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Abstract

In a fast-changing world, polar ecosystems are threatened by climate variability. Understanding the roles of
fine-scale processes, linear and non-linear effects of climate factors on the demography of polar species is
crucial for anticipating the future state of these fragile ecosystems. While the effects of sea ice on polar marine
top predators are increasingly being studied, little is known about the impacts of landfast ice on this species
community. Based on a unique 39-year time-series of satellite imagery, in situ meteorological conditions and
on the world's longest dataset of emperor penguin Aptenodytes forsteri breeding parameters, we studied the
effects of fine-scale variability of landfast ice and weather conditions on this species reproductive success. We
found that longer distances to the landfast ice edge (i.e. foraging areas) negatively affected the overall
breeding success but also the fledging success. Climate window analyses suggested that chick mortality was
particularly sensitive to landfast ice variability between August and November. Snowfall in May also affected
hatching success. Given the sensitivity of landfast ice to storms and changes in wind direction, important future
repercussions on the breeding habitat of emperor penguins are to be expected in the context of climate

change.
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1. Introduction

Polar ecosystems are subject to local and regionally contrasted sea ice trends due to climate change
[1,2]. Given the complexity of these trends, which are tightly linked to the atmosphere and the ocean
dynamics, there is an urgent need to measure and forecast how polar marine populations will respond to sea
ice habitat changes [3,4]. Among the studies that have investigated the impacts of climate change and
variability on population dynamics in the Southern Ocean [5,6], a thorough understanding of the fine-scale
processes by which climate affects the population dynamics of polar organisms is still lacking, thereby
preventing the scientific community from improving model projections to correctly assess the future states of
polar populations and ecosystems. Given that population dynamics are driven by several demographic
components whose sensitivities to climatic factors vary [7,8], it is important to investigate the links between
climate and each demographic component. Determining the spatial and temporal scales at which climate
variability affects biological parameters is also of prime importance [9]. Also crucial for improving projections,
long-term multi-decadal biological series are required to detect non-linear effects of climate on populations
[10-13]. The obtention of such long time-series is however often limited by logistical challenges associated
with conducting long-term studies in these remote and extreme areas.

Many Antarctic marine top predators, such as seals and seabirds, are intricately linked to landfast ice (LFl),
i.e. the narrow band of coastal, compact sea ice held in place by ice shelves and grounded icebergs [14],
throughout their breeding period [15—-17]. Therefore, LFI variability, such as extreme extent or early break up,
can profoundly impact their breeding areas and breeding success [19,20]. However, functional relationships
between LFI variability and demographic parameters of polar marine predators remain poorly known due to
the scarcity of biological datasets and the difficulty to characterize LFI variability over long time periods.

To improve our understanding of how polar species will respond to future climate changes, we explored
the role LFl variability and in situ meteorological conditions have on the overall breeding success, but also the
fledging and hatching success of a unique sea ice sentinel species [20], the emperor penguin (Aptenodytes

forsteri). We used the longest historical time-series of Antarctic LFl collected by the Advanced Very High
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Resolution Radiometer (AVHRR) and the Moderate-Resolution Imaging Spectroradiometer (MODIS), covering
the years 1979 to 2017, i.e. since the inception of modern satellite monitoring. We also used the world's
longest time-series of emperor penguin breeding parameters, collected at Pointe Géologie, Adélie Land, since
1952. The novelty of this research, while relying on previous studies (e.g. [21-26]), lies in i) assessing the
climate effect on different components of the reproduction, ii) using the longest time-series available for LFI
and emperor penguin reproduction, iii) taking into account the relative contribution of fine-scale processes
(local LFI and in situ meteorological conditions), iv) exploring different time windows of these effects, and v)

testing non-linear effects.

