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Abstract—With growing system complexity and closer cyber-
physical interaction, there are increasingly stronger dependencies
between different function and architecture layers in automo-
tive systems. This paper first introduces several cross-layer
approaches we developed in the past for holistically addressing
multiple system layers in the design of individual vehicles and
of connected vehicle applications; and then presents a new
methodology based on the weakly-hard paradigm for leveraging
the scheduling flexibility in architecture layer to improve the
system performance at function layer. The results of these works
demonstrate the importance and effectiveness of cross-layer
design for automotive systems.

Index Terms—Cross-layer design, Cyber-physical system, Au-
tomotive system, Connected vehicles, Weakly-hard paradigm

I. INTRODUCTION

With the rapid development of active safety and autonomous
functions, modern automotive systems have become complex
cyber-physical systems that involve close interactions between
the cyber domain (i.e., automotive electronic systems) and the
physical domain (i.e., mechanical components and surrounding
physical environment). The design and validation of these
systems span across multiple layers, as illustrated in Fig. 1.
The function layer defines various automotive system function-
alities in sensing, control, computation, communication, etc.,
and captures their interaction with the physical environment.
In this paper, as we consider connected vehicle applications,
the function layer can be further divided into the vehicular
network layer and the individual vehicle function layer. The
architecture layer defines the platform on which the system
functionalities are implemented. It could include multiple sub-
layers such as the software layer and the hardware layer. It may
also include the layers of mechanical and physical components
(e.g., engines, brakes, wires), but those are beyond the scope
of this paper. In the AUTOSAR (Automotive Open System
Architecture) standard, the automotive software layer could
be further divided into a layer of runnables and a layer of
software tasks connected with signals, as shown in [1].

Traditionally, the design of different automotive layers is
often carried out in an isolated fashion. However, the fast
growing complexity of system functionality and architecture,
as well as the close interaction between the cyber and phys-
ical domains, has led to strong dependency between layers
and made those isolated approaches ineffective. For instance,
whether an advanced control function or a new security
feature can be deployed in a vehicle often depends on the
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Fig. 1. An illustration of the different layers for automotive system design,
verification and validation.

availability of computation and communication resource at
the architecture layer; whether a connected vehicle application
can meet the safety and performance requirements depends
on the communication delay and reliability of vehicular ad-
hoc network. Thus, it is critical to adopt a cross-layer design
methodology to holistically address the multiple layers in
automotive systems.

In this paper, we will first introduce our previous works
in cross-layer design for individual vehicles (Section II) and
for connected vehicles (Section III). We will then present our
initial results in developing a new cross-layer methodology for
systems that allow the weakly-hard constraints (Section IV).

II. CROSS-LAYER DESIGN FOR INDIVIDUAL VEHICLES

Vehicle design spans across multiple layers. As shown in
Fig. 1, various automotive functionalities (e.g., sensing and



control algorithms) can be captured at the function layer with
formal or semi-formal models. These models are implemented
at the architecture layer, often as software tasks running on
the hardware platform. Traditionally, the functionality design,
the generation of tasks from function models (which may go
through a runnable layer as in AUTOSAR), and the mapping
of tasks onto the hardware platform, are often done in isolated
steps. However, as automotive systems are time-critical and
resource-limited, design choices at the higher layers (e.g.,
functionality design or runnable generation) have significant
impact on whether efficient or even feasible designs can be
found at the lower layers. This has motivated our work in
cross-layer design for individual vehicles, as introduced below.

A. Holistic Software Synthesis from Function to Architecture

In [1], we propose a model-based software synthesis flow
for AUTOSAR-based automotive systems. The cross-layer
flow conducts runnable generation from the function model,
task generation from the runnables, and task mapping onto
a multicore platform in a holistic framework. Different from
traditional approaches where runnable generation is performed
merely from functional perspective and isolated from task
generation and mapping, our approach explicitly addresses
architectural properties in runnable generation, in particular
regarding timing and schedulability.

