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II. RELATED WORKS

Deep learning for human action recognition: With the

recent availability of powerful GPUs and after the break-

through in image classification [32] with Convolutional Neural

Networks (CNN) [12], [13], [14], video-based human ac-

tion recognition recently has achieved significant progresses.

Karpathy et al. [33] first designed a multi-resolution CNN

architecture and trained the deep networks on a large-scale

dataset (Sports-1M). CNN-based models for human action

recognition broadly follow three main approaches. (1) Multi-

stream networks [15], [16]: CNNs are trained on multiple

input modalities, such as RGB, optical flow, warped flow etc.

Given a test video, the predictions from all CNNs are fused

to get the final video-level prediction. Simonyan et al. [15]

designed two stream CNNs containing spatial and temporal

networks by exploiting pre-trained models and optical flow

calculation. Wang et al. [16] extended the standard two-stream

[15] by using a much deeper base architecture [34]. (2) 3D

CNN [19], [20], [35], [36]: the pipelines of 3D CNNs are

like those of 2D convolutional networks, but with spatio-

temporal filters. Usually, 3D CNNs take short video clips as

inputs, perform 3D convolution and 3D pooling to extract

spatio-temporal feature maps (e.g., [20], [36]). Tran et al. [19]

investigated 3D CNNs on the realistic and large-scale video

datasets, which are capable of learning the spatio-temporal

information from short video clips. (3) CNN + LSTM (Long

Short Term Memory) [22], [23], [24], [25]: recurrent neural

networks are built on top of CNN features to capture the

long term dynamics for action recognition. Within the three

directions, many algorithms develop techniques to recognize

actions based on existing representation methods [37], [38],

[39], [40], [41], [42], [43]. These algorithms employ neural

networks without using attention mechanisms.

Weakly-supervised learning: Initially, weakly-supervised

learning was effectively used in object detection and recogni-

tion [44], [45], [46]. Recently, several works [47], [48], [49],

[50], [51] tried to adapt weakly-supervised learning methods

into the human action recognition task from videos. Laptev et

al. [48] tried to learn action models, and Duchennel et al. [47]

tried to localize action instances in movies, by leveraging weak

labels such as the movie scripts. But, the movie scripts are

usually aligned with frames so they can provide approximated

temporal annotations of action occurrences, which is not

applicable to the general video-based human action recogni-

tion task. More recently, several works [52], [53] introduced

weakly-supervised action detection and recognition technique

called UntrimmedNet and WTALC, respectively, which did

not use the temporal annotations during training. However,

UntrimmedNet [52] and WTALC [53] are lack of spatial and

channel-wise attention modeling.

Attentional pooling: Attention-based models [17], [26],

[28], [54], [55], [56], [57], [58] employed attentional pooling

operation at the last convolutional layer to dynamically pool

convolutional features instead of the conventional average or

max pooling operation. Sharma et al. [26] proposed a soft

spatial attention-based action recognition model, which learns

to focus selectively on parts of the video frames and classifies

videos after taking a few glimpses. Several spatio-temporal

attention models [54], [55], [56] were proposed for video

captioning and human action recognition. Recently, a pose

regularized attentional pooling method [28] was proposed, as

a plug-in after the last convolutional layer of 2D CNN, for

action recognition from still images and videos. Hu et al.

[27] introduced squeeze and excitation networks, which put

attentions on different feature channels. Most of the previous

attention-based works are either trained from trimmed videos

in a fully-supervised way or from untrimmed videos in a

weakly-supervised way, while our DFP-VSAM can be trained

from both trimmed videos in a fully-supervised way and

untrimmed videos in a weakly-supervised way. Our DFP-

VSAM is different from the previous attention-based works

in a few aspects:

• Applicable for both trimmed and untrimmed videos:

The previous fully-supervised attention-based methods

[17], [26], [28], [58] on the trimmed videos applied

the attention mechanism to look at the relevant parts

in the spatial dimension, which are not applicable for

the untrimmed videos since they cannot suppress the

unrelated video segments. On the other hand, the pre-

vious weakly-supervised attention-based methods [52],

[53] applied only the temporal attention to suppress

the unrelated video segments, but they lack the spatial

and channel-wise attention modeling inside each video

segment. Differently, our DFP-VSAM can be trained

from both trimmed videos in a fully-supervised way and

untrimmed videos in a weakly-supervised way, where the

DFP can pool the most discriminative spatial, temporal,

and channel-wise features of each video segment, while

the VSAM can suppress the unrelated video segments.

