paul.

Fig 6b shows the percent change in infections if travel remained at 12.7m trips per day
instead of reducing as observed. Fig 5 predicts a significant increase in the number of cases,
from around 7,000 to 11,000 at the peak. In contrast, if travel remained at April 1-7 levels
(Fig 1) instead of gradually increasing, we predict slightly fewer infections. Fig 5 shows the
county-specific percent changes in cumulative infections. These results suggest that reductions

100% >100%
0% <0%
(a) [Observed] — [No travel] (b) [Pre-pandemic travel] — [Observed]

Fig 6. Percent change in infections for different travel scenarios. The “observed” scenario is the base travel scenario.
(a) [Observed]—[No travel]. (b) [Pre-pandemic travel] —[Observed].

https://doi.org/10.1371/journal.pone.0245919.g006
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in intrastate county due to work-from-home and other lockdown policies had a significant
effect on reducing COVID-19 spread. As travel started to increase again, infections corre-
spondingly increased as well.

As part of the model calibration, we estimated the parameter &, the probability that a person
who is infectious will continue their normal county-to-county travel. The calibrated value of &
was 31.0%, which is not dissimilar to reported asymptomatic proportions. For instance, [23]
estimated that 17.9% of infections were asymptomatic.

Calibrated parameters

We analyze the reproductive number and infection detection probability parameters of the cal-
ibrated model. To avoid overfitting, only 5 different rate of spread parameters p,(t) were used
per county. These periods span the intervals between the dates March 22, March 27, April 27,
May 18, June 10, and June 22, 2020, which were chosen based on COVID-19 policy changes
from the Minnesota government. Different detection probability parameters per county were
also used due to the possibility of different testing availability and individual behaviors in dif-
ferent counties. For instance, testing might have been less available in certain rural counties.
We used a single detection probability per week per county to reduce overfitting. If data on the
number of undetected COVID-19 infections were available, we could compare our predicted
detection probabilities with such data to check whether overfitting occurs. Unfortunately,
these data are not available, and therefore, we cannot be sure to what extent overfitting may be
occurring.

The calibrated model predicts the daily reproductive number, i.e. the number of infections
per additional infection. We calibrated the model with different probabilities of infection for
each of several intervals corresponding to policy events. We plot the estimated average repro-
ductive number 7(t), weighted by county population, in Fig 7. Note that although only 5 rate
of spread variables were used, the reproductive number varies each time step because it also
depends on the number of susceptible individuals in the population. The initial low value
results from the low overall number of cases, but the average reproductive number soon
jumped to almost 3 per infection. On March 27, 2020, the stay-at-home order started, and the
reproductive number was observed to decrease to around 1.5. After some workplaces reopened
on April 27, the calibrated reproductive number jumps to around 2 before decreasing in May.
However, when businesses and restaurants started reopening on June 10, the reproductive
number increased to around 1. Overall, these reproductive numbers correspond to the change
in cases shown in Fig 4a. Fig 8a shows reproductive numbers per county on May 1, 2020. High
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Fig 7. Calibrated reproductive number and detection probability.
https://doi.org/10.1371/journal.pone.0245919.9007
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COVID-19 reproduction was observed in the 7 counties around Minneapolis/St. Paul, as well
as in some of the rural counties around the state. The different reproductive numbers per
county can be explained by different behaviors throughout the state. In rural counties, social
distancing may be easier than in urban or suburban counties. Indeed, the reproductive num-
ber seems high around major cities such as Minneapolis/St. Paul.

Fig 7 also shows the predicted average detection probability{¢), also weighted by county
population. Overall, the average detection probability was initially around 50%, which gradu-
ally increased to around 75%-80% of cases. To avoid overfitting, a single A,(t) value was esti-
mated per week. Although it is difficult to predict the number of undetected infections from
only the reported infections, asymptomatic transmission is a known characteristic of COVID-
19 [24]. Mild or asymptomatic infections that remain undetected would still cause transmis-
sion to others, which would be detected at a probability of A,(t). In other words, the balance
between the exponential growth of infections at the reproductive number and the linear detec-
tion probability A;(#) admits calibration. For instance, if A,(f) was incorrectly estimated to be 1,
then the growth in the number of infections over subsequent days could lead to a higher error
in calibration objective (6).

