Bounding Perception Neural Network Uncertainty
for Safe Control of Autonomous Systems

Zhilu Wang*, Chao Huang*, Yixuan Wang*, Clara Hobbs', Samarjit Chakraborty!, Qi Zhu*
*Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL
Emails: {zhilu.wang@u., chao.huang@, yixuanwang2024 @u., qzhu@ }northwestern.edu
TDepartment of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
Emails: {cghobbs, samarjit} @cs.unc.edu

Abstract—Future autonomous systems will rely on advanced
sensors and deep neural networks for perceiving the environment,
and then utilize the perceived information for system planning,
control, adaptation, and general decision making. However, due to
the inherent uncertainties from the dynamic environment and the
lack of methodologies for predicting neural network behavior, the
perception modules in autonomous systems often could not provide
deterministic guarantees and may sometimes lead the system into
unsafe states (e.g., as evident by a number of high-profile accidents
with experimental autonomous vehicles). This has significantly
impeded the broader application of machine learning techniques,
particularly those based on deep neural networks, in safety-
critical systems. In this paper, we will discuss these challenges,
define open research problems, and introduce our recent work in
developing formal methods for quantitatively bounding the output
uncertainty of perception neural networks with respect to input
perturbations, and leveraging such bounds to formally ensure the
safety of system control. Unlike most existing works that only
focus on either the perception module or the control module, our
approach provides a holistic end-to-end framework that bounds
the perception uncertainty and addresses its impact on control.

I. INTRODUCTION

Future autonomous systems, such as self-driving cars, un-
manned aerial vehicles, and industrial robots, are poised to
fundamentally change our everyday life and provide transfor-
mative societal and economic benefits. These systems will rely
on advanced sensors and deep neural networks for sensing
and perceiving the dynamic environment, analyze the perceived
information to reason about the situation, and make decisions
accordingly for system planning, control and other functions.

The design and runtime operation of these autonomous
systems, however, face significant technical challenges. In
particular, while many of them are safety-critical systems,
ensuring the correctness of their safety-related properties is a
very challenging task [1]. This is partly due to the increasing
complexity of system functionality and architectural platforms,
with more functional features, growing software size, and
usage of GPUs and multicore CPUs, but very importantly, also
because of the various uncertainties in the system. These uncer-
tainties could come from the inherently-dynamic environment,
the sensing and actuation noises, the disturbances to system
operations due to environment interference, transient faults, and
malicious attacks, as well as the current lack of methodologies
for predicting the behavior of machine learning components
(especially those based on deep neural networks) [2], [3].

In this paper, we consider the uncertainty in perception and
its impact on system safety. Nowadays deep neural networks
are being used prevalently for perception due to their improve-
ment on average performance. However, it is often difficult
to predict the behavior of those neural networks and offer
any deterministic guarantees such as bounds on the perception
inaccuracy. While robust controllers may be able to maintain
stability in an asymptotic manner, the unbounded perception
inaccuracy could lead the system into unsafe states (defined
as in reach-avoid problems for control safety [4]) and cause
disastrous consequences, as evidenced by a number of high-
profile accidents of autonomous systems in automotive and
avionics domains.

In the literature, there has been a large body of work
studying the uncertainty of perception neural networks from
the perspective of robustness under adversarial attacks [5], [6],
i.e., how much the neural network output may change under
a small (and often intentional) perturbation to its input. Such
work has been mostly focused on the perception result itself,
for tasks such as image classification and object detection [7],
[8]. There has only been limited study recently on how those
attacks may eventually affect system-level safety. For instance,
in [9] it is demonstrated that putting an intentionally-designed
patch on the road may lead to vehicles driving out of lane. The
work in [10] shows adversarial examples that can continuously
mislead the vehicle steering. However, the approaches still
largely focus on the perception module itself, and do not
provide any formal bounds or guarantees at the system level.

On the other hand, there has been extensive work on for-
mally verifying control safety for autonomous systems. This
includes safety verification methods for classical model-based
controllers, e.g., those based on barrier certificates [11], [12]
and Taylor models [13], [14]; emerging neural network-based
controllers [4], [15]-[17]; and adaptive systems that switch
among model-based and neural-network-based controllers [18],
[19]. However, these approaches do not explicitly consider
the perception module and its impact, particularly for neural
network based perception.