• SOTA fully-supervised attention-based methods vs our

method: Most of the previous SOTA fully-supervised

attention-based works [17], [26], [28], [58] only applied

the spatial attention, and did not utilize the temporal and

channel-wise attentions. On the other hand, we utilize all

the three (spatial, temporal, and channel-wise) attentions

to design our DFP to emphasize the critical spatial, tem-

poral, and channel-wise features of each video segment.

Furthermore, the SOTA on trimmed video datasets used

well-tweaked backbone networks for the action recogni-

tion, but our method only uses a pre-trained backbone

network for feature extraction.

• SOTA weakly-supervised attention-based methods vs

our method: After our DFP attentionally pools the

most discriminative spatial, temporal, and channel-wise

features from the feature maps of each video segment,

we further utilize a Video Segment Attention Model

(VSAM), which is more important for action recognition

from untrimmed videos in a weakly-supervised way.

The SOTA weakly-supervised attention-based works [52],

[53] on untrimmed videos applied the temporal attention

on top of the fully-connected layers, while our VSAM

first ensembles the attentionally pooled spatial, temporal,

and channel-wise feature representations from all video

segments and then applies a temporal attention on top
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concatenated layer, which produces 8× 7× 7× 1024 feature

maps, to feed into our DFP-VSAM. The parameters of our

DFP-VSAM are learned with Adam optimizer [61] with the

minibatch size of 32 samples. Our DFP learns spatial attention

weights w
(s), temporal attention weights w

(t), and channel-

wise w
(c) attention weights to get spatially, temporally, and

channel-wisely attentional-pooled feature vectors, respectively,

which are further sent to VSAM that learns class-specific

attention weights (u) and class-agnostic (v) attention weights

to compute the video-level classification scores. The weights

of our DFP and VSAM are initialized by Xavier method [62].

Keras with the Tensorflow backend is used to implement our

network.

B. Action Recognition from Untrimmed Videos

1) Dataset: We use THUMOS14 [31] and ActivityNet1.2

[63] datasets to evaluate the performance of our network on

the problem of action recognition from untrimmed videos.

THUMOS14 [31]: This dataset has 101 action classes

for the action recognition task from untrimmed videos. It is

composed of four parts: training data, validation data, testing

data, and background data. The entire UCF101 [30] action

dataset is used for training, which contains 101 human action

categories with 13,320 temporally trimmed videos in total.

The validation set has 1010 temporally untrimmed videos. The

background set has 2500 untrimmed videos, and the testing

set is composed of 1574 temporally untrimmed videos. Some

videos in the testing set may contain one or multiple instances

from one or multiple action classes, and some videos may not

include any actions from the 101 classes. It should be noted

that for the weakly-supervised setting, we do not use the

trimmed training dataset in our experiment. Instead, we

use the untrimmed validation set (1010 untrimmed videos) as

the training set for weakly-supervised learning, with the same

configuration as [52], [53].

ActivityNet1.2 [63]: The ActivityNet1.2 dataset covers 100

action classes, which has temporal boundary annotations for

4819 untrimmed videos for training, 2383 untrimmed videos

for validation, and 2480 untrimmed videos for testing. Since

the labels of the testing set are withheld, following the rules

in the literature [52], [53], we use the training set without

using the temporal annotations to train our network in a

weakly-supervised way and validation set for the evaluation.

Evaluation metrics: For action recognition, we follow the

standard evaluation protocol based on Mean Average Precision

(mAP). First, we use interpolated Average Precision (AP) as

the official measure for evaluating the results on each action

class. Then, Mean Average Precision (mAP) is used to evaluate

the performance of action recognition on this dataset. The

evaluation is conducted using the evaluation code for the action

recognition task provided by the corresponding datasets.

2) Comparison with the state-of-the-art: In this subsec-

tion, we compare the performance of our proposed DFP-

VSAM with other state-of-the-art methods on THUMOS14

and ActivityNet1.2 datasets.