Without extensive testing of the general population, the true detection probability is
unknown in most datasets which makes an accuracy comparison difficult. However, consider-
ing the observation of [23] of 17.9% infections being asymptomatic, a 75%-80% detection
probability is reasonable and can easily include individuals with asymptomatic or mild cases.
Testing was available for symptomatic individuals in Minnesota, as well as asymptomatic indi-
viduals working in medical care. The calibrated detection probabilities also improved how well
the model fit the data. A,(t) = 1 for several nodes and time periods, suggesting that if A,(f) = 1
were the best fit, it would have been chosen. Fig 8b shows the average detection probability per
county. Estimated detection probabilities seem to be higher in Minneapolis/St. Paul than some
of the surrounding suburban counties. This could be due to different behaviors or characteris-
tics of people, such as people in urban areas having more comorbidities resulting in more
severe cases.

A =2 A ; 100%

4T

=ama ' B t:

0 <50%

(a) Reproductive number, r, on May 1, 2020 (b) Average detection probability, A

Fig 8. Calibrated parameters by county (see S1 Video for more detail). (a) Reproductive number, r, on May 1, 2020.
(b) Average detection probability, A.

https://doi.org/10.1371/journal.pone.0245919.9008
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Sensitivity analyses

Overfitting is a potential issue with this model calibration. To reduce the impact of overfitting,
a constant value of A,(f) was used for 1-week intervals in most of the results. Here, we study the
impact of overfitting by using a constant value of A,(f) for 2-week intervals. We calibrated all
model parameters again using these new A intervals. Fig 9 compares the calibrated parameters
with the “base” case of 1-week A intervals. Only small variations in r;(t) are observed in Fig 9a.
Larger variations in A(t) are shown in Fig 9b, but overall A,(f) remains fairly similar for much
of the time horizon. The calibrated value of ¢ with 2-week A intervals was 0.307, which is close
to &= 0.310 with 1-week X intervals. The small variations in r;(f) suggest that the predicted
number of infectious individuals would not change much.

Parameter values of 0 = 6.4 and £ = 7 were taken from [20]. However, these values are based
on early work on COVID-19, and the true values of these parameters could be different. To
examine the sensitivity of the results to variations in 0 and ¢, we recalibrated the model with
+10% variations to ¢ and ¢. The resulting calibrated values of r,(t) and A,(¢) are shown in
Fig 10. Only small differences are observed in the calibrated parameters. This suggests that the
reproductive numbers and detection probabilities are fairly robust against small changes in o
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Table 1. Sensitivity of £ with respect to ¢ and €.

o e &
6.4 7 0.310
7.04 7 0.312
5.76 7 0.310
6.4 7.7 0.234
6.4 6.3 0.323

https://doi.org/10.1371/journal.pone.0245919.t001

and ¢. Table 1 presents the sensitivity of £ with respect to these variations in o and £. £ remained
fairly similar, except when ¢ was increased to 7.7. With € = 7.7, infectious individuals remain
contagious in the model for 10% longer, so the observed COVID-19 spread could be achieved
with less daily travel per infectious individual.

Projected infections

We use the model to predict the daily number of infected individuals through December 31,
2020 under three travel scenarios: 1) observed county-to-county travel from May and June; 2)
travel reductions observed in April (Fig 1); and 3) no travel between counties. We note that
since the “observed travel” scenario does not include travel observations past June, it is difficult
to project whether travel would remain at summer levels or change in the fall. Pre-pandemic
travel was not included because observed travel increased to nearly pre-pandemic levels by the
end of June (Fig 1).

Fig 11a shows the number of projected cases using the rate of spread from June 21. Com-
pared with the observed travel scenarios, the no travel scenario fares far better, peaking at
28,082 active infections compared with 68,523 active infections. The travel reductions in April
cause a large decrease in the number of infections, though not as large as removing travel
entirely. The relatively small peak is primarily due to the smaller reproductive number in late
June (Fig 7). By December 31, 2020, 1,104,440 total infections are expected. In contrast, if the
rate of spread from April 1 is used, the number of infections is far higher (Fig 11b), peaking at
187,014 active infections on September 9, and with 2,595,072 individuals infected by Decem-
ber 31, 2020. Overall, Fig 11 shows that reducing travel can have a significant impact on the
number of cases, but reducing the reproductive number is far more important. For reference,
the total population of Minnesota as used in this study is 5,639,589.

