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Abstract— In the development of advanced driver-assistance
systems (ADAS) and autonomous vehicles, machine learning
techniques that are based on deep neural networks (DNNs)
have been widely used for vehicle perception. These techniques
offer significant improvement on average perception accuracy
over traditional methods, however have been shown to be
susceptible to adversarial attacks, where small perturbations in
the input may cause significant errors in the perception results
and lead to system failure. Most prior works addressing such
adversarial attacks focus only on the sensing and perception
modules. In this work, we propose an end-to-end approach
that addresses the impact of adversarial attacks throughout
perception, planning, and control modules. In particular, we
choose a target ADAS application, the automated lane centering
system in OpenPilot, quantify the perception uncertainty under
adversarial attacks, and design a robust planning and control
module accordingly based on the uncertainty analysis. We
evaluate our proposed approach using both public dataset and
production-grade autonomous driving simulator. The experi-
ment results demonstrate that our approach can effectively
mitigate the impact of adversarial attack and can achieve
55% ∼ 90% improvement over the original OpenPilot.

I. INTRODUCTION

Machine learning techniques have been widely adopted
in the development of autonomous vehicles and advanced
driver-assistance systems (ADAS). Most autonomous driv-
ing and ADAS software stacks, such as Baidu Apollo [1]
and OpenPilot [2], are generally composed of four-layered
modules: sensing, perception, planning, and control [3].
The sensing and perception modules collect data from the
surrounding environment via a variety of sensors such as
cameras, LiDAR, radar, GPS and IMU, and use learning-
based perception algorithms to process the collected data
and understand the environment. The planning and con-
trol modules leverage the perception results to propose a
feasible trajectory and generate detailed commands for the
vehicle to track the trajectory. In those systems, deep neural
networks (DNNs) are widely used for sensing and percep-
tion in transportation scenarios [4]–[6] , such as semantic
segmentation, object detection and tracking, as they often
provide significantly better average perception accuracy over
traditional feature-based methods. For planning and control,
there are also increasing interests in applying neural networks
with techniques such as reinforcement learning and imitation
learning [7], due to their capabilities of automatically learn-
ing a strategy within a complex environment.
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However, the adoption of DNN-based techniques in ADAS
and autonomous driving also brings significant challenges to
vehicle safety and security, given the ubiquitous uncertainties
of the dynamic environment, the disturbances from environ-
ment interference, transient faults, and malicious attacks, and
the lack of methodologies for predicting DNN behavior [8].
In particular, extensive studies have shown that DNN-based
perception tasks, such as image classification and object
detection, may be susceptible to adversarial attacks [9], [10],
where small perturbations to sensing input could result in
drastically different perception results. There are also recent
works on attacking DNN-based perception in ADAS and
autonomous vehicles by adding adversarial perturbations to
the physical environment in a stealthy way [9], [11]–[13]. For
instance, [12] generates a dirty road patch with carefully-
designed adversarial patterns, which can appear as normal
dirty patterns for human drivers while leading to significant
perception errors and causing vehicles to deviate from their
lanes within as short as 1 second.

The prior works addressing adversarial attacks mostly
focus on detecting anomaly in the input data [14], [15]
or making the perception neural networks themselves more
robust against input perturbations [16], [17]. In ADAS and
autonomous driving, however, the impact of adversarial
attacks on system safety and performance is eventually
reflected through vehicle movement, taking into account of
planning and control decisions. Thus, we believe that for
those systems, it is important to take a holistic and end-to-
end approach that addresses adversarial attacks throughout
the sensing, perception, planning and control pipeline.

In our preliminary work recently published in a work-in-
progress paper [18], we studied the automated lane centring
(ALC) system in OpenPilot [2], a popular open-source
ADAS implementation, and investigated how the dirty road
patch attack from [12] could affect perception, planning
and control modules. We discovered that a confidence score
generated by the perception module could serve as a sen-
sitive signal for detecting such attack, however it does not
quantitatively measure the extent of the attack and cannot
be effectively used for mitigation. In this paper, motivated
by the findings from [18], we propose a novel end-to-end
approach for detecting and mitigating the adversarial attacks
on the ALC system. Our approach quantitatively estimates
the uncertainty of the perception results, and develops an
adaptive planning and control method based on the uncer-
tainty analysis to improve system safety and robustness.

In the literature, methods have been proposed to ad-
dress the uncertainties of various modules in the ADAS



and autonomous driving pipeline. For instance, the method
proposed in [19] utilizes estimated uncertainty as a threshold
to decide which sensor is reliable. In the OpenPilot imple-
mentation, Multiple Hypothesis Prediction [20] is utilized
to estimate the prediction confidence. Some works propose
methods to detect out-of-distribution inputs [21] and design
probabilistic deep learning based perception models [22] and
planning models [23]. Different from these prior methods,
our approach takes a system-level view and addresses the
uncertainty from adversarial attacks throughout sensing, per-
ception, planning and control. While this work focuses on the
dirty road patch attack, we believe that our methodology can
be applied to other adversarial attacks that cause perception
uncertainties, and may be extended to address more general
uncertainties (e.g., those caused by environment interference
or transient faults). Specifically, our work makes the follow-
ing contributions:

• We analyzed the impact of dirty road patch attack across
the ADAS pipeline, and developed a method to quanti-
tatively measure the perception uncertainty under attack,
based on the analysis of both model and data uncertainties
in the perception neural network.