THUMOS14: We compare the performance of our DFP-

VSAM with the performance of other state-of-the-art methods

TABLE I
MAP ON THUMOS14. WEAK SUPERVISION INDICATES THAT THE

ALGORITHM USES ONLY UNTRIMMED VIDEOS FROM VALIDATION SET

OF THUMOS14 FOR TRAINING, WHILE FULL SUPERVISION MEANS

THAT THE ALGORITHM USES BOTH UNTRIMMED VIDEOS FROM

VALIDATION SET AND TRIMMED VIDEOS FROM TRAINING SET OF

THUMOS14 FOR TRAINING.

Supervision Method Feature THUMOS14

Weak TSN [16] BN-Inception 68.5
Weak UntrimmedNet [52] BN-Inception 74.2
Weak DFP-VSAM (Ours) BN-Inception 75.8

Weak W-TALC [53] I3D 85.6
Weak DFP-VSAM (Ours) I3D 86.9

Full EMV + RGB [64] - 61.5
Full IDT + FV [10] - 66.1
Full Object + Motion [65] - 71.6
Full STAN [55] - 77.3
Full TSN [16] BN-Inception 78.5
Full UntrimmedNet [52] BN-Inception 82.2
Full DFP-VSAM (Ours) BN-Inception 83.7

Full DFP-VSAM (Ours) I3D 88.5

TABLE II
ACTION RECOGNITION PERFORMANCE COMPARISON (MAP) OF OUR

DFP-VSAM WITH STATE-OF-THE-ART METHODS ON THE UNTRIMMED

DATASET OF ACTIVITYNET1.2.

Method Feature ActivityNet1.2

IDT + FV [10] - 66.5
Two Stream [15] - 71.9
C3D [19] - 74.1
TSN [16] BN-Inception 88.8
UntrimmedNet [52] BN-Inception 87.7
DFP-VSAM (Ours) BN-Inception 89.9

W-TALC [53] I3D 93.2
DFP-VSAM (Ours) I3D 94.3

on THUMOS14 dataset. Regarding the level of supervision,

we separate the methods into two categories: (i) weak supervi-

sion: only use untrimmed validation videos from THUMOS14

for training; and (ii) full supervision: use both untrimmed

validation videos from THUMOS14 and trimmed videos from

UCF101 for training. We compare with recent successful

action recognition methods, which previously achieved the

state-of-the-art performance on THUMOS14, including Tem-

poral Segment Networks (TSN) [16], UntrimmedNet [52], W-

TALC [53], EMV + RGB [64], IDT + FV [10], Object +

Motion [65], and STAN [55]. The methods are also grouped

by choice of the feature extractor: BN-Inception [16] and

I3D [35]. It should be noted that since the BN-Inception

network is a 2D CNN based network, the convolutional feature

maps contain spatial and channel-wise information. Therefore,

we consider the spatial and channel-wise attentional pooling

of our DFP to get the attentionally-pooled feature vectors,

which are then passed through the VSAM. The numerical

results are summarized in Table I. Our network outperforms

all these previous methods and establishes a new state-of-

the-art on both weakly-supervised and fully-supervised action

recognition on the challenging THUMOS14, regardless of the

feature extractor network.

ActivityNet1.2: In Table II, the classification performance

(mAP) of our DFP-VSAM on ActivityNet1.2 is reported,
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TABLE III
PERFORMANCE OF OUR NETWORK REGARDING TO THE NUMBER OF

VIDEO SEGMENTS (N) ON THUMOS14 AND ACTIVITYNET1.2 DATASETS.

Number of video segments (N) THUMOS14 ActivityNet1.2

5 85.0 93.2
10 85.6 93.7
15 86.4 94.0
20 86.9 94.3

25 86.3 94.1
Flexible 86.3 93.9

TABLE IV
PERFORMANCE OF OUR NETWORK FOR DIFFERENT SQUEEZING

OPERATIONS ON THUMOS14 AND ACTIVITYNET1.2 DATASETS.

Squeezing operation THUMOS14 ActivityNet1.2

Max pooling 85.6 93.8
Average pooling 86.9 94.3

where DFP-VSAM is compared with IDT + FV [10], Two

Stream [15], C3D [19], Temporal Segment Networks (TSN)

[16], UntrimmedNet [52], and WTALC [53]. As shown in

Table II, our algorithm outperforms the other state-of-the-

art methods, and establishes a new state-of-the-art on action

classification on the challenging ActivityNet1.2.