We argue that to address the safety challenge of autonomous
systems under uncertainty from perception neural networks, it is
important to develop approaches that consider both perception
and control in a holistic and end-to-end manner. That is, we
will need to address open problems such as:

» Runtime adversarial safety: At runtime, under bounded
perturbations to the perception neural network input, can the
system remain safe for a finite time horizon?

o Design-time safety assurance: Given an error bound to the
entire input space of the perception neural network, can the
system always remain safe?

o Safety-assured input error bound analysis. Can we derive
the maximum error bound on the input of the perception
neural network, so that the system always remains safe?

» Safety-driven perception or control design: Given a percep-
tion neural network and an input error bound, can we design
a controller (model-based or neural-network-based) to ensure
system safety, and vice versa?

» Safety-driven perception and comtrol co-design: Given an
input error bound, can we co-design a perception neural net-
work and a model-based or neural-network-based controller
to ensure system safety?

In this paper, we will start with formally defining the
above problems in Section II, discuss possible directions for
addressing them, introduce our solution to the first problem
{runtime adversarial safety) in Section Il and a case study for
it in Section IV, and then conclude the paper in Section V.

II. PROBELEM FORMULATIONS

In this work, we consider autonomous systems that employ
neural networks for perceiving the physical environment (plant)
and then perform either model-based or neural network-based
control accordingly. We call such sysiems neural network
perception based autonomous systems, or NNP-AS.

Physical Plant
i=Ax+ Bu

Fig. 1. Nustration of the system model for a neural network perception based
autonomous system (NNP-AS).

Fig. 1 illustrates the system model for an NNP-AS. The
plant model captures a physical system or process. For linear
systems, it can be defined by a linear ordinary differential
equation (ODE)

T = Az + Bu, (1)

where = £ B™ is the n-dimensional system state and u € B™ is
the m-dimensional confrol input. The observation y is defined
as a function of the system state 1

y = g(z).

The neural network-based perception module can be viewed
as a function « that maps the values of the observation (image)
y to an estimated state 7. We then use Ax = & — = to denote
the state estimation error.

The controller can be viewed as a function « that maps the
values of the estimated state 7 to the control input u. Note

that for neural-network-based controllers, it is often too com-
plex to explicitly capture such a function, and approximation
techniques could be used to facilitate analysis [4], [17].

The above NNP-AS works in the following way. Given a
sample/control time step of size 4, = 0, at time t = ké,
(k=0,1,2,...), the neural network perception module takes
the observation y(kd.) as input and derives the estimated
state #(kd:). The controller then computes the control in-
put u(kd.) for the next time step based on the the estimated
state #(kd.) and feeds it back to the plant More precisely, the
plant ODE becomes © = Ax + Bu(kd,) in the time period of
[kde, (k+ 1)8.) for k= 0,1,2,.... We assume that the state
space is X C R™

For safety-critical systems, the system state is required to be
maintained within a safe pipe P, which can be either time-
invariant or time-variant, ie., P = P(t). Formally, system
safety of an NNP-AS with a given perception module and a
controller can be defined as:

Definition 1 (System Safety): Given a perception module «
and a controller w, an NNP-AS is safe if and only if =(#) €
Pt), ¥t =0

In the following, we formally define the research problems
stated in Section I that address the safety of an NNP-AS.

Runtime adversarial safety: During the operation of an
NNP-AS, adversarial attacks or environment interference could
introduce observation error Ay to the perception input y, which
in turn may cause inaccuracy in state estimation and affect
control safety. Thus, it is important to verify the system safety
under such adversarial input at runtime. Formally, we define
the following problem.

Problem 1 (Runtime Safety Verification under Adversarial
Inpur): At time ¢, given the observation y(t) = g(=(#))+Ay(t),
an observation error bound ||Ay|| < 4 for a finite time horizon
[t,t + T, a perception moduke # = x(y(#)), and a controller
u = w(), determine whether the system is safe, ie., =(v) €
P(r), during the time horizon r £ [t,¢ + T.