• We developed an uncertainty-aware adaptive planning and
control method to improve system safety and robustness
under adversarial attacks.

• We conducted experiments on both public dataset and
LGSVL [24], a production-grade autonomous driving sim-
ulator. The results demonstrate that our approach can sig-
nificantly improve the system robustness over the original
OpenPilot implementation when under adversarial attacks,
reducing the deviation of lateral deviation by 55% ∼ 90%.

The rest of the paper is organized as follows. Section II
introduces the ALC system in OpenPilot and the adversar-
ial attack model to this system. Section III presents our
uncertainty-based mitigation approach to address such ad-
versarial attacks. Section IV shows the experimental results.

II. ALC SYSTEM AND ADVERSARIAL ATTACKS

The Automated Lane Centering (ALC) system, one of
the Level 2 autonomous driving systems, are widely de-
ployed in modern commercial vehicles. In the ALC system,
the perception module collects vision and distance input
from cameras and radars, and outputs the perception of
the environment to the planning and control module, which
generates a desired trajectory and controls vehicle steering
and acceleration. In the following, we will take the open-
source software Openpilot (Fig. 1) as an example to illustrate
ALC’s architecture.

A. DNN-based Perception Module

Recently, DNN-based models achieve the state-of-the-art
performance in lane detection tasks [25] and are widely
adopted in production-level ALC systems today such as Tesla
AutoPilot [26] and OpenPilot. The DNN-based perception
module can detect lane lines and objects and provide neces-
sary information for the planning and control module.
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Fig. 1: OpenPilot pipeline: the ALC system consists of a
DNN-based perception module, a trajectory planning mod-
ule, and an MPC controller.

In ALC tasks, since the lane lines are continuous across
consecutive frames, recurrent neural network (RNN) is typ-
ically applied to utilize the time-series information to make
the prediction more stable [27]. A convolutional neural
network (CNN) processes the current frame and feeds the
combination of the CNN’s and RNN’s outputs into a fully-
connect network. The concatenated output includes a pre-
dicted path (an estimation of the path to follow based on
perception history), the detected right and left lane lines,
and corresponding probabilities to indicate the detection
confidence of each lane line. Note that the lane detection
model first predicts lane points and then fits them into
polynomial curves in post-processing for denoising and data
compression.

B. Planning and Control Modules

The planning module generates a trajectory for the vehicle
to follow. Sampling based methods, model based methods
and deep learning models are often applied to the trajectory
planning [28]. For ALC, the desired path generated by the
planner should be located in the middle between the left lane
line and the right lane line. The planner module in OpenPilot
generates an estimation of this desired path by calculating a
weighted average of the detected left lane line, right lane line
and predicted path, with the weights being the confidence
scores outputted by the perception module. Intuitively, if the
perception module is less confident on the predicted lanes,
the generated desired path relies more on the predicted path;
otherwise, it will be closer to the weighted average of the
predicted left lane line and right lane line [2], [18].

Given the desired path to follow, the lower-level controller
calculates the vehicle maneuver and generates commands to
control throttle, brake, and steering angle. In OpenPilot ALC,
model predictive control (MPC) [29] is used to calculate the
steering angle based on simplified system dynamics, vehicle
heading constraints, and maximum steering angle constraints.
MPC-based approach permits high-precision planning and a
certain degree of robustness. For longitudinal control, the
acceleration is generated by a PID controller by setting an
appropriate reference speed.



C. Attack Model

In this paper, we assume a similar attack model as prior
work [12]. We focus on attacks achieved through external
physical world. In particular, we assume that the attacker
cannot hack through software interfaces nor modify the
victim vehicle. However, the attacker can deliberately change
the physical environment that is perceived by the on-board
sensors of the victim vehicle (e.g., cameras). Furthermore,
we assume that the attacker is able to get knowledge of the
victim’s ADAS/autonomous driving system and can drive the
same model vehicle to collect necessary data. This can be
achieved by obtaining a victim vehicle model and conducting
reverse engineering, as demonstrated in [30], [31]. The
attacker’s goal is to design the appearance of certain object
(in our case, a dirty patch) on the road such that 1) the
adversarial object appears as normal/seemingly-benign for
human drivers, and 2) it can cause the ADAS/autonomous
driving system to deviate from the driver’s intended trajec-
tory. Some example attack scenarios are discussed in [11],
[12]. The work in [11] generates an adversarial billboard
to cause steering angle error. [12] generates a gray scale
dirty patch on the road such that vehicles passing through
the patch will deviate from its original lane, which is the
first attack systematically designed for the ALC system and
reaches state-of-art attack effect on production-level ADAS.
Through our experiments, we will use the dirty road patch
attack [12] as a case study, but we believe that our approach
can be extended to other similar physical environment at-
tacks. These physical attacks typically will render abnormal
behavior in the perception output and then propagate through
the entire pipeline.

