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Abstract—We introduce a simple yet effective network that
embeds a novel Discriminative Feature Pooling (DFP) mechanism
and a novel Video Segment Attention Model (VSAM), for
video-based human action recognition from both trimmed and
untrimmed videos. Our DFP module introduces an attentional
pooling mechanism for 3D Convolutional Neural Networks that
attentionally pools 3D convolutional feature maps to emphasize
the most critical spatial, temporal, and channel-wise features
related to the actions within a video segment, while our VSAM
ensembles these most critical features from all video segments
and learns (1) class-specific attention weights to classify the video
segments into the corresponding action categories, and (2) class-
agnostic attention weights to rank the video segments based on
their relevance to the action class. Our action recognition network
can be trained from both trimmed videos in a fully-supervised
way and untrimmed videos in a weakly-supervised way. For
untrimmed videos with weak labels, our network learns attention
weights without the requirement of precise temporal annotations
of action occurrences in videos. Evaluated on the untrimmed
video datasets of THUMOS14 and ActivityNetl.2, and trimmed
video datasets of HMDBS51, UCF101, and HOLLYWOOQOD2, our
network achieves promising performance, compared to the latest
state-of-the-art methods. The implementation code is available at
https://github.com/MoniruzzamanMd/DFP-VSAM-Networks.

Index Terms—action recognition, attentional pooling, fully-
supervised, weakly-supervised, discriminative features.

I. INTRODUCTION

UMAN action recognition is a challenging and funda-

mental problem in computer vision, owing to its appli-
cations in many areas such as surveillance systems and human
computer interactions [1], [2]. Some human action recognition
methods rely on human pose information [3], [4], [5], tracking
multiple people as well as recognizing their activities [0],
[71, [8], or dense trajectories [9], [10], [I1] which extract
rich low level descriptors for constructing effective video
representations. Recently, human action recognition largely
benefited from the advancements in Convolutional Neural
Network (CNN) models [12], [13], [14]. For example, 2D
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(c) action of “long jump”

Fig. 1. Importance of video segment attention. Frames within the green in-
tervals directly represent the action or differentiate different actions. Although
the action of “high jump” and “long jump” are two different classes, frames
within the red intervals share the similar motion information (running).

CNN models were applied on different input modalities for
human action recognition [15], [16], [17], [18], such as RGB
images to extract the appearance information and optical flow
to extract the motion information, which are two crucial and
complementary clues for the action recognition task. Some
recent action recognition methods [19], [20], [21] extended the
2D CNN into 3D to effectively learn spatio-temporal features
from short video clips. Meanwhile, several works [22], [23],
[24], [25] tried to employ recurrent neural networks with
the extracted CNN features to capture long-term temporal
dynamics for human action recognition.

Challenges and Motivations: Despite the recent advance,
human action recognition is still challenging from a few
aspects:

(1) Usually, an action does not occupy the entire region of a
single frame or the entire volume of a short video clip. Some of
the pixels are not related to the action class, which may lead to
misclassification. Most of the state-of-the-art methods employ
deep CNNs (e.g., 2D CNN for a single frame and 3D CNN
for a short video clip) over the entire input space to compute
feature maps by convolution followed by average pooling
or max pooling, without highlighting the most discriminative
features. Although some algorithms [26], [27], [28] employed
attentional pooling mechanism after the last convolutional
layer of 2D CNN to highlight the most discriminative features,
it is still unsolved to develop an attentional pooling mechanism



(b) Example of untrimmed video containing “fencing” action with unrelated frames

Fig. 2. Example of trimmed and untrimmed videos containing the fencing
action instances. Trimmed videos do not contain unrelated frames, while
untrimmed videos contain many unrelated frames.

for the 3D CNN models, whose convolutional feature maps
contain spatio-temporal and channel-wise feature information.
Therefore, the motivated research question is: from the convo-
lutional feature maps of a 3D CNN, which spatio-temporal and
channel-wise features should get more attention to highlight
the discriminative features related to the action class?

(2) Given a sequence of frames in a long video, maybe only
a small portion of the video is directly related to the action
and the video may contain many unrelated or less-relevant
frames, as shown in Fig. |. Fig. 1(a) shows a video sequence of
“apply eye makeup” action. Only a small segment of the video
directly belongs to the action and the video contains many
unrelated frames. Fig. 1(b) and Fig. 1(c) show the “high jump”
and “long jump” actions, respectively. Some frames of the
two different actions share similar motion information (frames
within red intervals in Fig. 1). Therefore, the frames within
the green interval in Fig. |, which either directly represent
the action (Fig. 1(a)) or differentiate different actions (Fig.
[(b) and Fig. 1(c)), deserve more attention for the accurate
action recognition. This challenge motivates another research
question: given a video, which video segment should get more
attention to highlight the most representative frames related
to the action?

(3) Most of the action recognition methods rely on trimmed
video datasets (i.e., videos that do not contain unrelated
frames, such as those from the datasets of HMDBS51 [29] and
UCF101 [30], as shown in Fig. 2(a)). But, in practice, it is
more common to collect untrimmed videos with weak or noisy
labels from the web (e.g., Youtube) than collect precisely an-
notated videos, thus developing an action recognition method
capable of learning from untrimmed videos is in the need.
Learning from untrimmed videos (i.e., videos that contain
irrelevant or less-relevant frames, such as the THUMOS14
dataset [31] as shown in Fig. 2(b)) is a weakly-supervised
learning. Therefore, the third research question arises: given
a weakly-labeled training dataset of long untrimmed videos
(i.e., each video has a label for an action but which portion of
the video contains the action is unknown and the video might
contains multiple different actions), how can we effectively
train an action recognition model without knowing the precise
temporal annotations of action instances?

Our Proposal and Contributions: Motivated by the
above challenges, we propose a novel human action recogni-
tion network, including a new Discriminative Feature Pooling
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Fig. 3. We propose an end-to-end Discriminative Feature Pooling (DFP) and
Video Segment Attention Model (VSAM) for human action recognition from
weakly-labeled untrimmed videos (i.e., each video in the training set contains
unrelated frames. The training video has action labels but which portion of the
video contains the actions is unknown. The video may contain one or multiple
action instances from one or multiple action classes). Our DFP attentionally
pools the discriminative features of 3D convolutional feature maps, and our
VSAM contains class-specific attention weights to classify the video segments
into the corresponding action categories (e.g., “cricket bowling” and “cricket
shot” in the video) and class-agnostic attention weights to highlight the most
representative video segments.

(DFP) mechanism and a Video Segment Attention Model
(DFP-VSAM), to classify human actions from both untrimmed
and trimmed videos, as shown in Fig. 3. To summarize, our
major contributions are four-fold:

1) We propose a new Discriminative Feature Pooling
(DFP) mechanism that integrates spatial, temporal, and
channel-wise attentional pooling in a unified network
on top of the convolutional feature maps of 3D CNN to
highlight the most discriminative features. To the best of
our knowledge, this is the first work that applies three
different attentional pooling mechanisms on top of the
convolutional feature maps of a 3D CNN.