One possible solution to this problem is to first find an
estimation error bound » where Ax = ||£—z|| < 5 (as a type of
local robustness analysis), and then verify the controller safety
under the estimation error, i.e., considering u = w(z). Note
that the state estimation error Ax in fact consists of two parts:
one is caused by the observation error Ay, and the other is due
to the algorithm inaccuracy of the perception module. In this
work, we will propose an approach to address Problem 1 in
Section 11T under the assumption that the perception module is
ideally accurate, i.e., Ax = 0 when Ay = 0. Our approach can
be easily extended to the cases where the algorithm inaccuracy
can be bounded, although deriving such bound is in general
very challenging.

Remark 1: In Problem 1, the estimation error bound 7 could
be defined either over the entire observation space ¥ or a subset
of ¥ that is around (t). It is typically much less pessimistic to
define on a smaller set ¥ C Y that is around y(t), and then
the verification needs to ensure that y(7) € Y, ¥r € [t,t +T].

Design-time safety assurance: During design time, we could
try to verify system safety over an infinite time horizon and the

entire observation space. Formally, this is defined as follows.

Problem 2 (Design-Time Safety Assurance): Given an input
observation space ¥ and an observation error bound 4, such that
at runtime any observation y(t) € ¥ @4 (where P denotes
the Minkowski summation operator), a perception module © =
#(y(t)), and a controller v = w(f), determine whether the
system always remains safe, ie., (1) € P(7),¥r € [0, 0).

To solve this problem, we could consider to derive the
estimated state space error bound 5 with ¥ €B 4, and then verify
Problem 1 with T — oc.

Remark 2: The entire observation space Y is typically much
larger than the subset ¥’ considered in Problem 1 around
y(t). Deriving the state estimation error bound in this case
is equivalent to the global robusiness analysis of the neural
network, where we consider the local area robusiness of the
neural network for any possible point within the input space.

Definition 2 (Global Robustness): A neural network N is
(4", €)-globally robust in input region I iff

Vz1,22 € D, |lz1 — 22l < &', — [IN(z1) — N(z2)l| <.

Here N(x;) is the neural network output of r;. Note that the
global robustness analysis of neural networks is NP-hard [20]
and much harder than the local robustness analysis [21]. The
approaches in the literature [20], [21] are limited to small and
simple networks.

Safety-assured input error bound analysis: In some cases,
we are interested in deriving a bound on how much observation
error (due to either adversarial input or noise) the system can
sustain to ensure its safety over a finite time horizon. The
problem can be defined as follows.

Problem 3 (Safety-Assured Input Error Bound Analysis): De-
rive an observation error bound 4, such that for any observation
error ||Ay|| < 4, a perception module ¥ = wi(y(t)), and a
controller v = w(z), the system is safe over a finite time
horizon, ie., z(t) € P(7),Vr € [t,t + T).

This problem could be addressed by sequentially solving the
following two subproblems.

Problem 4 (Input Error Bound Analysis for Control): Given
a controller u = w(x), derive a state estimation error bound =,
such that for any state estimation error ||Ax|| < n, the system is
safe over a finite time horizon, ie., (7) € P(7),¥r € [t,t+T.

For model-based controllers, Problem 4 could be solved by
directly leveraging finite-time safety tools such as Flow®* [13].
For neural-network-based controllers, it can be addressed by ap-
proximation techniques, e.g., using Bernstein polynomials [4].

Problem 5 (Input Error Bound Analysis for Perception):
Given a perception module ¥ = w{y(t)) and an output error
bound 7, derive an input bound 4, such that for any observation
error ||Ay|| < 4, the output # stays within the neighbourhood
of = with respect to n, ie., |Ax| < .

Problem 5 is generally difficult to solve, since the inverse of a
neural network is not necessarily a function. A naive approach
is to leverage the bisection method: Give a value of § and
compute the output range. Bisect 4, until Ax = .

Note that the above three problems can also be defined over
an infinite time horizon and the entire observation space.

Safety-driven perception or control design: We could explore
the design of the perception module or the controller for system
safety, as defined below.

Problem 6 (Safety-Driven Perception Design): Given an
input observation space Y, an observation error bound & (ie.,
y(t) € ¥ €0 4), and a controller u = =(), design a perception
module £ = w(y(t)), so that the system always remains safe,
ie., =(r) € P(r),¥r € [0, 00).

Problem 7 (Safety-Driven Control Design): Given an in-
put observation space ¥, an observation error bound 4 (ie.,
y(t) €Y g5 4), and a perception module & = «(y(t)), design
a controller u = w(£), so that the sysiem always remains safe,
ie., =(r) € P(r),¥r € [0, 00).