In runnable generation, the functional blocks are mapped to
runnables, as shown in Fig. 1. Two algorithms are proposed
in [1] to explore different runnable generation options, while
considering system modularity', reusability, code size, and
schedulability: In a top-down method, a mixed integer linear
programming (MILP) formulation is used to create the initial
solution with the maximum modularity and reusability (i.e.,
no false input-output dependencies), and then a heuristic is
used to decompose the runnables to improve schedulability.
In a bottom-up method, another MILP formulation generates
the initial solution with the maximum schedulability and a
heuristic gradually merges runnables to optimize modularity.
To facilitate schedulability analysis, a formalism called Firing
Execution Time Automaton (FETA) is developed, which can
accurately capture the worst-case runnable timing behavior. In
task generation and mapping, two algorithms are developed
to group runnables into software tasks and map tasks onto
Electronic Control Units (ECUs) on the hardware platform,
while considering schedulability and memory cost for inter-
task communication. For schedulability analysis, FETA is also
applied at the task level to capture task timing behavior.

The experimental results in [1] demonstrate that it is impor-
tant to address timing and schedulability during the generation
of runnables from function models, as the decisions at this
stage already have significant impact on the eventual system
feasibility. In particular, it is shown that there are strong

TAs in [1], modularity is a metric that reflects the IP disclosure degree, and
is measured by the number of runnables generated. A runnable generation
can effectively hide the information of the internal block structure if the
number of runnables (and their dependencies) is significantly smaller than the
number of internal blocks. The optimal granularity is achieved when there is
fewest number of generated runnables (when under certain constraints such
as reusability and/or schedulability).

trade-offs between modularity and schedulability. Previous
methods that do not consider schedulability often lead to
runnable generation solutions that have optimal modularity
but are infeasible for task generation and mapping. Moreover,
the proposed FETA formalism provides a holistic timing
representation for functional blocks, runnables, and tasks, and
is shown to be effective for schedulability analysis across these
different layers.

B. Cross-Layer Design for Automotive Security

Security has become a pressing issue for automotive systems
in recent years, especially with the increase of vehicle connec-
tivity and complexity. Various security protection mechanisms,
such as message authentication, encryption, and anomaly de-
tection, have been proposed for automotive systems. However,
the successful deployment of these techniques depends on
the available resources and whether the additional overhead
may lead to timing violations of existing functions. It is thus
important to take a cross-layer approach to address the design
of security features together with other system objectives,
including architecture layer properties such as timing and
schedulability.

1) Security-Aware Software Synthesis: Traditional automo-
tive software synthesis flow does not address security. It is
often difficult to add security mechanisms after the software
synthesis process is completed (i.e., after task allocation and
scheduling are decided), because of the tight timing and
resource constraints. On the other hand, fixing the design of
security mechanisms before software synthesis could often
result in infeasible systems. Thus, we propose to address the
security (function layer) together with the software synthesis
(architecture layer) in an integrated formulation. In [2], [3],
we explore security mechanisms to protect communication
messages against replay and masquerade attacks, which could
happen when a malicious attacker compromises an ECU and
then either replays legitimate messages on the communication
bus or sends messages pretending as another ECU. Adopting
message authentication codes (MACs) may prevent such at-
tacks by authenticating each message with a key that only the
message sender and receiver have, however they also incur
overhead and could lead to timing and resource violations.

In [2], we consider adding MACs to Controller Area Net-
works (CAN) bus messages. Longer MACs make it harder for
brute-force attacks, but also increase CAN message sizes and
could lead to infeasible designs. To address these trade-offs,
we develop an MILP-based algorithm to quantitatively explore
the security design, including the messages to authenticate,
MAC lengths and sharing strategies, together with the software
synthesis options. Experimental results demonstrate that such
holistic consideration can significantly increase the chance
to find designs that satisfy both security and schedulability
constraints — although in some cases feasible solutions still
cannot be found, given the limited bandwidth and message
size of CAN.