3) Parameter Analysis: In this subsection, we perform the

parameter analysis to determine the important setups of our

approach. We perform the parameter analysis on the number

of video segments, squeezing function and combination factor,

which are selected based on the cross-validation, where we

randomly split the train data into 80:20 for training and

validation sets multiple times, and train multiple models and

choose the one with the best performance of validation set.

Number of video segments: We perform the experiments

for both fixed and flexible number of video segments on

THUMOS14 and ActivityNet1.2 datasets, as shown in Table

III. We test the number of video segments per video from 5 to

25 for the fixed number of video segments, while we consider

each video clip as a segment for the flexible number of video

segments. If we consider each video clip as a segment, N

becomes flexible since different videos have different number

of frames and hence different number of video clips. We

achieve the best performance for N = 20 on THUMOS14

and ActivityNet1.2, and we use it as the number of video

segments for the action recognition from untrimmed videos.

Squeezing function: We compared two squeezing functions

to generate spatial (X ∈ Rk1×k2×f ), temporal (Y ∈ Rd×f ),

and channel-wise (Z ∈ R1×f ) feature representations from

the feature maps (Ū ∈ Rd×k1×k2×f ) of a video segment. As

TABLE V
PERFORMANCE OF OUR NETWORK REGARDING TO THE COMBINATION

FACTOR (γ IN EQ.11) ON THUMOS14 AND ACTIVITYNET1.2 DATASETS.

Combination factor (γ) THUMOS14 ActivityNet1.2

0.3 84.6 92.8
0.4 86.0 93.5
0.5 86.9 94.3

0.6 86.3 93.9

shown in Table IV, we get the best performance from average

pooling, and we choose it as the squeezing operation.

Combination factor: In Eq.11, a combination factor (γ)

is introduced to combine the results from different input

modalities (RGB and OF). The performance of our network

for different γ’s is summarized in Table V, and we set γ = 0.5
for the action recognition from untrimmed videos.

4) Ablation study: We conduct several analytic experi-

ments to investigate the effect of each component of our

DFP-VSAM network on THUMOS14 and ActivityNet1.2. As

shown in Table VI, we performed the ablation studies on our

network by comparing nine configurations on three different

inputs (RGB, Optical Flow (OF), and RGB + OF):

(i) Baseline (without any attention): To get a better idea

of the performance of our network, we configure the network

without any attention pipeline as the baseline approach. For

this purpose, first we perform the global average pooling

operation on the spatio-temporal feature map of a video

segment (Ū ∈ Rd×k1×k2×f ) to get a feature vector, which

is then processed by a fully-connected layer with softmax

activation to generate the classification scores. Finally, the

predictions from all the video segments are averaged to get

the final video-level label prediction, which gets 77.3% mAP,

70.4% mAP and 80.8% mAP on THUMOS14, and 87.4%

mAP, 85.1% mAP and 89.1% mAP on ActivityNet1.2 for

RGB, OF and RGB+OF, respectively.

(ii) Spatial attention: We apply the spatial attentional

pooling mechanism on top of the spatio-temporal feature

maps of video segments to get the spatially-attentional-pooled

feature vectors, and then the class-specific attention to get

the segment-level classification scores, which are finally av-

eraged to get the video-level classification scores. The spatial

attention gets 78.4% mAP, 71.2% mAP and 81.5% mAP on

THUMOS14, and 87.9% mAP, 85.5% mAP and 89.7% mAP

on ActivityNet1.2 for RGB, OF and RGB+OF, respectively.

(iii) Temporal attention: We apply the temporal attentional

pooling mechanism on top of the spatio-temporal feature

maps and class-specific attention to get the segment-level

classification scores, which are averaged to get the video-level

classification scores. The temporal attention achieves 79.1%

mAP, 71.7% mAP and 82.2% mAP on THUMOS14, and

88.2% mAP, 85.8% mAP and 90.2% mAP on ActivityNet1.2

for RGB, OF and RGB+OF, respectively.

(iv) Channel-wise attention: We apply the channel-wise

attentional pooling mechanism on top of the spatio-temporal

feature maps and class-specific attention to get the segment-

level classification scores, which are then averaged to get the

video-level classification scores. The channel-wise attention

gets 79.3% mAP, 72.1% mAP and 82.6% mAP on THU-

MOS14, and 88.6% mAP, 86.1% mAP and 90.8% mAP on

ActivityNet1.2 for RGB, OF and RGB+OF, respectively.