III. OUR END-TO-END UNCERTAINTY-BASED
MITIGATION APPROACH FOR ADVERSARIAL ATTACKS

As shown later in Fig. 3, the perception module in our
approach involves two neural network models. The original
OpenPilot perception model is used in the normal operation
mode (i.e., when the overall prediction confidence is high),
where it outputs predicted path, lanes and confidence scores.
When anomaly is detected, a new perception neural network
is used to estimate model uncertainty while generating per-
ception output. The trajectory planner will take the uncer-
tainties into consideration and generate a desired path that is
less affected by the adversarial attack. Correspondingly, in
the lower-level control, more conservative and uncertainty-
aware constraints are used in the MPC and a speed adaptation
method is applied to ensure safety. The details of our
proposed approach are introduced below.

A. Perception Confidence as Signal of Attack

Measuring the confidence of the DNN’s prediction is a
significant challenge. In different perception tasks, various
methods are applied to estimate the perception confidence.
For instance, in YOLO [32], intersection over union (IOU)
measures the confidence of regression. In OpenPilot’s neu-
ral network, a multiple hypotheses prediction (MHP) [20]
classifier is trained with cross entropy loss and its output
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Fig. 2: The patch starts around 40 meters and is 96 meters
long. (a) shows that the confidence of the prediction drops,
(b) plots the lateral deviation of the ego vehicle.

can represent how confident the lane line is predicted cor-
rectly [33].

To investigate how the perception confidence affects the
system safety, we conduct a series of experiments with
different settings of the attacks As indicated in Fig. 2a, we
observe a general phenomenon that the confidence score of
the perception module drops significantly when the vehicle is
approaching the dirty patch, while the confidence score keeps
in a relatively stable level in benign cases or under ineffective
noises. Fig. 2 also shows the consistency between the drop
in confidence score and the vehicle’s lateral deviation under
attack. As discussed in Section II, the desired path generated
by OpenPilot’s path planner can be considered as a weighted
average of the predicted left lane, predicted right lane, and
the predicted path, with the confidence scores as weights.
Under the impact of the dirty patch, confidence of the
predicted two lanes drops, resulting in more weights on
predicted path. However, the predicted path deviates from
the middle of the line eventually, and the desired path leans
towards wrong directions.

Based on such observations, we think that the perception
confidence is an interface between the perception and the
following planning and control modules: it can both indicate
whether perception module is under adversarial attack and
influence the planned trajectory. Our mitigation strategy
leverages this interface to switch between different per-
ception modules and applies adaptive planning and control
accordingly.

B. Uncertainty Estimation and Safety Bound

While the confidence scores generated by the OpenPilot
perception module qualitatively show the existence of the
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att a c k, t h e y d o n ot q u a ntit ati v el y m e as ur e t h e e xt e nt of
t h e att a c k a n d c a n n ot b e eff e cti v el y us e d f or miti g ati o n.
T h us, w e d e v el o p e d a n e w a p pr o a c h f or q u a ntif yi n g t h e
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i n p ut n ois e/ dist ur b a n c e a n d i ntri nsi c r a n d o m n ess of t h e r e al
d at a w hil e m o d el u n c ert ai nt y r es ults fr o m a l a c k of tr ai ni n g
d at a i n c ert ai n ar e as of t h e i n p ut d o m ai n a n d t h e t est
e x a m pl e b ei n g o ut of distri b uti o n. B y ass u mi n g t h at t h e d at a
u n c ert ai nt y f oll o ws a n or m al distri b uti o n, w e c a n esti m at e it
b y usi n g m a xi m u m li k eli h o o d a p pr o a c h. I n n e ur al n et w or ks,
t h e m o d el c a n t a k e m e a n n e g ati v e l o g-li k eli h o o d f u n cti o n
as a l oss f u n cti o n i n t h e tr ai ni n g t o c a pt ur e t h e al e at or y
u n c ert ai nt y [ 3 4]. F or t h e p er c e pti o n m o d ul e, x is t h e i m a g e
i n p ut a n d y is t h e gr o u n d tr ut h of l eft a n d ri g ht l a n e li n es.
I n E q u ati o n ( 1) b el o w, µ̂ i s t h e pr e di ct e d m e a n v al u e a n d t h e
st a n d ar d d e vi ati o n σ̂ i s t h e esti m at e d d at a u n c ert ai nt y:

L (x, y ) =
l o g ˆσ 2

d a t a (x )

2
+

(y − µ̂ ( x )) 2

2 σ̂ 2
d a t a (x )

( 1)