In [3], we explore adding MACs to future automotive
bus protocols that are based on TDMA communication (e.g.,
FlexRay, Time-Triggered Protocol, Time-Triggered Ethernet),



which provide much higher bandwidths and larger message
sizes. However, applying security mechanisms still requires
careful analysis and design to avoid violations on other de-
sign constraints. In this work, we leverage the time-division
property and adopt a key sharing mechanism that is based
on time-delayed release of keys. This mechanism protects
against masquerade attacks, however may lead to long message
transmission delays. We quantitatively model the worst-case
transmission delays under time-delayed release of keys, and
develop a simulated annealing based method to holistically op-
timize task allocation and scheduling, TDMA-based network
scheduling, and the key-release interval to meet both timing
and security constraints.

2) Security-Performance Trade-offs under Architectural
Constraints: With limited resources, improving automotive
system security may require sacrificing other objectives, and
such trade-off should be addressed in a quantitative and
holistic manner. In [4], we explore the trade-off between
security and control performance for a CAN-based system,
while meeting schedulability constraints.

We consider a system model where multiple control tasks
share the same ECU and communicate with sensors and
actuators. Malicious attackers may eavesdrop on the messages
between sensors and control tasks, and try to reconstruct the
system state. This not only results in a loss of privacy, but
could further be used as the basis for other attacks. Applying
encryption techniques may prevent such attacks, however
also introduces computation and communication overhead. For
each encrypted message, a decryption task needs to be added
on the ECU, which may force the control tasks to increase
their activation periods to maintain schedulable.

In [4], we present a cross-layer formulation to address
system security level, control performance, and schedulability.
The security level is the difficulty for attackers to restore the
system states, measured through either Observability Gramian
or analysis based on Kalman filter. We quantitatively model
how the security level depends on the number of encrypted
sensing channels (messages). On the other hand, for each con-
trol task, we model the relation between its performance and
its period as an exponentially decaying function. Intuitively,
having more encrypted messages increases system security
level, but may lead to the increase of control task periods
and thus worse control performance. We then develop a
simulated annealing based algorithm to explore the choices of
message encryption and control periods, under schedulability
constraints. The experimental results demonstrate the clear
trade-off between security and control performance, and show
the importance of holistically considering these cross-layer
properties.

III. CROSS-LAYER DESIGN FOR CONNECTED VEHICLES

For many of the connected vehicle applications, the depen-
dencies between different system layers need to be carefully
considered during the design stage. In these applications,
individual vehicles sense the external environment with on-
board sensors, exchange information with nearby vehicles and
infrastructures via wireless channels, analyze large amounts

of data, and then conduct planning and control at real-time.
The behavior of these applications at the function layer highly
depends on the architecture layer properties such as the timing
delay and reliability of wireless vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communications.

To ensure the overall system correctness and performance,
it is important to address function and architecture design in a
holistic framework. Current practice, however, often addresses
the two in isolation and overlooks the close dependency
between function and architecture. To address this issue, we
propose a framework in [5] to collaboratively conduct the
verification of functionality and the synthesis of architecture
platform. In particular, the framework includes two major
aspects: a) function verification is carried out based on the
assumptions of architecture layer properties (e.g., computation
and communication delays are bounded within certain range),
and b) architecture layer synthesis is performed while ensuring
the assumptions specified in the function verification process
are satisfied as constraints. The interface between verification
and synthesis is defined as a contract to formally capture
the platform assumptions/constraints and other invariants. By
systematically exploring the constraint settings in the interface
and using them to drive function verification and architec-
ture synthesis, our method can effectively reduce design and
verification complexity, and identify designs that meet both
functional and architectural requirements.