(v) Spatial attention + VSAM: We use spatial attentional

pooling on top of the spatio-temporal feature maps and VSAM

to get the video-level classification scores, which achieves

81.1% mAP (RGB), 73.2% mAP (OF) and 84.2% mAP

(RGB+OF) on THUMOS14, and 89.1% mAP (RGB), 86.4%

mAP (OF) and 91.6% mAP (RGB+OF) on ActivityNet1.2.
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TABLE VI
ABLATION STUDY OF DIFFERENT ARCHITECTURES ON THE DATASETS OF THUMOS14 AND ACITIVITYNET1.2. DFP: DISCRIMINATIVE FEATURE

POOLING (SPATIAL ATTENTION + TEMPORAL ATTENTION + CHANNEL-WISE ATTENTION); VSAM: VIDEO SEGMENT ATTENTION MODEL.

Architecture
THUMOS14 ActivityNet1.2

RGB OF RGB + OF RGB OF RGB + OF

Baseline (without any attention) 77.3 70.4 80.8 87.4 85.1 89.1

Spatial attention 78.4 71.2 81.5 87.9 85.5 89.7
Temporal attention 79.1 71.7 82.2 88.2 85.8 90.2

Channel-wise attention 79.3 72.1 82.6 88.6 86.1 90.8

Spatial attention + VSAM 81.1 73.2 84.2 89.1 86.4 91.6
Temporal attention + VSAM 81.6 73.7 84.8 89.5 86.7 92.1

Channel-wise attention +VSAM 82.5 74.5 85.7 90.1 87.1 92.9

DFP + VSAM (w/o class-agnostic) 83.1 74.7 86.1 91.1 87.7 93.7
DFP + VSAM 83.9 75.1 86.9 91.5 88.2 94.3

(vi) Temporal attention + VSAM: We use temporal

attentional pooling on top of the spatio-temporal feature maps

and VSAM to get the video-level classification scores, which

gets 81.6% mAP (RGB), 73.7% mAP (OF) and 84.8% mAP

(RGB+OF) on THUMOS14, and 89.5% mAP (RGB), 86.7%

mAP (OF) and 92.1% mAP (RGB+OF) on ActivityNet1.2.

(vii) Channel-wise attention + VSAM: We apply channel-

wise attentional pooling on top of the spatio-temporal feature

maps and VSAM to get the classification scores, which gets

82.5% mAP (RGB), 74.5% mAP (OF) and 85.7% mAP

(RGB+OF) on THUMOS14, and 90.1% mAP (RGB), 87.1%

mAP (OF) and 92.9% mAP (RGB+OF) on ActivityNet1.2.

(viii) DFP + VSAM without class-agnostic: We apply DFP

that integrates spatial, temporal, and channel-wise attentional

pooling on top of the spatio-temporal feature maps, and then

the VSAM without class-agnostic attention, which gets 83.1%

mAP, 74.7% mAP and 86.1% mAP on THUMOS14, and

91.1% mAP, 87.7% mAP and 93.7% mAP on ActivityNet1.2

for RGB, OF and RGB+OF, respectively.

(ix) DFP + VSAM: We get the best performance (83.9%

mAP (RGB), 75.1% mAP (OF) and 86.9% mAP (RGB+OF)

on THUMOS14, and 91.5% mAP (RGB), 88.2% mAP (OF)

and 94.3% mAP (RGB+OF) on ActivityNet1.2) by applying

the DFP with VSAM that contains both class-agnostic and

class-specific attention.

Table VI summarizes the results in four aspects: (1) the

spatial/temporal/channel-wise attention improves the perfor-

mance compared to the baseline approach; (2) the VSAM on

top of different pooling further improves the performance; (3)

over all the nine configurations, the combination of RGB and

OF beats the performance of using a single input modality; and

(4) our DFP with VSAM that contains both class-agnostic and

class-specific attention achieves the best performance.

C. Action Recognition from Trimmed Videos

We also evaluate our framework on trimmed video datasets

to verify its effectiveness.

1) Datasets: We use HMDB51, UCF101 and HOLLY-

WOOD2 to demonstrate that our network can recognize ac-

tions from trimmed videos.