Safety-driven perception and control co-design: We could
also co-design the perception module and the controller for
system safety, as defined below.

Problem & (Safetv-Driven Perception and Control Co-
design); Given an input observation space ¥ and an observation
error bound 4 (ie., y(t) € ¥ @5 4), design a perception module
= w(y(t)) and a controller © = (%), so that the system
always remains safe, ie., =(7) € P(7),¥r € [0,0).

II1. OUrR APPROACH FOR RUNTIME ADVERSARIAL SAFETY

In this section, we propose an approach for addressing the
Problem 1 defined in Section I1. To formally analyze the impact
of perception uncertainty on system safety, our approach com-
bines output range analysis of neural networks [22] and reacha-
bility analysis for conirol safety verification. More specifically,
we first derive the (over-approximated) output range of the
perception neural network under input uncertainty (considering
observation error). Such range captures the state estimation
error bound, which can then be leveraged to compute the finite-
state reachable set for safety verification. This approach is
detailed below.

A. Bounding State Estimation Error via Output Range Analysis

Given an observation emror bound 4, at each time step ¢,
the observation y(t) falls into the set ¥' = {y | g(=(t)} +
Ay, |Ay| < §}. We can then compute the estimated system
state set X = x(Y), with estimation error bounded by =
max,_y ||£ — x|/, via output range analysis as defined below.

Problem 9 (Outputr Range Analysis of Neural Networks):
Given a neural network « and an input range Y, compuie
X = &(Y") or its overapproximation.

A more precise estimation of the output range for the
perception neural network x reduces the state estimation error
and facilitates the verification of control safety. Thus we adopt
the state-of-the-art refinement-based approach in [22] for more
accurately estimating the output range. The main idea is to
use multiple polytopes for approximating a nonlinear activation
function in the neural network with a mixed integer linear
programming (MILP) formulation (Fig. 2 shows an illustrating
example on Rel.U). The detailed steps are as follows.

Step 1: Compute the interval relaxation for each neuron with
a propagation-based method;

1

w . !
] 1
a b a b

Interval relaxation

Flg 2 Appfmmﬂing a Rel.U function [22]: In interval relaxation, Rel.U is

Junnted as a rectangle. In LP relaxation with a linear polytope,
anm.chu ler approximation is used to capture the input-output relation. In
MILP mlaxation with multiple polytopes (in this case two), the approximation
is further refined (in this case equivalent transformtion is achieved).

il

| O, s ONNC
' " fﬂ ‘.\"u,‘!

| Yl el ' "‘"

; O il .1\

Fig. 3. Refinement-based output range analysis [22]: Refine the approximated
value range of neurons in hidden layers (2. g., the red neuron with a star symbol}
will help refine the output range approximation (e.g. the blue neuron with a
circle symbol). To efficiently refine the red neuron, we consider the constraints
of the previous two layers (within the blue solid rectangle), rather than all the
previous layers (within the black dashed rectangle).

» Step 2: Construct a basic linear programming (LP) relaxation
for each neuron;

o Step 3: Select important neurons to conduct layer-by-layer
refinement based on an LP or MILP formulation that only
encodes the constraints from several previous layers, rather
than all the previous layers, for efficiency purposes;

» Step 4 (optional): The above refinement step can be repeated
multiple times.

Step 1 acts as an initialization step, computing a basic sound
guess of the input interval for each neuron. Step 2 constructs an
LP relaxation that is tighter than the interval abstraction. Step
3 further tightens the intervals with LP or MILP. For efficiency,
we only consider a sliding window of several previous layers in
encoding the constraints for LP/MILP. An illustrating example
is shown in Fig. 3. An optional Step 4 decides how many times
the refinement in Step 3 should be repeated. This refinement-
based output range analysis approach provides a balanced
tradeoff between estimation precision and analysis complexity.

B. Safery Verification via Reachability Analysis

The output range analysis of the perception neural network
provides a bounded estimation of system state, i.e., =(t) € X.
We can then compute the reachable set B ; for a finite-
horizon T to verify the system safety. The definition of reach-
able set and how it is computed is explained below.