2. Material and methods

(a) Landfastice data
Three sources of satellite imagery were used to cover the 1979-2017 period and aggregate LFI data (electronic
supplementary material; see figure S1 for examples):
1) 1979-1991: visible (when available) or thermal infrared images from AVHRR's Global Area Coverage
(GAC) mode (spatial resolution of 4 kilometres per pixel; km/px).
2) 1992-1999: visible (when available) or thermal infrared images from the AVHRR Coastal Atlas of East
Antarctica [27] (resolution of 1.1 km/px).
3) 2000-2017: LFI maps from Moderate-Resolution Imaging Spectroradiometer (MODIS) images
(resolution of 1 km), classified by Ref. [28].
Distances between the penguin colony location and the nearest landfast ice edge (LFIE) (i.e., proxy for access

to the ocean) and landfast ice areas (LFIA) were extracted from the images.

(b) Meteorological data
Meteorological data were obtained from the French weather station of Dumont D’Urville. Three

parameters were used in this study: the number of days per month with i) temperatures under -10°C, ii) winds
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above 28 m/s, and iii) snowfall. We hypothesised that egg loss during incubation and chick mortality could be
enhanced during cold and windy conditions caused by katabatic winds and winter storms [15]. Heat loss due

to cold temperatures and strong winds, which could be enhanced by snowfall, may increase chick morality.

(c) Reproductive data

Data are similar to those used by Refs. [21,29] with updated estimates (electronic supplementary
material). From count data we estimated 'breeding success' as the number of fledged chicks divided by the
number of breeding pairs; 'hatching success' as the number of breeding pairs minus the number of dead eggs
divided by the number of breeding pairs; and 'fledging success' as the number of fledged chicks divided by the
number of breeding pairs minus the number of dead eggs. Breeding success was estimated over the period

1979-2017; hatching and fledging success over the period 1983-2017.

(d) Climate window analysis
We performed a ‘climate window analysis’ using the R package climwin, following the steps described in Ref.
[30]. Climate window analyses determine, without any a priori hypothesis, the best climate window(s) (i.e.
candidate models) that identify potential climate signals between biological and climate data. Two datasets
were analysed: one that contained our monthly climate data, i.e. landfast ice or meteorological data covering
the 1979—2017 period, and one that contained information on the response variable, i.e. breeding, hatching,
and fledging success. For each climate window, a model was computed. Akaike Information Criteria (AICs)
were used for ranking and comparing different candidate climate windows, and then for assessing the best
models, their uncertainty, explanatory power, and applicability. Details on the analysis and outputs of the
analysis are provided in the electronic supplementary material. The full dataset and codes can be found on

Dryad [31].

3. Results
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(a) Reproduction time-series

Hatching success was the most stable reproductive parameter (mean £ SD =0.82 £ 0.07, CV = 8.3 %), while
fledging success (0.65 + 0.30) and breeding success (0.53 + 0.25) were more variable (CV = 46.4 % and 46.5 %,
respectively; figure 1a). Hatching success increased during the study period (slope = 0.051 + 0.007 (SE), p <
0.001), while fledging success (slope =-0.003 + 0.052, p = 0.96) and breeding success (0.026 + 0.040, p = 0.52)
remained stable (figure 1a). Variations in both fledging and breeding successes seemed to co-vary with the

LFIA, but even more so with the distance to the nearest LFIE (figure 1b-c).

(b) Climate window analysis

Breeding success was higher for shorter distances to the LFIE between August and November (prandomization
= 0.006; adjusted R? = 0.4), while the LFIA did not have a significant influence (i.e. based on the randomization
test; table 1, figure 2a). The number of days per month with temperatures under -10° C, with winds above 28
m/s, and with snowfall did not influence the breeding success (table 1). Neither the LFIA nor the number of
days per month with winds above 28 m/s or temperature below -10° C had an influence on the hatching
success (table 1). However, the hatching success appeared to be influenced by the number of days with
snowfall in May (Prandomization = 0.0003, adjusted R? = 0.3; table 1, figure 2c). This relationship was non-linear,
with hatching success increasing with the proportion of days with snowfall per month up to 37% and remaining
stable or decreasing slightly for higher proportions. Finally, fledging success was higher for shorter distances
to the LFIE in November (prandomization= 0.035, adjusted R? = 0.5; table 1, figure 2b), while the LFIA, the number
of days per month with temperature below -10° C, with winds above 28 m/s, and with snowfall did not have a
significant influence (table 1). Fledging success declined non-linearly with the nearest distance to the LFIE,

with an accelerated decline for distances greater than ca. 50 km.