HMDB51 [29]: HMDB51 (Human Motion Database) con-

tains 6766 realistic videos from 51 action classes. The dataset

is challenging, since it has diverse background contexts and

variations in motion pattern. HMDB51 provides three train-test

splits, each with 3570 train videos (70 per action class) and

1530 test videos (30 per action class). Evaluation is performed

using average classification accuracy over three splits.

UCF101 [30]: UCF101 dataset includes 101 action classes.

UCF101 is composed of about 13320 trimmed videos down-

loaded from YouTube which contain challenges such as poor

lighting, cluttered background and severe camera motion.

UCF101 dataset provides three splits of training/testing data,

and the performance is measured by mean classification accu-

racy across the splits.

HOLLYWOOD2 [66]: HOLLYWOOD2 dataset has 1707

videos labeled with 12 human action classes collected from

movies. These videos are labeled with 12 classes of human

actions. Some videos contain multiple action instances. The

training set has 823 videos and the testing set has 884 videos.

Evaluation is performed using mean Average Precision (mAP).

2) Comparison with state-of-the-art: In this subsection,

we report the performance of our DFP-VSAM on HMDB51,

UCF101 and HOLLYWOOD2 datasets, and also compare the

results with state-of-the-art methods.

HMDB51: We compare the performance of our network

(DFP-VSAM) with the performance of other state-of-the-art

methods on HMDB51 dataset. The results are summarized in

Table VII, where we compare our method with both traditional

approaches and deep learning based approaches. The tradi-

tional approaches include Improved Dense Trajectories with

Fisher Vector (IDT + FV) [10], VideoDarwin [67], and Rank

pooling with trajectory features (RankPool + IDT) [68], while

the deep learning based approaches include TSN [16], Two-

stream FCAN [17], Attentional pooling [28], Interpretable

attention [58], RSTAN + IDT-FV [69], Two-stream I3D [35],

SVM pooling with I3D (SVMP + I3D) [70], DTPP [71], LGD-

3D Two-stream [41]. As shown in Table VII, our proposed

Discriminative Feature Pooling and Video Segment Attention

Model (DFP-VSAM) outperforms the other state-of-the-art

methods on HMDB51 (over three splits) dataset.

UCF101: In Table VIII, the average classification accuracy

on the three testing splits of UCF101 of our DFP-VSAM is

reported, where DFP-VSAM is compared with Two-stream

networks [15], LRCN [22], ST-ResNet + IDT [37], C3D [19],

STAN [55], TSN [16], RSTAN + IDT-FV [69], Two-strem I3D

[35], DTTP [71], and LGD-3D Two-stream [41]. Our proposed
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TABLE VII
COMPARISON WITH OTHER STATE-OF-THE-ART METHODS ON THE

TRIMMED DATASET OF HMDB51.

Method Pretraining HMDB51

IDT + FV [10] - 57.2
VideoDrawin [67] - 63.7
RankPool + IDT [68] - 66.9
TSN [16] ImageNet 69.4
Two-stream FCAN [17] - 68.2
Attenional pooling [28] - 52.2
Interpretable attention [58] - 54.4
RSTAN + IDT-FV [69] - 79.9
Two-stream I3D [35] ImageNet+Kinetics-400 80.7
SVMP + I3D [70] ImageNet+Kinetics-400 81.3
DTPP [71] - 82.1
LGD-3D Two-stream [41] ImageNet+Kinetics-600 80.5
DFP-VSAM (Ours) ImageNet+Kinetics-400 82.4

TABLE VIII
COMPARISON WITH OTHER STATE-OF-THE-ART METHODS ON THE

TRIMMED DATASET OF UCF101.