2) We propose a Video Segment Attention Model (VSAM)
that first ensembles the most discriminative spatial,
temporal, and channel-wise features from all video seg-
ments, which are then fed into a class-specific attention
module to classify the video segments into the corre-
sponding action categories, a class-agnostic attention
module to emphasize the video segments containing
highly representative action-related frames, and a video-
level action prediction module to obtain the classification
scores on the entire video.

3) Our action recognition network can be directly trained
from untrimmed videos in a weakly-supervised way
without the requirement of temporal annotations of ac-
tion occurrences in videos, where the videos may contain
one or multiple occurrences of action instances from one
or multiple action classes.

4) We conducted experiments on five benchmark datasets,
namely THUMOSI14, ActivityNetl.2, HMDBS5I,
UCF101 and HOLLYWOOD?2 to show the superior
performance and generality of the proposed DFP-
VSAM human action recognition network. On all the
datasets, our network achieves superior or comparable
performance compared to the state-of-the-art methods.



II. RELATED WORKS

Deep learning for human action recognition: With the
recent availability of powerful GPUs and after the break-
through in image classification [32] with Convolutional Neural
Networks (CNN) [12], [13], [14], video-based human ac-
tion recognition recently has achieved significant progresses.
Karpathy et al. [33] first designed a multi-resolution CNN
architecture and trained the deep networks on a large-scale
dataset (Sports-1M). CNN-based models for human action
recognition broadly follow three main approaches. (1) Multi-
stream networks [15], [16]: CNNs are trained on multiple
input modalities, such as RGB, optical flow, warped flow etc.
Given a test video, the predictions from all CNNs are fused
to get the final video-level prediction. Simonyan et al. [15]
designed two stream CNNs containing spatial and temporal
networks by exploiting pre-trained models and optical flow
calculation. Wang et al. [16] extended the standard two-stream
[15] by using a much deeper base architecture [34]. (2) 3D
CNN [19], [20], [35], [36]: the pipelines of 3D CNNs are
like those of 2D convolutional networks, but with spatio-
temporal filters. Usually, 3D CNNs take short video clips as
inputs, perform 3D convolution and 3D pooling to extract
spatio-temporal feature maps (e.g., [20], [36]). Tran et al. [19]
investigated 3D CNNs on the realistic and large-scale video
datasets, which are capable of learning the spatio-temporal
information from short video clips. (3) CNN + LSTM (Long
Short Term Memory) [22], [23], [24], [25]: recurrent neural
networks are built on top of CNN features to capture the
long term dynamics for action recognition. Within the three
directions, many algorithms develop techniques to recognize
actions based on existing representation methods [37], [38],
[39], [40], [41], [42], [43]. These algorithms employ neural
networks without using attention mechanisms.

Weakly-supervised learning: Initially, weakly-supervised
learning was effectively used in object detection and recogni-
tion [44], [45], [46]. Recently, several works [47], [48], [49],
[50], [51] tried to adapt weakly-supervised learning methods
into the human action recognition task from videos. Laptev et
al. [48] tried to learn action models, and Duchennel et al. [47]
tried to localize action instances in movies, by leveraging weak
labels such as the movie scripts. But, the movie scripts are
usually aligned with frames so they can provide approximated
temporal annotations of action occurrences, which is not
applicable to the general video-based human action recogni-
tion task. More recently, several works [52], [53] introduced
weakly-supervised action detection and recognition technique
called UntrimmedNet and WTALC, respectively, which did
not use the temporal annotations during training. However,
UntrimmedNet [52] and WTALC [53] are lack of spatial and
channel-wise attention modeling.

Attentional pooling: Attention-based models [17], [26],
[28], [54], [55], [56], [57], [58] employed attentional pooling
operation at the last convolutional layer to dynamically pool
convolutional features instead of the conventional average or
max pooling operation. Sharma et al. [26] proposed a soft
spatial attention-based action recognition model, which learns
to focus selectively on parts of the video frames and classifies

videos after taking a few glimpses. Several spatio-temporal
attention models [54], [55], [56] were proposed for video
captioning and human action recognition. Recently, a pose
regularized attentional pooling method [28] was proposed, as
a plug-in after the last convolutional layer of 2D CNN, for
action recognition from still images and videos. Hu et al.
[27] introduced squeeze and excitation networks, which put
attentions on different feature channels. Most of the previous
attention-based works are either trained from trimmed videos
in a fully-supervised way or from untrimmed videos in a
weakly-supervised way, while our DFP-VSAM can be trained
from both trimmed videos in a fully-supervised way and
untrimmed videos in a weakly-supervised way. Our DFP-
VSAM is different from the previous attention-based works
in a few aspects:

« Applicable for both trimmed and untrimmed videos:
The previous fully-supervised attention-based methods
[17], [26], [28], [58] on the trimmed videos applied
the attention mechanism to look at the relevant parts
in the spatial dimension, which are not applicable for
the untrimmed videos since they cannot suppress the
unrelated video segments. On the other hand, the pre-
vious weakly-supervised attention-based methods [52],
[53] applied only the temporal attention to suppress
the unrelated video segments, but they lack the spatial
and channel-wise attention modeling inside each video
segment. Differently, our DFP-VSAM can be trained
from both trimmed videos in a fully-supervised way and
untrimmed videos in a weakly-supervised way, where the
DFP can pool the most discriminative spatial, temporal,
and channel-wise features of each video segment, while
the VSAM can suppress the unrelated video segments.

o SOTA fully-supervised attention-based methods vs our
method: Most of the previous SOTA fully-supervised
attention-based works [17], [26], [28], [58] only applied
the spatial attention, and did not utilize the temporal and
channel-wise attentions. On the other hand, we utilize all
the three (spatial, temporal, and channel-wise) attentions
to design our DFP to emphasize the critical spatial, tem-
poral, and channel-wise features of each video segment.
Furthermore, the SOTA on trimmed video datasets used
well-tweaked backbone networks for the action recogni-
tion, but our method only uses a pre-trained backbone
network for feature extraction.

o SOTA weakly-supervised attention-based methods vs
our method: After our DFP attentionally pools the
most discriminative spatial, temporal, and channel-wise
features from the feature maps of each video segment,
we further utilize a Video Segment Attention Model
(VSAM), which is more important for action recognition
from untrimmed videos in a weakly-supervised way.
The SOTA weakly-supervised attention-based works [52],
[53] on untrimmed videos applied the temporal attention
on top of the fully-connected layers, while our VSAM
first ensembles the attentionally pooled spatial, temporal,
and channel-wise feature representations from all video
segments and then applies a temporal attention on top
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Fig. 5. Video clips, video segments and feature representation generation.

of the ensembled features, so that what it learns is more
effective for action recognition.

« Integration of different attentions: Attention concept
has been shown to be effective in many computer vision
tasks, but how to design, implement, and integrate dif-
ferent attentions in a unified network is an open research
problem. The previous attention-based works [17], [26],
[28], [52], [53], [55], [58] either applied the spatial
attention on top of the convolutional feature maps of
2D CNN and/or temporal attention on top of the fully-
connected layers, while we first generate the spatial,
temporal, and channel-wise feature representations from
the feature maps of 3D CNN and then apply the corre-
sponding attention on top of the corresponding feature
representation to integrate them in a unified network.