T o esti m at e m o d el u n c ert ai nt y, si mil arl y t o t h e B a y esi a n
a p pr o a c h es, w e c o nsi d er t h at t h er e ar e distri b uti o ns o v er
t h e w ei g hts of n e ur al n et w or ks a n d t h e p ar a m et ers of t h e
distri b uti o n ar e tr ai n e d o n t h e tr ai ni n g d at as et. T h e w ei g ht
distri b uti o n aft er tr ai ni n g c a n t h e n b e writt e n as p (ω | X , Y)
w h er e X , Y r e pr es e nt i n p ut a n d c orr es p o n di n g t ar g et. We
a p pl y t h e M o nt e C arl o m et h o ds t o esti m at e t h e distri b uti o n
b y a d di n g dr o p o ut l a y ers t o s a m pl e w ei g hts wit h dr o p o ut
r at e Φ [ 3 5]:

p (ω |X , Y ) ≈ B er n( ω ; Φ) ( 2)

T h er ef or e, t h e m o d el u n c ert ai nt y c a n b e esti m at e d as [ 3 6]:

σ 2
m o d el =

1

T

T

t = 1

(µ t − µ )
2

( 3)

T h e t ot al v ari a n c e c a n b e d eri v e d b y a d di n g t h e m o d el
v ari a n c e σ 2

m o d el a n d t h e d at a v ari a n c e σ 2
d a t a , as s h o w n i n

E q u ati o n ( 4). Si n c e t h e d at a u n c ert ai nt y is al w a ys ass u m e d t o

f oll o w t h e n or m al distri b uti o n, w e c a n a dj ust t h e d at a u n c er-
t ai nt y i nt er v al b as e d o n diff er e nt s c e n ari os. T o t h e b est of o ur
k n o wl e d g e, c urr e nt c o m m er ci al dri vi n g assist a n c e s yst e ms
d o n ot t a k e t h e p er c e pti o n u n c ert ai nt y i nt o c o nsi d er ati o n.

σ 2
t o t al = σ 2

m o d el + σ 2
d a t a ( 4)

W h e n t h e o v er all pr e di cti o n c o n fi d e n c e dr o ps b el o w a
t hr es h ol d, w e d e e m t h at t h e e g o v e hi cl e is e x p eri e n ci n g
si g ni fi c a nt e n vir o n m e nt n ois e or u n d er a d v ers ari al att a c k.
I nst e a d of usi n g t h e ori gi n al pr e di cti o n r es ult, w e l e v er a g e
t h e o bt ai n e d pr e di cti o n u n c ert ai nti es t o m or e c o ns er v ati v el y
m e as ur e t h e b o u n ds of l eft l a n e a n d ri g ht l a n e. L et µ i b e
t h e pr e di ct e d m e a n of t h e i-t h p oi nt of t h e l a n e a n d σ t o t al, i

b e t h e c orr es p o n di n g err or, t h e n [µ i − σ t o t al, i , µi + σ t o t al, i ]
c a n b e c o nsi d er e d as t h e r a n g e w h er e t h e “tr u e ” l a n e p oi nt
m a y r esi d e. S p e ci fi c all y, w e us e µ i − σ t o t al, i as t h e l o w er
b o u n d of l eft l a n e if µ i is a p oi nt o n t h e l eft l a n e w hil e
µ i + σ t o t al, i as t h e u p p er b o u n d if it is a p oi nt o n t h e ri g ht
l a n e. We us e a p ol y n o mi al f u n cti o n p (i) t o a p pr o xi m at e
t h e p oi nts al o n g t h e l a n e. T h e pr o bl e m c a n b e c ast as a
w ei g ht e d l e ast s q u ar e fitti n g. F or l eft l a n e, w e fit t h e c ur v e
b y mi ni mi zi n g

N
i w i |p (i) − (µ i − σ t o t al, i )|; f or ri g ht l a n e,

w e mi ni mi z e
N
i w i |p (i) − (µ i + σ t o t al, i )|. H er e, w i is

t h e w ei g ht. Si n c e p oi nts f urt h er a w a y t e n d t o e x hi bit l ar g er
u n c ert ai nti es, w e assi g n cl os er p oi nts wit h l ar g er w ei g hts b y
s etti n g w i = 1

σ d a t a
. Fi g. 6 s h o ws t h e b o u n d e d pr e di ct e d l a n es

usi n g o ur a p pr o a c h. As w e c a n s e e, t h e b o u n d e d pr e di cti o n
is m or e c o ns er v ati v e c o m p ar e d t o t h e ori gi n al a p pr o a c h. I n
m ost c as es, t h e b o u n d e d l eft l a n e a n d ri g ht l a n e t e n d t o
i nt ers e ct at s o m e p oi nt.