In [5], we perform a case study of collaborative adaptive
cruise control (CACC), where leading and following vehi-
cles exchange information such as velocity and acceleration
through V2V messages to maintain a safe distance. At the
function layer, a safety requirement is defined to ensure that
the following vehicle can stop in time to avoid collision even
if the leading vehicle brakes unexpectedly with its maximum
braking power. Whether this safety requirement can be sat-
isfied significantly depends on the end-to-end communication
delay between the vehicles at the architecture layer. Using
our collaborative verification and synthesis approach, we can
derive the constraint on inter-vehicle distance and end-to-end
communication delay, which may be further refined to timing
constraints on lower-layer architectural properties such as task
activation periods and message transmission delays.

We then apply the cross-layer methodology to the design
and verification of centralized autonomous intersections in [6].
In this application, vehicles approaching an intersection ex-
change information with an intersection manager via V2I
messages, and the intersection manager decides the order for
vehicles to pass the intersection. It is essential to ensure that
the system satisfies the following requirements at function
layer while considering the V2I communication delay and
message losses at architecture layer:

e Safety: Any two vehicles with conflicting routes should not
enter the intersection at the same time.

e Liveness: A vehicle will eventually pass the intersection.

e Deadlock-free: The intersection should not incur a deadlock
where no vehicle can proceed.

To guarantee these properties, we develop a delay-aware
intersection management protocol, where end-to-end commu-
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Fig. 2. Cross-layer design for autonomous intersections.

nication delay between vehicles and the intersection man-
ager are explicitly modeled and the protocol is captured as
timed automata for vehicles and the manager (as shown in
Fig. 2). The protocol is proved to 1) always satisfy the
safety requirement regardless of the delays, and 2) satisfy
the liveness and deadline-free requirements if the end-to-
end delay is bounded and the bound is known. Furthermore,
through traffic simulations, it is shown that our autonomous
intersection design can significantly outperform the tradition
intersections [6], as long as the maximum end-to-end delay is
within a reasonable range (around 500ms in our study). We
believe that such quantitative results can help designers to set
proper constraints for lower-layer architecture design.

IV. CrROSS-LAYER DESIGN WITH WEAKLY-HARD
PARADIGM

Traditionally, the timing behavior of automotive functions
has been specified based on hard constraints, where every
instance of a task (or message) has to complete its execution
{or transmission) by a pre-defined deadline. This is also the
assumption in our previous works introduced in Section 11
and III. While such timing model facilitates worst-case anal-
ysis of system behavior, it is often over-pessimistic and rigid,
resulting in infeasible or over-conservative designs.

Many practical functions can in fact tolerate certain degrees
of deadline misses, and their timing behavior can be described
with the so-called weaklv-hard constraints, where bounded
deadline misses are allowed. A common example is the (m, K)
constraints, which specify that among any K consecutive
instances of a task, at most m of them can violate their exe-
cution deadlines [7]. Leveraging such weakly-hard constraints
could more accurately define sysiem timing requirements,
significantly increase feasible design space under the typically-
tight resource constraints in automotive systems, and improve
design flexibility with additional timing slacks.

We believe that cross-layer design is particularly important
for weakly-hard systems. To properly set the weakly-hard

constraints (e.g., choose the values of m and K) and effectively
leverage their potential, it is essential to address the following
two issues in a holistic manner: 1) at the function layer, ensure
that system safety, stability, security, and other functional
requirements can still be met under deadline misses allowed by
weakly-hard constraints; 2) at the architecture layer, explore
the design space under weakly-hard constraints to satisfy
various system adaptation and retrofitting goals.

In our recent work [8], we consider the first issue, and de-
velop an approach for analyzing system functional properties
under given degree of deadline misses. This work is different
from works that focus on feedback controller synthesis for
stability, such as [9]. More specifically, our approach can
determine whether a system is safe from an initial state under
given (m,K) weakly-hard constraints. Previous verification
methods could not be directly applied doe to the lack of
mechanism to capture and model the (m,K) specification
at architecture level. To address this problem, our approach
first carries out a series of transformations to abstract the
{m, K) constraints, and then uses over-approximation based
techniques to verify the safety of a new system model that
combines the functional model and the abstraction. This ap-
proach is shown to be sound and effective in verifying system
safety under weakly-hard constraints. In another of our recent
work [10], we consider both issues, and develop a codesign
approach to explore the addition of new security monitoring
tasks by leveraging weakly-hard constraints for control tasks.
The work studies the trade-off between control performance
and system security level, when different degrees of deadline
misses occur to the control tasks.