III. APPROACH

In this section, we present our Discriminative Feature Pool-
ing and Video Segment Attention Model. The workflow of our
action recognition network is illustrated in Fig.

A. Generation of video clips and video segments

Since some of the frames in a video may be not or less
relevant to the action class and action instances may occur
in various time instants of a video, we propose to divide
the video into short clips and group the video clips into
segments, so we can learn attention weights to pool the most
discriminative features and emphasize the most representative

(b) Feature representation generation

video segments, eventually leading to accurate video-level
action recognition by the discriminative feature pooling and
video segment attention model.

Formally, for a given video V with 1" frames, we use a
temporal sliding window of [ frames (e.g., [ = 64) with stride
e (e.g., e = 32) to generate the video clips with the size of
Il X hy X hg X r, where hj, ho, and 7 are the height, width
and the number of color channels of each frame, respectively.
Then the generated video clips are grouped into /N segments
with equal time periods, {seg;},_; . as shown in Fig. 5(a).

B. Feature representation generation

We adopt the I3D network [35] pretrained on the ImageNet
and Kinetics dataset to extract features from every video clip,
which are the spatio-temporal feature maps of the last 3D
convolutional layer, denoted as U € R*F1xk2xf  where
d, k1 X ko, and f denote the temporal dimension, spatial
dimension, and the number of feature channels, respectively.
Then, we average feature maps of all video clips within
the same video segment, as the feature representation U €
RIXF1xk2Xf of this segment. As we aim to learn the spatial,
temporal, and channel-wise attention weights to highlight the
most discriminative features, we propose to generate spatial,
temporal, and channel-wise feature representations for the
video segment as shown in Fig. 5(b).

Spatial feature representation: We apply the squeezing
operation (e.g., average pooling or max pooling) on U €
RIxF1xk2x[ in the temporal domain (d-axis) to get the spatial
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Fig. 6. Discriminative feature pooling mechanism in a video segment.
Discriminative feature pooling learns attention weights w (), w(*) and w(®)
for spatial, temporal, and channel-wise attentional pooling, respectively, to
emphasize the most important features in each video segment. ‘®’ and “*’
denote matrix-vector production and element-wise production, respectively.

feature cube X € RF1*#2%f which preserves the spatial
information of the input video segment.

Temporal feature representation: To get the temporal
feature representation from the feature representation of a
video segment, we perform the squeezing operation on U €
RI*kixk2x[ i the spatial domain (k; x ko) to get the temporal
feature matrix Y € R/, which represents the temporal
feature representation of the input video segment.

Channel-wise feature representation: We perform the
squeezing operation on U & R¥*F1xk2xf in the spatio-
temporal domain (d X k1 X k3) to get the channel-wise feature
vector Z € R/ which represents the channel-wise feature
representation of the input video segment.

C. Discriminative feature pooling

The spatial, temporal and channel-wise feature representa-
tions of a video segment treat every element in the feature
maps equally, but some pixels in the video segment may be
not or less competent to represent the action and discriminate
them from others. Thus, we propose a Discriminative Feature
Pooling (DFP) mechanism consisting of spatial, temporal, and
channel-wise attentional pooling to gain more attention on
those discriminative regions in a video segment. The proposed
DFP is a trainable layer, which pools the most discriminative
features within a video segment, as shown in Fig.

Spatial attentional pooling: The spatial feature represen-
tation of a video segment, X € RF1**2Xf can be converted
to its corresponding Casorati matrix M € RF*/, where
k = (k1 x k2). Each row of M maps to different regions in the
input space. From the matrix M, our spatial attentional pooling
mechanism learns spatial attention weights w(®) € R/*! and
computes a spatial attention score vector, x, which indicates
the feature importance from different spatial regions:

x = Mw®

where x € RF*1 (D

?

Then, the spatial attention score vector x is normalized by
a softmax layer:

exp(x;
(Ii)softmaac = % ( Z)

—_— e kK 2)
Zj’:l exp(z;)

)

where z; is the i*" dimension of x. We use the notation
Xsoftmax (0 denote the spatial attention score vector after the
softmax layer. Finally, the spatially-attentional-pooled feature
vector p®) of the video segment is computed by

p® = M7 (Xsoftmax), where p® e R/*1  (3)

Temporal attentional pooling: Similarly, given the tem-
poral feature representation of a video segment, Y € R%*/f,
our temporal attentional pooling mechanism learns temporal
attention weights wt) € Rf*! and computes a temporal at-
tention score vector, y, which indicates the feature importance
of different temporal instants within the video segment:

y=Yw® where ye R™! 4)

The temporal attention score vector y is passed through a
softmax layer to get Ysoftmax € [0, l]d. Then, the temporally-
attentional-pooled feature vector p®) of the video segment is
computed by

P® = Y7 (Yeottmax), where p® e R/ (5)

Channel-wise attentional pooling: From the channel-wise
feature representation, Z € R¥™/, our channel-wise atten-
tional pooling learns channel-wise attention weights w(®) e
R/*S and computes a channel-wise attention score, z, indi-
cating the feature importance of different channels:

z=2w, where ze RY/ (6)

The channel-wise attention score vector z is also passed
through a softmax layer to get Zsoftmax € [0, 1]7. Then, the
channel-wisely-attentional-pooled feature vector p(®) of the
video segment is computed by

p® = (Z * Zsottmax) ', where p® e R/*1 ()

where ‘“*’ denotes the element-wise multiplication.

The proposed Discriminative Feature Pooling is a trainable
layer, where the spatial attention weight vector w(®) € R/*1,
temporal attention weight vector w(*) € R/*1 and the
channel-wise attention weight matrix w(®) € Rf*f are learned
during the training time.

D. Video segment attention model

Our DFP generates the most discriminative features (p(s),
p®), and p(®)) for each video segment. The next step is
to ensemble the spatial, temporal, and channel-wise feature
representations from all video segments, with more attention
paid to the directly related video segments. To achieve this
goal, we propose a Video Segment Attention Model (VSAM)
to learn (a) class-specific attention weights to classify the
video segments into the corresponding action categories and
(b) class-agnostic attention weights to highlight the most
representative video segments without considering the specific
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Fig. 7. Video segment attention model (VSAM). Our VSAM first ensembles
the most discriminative spatial, temporal, and channel-wise features from all
video segments in a feature matrix F', which is then used to learn class-specific
(u) attention weights to classify each video segment into corresponding action
category and class-agnostic (v) attention weights to emphasize the most
representative features across the video segments, eventually leading to the
accurate video-level classification scores 1) € RAX1,

action class information. First, we concatenate all the atten-
tionally pooled feature vectors (p(s), p(t), and p(c)), and then
the concatenated feature vectors are transposed and stacked
in a matrix to generate the feature matrix F € RN*3f as
shown in Fig. 7. Each row of the feature matrix represents the
most discriminative features of each video segment. Then, we
design our VSAM to learn class-specific and class-agnostic
weights.