C. U n c ert ai nt y- a w ar e Tr aj e ct or y Pl a n n er

I n t h e ori gi n al d esi g n of O p e n Pil ot, t h e d esir e d p at h
c a n b e c o nsi d er e d as a w ei g ht e d s u m of t h e l eft l a n e,
ri g ht l a n e a n d pr e di ct e d p at h ( g e n er at e d b y t h e p er c e pti o n
m o d ul e). L a n es/ p at h wit h hi g h er c o n fi d e n c e s c or e will b e
assi g n e d wit h l ar g er w ei g hts a n d h a v e m or e i m p a ct o n t h e
d esir e d p at h. H o w e v er, w e fi n d o ut t h at t his a p pr o a c h c a n n ot
h a n dl e a d v ers ari al s c e n ari os. C o nsi d er t h at t h e att a c k er c a n



m a ni p ul at e s e ns or d at a s u c h t h at t h e c o n fi d e n c e s c or es of
t h e pr e di ct e d l eft l a n e a n d ri g ht l a n e ar e m u c h l o w er w hil e
t h e pr e di ct e d p at h is b e nt t o w ar ds l eft. I n t his c as e, t h e
d esir e d p at h will als o l e a n t o w ar ds l eft e v e n t h o u g h t h e
v e hi cl e is dri vi n g o n a str ai g ht r o a d. We ar g u e t h at, w h e n t h e
c o n fi d e n c e s c or e dr o ps b el o w c ert ai n t hr es h ol d, w e s h o ul d
e x pli citl y c o nsi d er t h e u n c ert ai nti es i nst e a d of j ust r el yi n g o n
t h e pr e di ct e d r o a d c ur v es. T h at is, w e us e t h e u n c ert ai nt y-
b o u n d ar e a d eri v e d a b o v e t o c o nstr ai n v e hi cl e’s s p e e d a n d
st e eri n g a n gl e.

T h e ps e u d o- c o d e t o c al c ul at e t h e d esir e p at h i n o ur
u n c ert ai nt y- a w ar e a p pr o a c h is s h o w n i n Al g orit h m 1. T h e
o v er all c o n fi d e n c e l rc o n f is c al c ul at e d b y c o nsi d eri n g t h e
c o n fi d e n c e of e a c h l a n e, i. e., l rc o n f = lc o n f + r c o n f − lc o n f ∗
r c o n f . Li n es 5- 6 c al c ul at e t h e a c c u m ul at e d u n c ert ai nti es
al o n g t h e l eft l a n e a n d ri g ht l a n e. ω l e f t a n d ω r i g h t ar e t h e
c orr es p o n di n g w ei g hts assi g n e d t o t h e b o u n d e d l eft l a n e a n d
b o u n d e d ri g ht l a n e. p w e i g h t e d is t h e w ei g ht e d p at h a n d t h e
fi n al d esir e d p at h is t h e w ei g ht e d a v er a g e of p w e i g h t e d a n d
p o p e n p il o t (t h e l att er is t h e d esir e d p at h o bt ai n e d b y r u n ni n g
t h e ori gi n al O p e n Pil ot). T h e i nt uiti o n is t h at if t h e c urr e nt
pr e di cti o n h as l o w o v er all c o n fi d e n c e, w e will r el y m or e
o n t h e u n c ert ai nt y- a w ar e b o u n d e d pr e di cti o n t o miti g at e t h e
a d v ers ari al att a c k.

Al g o rit h m 1 D esir e d P at h: U n c ert ai nt y- a w ar e D esir e d P at h
C al c ul ati o n

R e q ui r e: P ol y n o mi al f or l a n e li n es: p l , pr ;
t h e o v er all c o n fi d e n c e of t h e pr e di cti o n: l rc o n f

1: if t ot al c o n fi d e n c e l rc o n f is l ess t h a n C o n f _ T h r e s h ol d
t h e n

2: us e t h e ori gi n al O p e n pil ot t o g e n er at e t h e d esir e d p at h
p o p e n p il o t

3: r et u r n p o p e n p il o t

4: els e
5: l e f ts u m =

n
i = 1 σ l e f t, i

6: ri g ht s u m =
n
i = 1 σ r i g h t, i

7: t ot al s u m = l e f ts u m + ri g ht s u m

8: ω l e f t = r i g h t s u m

t o t al s u m

9: ω r i g h t = l e f t s u m

t o t al s u m

1 0: p w e i g h t e d = ω l e f t ∗ p l + ω r i g h t ∗ p r

1 1: d e si r e d p at h = ( 1 − l rc o n f ) ∗ p w e i g h t e d + l rc o n f ∗
p o p e n p il o t