Definition 3: A reachable set Ry 4 is defined as all the states
that can possibly be visited within time T (or T steps in a

discretized system) from the current sysiem set X, ie,
RT:E-—{I |I—AI+BHI{G}EX},U{E{T

Remark 3: Such a reachable set Ry ¢ is typically an over-
approximation of the underlying true system trajectory. That is,
the system can never go out of R, 3 for the next T' steps. Thus,
if the reachable set is verified to be safe, i.c., Ry ;n=P =0,
then the system must be safe within the next T steps.

During system operation, we may iteratively compute the
reachable set RT 4 to perform online verification on system

safety with b'e updated accordingly. Next, we introduce how
this can be done for a linear time-invariant (LTT) system.

Reachability analysis for an LTI system under external dis-
turbance. We address the LTI sysiem defined in Equation (1),
with added consideration of other external disturbances (beyond
adversarial input) or algorithm/model inaccuracy, captured by
a disturbance vector w on system state, ie.,

T=Ar+ Bu+ w.

As the sample/control time step is 4., and the control input
u(t) = u(kd.) for t € [ké., (k + 1)4.), the LTI ODE can be
discretized as:

x|k + 1] = Agz[k] + Byulk] + Ewlk],
where Ag = e%, By — [° eAtBdt, and E = [3= etdt. The
additional disturbance is bounded as w £ W, and the system is
controlled by a linear feedback controller u[k| = Kz[k|. From
the output range analysis of the perception module, the state
estimation error can be bounded by Ax = z[k]—2[k] € [—m, 7).
Assuming the state estimation error X and disturbance error W
are both polyhedrons, given the initial/current estimated state
£[0], the reachable set for the next T steps can be derived via
recursion. Specifically, given =[k] € X, the range of x|k + 1],
namely X, can be derived by
Xit1 = (Ag + BaK) Xy ® (—ByK)[—n,n] @ EW,

where @ is the Minkowski sum operation, and the initial state
space Xp =X

IV. CASE STUDIES

In this section, we illusirate the proposed approach with two
case studies that focus on each of the two steps, respectively. In
the first case study, we demonstrate the feasibility of bounding
state estimation error via output range analysis of the perception
neural network. In the second case study, we demonstrate the
verification of system safety under a given state estimation error
bound and the analysis on how different state estimation error
bounds affect the system safety. Note that while our proposed
approach in Section IIT is a holistic end-to-end approach, the
two case studies are separated due to the current limitations on
examples and approach efficiency, which we plan to address in
our future work.

A Output Range Analysis for Perception Neural Networks

For the perception module, we consider a small neural
network that classifies the parity of the digit on the MNIST
dataset. The neural network takes a 28 x 28 grayscale image
that contains a handwritten digit as input. The output shows

Fig. 4.

o
]
£
&
&
E

Fig. 5. Error bounds for NN-II (Rel.U activation function for final layer).

whether the digit is odd or even, ie., the digit is classified
to be even if the output is close to 0 and odd if close to
1. The neural network contains two convolution layers that
are followed by two fully-connected layers. ReL.U is used as
the activation function for convolution layers. The first fully-
connected layer is nonlinearized by Sigmoid, while the second
fully-connected layer has three possible forms: I) having no
activation function, 1) using Rel.U activation, or III} using
Sigmoid activation. This results in three neural networks for
our experiments, called NN-I, NN-II, and NN-III, respectively.

The output range is analyzed by our LayR tool [22] using the
refinement-based approach introduced in Section I11. We choose
the output of the last fully-connected layer, a continuous value
before classification, as the system state to evaluate (to mimic
the typical continuous system state in control). We assume an
observation error bound of [—0.01,0.01] for each input pixel,
and evaluate the average and maximum state estimation error
bounds for 100 images in the MNIST test set. Figs. 4, 5,
and 6 show the estimation bounds for each image from the
test set for the three perception neural networks. These results
are summarized in Table I, showing the range of states, the
average state estimation error bound 7,y., and the maximum
error bound 7.y across 100 testing images for each network.

These results demonsirate the feasibility of our approach in
bounding state estimation error for perception neural networks.
Note that for a well-trained perception neural network, fmar
could still be quite large. This is likely due to the pessimistic
over-approximation for the state estimation error bound, which

omrhand
=
T
1

Fig. 6. Ermor bounds for NN-II1 (Sigmoid activation function for final layer).