Class-specific attention: We aim to classify each video
segment into its corresponding action class based on the
generated feature matrix F'. Therefore, we learn class-specific
attention weights u € R3/*4, where A is the number of action
categories, to compute class-specific attention scores, «, for all
N video segments:

a=Fu, where o€ RV*4 8

The class-specific attention score matrix contains the inde-
pendent action class prediction from every video segment. «
is passed through a softmax layer to get the normalized class-
specific attention score Qo fimaz € [0, 1]V >4

Class-agnostic attention: Since some of the video seg-
ments are not relevant to the action class, we aim to learn
attention weights to highlight the most representative video
segments and suppress the unrelated or less relevant video
segments. Therefore, we learn class-agnostic attention weight
v € R3>1 on feature matrix F € RY*3/ to compute the
class-agnostic attention scores, 3, for all NV video segments:

B =Fv, where (e RN*! )

The class-agnostic attention score vector represents the
importance weight of each video segment without considering
the specific action class information. 3 is passed through a
softmax layer to get the normalized class-agnostic attention
score vector: Bso frmaz € [0, 1]V.

It should be noted that, as u € R3/*4 is learned depending
on the action class information and v € R3/*1 is learned
without depending on the action class information, we call u
as class-specific and v as class-agnostic weights.

Video-level action prediction: So far, based on the class-
specific attention scores, we get the classification scores of
each video segment belonging to every action category, while
based on the class-agnostic attention scores, we get the impor-
tance weight of each video segment. The classification score
on the entire video is computed by weighting the predictions
from all video segments (vsoftmas (normalized class-specific
attention scores) with weights Bsofimas (normalized class-
agnostic attention scores):

P = (Oésoftmaar)T(/Bsoftmax)y where 1) € RAXl (10)

As the classification score vector ¥ is computed from nor-
malized attention scores (softmaz aNd Bso ftmaz), it is in the
range of (0, 1) and no further softmax is required at this stage.

E. Two-stream networks

As multiple streams of information (such as RGB and
optical flow (OF)) often provide a significant boost in the
action recognition performance [15], [33], [35], we train two
DFP-VSAM networks on RGB and optical flow, separately.
The video-level action predictions from two stream networks,
PBEB) and (OF) | are combined to classify the input video:

(11)

where « € [0,1] is the combination factor. We computed the
optical flow by the TV-L1 algorithm [59].

final_score = ~ - pFEB) 1 (1 — ~) . (OF)

F. Loss function

The loss used to train our DFP-VSAM network is based on
the standard multi-label cross-entropy loss between the ground
truth and the prediction from our network:

L A
loss =Y Y &ijlog (Vi) (12)
i=1 j=1

where &;; is set to 1 if video V; contains action instances
of the j-th category, and to O otherwise, L is the number
of training videos. If a video contains action instances from
multiple classes, we first normalize the label vector ¢ with its
l1-norm [60], i.e. € = &/||€]|1 , which is then used to compute
cross-entropy loss.

IV. EXPERIMENTS

In this section, we present our experimental results, perfor-
mance comparison with state-of-the-art methods, and ablation
studies.

A. Implementation details

We train two DFP-VSAM networks with identical archi-
tectures for RGB and optical flow, separately. We generate
video clips by sliding a temporal window of 64 frames with
stride 32, then they are resized to have a tensor size of
64 x 224 x 224 x 3 for RGB and 64 x 224 x 224 x 2 for optical
flow. We load the video clips into the pre-trained 13D network
to extract the spatio-temporal feature maps of the last mixed



concatenated layer, which produces 8 x 7 x 7 x 1024 feature
maps, to feed into our DFP-VSAM. The parameters of our
DFP-VSAM are learned with Adam optimizer [61] with the
minibatch size of 32 samples. Our DFP learns spatial attention
weights w(®), temporal attention weights w(*), and channel-
wise w(® attention weights to get spatially, temporally, and
channel-wisely attentional-pooled feature vectors, respectively,
which are further sent to VSAM that learns class-specific
attention weights (u) and class-agnostic (v) attention weights
to compute the video-level classification scores. The weights
of our DFP and VSAM are initialized by Xavier method [62].
Keras with the Tensorflow backend is used to implement our
network.

B. Action Recognition from Untrimmed Videos

1) Dataset: We use THUMOS14 [31] and ActivityNetl.2
[63] datasets to evaluate the performance of our network on
the problem of action recognition from untrimmed videos.

THUMOS14 [31]: This dataset has 101 action classes
for the action recognition task from untrimmed videos. It is
composed of four parts: training data, validation data, testing
data, and background data. The entire UCF101 [30] action
dataset is used for training, which contains 101 human action
categories with 13,320 temporally trimmed videos in total.
The validation set has 1010 temporally untrimmed videos. The
background set has 2500 untrimmed videos, and the testing
set is composed of 1574 temporally untrimmed videos. Some
videos in the testing set may contain one or multiple instances
from one or multiple action classes, and some videos may not
include any actions from the 101 classes. It should be noted
that for the weakly-supervised setting, we do not use the
trimmed training dataset in our experiment. Instead, we
use the untrimmed validation set (1010 untrimmed videos) as
the training set for weakly-supervised learning, with the same
configuration as [52], [53].

ActivityNet1.2 [63]: The ActivityNetl.2 dataset covers 100
action classes, which has temporal boundary annotations for
4819 untrimmed videos for training, 2383 untrimmed videos
for validation, and 2480 untrimmed videos for testing. Since
the labels of the testing set are withheld, following the rules
in the literature [52], [53], we use the training set without
using the temporal annotations to train our network in a
weakly-supervised way and validation set for the evaluation.

Evaluation metrics: For action recognition, we follow the
standard evaluation protocol based on Mean Average Precision
(mAP). First, we use interpolated Average Precision (AP) as
the official measure for evaluating the results on each action
class. Then, Mean Average Precision (mAP) is used to evaluate
the performance of action recognition on this dataset. The
evaluation is conducted using the evaluation code for the action
recognition task provided by the corresponding datasets.

2) Comparison with the state-of-the-art: In this subsec-
tion, we compare the performance of our proposed DFP-
VSAM with other state-of-the-art methods on THUMOS14
and ActivityNetl.2 datasets.

THUMOS14: We compare the performance of our DFP-
VSAM with the performance of other state-of-the-art methods

TABLE I
MAP ON THUMOS 14. WEAK SUPERVISION INDICATES THAT THE
ALGORITHM USES ONLY UNTRIMMED VIDEOS FROM VALIDATION SET
OF THUMOS 14 FOR TRAINING, WHILE FULL SUPERVISION MEANS
THAT THE ALGORITHM USES BOTH UNTRIMMED VIDEOS FROM
VALIDATION SET AND TRIMMED VIDEOS FROM TRAINING SET OF
THUMOS 14 FOR TRAINING.