4. Discussion
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We showed that, over 39 years, different components of the reproduction of an Antarctic seabird were
affected by fine-scale LFl and in situ meteorological conditions at different times of its breeding season, and,
importantly, these relationships were non-linear.

Adult emperor penguins during the breeding season forage and hunt by diving at the edge of the LFI
in cracks, flaw leads, and polynyas [32]. Longer distances between the colony and foraging grounds accessed
by the LFIE imply lower chick-feeding frequency, and thus lower chick growth with negative consequences on
fledging and breeding success. Using historical AVHRR and recent MODIS images, our study brings important
and novel results. First, we identified that distance to nearest LFIE particularly affected fledging success in
November (and the second-best model identified a window between August and November), indicating that
chick mortality was the main cause of declining breeding success with increasing distance to LFIE. Second, this
relationship was nonlinear, with over 50% chick mortality when the distance to LFIE exceeded ca. 65 km. Non
linearity could be detected by extending the time series from 8 years in a previous work [26] to nearly 40 years
in our study. Third, we identified that the best climate window explaining the relationships between distance
to LFIE (i.e. foraging grounds) and breeding success was between August and November, suggesting chicks
were particularly sensitive to environmental variability during this period of high energetic demands for body
growth [33,34].

Reproduction has been monitored at extremely few other emperor penguin colonies. Surprisingly, no
relationship was found between LFl and breeding success of emperor penguins at Taylor Glacier colony [35].
Although this may depict the complex interactions between environment and penguin foraging behaviour and
their consequences for breeding performances, ref. [35] used distance to LFIE in April and September, and our
time windows analysis indicated that these months did not represent the full critical period for fledging and
breeding success. Nevertheless, this highlights the need to monitor multiple sites in order to understand how
sea ice variability, and especially LFl, is affecting the global emperor penguin population.

Our study supports previous findings that it is crucial to consider both fine-scale climate processes and
fine-scale temporal windows when investigating the relationships between climate variability and

demographic traits [9,36]. Despite the diversity of studies that have investigated the effect of climate change
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on polar species, there is a strong need to account for the factors that control population dynamics at
local/regional scales in order to understand how they may modulate the effects of large-scale environmental
variations on long-term population trend [13]. For example, ref. [37] compared the influence of environmental
factors on the breeding success of snow petrels (Pagodroma nivea) at Casey station with the colony of Adélie
Land, and showed that despite similarities in the biological processes controlling snow petrel breeding success,
the correlation of large-scale environmental factors with breeding success differed substantially between the
two colonies, likely due to the effects of the environmental factors at the local/regional scale.

Landfast ice variability may have important indirect effects that we did not consider in this study. For
example, LFl break-ups could contribute to the phytoplankton seeding process (e.g. [38—40]) and may drive a
phytoplankton bloom associated with trophic cascades. This could in turn benefit emperor penguins through
bottom-up processes with a temporal lag depending on the timing within the breeding period. In the Arctic,
longer temporal lags between sea ice melting and phytoplankton bloom resulted in rapidly decreasing
breeding performance for little auks (Alle alle) and Briinnich’s guillemots (Uria lomvia) [41]. Thus, considering
local to regional-scale phenology in the development of potential phytoplankton blooms in responses to LFI
variability may help understand climate-driven environmental impacts on seabirds.

During breeding, individual emperor penguins do not use a fixed nest site as do other penguins.
Therefore, the colony is mobile during the breeding season and can move several hundred meters or even a
few kilometers. Therefore, the selection of nest site (and experience to nest site) is not relevant for this
species. However, there might be selection for sites where colonies are situated, as these sites are generally
occupied for long time periods (several decades at least), as our results suggest a strong selection pressure
form environmental factors such as LFIE. Nevertheless, the environmental factors affecting colony site
selection have not been investigated and quantified to date.