1 2: e n d if
1 3: r et u r n d e si r e d p at h

B esi d es utili zi n g t h e esti m at e d u n c ert ai nt y t o b o u n d t h e
s af e tr aj e ct or y ar e a a n d pr o d u c e t h e d esir e d p at h, w e als o
m a k e us e of t h e t e m p or al l o c alit y of t h e p at h pr e di cti o n. We
n oti c e t h at t h e p er c e pti o n a n d pl a n ni n g m o d ul es c a n pr o d u c e
a s af e d esir e d p at h f or a b o ut 1 0 0 m et ers wit h fr e q u e n c y
of 2 0 H z w hil e t h e v e hi cl e will o nl y m o v e f or w ar d u p t o
s e v er al m et ers i n t h e p eri o d. T h er ef or e, t h e i nf or m ati o n of
c o ns e c uti v e fr a m es h as c o nsi d er a bl e l o c alit y a n d r el e v a n c e.
We m ai nt ai n a st at e c a c h e t o st or e t h e p er c e pti o n o ut p ut of
m ost r e c e nt k c o ns e c uti v e fr a m es. I n o ur e x p eri m e nt, w e

pi c k k = 7 t o st or e t h e i nf or m ati o n of t h e p ast 0 .3 5 s e c o n ds.
I n c as e of a d v ers ari al s c e n ari os, t h e s yst e m will s el e ct t h e
p er c e pti o n o ut p ut wit h hi g h est c o n fi d e n c e s c or e fr o m t h e
st at e c a c h e as t h e pl a n n er i n p ut. Ta ki n g a d v a nt a g e of t h e
l o c alit y, t h e s yst e m r o b ust n ess t o s h ort-t er m i nf er e n c e will
b e i m pr o v e d.

D. A d a pti v e C o ntr oll er

1) U n c ert ai nt y- a w ar e c ost f u n cti o n: A n M P C c o ntr oll er
is us e d t o g e n er at e a n a p pr o pri at e st e eri n g c o m m a n d b as e d
o n t h e e g o v e hi cl e st at us a n d t h e d esir e d p at h. We m o dif y
t h e M P C c o ntr oll er b y e x pli citl y c o nsi d eri n g t h e m or e c o n-
s er v ati v e u n c ert ai nt y- a w ar e b o u n d e d l a n es. T h e o pti mi z ati o n
o bj e cti v e c a n b e writt e n i n t h e f or m of t h e s u m m ati o n of a
r u n ni n g c ost a n d a t er mi n al c ost:

mi n
x ,u

N

i = 1

W 1 , i H r (x i , ui )
2 + W 2 , i H t (x N ) 2 ( 5)

w h er e W 1 , i a n d W 2 , i ar e w ei g ht m atri c es; H r is t h e
r ef er e n c e f u n cti o n t o c a pt ur e t h e diff er e n c e b et w e e n c urr e nt
e g o v e hi cl e st at es a n d t h e d esir e d p at h. H t is a m e as ur e m e nt
f u n cti o n r e g ar di n g t h e e g o v e hi cl e st at es at t h e e n d of
pr e di cti o n h ori z o n. I nt uiti v el y, gi v e n t h e d esir e d p at h, w e
w a nt t h e v e hi cl e t o dri v e al o n g t h e r ef er e n c e p at h, b ut w e
als o w a nt t h e v e hi cl e t o dri v e n o n t h e c e nt er of tr af fi c l a n es.
T his is a c hi e v e d b y c o nsi d eri n g t h e t h e dist a n c e err ors wit h
r es p e ct t o t h e d esir e d l a n e a n d tr af fi c l a n es. H o w e v er, w e
ar g u e t h at t h e dist a n c e err or r e g ar di n g t h e l eft l a n e a n d
ri g ht l a n e s h o ul d a d o pt t h e b o u n d e d pr e di cti o n i nst e a d of
t h e ori gi n al O p e n Pil ot pr e di cti o n. S p e ci fi c all y, t h e r ef er e n c e
f u n cti o n is writt e n as:

H r (x i , ui ) =

p d (x i ) − y i e − ( p l ( x i ) − y i ) e p r ( x i ) − y i
h a u 2 T

w h er e p d is t h e p ol y n o mi al r e pr es e nti n g t h e d esir e d p at h,
p l a n d p r ar e fitt e d p ol y n o mi al r e pr es e nti n g b o u n d e d l eft
a n d b o u n d e d ri g ht l a n e r es p e cti v el y. h a n d a ar e t h e
err or r e g ar di n g t h e e g o v e hi cl e h e a di n g a n d a n g ul ar r at e
r es p e cti v el y. u 2 is a p e n alt y t er m t o a v oi d a g gr essi v e st e eri n g.
T h e m e as ur e m e nt f u n cti o n H t is si mil ar as H r , e x c e pt t h at
it d o es n ot c o nsi d er a n g ul ar r at e a n d p e n alt y. T h e c o nstr ai nts
i n cl u d e 1) s yst e m d y n a mi cs 2) v e hi cl e h e a di n g is li mit e d t o
[− 9 0 ◦ , 9 0 ◦ ] a n d 3) t h e m a xi m u m st e eri n g a n gl e is 5 0 ◦ .