[ Supervision | Method | Feature | THUMOS14 |
Weak TSN [16] BN-Inception | 68.5
Weak UntrimmedNet [52] BN-Inception | 74.2
Weak DFP-VSAM (Ours) BN-Inception | 75.8
Weak W-TALC [53] 13D 85.6
Weak DFP-VSAM (Ours) 13D 86.9
Full EMV + RGB [64] - 61.5
Full IDT + FV [10] - 66.1
Full Object + Motion [65] | - 71.6
Full STAN [55] - 77.3
Full TSN [16] BN-Inception | 78.5
Full UntrimmedNet [52] BN-Inception | 82.2
Full DFP-VSAM (Ours) BN-Inception | 83.7

[ Full [ DFP-VSAM (Ours) [ 13D [ 88.5

TABLE 11
ACTION RECOGNITION PERFORMANCE COMPARISON (MAP) OF OUR
DFP-VSAM WITH STATE-OF-THE-ART METHODS ON THE UNTRIMMED
DATASET OF ACTIVITYNET1.2.

[ Method | Feature [ ActivityNet1.2 ]
IDT + FV [10] - 66.5
Two Stream [15] - 71.9
C3D [19] - 74.1
TSN [16] BN-Inception | 88.8
UntrimmedNet [52] | BN-Inception | 87.7
DFP-VSAM (Ours) | BN-Inception | 89.9
W-TALC [53] 13D 93.2
DFP-VSAM (Ours) | I3D 94.3

on THUMOS14 dataset. Regarding the level of supervision,
we separate the methods into two categories: (i) weak supervi-
sion: only use untrimmed validation videos from THUMOS 14
for training; and (ii) full supervision: use both untrimmed
validation videos from THUMOS14 and trimmed videos from
UCF101 for training. We compare with recent successful
action recognition methods, which previously achieved the
state-of-the-art performance on THUMOS14, including Tem-
poral Segment Networks (TSN) [16], UntrimmedNet [52], W-
TALC [53], EMV + RGB [64], IDT + FV [10], Object +
Motion [65], and STAN [55]. The methods are also grouped
by choice of the feature extractor: BN-Inception [16] and
I3D [35]. It should be noted that since the BN-Inception
network is a 2D CNN based network, the convolutional feature
maps contain spatial and channel-wise information. Therefore,
we consider the spatial and channel-wise attentional pooling
of our DFP to get the attentionally-pooled feature vectors,
which are then passed through the VSAM. The numerical
results are summarized in Table [. Our network outperforms
all these previous methods and establishes a new state-of-
the-art on both weakly-supervised and fully-supervised action
recognition on the challenging THUMOS 14, regardless of the
feature extractor network.

ActivityNet1.2: In Table 1], the classification performance
(mAP) of our DFP-VSAM on ActivityNetl.2 is reported,



TABLE III
PERFORMANCE OF OUR NETWORK REGARDING TO THE NUMBER OF
VIDEO SEGMENTS (N) ON THUMOS14 AND ACTIVITYNET1.2 DATASETS.

Number of video segments (N) | THUMOSI14 | ActivityNetl.2
5 85.0 93.2
10 85.6 93.7
15 86.4 94.0
20 86.9 9.3
25 86.3 94.1
Flexible 86.3 93.9
TABLE IV

PERFORMANCE OF OUR NETWORK FOR DIFFERENT SQUEEZING
OPERATIONS ON THUMOS 14 AND ACTIVITYNET1.2 DATASETS.

Squeezing operation | THUMOSI14 | ActivityNetl.2
Max pooling 85.6 93.8
Average pooling 86.9 94.3

where DFP-VSAM is compared with IDT + FV [10], Two
Stream [15], C3D [19], Temporal Segment Networks (TSN)
[16], UntrimmedNet [52], and WTALC [53]. As shown in
Table II, our algorithm outperforms the other state-of-the-
art methods, and establishes a new state-of-the-art on action
classification on the challenging ActivityNetl.2.

3) Parameter Analysis: In this subsection, we perform the
parameter analysis to determine the important setups of our
approach. We perform the parameter analysis on the number
of video segments, squeezing function and combination factor,
which are selected based on the cross-validation, where we
randomly split the train data into 80:20 for training and
validation sets multiple times, and train multiple models and
choose the one with the best performance of validation set.

Number of video segments: We perform the experiments
for both fixed and flexible number of video segments on
THUMOS14 and ActivityNetl.2 datasets, as shown in Table

. We test the number of video segments per video from 5 to
25 for the fixed number of video segments, while we consider
each video clip as a segment for the flexible number of video
segments. If we consider each video clip as a segment, N
becomes flexible since different videos have different number
of frames and hence different number of video clips. We
achieve the best performance for N = 20 on THUMOS14
and ActivityNetl.2, and we use it as the number of video
segments for the action recognition from untrimmed videos.

Squeezing function: We compared two squeezing functions
to generate spatial (X € RF1**2xf) temporal (Y € R?*7),
and channel-wise (Z € R'*f) feature representations from
the feature maps (U € R¥**1>xk2xfy of a video segment. As

TABLE V
PERFORMANCE OF OUR NETWORK REGARDING TO THE COMBINATION
FACTOR (7 IN EQ.11) ON THUMOS14 AND ACTIVITYNET1.2 DATASETS.

Combination factor (v) | THUMOSI14 | ActivityNetl.2
0.3 84.6 92.8
0.4 86.0 93.5
0.5 86.9 9.3
0.6 86.3 93.9

shown in Table IV, we get the best performance from average
pooling, and we choose it as the squeezing operation.

Combination factor: In Eq.11, a combination factor (v)
is introduced to combine the results from different input
modalities (RGB and OF). The performance of our network
for different +’s is summarized in Table V, and we set v = 0.5
for the action recognition from untrimmed videos.

4) Ablation study: We conduct several analytic experi-
ments to investigate the effect of each component of our
DFP-VSAM network on THUMOS 14 and ActivityNetl.2. As
shown in Table VI, we performed the ablation studies on our
network by comparing nine configurations on three different
inputs (RGB, Optical Flow (OF), and RGB + OF):

(i) Baseline (without any attention): To get a better idea
of the performance of our network, we configure the network
without any attention pipeline as the baseline approach. For
this purpose, first we perform the global average pooling
operation on the spatio-temporal feature map of a video
segment (U € R¥F1xk2XT) o get a feature vector, which
is then processed by a fully-connected layer with softmax
activation to generate the classification scores. Finally, the
predictions from all the video segments are averaged to get
the final video-level label prediction, which gets 77.3% mAP,
70.4% mAP and 80.8% mAP on THUMOSI14, and 87.4%
mAP, 85.1% mAP and 89.1% mAP on ActivityNetl.2 for
RGB, OF and RGB+OF, respectively.

(ii) Spatial attention: We apply the spatial attentional
pooling mechanism on top of the spatio-temporal feature
maps of video segments to get the spatially-attentional-pooled
feature vectors, and then the class-specific attention to get
the segment-level classification scores, which are finally av-
eraged to get the video-level classification scores. The spatial
attention gets 78.4% mAP, 71.2% mAP and 81.5% mAP on
THUMOS14, and 87.9% mAP, 85.5% mAP and 89.7% mAP
on ActivityNetl.2 for RGB, OF and RGB+OF, respectively.