Next, we will introduce a novel cross-layer design approach
for optimizing control sampling periods under weakly-hard
constraints, to illustrate the potential of weakly-hard paradigm.

Period Optimization with Weakly-hard Constraints: There
have been studies in the literature that explore control task
periods across functional and architecture layers under the



traditional hard timing constraints [11], [12]. In this work,
with the consideration of weakly-hard constraints, we can
significantly expand the design space of conirol sampling
periods for improving system feasibility and performance.

At function layer, reducing the sampling periods could
typically lead to betier control stability and performance,
if each control task instance can complete by its deadline.
However, at architecture layer, shorter sampling periods also
lead to higher resource utilization and may indeed cause
deadline misses on some control tasks, which are detrimental
to control stability and performance. It is thus important to
study the cumulative effect of smaller periods and potential
deadline misses under weakly-hard constraints (and vice versa)
in exploring the design space.

In below, we present a new cross-layer design approach for
setting the sampling periods of control tasks while considering
its impact at both function and architecture layers. We focus
on theoretical control stability analysis at the function layer
and task schedulability at the architecture layer. We also
consider control performance via simulation in this work. The
performance metric may be defined differently based on the
control applications. In our example below, we measure the
system control performance on its distance to the equilibrium.
In work such as [10], it is defined differently as the minimum
time to reject a disturbance in the worst case (i.e., minimum
time to bring the system back to equilibrium}).

A, System model

We consider a set of tasks {r;} running on a single ECU.
All tasks are periodically activated. Each task = is modeled
by its period Ty, deadline I);, and the execution time . The
system is scheduled by the static-priority preemptive policy.

We consider a controller task 7.. The continuous-time
dynamic of this linear time-invariant (LTT) system is:

X(t) = Ax(t) + Beu(t) (1)

where x(f) € R™ and u(t) € B™.

We assume that . is running under the Logical Execution
Time (LET) paradigm [13] where it receives the system state
from sensors at the beginning of each sampling period and
applies the control input to the actuators at the deadline. If a
deadline miss occurs, the controller will apply the last calcu-
lated control input (from previous periods) at the deadline. For
simplification, we assume that the deadline of this controller
is the same as its period, i.e. D, =T,. And the discrete-time
system dynamic is:

xk+1]|=Ax[k] + Bulk —p] pe=1,2,3,... (2)

where T
A=e'T B= f <" B.dt
0

Here u(k — py| is the latest control input at time ¢t = T.k,
and py. is the related delay factor. For instance, p, = 1 if the
deadline at ¢t = T.k is not missed.

The control law is derived by solving the discrete-time lin-
ear—quadratic regulator (LQR) problem. Assume such control
law is designed without considering any deadline misses.

The LET paradigm eases the control design as there will
be a constant sensing-actuating delay. By introducing the aug-
mented state vector z[k] = [x"[k],uT[k—1]] ", the system
dynamic used for solving the LQR is:

A B

Zk+1] = [“ 0

] 2[k] + m ulk] = Azz[k] + Boulk] (3)

The control law u[k| = —Fz[k] is derived by minimizing the
quadratic cost function:

I-Y @ HQaN +uT HRE) @)
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where () and R are both positive semi-definite matrices.