TABLE I
STATE SPACE, AVERAGE AND MAXIMUM STATE ESTIMATION ERROR
BOUNDS FOR 100 1MAGES 18 MNIST FOR THREE PERCEPTION NETWORKS.

Metworks

siale ramge Tave TTmaz
NN-1 —0.09,1.19 —0.10,0.11 —0.25,0.29
NN-1I —2.12,1.23 —0.19,0.19 —0.47,0.51
NN-I1I —15.9,14.7) —2.23, 1.80 —4.88, 290

should be further addressed in future work.

B. Safety Verification under Bounded State Estimation Error

In this case study, we demonsirate our reachability analysis
for verifying system control safety under a given state esti-
mation error bound n (which could be from the output range
analysis of the perception neural network) and other bounded
external disturbance w. We consider an LT1 system that controls
a DC motor [23]. The system state = = [w,i]T includes the
shaft rotational speed « and the current i on the armature
circuit. The control input u is the voltage of the armature circuit
supplied by a voltage source. The ODE of the system is:

. [-10 1 0
T=1_pp2 —2|Tt|gjutw

In this work, we consider the safe space of the DC motor
as —05 < w < 0.5, =05 < i < 0.5. The sample/control
step size is set to 4, = 20 ms. We choose four different
linear feedback conmtrollers u = K't (i = 1,2,3,4), where
K' = [-1.3150,—2.5255], K2 = [1.9249, —0.2608], K* =
[—3.9975,0.0501], and K* = [1.1112,-1.7833], which are
derived from various pole placements.

First, we consider that the state estimation error bound
is given as [—0.05,0.05| for both dimensions of the system
state, and the external disturbance w is also bounded by
[—0.05,0.05]. At time ¢ = 0, the estimated state is £[0] =
[0.45, 0.45]. The reachability sets of each controller can then
be computed by our approach, and are shown in Fig. 7. We
can observe that even though all controllers are asymptotically
stable, one of them (controller 2) cannot be verified to be
safe within the next 15 steps, while the others’ safety can
be verified. This shows the effectiveness of our approach in
verifying system safety under a bounded state estimation error
and the importance of choosing a controller based on such
safety verification.

06 -

05
04r
03F
0.2
01 Unsafe
%
0 [m—
04 f ¢
X
021 4
Xk
o3l ‘ ‘ ‘
0 0.1 0.2 0.3 0.4 0.5

Fig. 7. Reachable sets for the four different controllers. The initial state is
estimated to be [0.45, 0.45]. The state estimation error bound is [—0.05, 0.05]
for both system states, resulting in a rectangle area for estimated state space.
Xy is the initial state space and X }C is the reachable set of controller ¢ at the
k-th step. We can see that the safety of controller 2 cannot be verified, while
the safety of the others can be verified.

0.6
05
04
03
~ 02
0.1
* init. est. state
or Unsafe
est. bound: +/-0.15
01 est. bound: +/-0.1
. [Jest. bound: +/-0.05
[Jest. bound: +/-0.02
-0.2 :

0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 8. Reachable sets for different state estimation error bounds, ranging from
[—0.02,0.02] to [—0.15, 0.15]. The initial estimated state is [0.45, 0.45].

In Fig. 8, we further demonstrate how different state estima-
tion error bounds may affect the system safety. Here, the reach-
able set of controller 1 is analyzed for a state estimation error
bound ranging from [—0.02, 0.02] to [—0.15,0.15]. We can see
that the system safety can be guaranteed when 7 < 0.05, but
cannot when 1 > 0.1. Such analysis could be very helpful for
choosing the right perception neural network design.

V. CONCLUSION

In this paper, we discussed the importance of considering
perception neural network uncertainty in addressing the safety
of autonomous systems. We formally defined a number of
open research problems, and proposed an end-to-end approach
for addressing one of them, i.e., runtime safety verification
under adversarial input to the perception neural network. This
is a small first step in tackling the safety of neural network
perception based autonomous systems (NNP-AS).

Acknowledgments: We gratefully acknowledge the support
from NSF grants 1834701, 1834324, 1839511, 1724341,
2038960 and ONR grant N0O0014-19-1-2496.

