Designing an Effective User Interface

for

Analyzing Software Repositories

Adam Tutko
Department of Electrical Engineering and Computer Science
University of Tennessee
Knoxville, Tennessee, US
atutko @vols.utk.edu

I. INTRODUCTION

The introduction of Git!, a version control system, has rad-
ically changed the software development process. Currently,
Git is considered an essential skill for software engineering
developers and is necessary for collaboration between develop-
ers [1]. This reliance on Git means that software development
creates a vast pool of publicly available data. This data
provides an opportunity for software engineering researchers
interested in analyzing the software development process. Such
analysis could facilitate numerous tools for developers that
substantially increase developer productivity.

This opportunity has become apparent to researchers and
the field is growing rapidly. However, analysis is riddled with
difficulties because starting data extraction is a non-trivial
matter. Mining Software Repository researchers are limited to
crawling the Git ecosystem manually or leveraging APIs for
data extraction. Unfortunately, these API are often difficult
to use [3], [4] and might not be robust enough to retrieve
the desired information. Alongside this, sampling is frequently
done by manually selecting projects (e.g., [5], [6], [8], [9]),
which may be biased, and this practice has the potential to
introduce data integrity problems [7].

To overcome these issues, my goal is to design and im-
plement a user interface that enables software engineering
researchers to effectively analyze code repositories. This inter-
face will aim to address the complications other API currently
face. The interface will allow rapid retrieval of a vast amount
of Git data and will specifically target ease of use issues that
have been noted for other API. It will be built to retrieve the
desired data based on minimal and easily provided input. Thus,
removing the need for users to expend effort understanding the
system before use.

II. PROGRESS TO DATE

My initial work has been in engineering the collaborative
project, World of Code (WoC) [2], a system intended to
overcome the issues with retrieving data from code reposi-
tories. WoC allows for quick data retrieval of relevant data
by archiving public Git repositories and providing an API for
interacting with the data. To date, WoC contains over 100
million projects and nearly 40 million authors.

Thttps://git-scm.com/

978-1-7281-6901-9/20/$31.00 © 2020 IEEE

The World of Code

Base-Mappings MongoDB Server

Stars

Author l Project
Metadata Metadata

Authors Blobs

/ Fork
Information
Projects General
Information
N
Commits Files Total J% Total
Commits Blobs
Total Total
Authors Projects
Coding _ | | Total
Languages Files

Active
Timeframe

Fig. 1. System Layout for resources within the World of Code

The data is randomly stored in base-mappings by using
their SHA1 hash. The World of Code provides the potential
to perform various samplings from a massive set of Git
repositories. Furthermore, users can filter this data extensively
by including basic boolean restrictions on the query.

However, while the World of Code is a potentially excep-
tional resource for analyzing Git, the system has a number of
roadblocks for users unfamiliar with it. The World of Code
currently lacks an easily used user interface. To leverage the
system, users must work with the base-mappings between Git
data. Unfortunately, this often requires users to write scripts
meant to retrieve the targeted data.

Towards overcoming this usability issue of WoC, I created
a set of metadata that is commonly used by software
engineering researchers and designed an API to interact with
the data. This data was stored on a MongoDB server for easy
retrieval and analysis. These metadata collections include
basic information on Git projects and authors.

For projects, the metadata includes how long the project was
active, the coding languages used, if the project is a fork of
another project, the star rating on GitHub (if applicable), and
the number of authors, commits, and files in the project. The
star rating was calculated by cross-referencing information
from WoC and GitHub.

Similarly, the author metadata includes information on how
long the author was active, the coding languages used, and the
number of commits, files, and projects related to that author.

The metadata system provides a more easily used, but less
powerful, option for researchers when analyzing projects and
authors. Primarily, it offers researchers potentially useful data
without requiring a working knowledge of how to communi-
cate with the World of Code. This system, and the compiled
datasets within, could help mitigate the difficulty with starting
analysis.

III. SYSTEM USAGE

The World of Code system boasts many advantages as a
resource for Git data retrieval, but the system still has potential
for improvements regarding accessibility and usability.