2) S p e e d A d a pt ati o n: G e n er all y, t h e u n c ert ai nt y f or
f urt h er- w a y p oi nts t e n ds t o b e c o nsi d er a bl y l ar g e ( e. g.,
Fi g. 5) e v e n f or b e ni g n dri vi n g s c e n ari o. T his m e a ns t h at,
f or s af et y c o nsi d er ati o n, t h e e g o v e hi cl e is n ot s ur e a b o ut
t h e r o a d str u ct ur es t h at ar e f ar a w a y. T o pr e v e nt t h e v e hi cl e
fr o m dri vi n g t o o f ast u n d er u n c ert ai n s c e n ari os, w e a p pl y
a n e m er g e n c y br a k e t o t h e v e hi cl e if its c urr e nt s p e e d is
t o o f ast. S p e ci fi c all y, w h e n t h e o v er all pr e di cti o n c o n fi d e n c e
dr o ps b el o w t h e t hr es h ol d C o n f _ T h r e s h ol d , a d e c el er ati o n
α m a x is a p pli e d. T h e e ntir e e n d-t o- e n d pi p eli n e of o ur
a p pr o a c h is s h o w n i n Al g orit h m 2. Li n es 1- 3 c al c ul at e
pr e di cti o n u n c ert ai nti es. T h e n t h e r es ult is p us h e d i nt o st at e
c a c h e. If t h e c o n fi d e n c e of t h e pr e di cti o n is t o o l o w, w e



pick the perception result with the highest confidence score
from the state cache (line 5-7). Then the bounded predicted
lane curves are used to calculate the desired path as in
Algorithm 1. Moreover, if the confidence score drops below
the threshold, we apply an emergency brake to slow down the
vehicle. Here, vmin is the minimum speed required. Finally,
the MPC controller calculates the steering angle for the next
period (line 12).

Algorithm 2 Our Uncertainty-aware pipeline for ALC

Require: Current speed vcurrent, reference speed vref
and input image Input

1: lrconf , ptslane, σ
2
data = NN(Input)

2: σ2
model = Monte_Carlo_Dropout(Input)

3: σ2
total = σ2

model + σ2
data

4: push lrconf , ptslane into state_cache
5: if lrconf < Conf_Threshold then
6: ptslane, lrconf = arg maxlrconf

(state_queue)
7: end if
8: desired_path = DesirePath(ptslane, lrconf , σ

2
total)

9: if lrconf < Conf_Threshold then
10: vref = max(vcurrent − αmax ∗∆t, vmin)
11: end if
12: steering_angle, acc = MPC(desired_path, vref )
13: return steering_angle, acc

IV. EXPERIMENTAL RESULTS

We implement our design within the open-source driving
assistance system OpenPilot. We test our proposed approach
using both open dataset (comma2k19 dataset [37]) and
synthetic scenarios with an autonomous driving simulator.

For the open dataset , we adopt the kinematic bicycle
model [38] as the motion model for the ego vehicle. The
kinematic bicycle model is commonly used to simulate
how vehicles move according to speed and the front steer-
ing angle. The kinematic model can produce the vehicle
trajectory and obtain the lateral deviation to measure the
effectiveness of our proposed mitigation strategy. Moreover,
as the trajectory calculated by the motion model may deviate
from the original trace, we adopt the motion model based
input generation from [12] that combines motion model with
perspective transformation to dynamically calculate camera
frame updates due to attack-influenced vehicle control.

For synthetic scenarios, we combine OpenPilot with
LGSVL [24] to set up a closed-loop simulation environment.
LGSVL is a Unity-based multi-robot simulator developed by
LG Electronics America R&D Center. We reuse the LGSVL-
OpenPilot bridge [12] to transfer sensor data and driving
command between the LGSVL simulator and OpenPilot. For
both simulation methods, we test the original OpenPilot and
ofur proposed design under different attacks as well as in
benign situation.

A. Adversarial Attacks

In our work, as mentioned in previous sections, we applied
the optimization-based physical attack in [12]. The attack

works by placing an optimized patch on the road and it
can lead the vehicle out of the lane within 1 second (which
means the lateral deviation is larger than 0.735m in highway).
The attack against OpenPilot shows high success rate and
significant attack effect. To analyze the safety of the system
and evaluate our proposed design, we conduct experiments
under different settings (perturbation area, stealthiness levels,
etc). The benign and attacked inputs are shown in Fig. 4.

Fig. 4: Input images in benign scenario and under attack.