(1]

(2]

(3]

(4]

(31

(6]
(71

(8]

(91

[10]

(1]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

REFERENCES

Q. Zhu and A. Sangiovanni-Vincentelli, “Codesign methodologies and
tools for cyber—physical systems,” Proceedings of the IEEE, vol. 106,
no. 9, pp. 1484-1500, Sep. 2018.

Q. Zhu, W. Li, H. Kim, Y. Xiang, K. Wardega, Z. Wang, Y. Wang,
H. Liang, C. Huang, J. Fan, and H. Choi, “Know the unknowns: Ad-
dressing disturbances and uncertainties in autonomous systems : Invited
paper,” in ICCAD, 2020, pp. 1-9.

Q. Zhu, C. Huang, R. Jiao, S. Lan, H. Liang, X. Liu, Y. Wang, Z. Wang,
and S. Xu, “Safety-assured design and adaptation of learning-enabled
autonomous systems,” ASP-DAC, 2021.

C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu, “Reachnn: Reachability
analysis of neural-network controlled systems,” TECS, vol. 18, no. 5s,
pp. 1-22, 2019.

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks on
deep learning visual classification,” in CVPR, 2018, pp. 1625-1634.
S.-T. Chen, C. Cornelius, J. Martin, and D. H. P. Chau, “Shapeshifter:
Robust physical adversarial attack on faster r-cnn object detector,” in
ECML-PKDD. Springer, 2018, pp. 52-68.

T. Sato, J. Shen, N. Wang, Y. J. Jia, X. Lin, and Q. A. Chen, “Hold
tight and never let go: Security of deep learning based automated lane
centering under physical-world attack,” preprint arXiv:2009.06701, 2020.
Z. Kong, J. Guo, A. Li, and C. Liu, “Physgan: Generating physical-world-
resilient adversarial examples for autonomous driving,” in CVPR, 2020,
pp. 14254-14263.

C. Huang, X. Chen, W. Lin, Z. Yang, and X. Li, “Probabilistic safety
verification of stochastic hybrid systems using barrier certificates,” TECS,
vol. 16, no. 5s, p. 186, 2017.

Z. Yang, C. Huang, X. Chen, W. Lin, and Z. Liu, “A linear programming
relaxation based approach for generating barrier certificates of hybrid
systems,” in FM. Springer, 2016, pp. 721-738.

X. Chen, E. Abrahém, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in CAV. Springer, 2013, pp. 258-263.
E. Goubault and S. Putot, “Forward inner-approximated reachability of
non-linear continuous systems,” in HSCC. ACM Press, 2017, pp. 1-10.
R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig: verifying
safety properties of hybrid systems with neural network controllers,” in
HSCC. ACM Press, 2019, pp. 169-178.

S. Dutta, X. Chen, and S. Sankaranarayanan, ‘“Reachability analysis for
neural feedback systems using regressive polynomial rule inference,” in
HSCC. ACM Press, 2019, pp. 157-168.

J. Fan, C. Huang, W. Li, X. Chen, and Q. Zhu, “Reachnn*: A tool
for reachability analysis ofneural-network controlled systems,” in ATVA,
2020.

C. Huang, S. Xu, Z. Wang, S. Lan, W. Li, and Q. Zhu, “Opportunistic
intermittent control with safety guarantees for autonomous systems,”
DAC, 2020.

Y. Wang, C. Huang, and Q. Zhu, “Energy-efficient control adaptation
with safety guarantees for learning-enabled cyber-physical systems,” in
ICCAD. IEEE, 2020, pp. 1-9.

W. Ruan, M. Wu, Y. Sun, X. Huang, D. Kroening, and M. Kwiatkowska,
“Global robustness evaluation of deep neural networks with provable
guarantees for the hamming distance.” IJCAIL 2019.

G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
in CAV. Springer, 2017, pp. 97-117.

C. Huang, J. Fan, X. Chen, W. Li, and Q. Zhu, “Divide and slide:
Layer-wise refinement for output range analysis of deep neural networks,”
TCAD, vol. 39, no. 11, pp. 3323-3335, 2020.

“Control tutorials for matlab and simulink - DC motor speed:
System modeling.” [Online]. Available: https://ctms.engin.umich.edu/
CTMS/index.php?example=MotorSpeed§ion=SystemModeling