(iii) Temporal attention: We apply the temporal attentional
pooling mechanism on top of the spatio-temporal feature
maps and class-specific attention to get the segment-level
classification scores, which are averaged to get the video-level
classification scores. The temporal attention achieves 79.1%
mAP, 71.7% mAP and 82.2% mAP on THUMOSI14, and
88.2% mAP, 85.8% mAP and 90.2% mAP on ActivityNetl.2
for RGB, OF and RGB+OF, respectively.

(iv) Channel-wise attention: We apply the channel-wise
attentional pooling mechanism on top of the spatio-temporal
feature maps and class-specific attention to get the segment-
level classification scores, which are then averaged to get the
video-level classification scores. The channel-wise attention
gets 79.3% mAP, 72.1% mAP and 82.6% mAP on THU-
MOS14, and 88.6% mAP, 86.1% mAP and 90.8% mAP on
ActivityNetl.2 for RGB, OF and RGB+OF, respectively.

(v) Spatial attention + VSAM: We use spatial attentional
pooling on top of the spatio-temporal feature maps and VSAM
to get the video-level classification scores, which achieves
81.1% mAP (RGB), 73.2% mAP (OF) and 84.2% mAP
(RGB+OF) on THUMOSI14, and 89.1% mAP (RGB), 86.4%
mAP (OF) and 91.6% mAP (RGB+OF) on ActivityNetl.2.



TABLE VI
ABLATION STUDY OF DIFFERENT ARCHITECTURES ON THE DATASETS OF THUMOS 14 AND ACITIVITYNET1.2. DFP: DISCRIMINATIVE FEATURE
POOLING (SPATIAL ATTENTION + TEMPORAL ATTENTION + CHANNEL-WISE ATTENTION); VSAM: VIDEO SEGMENT ATTENTION MODEL.

Architecture THUMOS 14 ActivityNet1.2
RGB | OF [ RGB +OF | RGB | OF [ RGB + OF
[ Baseline (without any attention) | 77.3 [ 70.4 ] 80.8 [ 874 ] 851 ] 89.1 |
Spatial attention 784 | 71.2 81.5 879 | 855 89.7
Temporal attention 79.1 | 71.7 82.2 88.2 | 85.8 90.2
Channel-wise attention 79.3 72.1 82.6 88.6 86.1 90.8
Spatial attention + VSAM 81.1 | 73.2 84.2 89.1 86.4 91.6
Temporal attention + VSAM 81.6 | 73.7 84.8 89.5 | 86.7 92.1
Channel-wise attention +VSAM 82.5 74.5 85.7 90.1 87.1 92.9
DFP + VSAM (w/o class-agnostic) 83.1 74.7 86.1 91.1 87.7 93.7
DFP + VSAM 839 | 75.1 86.9 91.5 | 88.2 94.3

(vi) Temporal attention + VSAM: We use temporal
attentional pooling on top of the spatio-temporal feature maps
and VSAM to get the video-level classification scores, which
gets 81.6% mAP (RGB), 73.7% mAP (OF) and 84.8% mAP
(RGB+OF) on THUMOSI14, and 89.5% mAP (RGB), 86.7%
mAP (OF) and 92.1% mAP (RGB+OF) on ActivityNetl.2.

(vii) Channel-wise attention + VSAM: We apply channel-
wise attentional pooling on top of the spatio-temporal feature
maps and VSAM to get the classification scores, which gets
82.5% mAP (RGB), 74.5% mAP (OF) and 85.7% mAP
(RGB+OF) on THUMOSI14, and 90.1% mAP (RGB), 87.1%
mAP (OF) and 92.9% mAP (RGB+OF) on ActivityNetl.2.

(viii) DFP + VSAM without class-agnostic: We apply DFP
that integrates spatial, temporal, and channel-wise attentional
pooling on top of the spatio-temporal feature maps, and then
the VSAM without class-agnostic attention, which gets 83.1%
mAP, 74.7% mAP and 86.1% mAP on THUMOSI4, and
91.1% mAP, 87.7% mAP and 93.7% mAP on ActivityNetl.2
for RGB, OF and RGB+OF, respectively.

(ix) DFP + VSAM: We get the best performance (83.9%
mAP (RGB), 75.1% mAP (OF) and 86.9% mAP (RGB+OF)
on THUMOS14, and 91.5% mAP (RGB), 88.2% mAP (OF)
and 94.3% mAP (RGB+OF) on ActivityNetl.2) by applying
the DFP with VSAM that contains both class-agnostic and
class-specific attention.

Table summarizes the results in four aspects: (1) the
spatial/temporal/channel-wise attention improves the perfor-
mance compared to the baseline approach; (2) the VSAM on
top of different pooling further improves the performance; (3)
over all the nine configurations, the combination of RGB and
OF beats the performance of using a single input modality; and
(4) our DFP with VSAM that contains both class-agnostic and
class-specific attention achieves the best performance.

C. Action Recognition from Trimmed Videos

We also evaluate our framework on trimmed video datasets
to verify its effectiveness.

1) Datasets: We use HMDB51, UCF101 and HOLLY-
WOOD?2 to demonstrate that our network can recognize ac-
tions from trimmed videos.

HMDB51 [29]: HMDB51 (Human Motion Database) con-
tains 6766 realistic videos from 51 action classes. The dataset
is challenging, since it has diverse background contexts and

variations in motion pattern. HMDBS51 provides three train-test
splits, each with 3570 train videos (70 per action class) and
1530 test videos (30 per action class). Evaluation is performed
using average classification accuracy over three splits.

UCF101 [30]: UCF101 dataset includes 101 action classes.
UCF101 is composed of about 13320 trimmed videos down-
loaded from YouTube which contain challenges such as poor
lighting, cluttered background and severe camera motion.
UCF101 dataset provides three splits of training/testing data,
and the performance is measured by mean classification accu-
racy across the splits.

HOLLYWOOD2 [66]: HOLLYWOOD?2 dataset has 1707
videos labeled with 12 human action classes collected from
movies. These videos are labeled with 12 classes of human
actions. Some videos contain multiple action instances. The
training set has 823 videos and the testing set has 884 videos.
Evaluation is performed using mean Average Precision (mAP).

2) Comparison with state-of-the-art: In this subsection,
we report the performance of our DFP-VSAM on HMDBS5I,
UCF101 and HOLLYWOOQOD?2 datasets, and also compare the
results with state-of-the-art methods.

HMDBS1: We compare the performance of our network
(DFP-VSAM) with the performance of other state-of-the-art
methods on HMDBS51 dataset. The results are summarized in
Table VII, where we compare our method with both traditional
approaches and deep learning based approaches. The tradi-
tional approaches include Improved Dense Trajectories with
Fisher Vector (IDT + FV) [10], VideoDarwin [67], and Rank
pooling with trajectory features (RankPool + IDT) [68], while
the deep learning based approaches include TSN [16], Two-
stream FCAN [17], Attentional pooling [28], Interpretable
attention [58], RSTAN + IDT-FV [69], Two-stream I3D [35],
SVM pooling with I3D (SVMP + I3D) [70], DTPP [71], LGD-
3D Two-stream [41]. As shown in Table , our proposed
Discriminative Feature Pooling and Video Segment Attention
Model (DFP-VSAM) outperforms the other state-of-the-art
methods on HMDBS51 (over three splits) dataset.