B. Control stability under deadline misses

Let p;. denote the control input delay at time step k. Based
on task schedulability analysis, we can deduce that pg is

bounded by a maximum delay p = [%-I ,where R, represents
the task worst-case response time. Then, we consider a new
augmented state vector:

ek = [T (KL uT [k 1), uT [k — 5]

we can have the system dynamic as:

¢k + 1] = A [KJ¢[K] + Beu[A] )
A By, ... By, B 0
o i d N H

AR = |0 T 0 0 B =0 @
o 0 ... 1 o 0

where By, = B and B, = 0,¥i # p. As the control law
u[k] = —Fz[k| is derived from the LQR problem (4), we can
rewrite the system dynamic as:

£k +1] = (A¢[k] — BeFg)E[k] = g[k]<[K]

where F, = [F,0], 0 € RP-!™ As B, and F; are constant
matrices and Ag[k| is only related to pg, there are p different
¢[k], denoted as ¢4, ...,¢s. And we have ¢k = ¢p,.

The hyper-period H, of the controller task 7. is the least
common multiple of the periods of . and its higher priority
tasks. The execution pattern in each hyper-period is the same.
As introduced in [10], a weakly-hard schedulability analysis
approach based on eveni-based simulation can derive the
deadline miss pattern of the task in its hyper-period. Moreover,
during the simulation, the latest finished job can be recorded
at each deadline, ie. the delay factor pp will be recorded at
t = T, « k. Based on the consistency property of the hyper-
period, we have pyiov, = p, Vi € T, where N, = H. /T,
is the number of jobs of 7. in each hyper-period.

()



From the weakly-hard schedulability analysis, the delay
factors py in the hyper-period k £ [0, N,) are known. Thus,
we have:

E[k + Ne| = ¢k + N — 1] - - ¢k + 1] p[KJ¢[K]

) I ¢l IT <kl

Jj=N_—-1
i k
II ¢ II ¢n¢lK
t=k+N-—1 J=N-—1
= B[k

The following Theorem 1 can then be used to check the
control stability with deadline misses.

(8)

Theorem 1. The weakly-hard LTI system (T) is asymptotic
stable if all eipenvalues of &, are within the unit circle for
all k:

[AL] < 1, VAL € eig(®y), Yk € [0, N;) 9

Proaf. As all eigenvalues of & are in the unit circle, the
sub-series £'[l] = £[k + IN,| = ®L£[k], 1 =0,1,2,3,... is
asymptotic stable, which can be expressed as:

Ve, 3Lk(e,E[K]), s.t. |[E[k+IN]|| <&, VI = Ly
As (10) is satisfied by all k £ [0, N}, we have:
Ve, AL(e), st. |EK]ll <&, VE > L

(10)

(11

where L(c) = max{k + N Lg(=, &[k])|¥k € [0,N.)}. Thus,
the weakly-hard LTI system (7) is asymptotic stable. A

C. Experiments

In our experiments, we use a Furuta inverted pendulum
as the example control plant to analyze the weakly-hard
control functionality. The modeling of the Furuta pendulum
is introduced in [14]. The motor of the pendulum controls
an arm that rotates in the horizontal plane. A pendulum is
Jointed to the arm and is free to rotate in the vertical plane. The
system state is x(t) = @y, fp, &y, 85 T, which are the angles of
the arm and the pendulum, and their angular velocities. The
control input u(t) is the voltage applied to the motor. The
continuous-time dynamic (1) of this Furuta pendulum in the
numerical form is:

00 1 0 0

P 0 1 B_1 0

©T]0 16907 -2.9068 —0.0048 7¢~ |3.8008
[ﬂ 21.0176 —3.0831 0.0626 ld'mi;?i?J}

Besides this pendulum control task, there are 7 regular
periodic tasks that share the ECU. The periods of these tasks
are varied from 60ms to 300ms. The total utilization of these
7 regular tasks is 72%, wheme the utilization is 3~ Cy/T;. The
execution time of the controller task . is C: = 15 ms. We
assume that all regular tasks do not allow any deadline misses,
and they are scheduled with the rate-monotonic policy. The
priority of 7. is chosen to be the highest allowed one such
that no low-priority regular tasks have deadline misses.