Finally, none of the meteorological variables, except snow falls for the hatching success, had an
influence on reproductive parameters. The positive relationship between the number of days with snowfall in
May and the hatching success may be associated with the hydration of males during their long fasting period

of ca. four months. We speculate that important snowfalls in May allow males to supplement their water
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intake by eating snow, thus decreasing dehydration potentially leading to the abandonment of the egg before
it hatches. Indeed, field observations during winter indicate that male emperor penguins eat snow all along
the incubation period ([42]; CB, pers. obs.).

Our results bring new insights on the proximate mechanisms through which a poorly known polar
habitat feature, LFI, affects demographic parameters of polar top predators. We note that, although we might
be able to better predict the future state of polar populations once such fine-scale processes are fully
understood, population projections based on sea ice models (e.g. [43]) remain hampered by the fact that these
models project sea ice extent but do not provide information on LFlI dynamics yet. Important future
repercussions on the breeding habitat of emperor penguins and ultimately their persistence are to be
expected in the context of climate change [2] given the sensitivity of LFI to storms and changes in wind
direction [44], as well as the recently observed strong and opposed LFI trends in adjacent regions [45]. Given
the demographic sensitivity of emperor penguins associated with postglacial warming leading to a major
southward expansion [46], major shifts such as decline or extinction of emperor penguin populations are

expected under anthropogenic climate change.
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Fig. 1 Times-series of the emperor penguin reproductive parameters (panel a; 95% confidence intervals in

grey) and LFI conditions (LFIA, panel b; nearest distance to LFIE, panel c) at Pointe Géologie, 1979-2017. Pink

rectangles highlight years for which breeding success was below 25%.
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217 Fig. 2 Relationships between emperor penguin reproductive parameters (breeding, fledging, and hatching
218 successes, panels a, b, and c respectively) and climate variables from 1979 to 2017 at Pointe Géologie obtained
219  from the climate window analysis. The best climate window was August to November for (a), November for
220  (b), and May for (c).

221



222 Table 1. Summary of the climate window analysis.

R? after
Period Best climate p-value best  p-value after Sign of the
Climate variables Biological variable Years Fit selected [alternative fit] randomisation
considered window model' randomisation relation
(k=10)
linear, AIC = -125.8826
Breeding success May-Nov. 1979-2017 Aug.- Nov. 1.48e-05 0.006 - 0.386
[quadratic, AIC = -125.082]
Nearest open water (LFIE) Hatching success May-Aug. 1983-2017
x=0.500 quadratic, AIC = -107.642
Fledging success May-Nov. 1983-2017 Nov. 0.035 - 0.530
x?=0.025 [linear, AIC =-105.3069]
Breeding success May-Nov. 1979-2017 NS 0.003 0.499 NS
Landfast ice area (136°-
Hatching success May-Aug. 1983-2017 NS 0.007 0.715 NS
146° E)
Fledging success May-Nov. 1983-2017 NS 0.0001 0.266 NS
Breeding success May-Nov. 1979-2017 NS NS / NS
Nb. of days/month with
Hatching success May-Aug. 1983-2017 NS NS / NS
temperatures under -10° C
Fledging success May-Nov. 1983-2017 NS NS / NS
Breeding success May-Nov. 1979-2017 NS NS / NS
Nb. of days/month with
Hatching success May-Aug. 1983-2017 NS NS / NS
winds above 28 m/s
Fledging success May-Nov. 1983-2017 NS NS / NS
Breeding success May-Nov. 1979-2017 NS 0.044 0.926 NS
Nb. of days/month with x=10.003 quadratic, AIC = -198.8435
Hatching success May-Aug. 1983-2017 May 0.0003 + (bell shape) 0.321
snowfall x*=0.017 [linear, AIC =-194.5369]
Fledging success May-Nov. 1983-2017 NS NS / NS

! For quadratic relationships, p-values for the linear and quadratic terms are given as x and x2 respectively.
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