B. Results for Uncertainty Estimation

For each input frame, our system will calculate the data
uncertainty by distributional parameter estimation and model
uncertainty by Monte Carlo Dropout methods. The distri-
butional parameter estimation is embedded in the original
OpenPilot perception neural network. For the Monte Carlo
Dropout, we only activate dropout in inference. There is
always a trade-off between inference speed and estimation
accuracy: larger number of samples results in higher accuracy
and longer time. According to the analysis in [36] and our
experiments, we set the dropout rate as 0.2 and the number
of samples as 20. In this setting, the system can obtain
precise variance estimation and reach a processing frequency
of about 20Hz. The system will estimate uncertainties for
192 points of the predicted lane line in every frame. In
experiments, we find that in most cases, data uncertainty and
model uncertainty are at roughly the same order of magnitude
(left subgraph in Fig. 5). The uncertainty is relatively large
when the vehicle is approaching the adversarial patch, which
is consistent with the observations in confidence estimation.
An example for our uncertainty estimation is shown in Fig. 5.
In a single frame, the uncertainties increase with the distance
from the current position. This observation facilitates the
planner to estimate a safe bound. As shown in Fig. 6, the
uncertainty bound will form a triangle-like safe area and
we will get a desired path from our planner, which is less
affected by the attacks.
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Fig. 5: Data uncertainty and model uncertainty from selected
and representative frames. The left figure shows the overall
uncertainties in different frames. The right figure shows the
uncertainties increase with the distance in one frame.
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Fig. 6: The shaded gray area indicates the safe area bounded
by our estimation of uncertainties. The bounded area and the
desired path don’t deviate to the left under attacks.

C. Mitigation Results for Open Dataset

We first test our proposed pipeline with highway image
dataset and kinematic model. The input is consecutive image
frames captured in a straight four-lane highway and the
vehicle’s speed is 20 m/s. In the benign case, our proposed
systems and the original OpenPilot can both drive in the
center of the lane. Fig. 7 shows that the adversarial attacks
can lead the vehicle with the original OpenPilot out of
road and the deviation is more than 1.5 meters. In contrast,
the system with our proposed uncertainty estimation and
adaptive uncertainty-aware planner and controller can sig-
nificantly mitigate the attack’s effect, reducing the maximum
lateral deviation by about 66.8%. Besides, the experiments
specifically demonstrate that the adversarial attack’s effect
can be further mitigated by utilizing the temporal locality
with state cache. However, in this simulation setting, it is
difficult for us to change the vehicle’s speed and perception
sampling frequency since they were determined by the driv-
ing scenario and sensor configurations in the dataset, which
motivates us to conduct the following closed-loop simulation
in LGSVL.
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Fig. 7: Comparison of our proposed method (with or without
state cache) with the original OpenPilot and reference benign
situation in terms of lateral deviation. The y-axis positive
direction means left.

D. Mitigation Results in LGSVL-OpenPilot Environment

In the closed-loop LGSVL simulation, we set the vehicle
to follow a reference speed (20m/s) and control the throt-
tle using a PID controller. Fig. 8 compares our proposed
approach with the original OpenPilot under adversarial sce-
nario. The baseline is the solid blue curve which is the
trajectory of the original OpenPilot driving under benign sce-
nario. The solid green curve is the trajectory of the original
OpenPilot driving under adversarial scenario where the patch
is placed at 40 meters. As we can see, the original OpenPilot
does not take prediction uncertainties under consideration
and can deviate significantly under adversarial attack. Our
proposed is also affected by the patch on the road but can
significantly alleviate the adversarial impact.
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Fig. 8: Ego vehicle trajectory under different scenarios.

To further evaluate our proposed approach, we conduct the
experiments with different settings of the patch. We place
the patch on different positions along the road (40m, 80m
and 120m along the longitudinal direction) and adapt the
perturbation area ratio (PAR) of the patch. The improvement
of our proposed approach over the original OpenPilot ALC
is shown in table I. The perturbation area ratio denotes the
percentage of the pixels on the patch that are allowed to
be perturbed. For our experiment, we generate dirty road
patch with PAR ranging from 25% to 100%. The maximum
lateral deviation varies depending on different experiment
settings. Throughout our experiments, the lateral deviation of
the original OpenPilot ALC ranges from 0.8 to 1.2 meters,
which is large enough to drive the victim vehicle out of
the lane boundary. In contrast, the lateral deviation of our
proposed approach ranges from 0.1 to 0.4 meter (still within
the lane boundary). Overall, our approach can reduce the
lateral deviation by 55.34% ∼ 90.76%, under various patch
settings.

TABLE I: Improvement of our proposed approach over
the original OpenPilot ALC, tested in LGSVL-OpenPilot
environment under different experiment settings: the pertur-
bation area ratio (PAR) and the patch’s position along the
longitudinal direction.

PAR (%)
Position (m) 40 80 120

100 59.33% 66.96% 76.15%
75 66.44% 90.76% 82.24%
50 55.34% 76.72% 71.93%
25 61.07% 66.07% 65.74%



V. CONCLUSIONS

In this work, we proposed a novel end-to-end uncertainty-
based mitigation approach for adversarial attacks to the
automated lane centering system. Our approach includes an
uncertainty estimation method considering both data and
model uncertainties, an uncertainty-aware trajectory planner,
and an uncertainty-aware adaptive controller. Experiments on
public datasets and a production-grade simulator demonstrate
the effectiveness of our approach in mitigating the attack
effect. We believe that our methodology can be applied to
other ADAS and autonomous driving functions, and will
explore them in future work.
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