Under each period T, the control law ulk] = —Fz[k|
is designed by solving the LOQR problem (4), where ) =
diag(o, «,0,0,0) and R = B o € [0.1,10] and 8 €
[0.1,1000] are the weights for states and control input in
the quadratic cost. As the ratio /5 decreases, the control
input intensity will reduce, while the convergence rate will
be slower. We assume that the control input (i.e. the voltage
apply to the motor) has an upper bound: ||F|| < 35. During
the control law design, it will find the highest o/ ratio that
satisfies the ||F|| < 35 constraint.
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Fig. 3. The black line (with star points) shows the smallest m that makes
the weakly-hard constraint (m, K) schedulable for K = 20, under different
sampling periods. The blue line (with round points and red crosses) shows
the control stability and control performance J. for corresponding sampling
period. The control input constraint is ||F|| < 35 The mesulis show that
considering weakty-hard constraints can significantly expand the feasible
design space and improve performance.

We evaluate the system schedulability and control func-
tionality for the sampling period 7. from 55ms to 300ms.
Besides control stability, we also evaluate the performance of
the controller under different sampling period via simulation.
Specifically, we penerate 100 random initial states with ran-
dom arrival time ¢y to represent disturbance and evaluate the
cost among different sampling period. The cost J, is defined
as the integral of the distance to the equilibrium:

to+ At
J. = f B2(t) + O3 (t)dt (13)

to
The control performance of each sampling period is the
average cost among these 100 cases.

Fig. 3 shows the smallest m that makes the weakly-hard
constraint {m, K) schedulable for each T and the correspond-
ing control stability and performance. We can see that the con-
troller is stable for period T'. € [90, 225]. There is no deadline
miss for period larger than 210ms, ie, the feasible design
space under traditional hard deadlines is only [210, 225]. With
weakly-hard constraints, the space is expanded to at least
[90, 225], with many period choices between [60, 90| feasible
as well. For sampling period from about 130ms to 170ms,
the conirol performance is close to the best performance,
while the feasible weakly-hard constraint varies from (5, 20)
to (1,20). The best performance is achieved when T is
at 132ms, with weakly-hard constraint (5, 20). When the
sampling period gets larper than 225ms, the performance
deteriorates and eventually control becomes unstable. When



the sampling periods gets smaller than 120ms, there are more
deadline misses and the control becomes worse as well.

We also evaluate this system with different control input
constraints, e.g., from || F'|| < 25 to < 50. The results demon-
strate that a lower input constraint will lead to shorter sampling
period for better performance. For instance, if ||F|| < 30, the
system is unstable when 7. > 200 ms (i.e., when no deadline
misses). It is stable and reaches the optimal performance when
T. € [120, 140], even though some deadlines are missed.

This case study shows that leveraging weakly-hard con-
straints can expand the feasible design space of controller
sampling periods (from [210,225] to at least [90, 225]) and
achieve better performance (best performance achieved at
132ms). Moreover, to the focus of this paper, the results show
that it is critical to address weakly-hard systems with a cross-
layer approach that considers both function and architecture
layers. It confirms a major motivation for using weakly-hard
constraints, i.e., to leverage the robustness at function layer
(e.g., the robustness of control functions with respect to oc-
casional deadline misses) for expanding the design/adaptation
flexibility at architecture layer (e.g., the flexibility to explore
more sampling periods or add more security monitoring tasks).

V. CONCLUSION

This paper presents several cross-layer methods for the
design of automotive systems, including our prior works on
systems with hard deadlines and our new results on weakly-
hard systems. We believe that the strong dependencies be-
tween different function and architecture layers (even more
so in weakly-hard systems) make it critical to take a cross-
layer approach for addressing the design of automotive sys-
tems, and similar methodology might be applicable to other
cyber-physical systems such as airplanes, robots, and various
Internet-of-Things systems.
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