Predicted numbers of removed individuals

People who can no longer become infected due to already having been infected with COVID-
19 (or from a vaccine, when one is developed) are counted as removed. Although it is not clear
how long immunity lasts [25], we assume that removed individuals remain removed for at
least the 12 month duration of the predictions here. Having a large population of removed
individuals is vital to returning to pre-pandemic activities. Our data includes reported recover-
ies and deaths from COVID-19. Fig 12a compares the predicted and reported number of
removed individuals. As of June 22, 2020, 30,450 individuals were reported to be removed,
and 48,470 individuals were predicted to be removed. With a statewide population of 5.64 mil-
lion, that corresponds to 0.54% and 0.86% of the population, respectively. The distribution of
the removed population is far from uniform, though, as shown in Fig 12b. Several urban and
suburban counties around the Minneapolis/St. Paul region have 2% or more of their popula-
tion predicted to be removed, but that proportion is closer to 0% for many of the more rural
counties.
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Long-term vs. short-term travel

We also calibrated a long-term travel model—a networked SEIR model where individuals who
travel remain at their destination for multiple days [26]. The long-term and short-term model
differed in how they modeled travel behavior. In the long-term model, Eqs (1)-(4) are replaced
with

S(01) = S0~ 080 1A+ 37 (5,(00,0) — 01,0 )
E(t+1) = E(t) + p,(t)S(2) —t - l () + Z(Ej(t):uji(t) - Ei(t):uij(t)> 9)

L 1) = L0+ B0 — 240+ S0 (100~ Lm0 (10)

JEN

R(t+1) = R(1) +Z( it (8) = RO (1)) (11)

Calibration objective function (6), including the detection probability A,(t), was used for both
models. Gradient descent was used to calibrate both models. After 200 iterations, reductions
in the objective value were less than 0.1% per iteration. The short-term model had a 23.4%

)10/ %) The long-term

T
error in predicting infections, where error is defined as E E it T

ieN t=0
model had a 36.9% error in predicting infections. This suggests that a short-term travel model
is a better predictor for the spread of COVID-19 from intrastate driving trips. The average
computation time per iteration was 104.2s on a desktop computer with an Intel i5-8600k CPU
clocked at 3.60 GHz with 16.0 GB of memory, which suggests the method may be scaled to
larger networks.

Conclusions

We proposed and calibrated a novel network SEIR model for the spread of COVID-19 from
short-term travel (e.g. daily commute trips). Infectious individuals at node i can infect both
susceptible individuals at node i, and susceptible individuals at node j, based on exogenous
travel rates from i to j. This model also includes a calibrated detection probability parameter
Ai(1), representing the proportion of infections that are actually detected. These two modifica-
tions to the standard SEIR model [9] may be useful for studying COVID-19. Since COVID-19
is known to have large numbers of asymptomatic or mild yet contagious infections [23, 24,
27], substantial numbers of infectious individuals have undetected infections and may travel
normally while infectious, spreading COVID-19 to new geographic regions.

A case study in Minnesota, which has substantial county-to-county travel but relatively few
counties with interstate or international airline travel, shows the importance of intrastate travel
in spreading COVID-19. If travel were removed, the number of cases is predicted to peak at
1,870 compared to the actual 6,982. If travel did not decrease from pre-pandemic levels, that
peak is predicted to rise to 11,028. Even returning to April 1-7 travel levels results in a substan-
tial reduction in predicted infections for the remainder of the year. Consequently, we conclude
that short-term travel has a significant impact on COVID-19 spread, and efforts to reduce
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typical daily short-term travel, like commuting, could achieve large reductions in both the
number of cases and the geographic spread of COVID-19.

We also demonstrate the potential to predict the infection detection probability through
calibrated SEIR models. Because asymptomatic or mild infections are still contagious, estimat-
ing the true number of infections may be valuable compared with predicting the spread of
COVID-19 only from reported infections. Although extensive testing of the general population
[28, 29] is the best way to estimate the detection probability, this calibration method may pro-
vide a useful alternative when such testing is unavailable. In addition, including the detection
probability may achieve a higher model accuracy than calibrating only against reported infec-
tions, which ignores the spread of COVID-19 from undetected infections. Overfitting may
lead to inaccuracies when the model is used for forward prediction. We explored overfitting by
adjusting the duration of the intervals for which A;,(f) is constant, but it is difficult to verify the
accuracy without other sources of data.

Although the results provide novel data on the relationship between short-term travel and
COVID-19 spread, there are a number of opportunities for improvement. The incubation and
recovery rate parameters were based on [20], but more accurate parameters may later become
available after further study. The SEIR model could be extended with more states and transi-
tions to capture the variation in disease progression among individuals. Differences in the pop-
ulation demographics among counties might affect infection characteristics as well. The
calibrated model predicts reasonable county-specific detection probabilities, but verifying
these against widespread testing of the population would lend further validation if such data-
sets were available. Our travel data provided only the total number of trips between pairs of
counties, but different trip types are likely to affect infection spread differently. For instance,
home-to-work trips may result in more person-to-person contact than some recreational
travel. Including interstate and international travel which were responsible for the original
spread of COVID-19 to Minnesota might further improve the model accuracy.
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