UCF101: In Table , the average classification accuracy
on the three testing splits of UCF101 of our DFP-VSAM is
reported, where DFP-VSAM is compared with Two-stream
networks [15], LRCN [22], ST-ResNet + IDT [37], C3D [19],
STAN [55], TSN [16], RSTAN + IDT-FV [69], Two-strem 13D
[35], DTTP [71], and LGD-3D Two-stream [41]. Our proposed



TABLE VII
COMPARISON WITH OTHER STATE-OF-THE-ART METHODS ON THE
TRIMMED DATASET OF HMDBS51.

Method Pretraining HMDB51
IDT + FV [10] - 57.2
VideoDrawin [67] - 63.7
RankPool + IDT [68] - 66.9
TSN [16] ImageNet 69.4
Two-stream FCAN [17] - 68.2
Attenional pooling [28] - 52.2
Interpretable attention [58] | - 54.4
RSTAN + IDT-FV [69] - 79.9
Two-stream I3D [35] ImageNet+Kinetics-400 | 80.7
SVMP + I3D [70] ImageNet+Kinetics-400 | 81.3
DTPP [71] - 82.1
LGD-3D Two-stream [41] ImageNet+Kinetics-600 | 80.5
DFP-VSAM (Ours) ImageNet+Kinetics-400 | 82.4

TABLE VIII
COMPARISON WITH OTHER STATE-OF-THE-ART METHODS ON THE
TRIMMED DATASET OF UCF101.

Method pretraining UCF101
Two-stream networks [15] ImageNet 88.0
LRCN [22] - 82.9
ST-ResNet + IDT [37] - 94.6
Interpretable attention [58] | - 87.1
C3D (3 nets) [19] Sports-1M 90.4
Two-stream FCAN [17] - 934
STAN [55] - 93.6
TSN [16] ImageNet 94.2
RSTAN + IDT-FV [69] - 95.1
Two-stream I3D [35] ImageNet+Kinetics-400 | 98.0
DTPP [71] - 98.0
LGD-3D Two-stream [41] ImageNet+Kinetics-600 | 98.2
DFP-VSAM (Ours) ImageNet+Kinetics-400 | 98.0

DFP-VSAM outperforms most of the existing methods. Our
DFP-VSAM is on par with Two-stream 13D [35] and DTPP
[71] on UCF101, but exceeds them on HMDBS51 by 1.7% and
0.3%, respectively, as shown in Table . On UCF101, the
performance of our method (98.0%) is inferior to that of LGD-
3D Two-stream [41] (98.2%). However, the LGD-3D Two-
stream [41] used the pre-trained network, which is trained on
ImageNet+Kinetics-600 dataset and also fine-tuned the pre-
trained network on UCF101, while we achieve the compara-
ble performance without fine-tuning the pre-trained network
(trained on ImageNet+Kinetics-400 dataset) on UCF101.

HOLLYWOOD2: This dataset is small compared to
HMBD51 and UCF101, but it is challenging as some videos
contain multiple action instances. We train our model on
HOLLYWOOD?2, and compare our performance in Table
As shown in Table , our method achieves a significant
boost in performance and establishes a new state-of-the-art
on HOLLYWOOD?2 dataset.

3) Parameter Analysis: We perform the parameter analysis
to see the performance of our network regarding to the number

TABLE IX
COMPARISON WITH OTHER STATE-OF-THE-ART METHODS ON THE
TRIMMED DATASET OF HOLLYWOOD?2.

Method HOLLYWOOD?2 (mAP)
IDT + FV [10] 64.3
VideoDrawin [67] 73.7
RankPool + IDT [68] 76.7
Two-stream FCAN [17] 78.4
DFP-VSAM (Ours) 84.8

TABLE X
PERFORMANCE OF OUR NETWORK REGARDING TO THE NUMBER OF
VIDEO SEGMENTS (N) oN HMDBS51 (spLIT-1), UCF101 (SPLIT-1) AND
HOLLYWOOD?2 DATASETS.

N | HMDB51 | UCF101 | HOLLYWOOD?2
2 | 812 97.4 83.5
3 | 81.6 97.6 84.1
4 | 821 97.9 84.5
5 | 82.6 98.0 84.8
6 | 81.3 97.8 84.4
TABLE XI

PERFORMANCE OF OUR NETWORK FOR DIFFERENT SQUEEZING
OPERATIONS ON HMDBS51 (spLIT-1), UCF101 (SPLIT-1) AND
HOLLYWOOD2 DATASETS.

Squeezing operation | HMDBS51 | UCF101 | HOLLYWOOD2
Max pooling 81.4 97.8 82.7
Average pooling 82.6 98.0 84.8

of video segments (IV), different squeezing operations, and
different combination factors (y) on HMDB51, UCF101 and
HOLLYWOOD?2 datasets.

Unlike untrimmed videos in THUMOSI4 and Activi-
tyNetl.2, trimmed videos in HMDBS51, UCF101 and HOL-
LYWOOD?2 are shorter in time duration. Therefore, we test
the number of video segments per video from 2 to 6 for
HMDB51, UCF101 and HOLLYWOOD?2. As shown in Table

, we achieve the best performance for N = 5 on HMDBS51,
UCF101 and HOLLYWOOD?2, and we use it as the number
of video segments.

The performance of our network for different squeezing op-
erations on HMDBS51, UCF101 and HOLLYWOOD?2 datasets
is summarized in Table XI. We get the best performance from
average pooling, and we choose it as the squeezing operation
for the action recognition from trimmed videos.

The performance of our network regarding to the combina-
tion factors () on HMDBS51, UCF101 and HOLLYWOOD?2
is summarized in Table XII. We achieve the best performance
for v = 0.5.

4) Ablation Study: The performance of our network for
different configurations on HMDBS51, UCF101 and HOL-
LYWOOD?2 datasets is summarized in Table . The first
configuration in Table shows the results of the base-
line approach without any attention pipeline. The second set
in Table shows the performance of different pooling
mechanisms, which includes the performance of individual
spatial, temporal, and channel-wise attentional pooling. All
the individual spatial, temporal, and channel-wise attentional

TABLE XII
PERFORMANCE OF OUR NETWORK REGARDING TO THE COMBINATION
FACTOR (v IN EQ.11) oN HMDBS51 (spLIT-1), UCF101 (SPLIT-1) AND
HOLLYWOOD2 DATASETS.

[y [ HMDB5I | UCFIOI | HOLLYWOOD? |
03 | 813 97.7 83.7
04 | 819 97.9 84.2
05 | 826 98.0 84.8
0.6 | 82.1 97.8 84.5
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TABLE XIII
ABLATION STUDY OF DIFFERENT ARCHITECTURES ON THE DATASETS OF HMDBS51 (SpLiT-1), UCF101 (SPLIT-1) AND HOLLYWOOD?2. DFP:
DISCRIMINATIVE FEATURE POOLING (SPATIAL ATTENTION+TEMPORAL ATTENTION+CHANNEL-WISE ATTENTION); VSAM: VIDEO SEGMENT
ATTENTION MODEL.