Currently, there are a number of options for communication
with the World of Code, but they require researchers to be
proficient in programming and have extensive knowledge of
how data is stored in Git. The languages currently integrated
with WoC are Python, Perl, and the Unix Command Line.
Thus, to be able perform personal queries on the system,
having an understanding of one or more of these languages
is necessary. On top of this, a basic understanding of how the
World of Code is formatted is necessary.

The metadata collections were compiled to mitigate these
issues. However, these datasets are currently only available
within the World of Code. Researchers interested in the
metadata collections must request access to the World of Code
in order to gain access to the MongoDB server hosting the
metadata.

Our team is considering how to address the accessibility
issues regarding the metadata datasets. I am currently design-
ing an online resource that will allow direct access to the
metadata collections. Interested users will be required to sign
up to a website and then be allowed to query the MongoDB
collections containing the information. This interface will be
provided on top of a website related to the World of Code
already in development.

IV. FUTURE WORK

My primary goal moving forward will be to address issues
with gaining access to and using these resources. I plan to
continue work on the World of Code interface to further
simplify it’s use and greatly increase the productivity of it’s
users. Providing a simpler user interface for communicating
with the World of Code will be a big step in making the
resource accessible. Currently, I can see a few options for
improving the World of Code to consider. One course of action
is to provide users a graphical user interface for WoC that can
perform basic queries.

The interface would be built as an optional extension for
the World of Code. The GUI would be primarily designed for
users not confident in their programming abilities by allowing
simple queries of the system. In tandem with the GUI,
integrating other popular languages as further communication
methods for WoC could greatly increase the pool of potential
users. By providing these two options to users, the difficulties
with using the system would be addressed.

Another potential course of action would be to survey
researchers who had previously analyzed Git repositories.
This survey would try to determine what data they believe
would be useful in further metadata datasets. Questions would
be focused on determining what data they targeted in their
previous research and if there was information they desired
but were unable to gather. This information would allow us
to build upon the currently available metadata collections by
providing more relevant and interesting data in future versions.

Discovering the necessary improvements to the World of
Code will require no small amount of research and consider-
ation. However, these future improvements have the potential
to make this resource a virtual goldmine when analyzing Git
repositories. This interface will introduce researchers to a
system that eclipses other Git data retrieval API. This will
exponentially increase the number of useful tools available
to software developers. Such an exponential increase in tools
could propel the modern software design process to an entirely
new level.

REFERENCES

[1] Frans F Blauw. The use of git as version control in the south african
software engineering classroom. In 2018 IST-Africa Week Conference
(IST-Africa), pages Page—1. IEEE, 2018.

[2] Georgios Gousios and Diomidis Spinellis. Mining software engineering
data from github. In 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), pages 501-502. IEEE, 2017.

[3] Dimitris Kolovos, Patrick Neubauer, Konstantinos Barmpis, Nicholas
Matragkas, and Richard Paige. Crossflow: a framework for distributed
mining of software repositories. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pages 155-159.
IEEE, 2019.

[4] Yasutaka Sakamoto, Shinsuke Matsumoto, and Masahide Nakamura.
Integrating service oriented msr framework and google chart tools for
visualizing software evolution. In 2012 Fourth International Workshop
on Empirical Software Engineering in Practice, pages 35-39. IEEE, 2012.

[5] A. C. Short and A. Z. Henley. Towards an empirically-based ide: An
analysis of code size and screen space. In 2019 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), pages 199—
203, 2019.

[6] Danilo Silva and Marco Tulio Valente. Refdiff: detecting refactorings in
version histories. In 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), pages 269-279. IEEE, 2017.

[7] Fabian Trautsch, Steffen Herbold, Philip Makedonski, and Jens
Grabowski. Adressing problems with external validity of repository
mining studies through a smart data platform. In Proceedings of the
13th International Conference on Mining Software Repositories, pages
97-108, 2016.

[8] Xin Yang, Raula Gaikovina Kula, Norihiro Yoshida, and Hajimu Ilida.
Mining the modern code review repositories: A dataset of people, process
and product. In Proceedings of the 13th International Conference on
Mining Software Repositories, pages 460—463, 2016.

[9]1 Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and
Bogdan Vasilescu. Wait for it: Determinants of pull request evaluation
latency on github. In 2015 IEEE/ACM 12th working conference on mining
software repositories, pages 367-371. IEEE, 2015.