Architecture HMDB51 UCF101 HOLLYWOOD?2
RGB | OF | RGB + OF | RGB | OF | RGB + OF | RGB | OF | RGB ¥ OF
[ Baseline (without any attention) [ 704 [ 72.1 | 75.6 [ 942 1955 ] 96.7 [ 716 T 743 ] 78.8 |
Spatial attention 71.1 72.9 76.8 944 | 95.6 96.9 72.1 75.7 80.1
Temporal attention 71.7 | 73.5 71.3 945 | 95.8 97.0 727 | 76.4 80.6
Channel-wise attention 72.8 | 74.6 78.7 94.8 | 96.0 97.2 735 | 71.6 81.4
Spatial attention + VSAM 744 | 759 80.2 95.1 96.1 97.5 743 | 78.1 82.1
Temporal attention + VSAM 74.7 | 76.3 80.6 953 | 96.4 97.7 75.1 | 78.8 82.7
Channel-wise attention +VSAM 754 | 77.1 81.1 954 | 96.6 97.8 76.7 | 80.3 83.4
DPF + VSAM (w/o class-agnostic) | 75.6 | 77.4 81.5 95.6 | 96.8 97.9 77.1 80.8 83.9
DFP + VSAM 771 | 79.5 82.6 95.8 | 96.9 98.0 78.2 | 81.7 84.8
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Fig. 8. Visualization of class-specific and class-agnostic scores on test samples (untrlmmed v1de0) of THUMOS14. The bar graph represents the scores.

These videos contain two different action classes “cricket shot”

related to the corresponding action classes. For seg-20 of video-2, both class-specific scores of “cricket shot”

and “cricket bowling”. The class-specific scores are high for the video segments that are

and “cricket bowling” are high, as this video

segment contains two actions in the same segment. The most representative video segments are with the high class-agnostic scores, while the less or not

relevant video segments are with the low class-agnostic scores.

pooling improve the performance, compared to the baseline
approach. The third set shows the effect of VSAM on top
of different pooling mechanisms, which further improves the
performance. The combination of RGB and OF is helpful
compared to the single input modality. The last set in Table
XIII shows the effect of class-agnostic attention in VSAM,
where our DFP with VSAM that contains both class-agnostic
and class-specific attention achieves the best performance.

D. Qualitative analysis

Some multi-label untrimmed videos are visualized in Fig.
8, which contain instances of two different actions (“cricket
shot” and “cricket bowling”) with unrelated video segments.
Although “cricket shot” and “cricket bowling” are two differ-
ent action classes, they share the similar background features
and these two actions generally co-occur in videos. Inspite of

these challenges, our DFP-VSAM can find the fine details to
classify the two actions (shown by class-specific scores), and
separate the video segments related to the actions from other
unrelated ones (shown by the class-agnostic scores).

We also visualize the spatial attention in the DFP on some
randomly selected test samples of the “jump,” “hug,” and
“drink,” actions from HMDBS51 dataset, which represent ac-
tions by human-alone, human-human interaction, and human-
object interaction, respectively. From the first two videos
(video-1 and video-2) in Fig. 9, we see that the model
attempts to focus on the person performing jump to recognize
the “jump” action. The second row of Fig. 9 shows the
example belonging to the “hug” action from two different
videos (video-3 and video-4). It appears that the videos contain
multiple persons, and the model correctly predicts that a hug
is going to take place and attempts to focus on the region



Fig. 9. Visualization of our spatial attention over time. Our network
learns to look at the relevant parts where the action of interest is being
performed. The three rows represent “jump” (human-alone), “hug” (human-
human interaction) and “drink” (human-object interaction), respectively.

between two persons, where the action of interest is performed
over time. Finally, the third row of Fig. 9 shows the example
of the “drink,” action from two different videos (video-5
and video-6). Although most of the frames of these two
videos contain two persons, our model successfully focuses
on the person performing drink with the object (e.g., glass) to
correctly recognize the “drink” action.

E. Discussions and future works

For video action recognition, particularly on untrimmed
videos, which features of a video segment should get more
attention to highlight the discriminative features related to
the action class is still an open research question. In this
paper, we propose a Discriminative Feature Pooling and a
Video Segment Attention Model (DFP-VSAM), to classify
human actions from videos. During training, only the video-
level labels are given, but which portion of the video contains
which actions is unknown. Intuitively, the spatial, temporal,
and channel-wise features of a video segment obtained from a
3D CNN contain the vital information to effectively recognize
human actions. This motives us to design the Discriminative
Feature Pooling (DFP) that contains spatial, temporal, and
channel-wise attentional pooling in a unified network. The per-
formance improvements from different attentions in our DFP
indicate that the attentional pooling can effectively highlight
the most discriminative features inside a video segment. In
addition to the discriminative features inside a video segment,
which video segment of a long untrimmed video should get
more attention is also another open research question. This
motivates us to design a Video Segment Attention Model
(VSAM) on the whole video. The further improvement in
action recognition performance after applying VSAM on top
of different attentions and DFP indicates that the VSAM
can help highlight the most representative video segments in
videos, particularly in untrimmed videos.

The proposed approach achieved superior action recognition
performances on large-scale untrimmed datasets and medium-
size trimmed datasets. In the future, we will try to test its
performance on the large-scale trimmed datasets. Usually, the
size of the pre-extracted spatio-temporal feature of 3D CNN
is large, which may be problematic for large-scale datasets
due to GPU memory constraints. A possible solution to this
problem may be to design a data-loader, which is iterable over
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the dataset with randomly selected number of samples. The
number of samples will depend on the available GPU mem-
ory. Furthermore, state-of-the-arts on the large-scale trimmed
datasets improved the action recognition performance through
new designs of the backbone CNN network. On the other
hand, since we used a pre-designed backbone CNN network
as a feature extractor and applied our proposed model only on
top of the last convolutional feature maps, we do not access
the lower-level information of the backbone, and without fine-
tuning the backbone network, the higher-level feature map
may not be the best tuned for the action recognition purpose.
Therefore, in the future, we will explore our discriminative
feature pooling on top of different convolutional layers of
the backbone CNN network and finetune or train the network
from the scratch to verify our approach on large-scale trimmed
datasets.

V. CONCLUSIONS

We have introduced a new video-based human action recog-
nition network that integrates Discriminative Feature Pooling
(DFP) with Video Segment Attention Model (VSAM), in
an attempt to address the three main challenges: (1) how
to attentionally pool 3D convolutional feature maps of a
video segment to highlight the most discriminative features
to classify actions; (2) which video segment’s features should
get more attentions to represent an action; and (3) how to train
the network from weakly-labeled untrimmed videos. Evaluated
on four widely benchmarked datasets, our action recognition
network (DFP-VSAM) outperforms the current state-of-the-art
action recognition methods, by learning to look at the relevant
parts where the action of interest is being performed. The
superior performance of the proposed model may be ascribed
to its advantages of the joint design of DFP and VSAM
modules, which are optimized in an end-to-end manner. The
proposed network is also efficient and easy to implement.
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