Method pretraining UCF101

Two-stream networks [15] ImageNet 88.0
LRCN [22] - 82.9
ST-ResNet + IDT [37] - 94.6
Interpretable attention [58] - 87.1
C3D (3 nets) [19] Sports-1M 90.4
Two-stream FCAN [17] - 93.4
STAN [55] - 93.6
TSN [16] ImageNet 94.2
RSTAN + IDT-FV [69] - 95.1
Two-stream I3D [35] ImageNet+Kinetics-400 98.0
DTPP [71] - 98.0
LGD-3D Two-stream [41] ImageNet+Kinetics-600 98.2

DFP-VSAM (Ours) ImageNet+Kinetics-400 98.0

DFP-VSAM outperforms most of the existing methods. Our

DFP-VSAM is on par with Two-stream I3D [35] and DTPP

[71] on UCF101, but exceeds them on HMDB51 by 1.7% and

0.3%, respectively, as shown in Table VII. On UCF101, the

performance of our method (98.0%) is inferior to that of LGD-

3D Two-stream [41] (98.2%). However, the LGD-3D Two-

stream [41] used the pre-trained network, which is trained on

ImageNet+Kinetics-600 dataset and also fine-tuned the pre-

trained network on UCF101, while we achieve the compara-

ble performance without fine-tuning the pre-trained network

(trained on ImageNet+Kinetics-400 dataset) on UCF101.

HOLLYWOOD2: This dataset is small compared to

HMBD51 and UCF101, but it is challenging as some videos

contain multiple action instances. We train our model on

HOLLYWOOD2, and compare our performance in Table IX.

As shown in Table IX, our method achieves a significant

boost in performance and establishes a new state-of-the-art

on HOLLYWOOD2 dataset.

3) Parameter Analysis: We perform the parameter analysis

to see the performance of our network regarding to the number

TABLE IX
COMPARISON WITH OTHER STATE-OF-THE-ART METHODS ON THE

TRIMMED DATASET OF HOLLYWOOD2.

Method HOLLYWOOD2 (mAP)

IDT + FV [10] 64.3
VideoDrawin [67] 73.7
RankPool + IDT [68] 76.7
Two-stream FCAN [17] 78.4
DFP-VSAM (Ours) 84.8

TABLE X
PERFORMANCE OF OUR NETWORK REGARDING TO THE NUMBER OF

VIDEO SEGMENTS (N) ON HMDB51 (SPLIT-1), UCF101 (SPLIT-1) AND

HOLLYWOOD2 DATASETS.

N HMDB51 UCF101 HOLLYWOOD2

2 81.2 97.4 83.5
3 81.6 97.6 84.1
4 82.1 97.9 84.5
5 82.6 98.0 84.8

6 81.3 97.8 84.4

TABLE XI
PERFORMANCE OF OUR NETWORK FOR DIFFERENT SQUEEZING

OPERATIONS ON HMDB51 (SPLIT-1), UCF101 (SPLIT-1) AND

HOLLYWOOD2 DATASETS.

Squeezing operation HMDB51 UCF101 HOLLYWOOD2

Max pooling 81.4 97.8 82.7
Average pooling 82.6 98.0 84.8

of video segments (N ), different squeezing operations, and

different combination factors (γ) on HMDB51, UCF101 and

HOLLYWOOD2 datasets.

Unlike untrimmed videos in THUMOS14 and Activi-

tyNet1.2, trimmed videos in HMDB51, UCF101 and HOL-

LYWOOD2 are shorter in time duration. Therefore, we test

the number of video segments per video from 2 to 6 for

HMDB51, UCF101 and HOLLYWOOD2. As shown in Table

X, we achieve the best performance for N = 5 on HMDB51,

UCF101 and HOLLYWOOD2, and we use it as the number

of video segments.

The performance of our network for different squeezing op-

erations on HMDB51, UCF101 and HOLLYWOOD2 datasets

is summarized in Table XI. We get the best performance from

average pooling, and we choose it as the squeezing operation

for the action recognition from trimmed videos.

The performance of our network regarding to the combina-

tion factors (γ) on HMDB51, UCF101 and HOLLYWOOD2

is summarized in Table XII. We achieve the best performance

for γ = 0.5.

4) Ablation Study: The performance of our network for

different configurations on HMDB51, UCF101 and HOL-

LYWOOD2 datasets is summarized in Table XIII. The first

configuration in Table XIII shows the results of the base-

line approach without any attention pipeline. The second set

in Table XIII shows the performance of different pooling

mechanisms, which includes the performance of individual

spatial, temporal, and channel-wise attentional pooling. All

the individual spatial, temporal, and channel-wise attentional

TABLE XII
PERFORMANCE OF OUR NETWORK REGARDING TO THE COMBINATION

FACTOR (γ IN EQ.11) ON HMDB51 (SPLIT-1), UCF101 (SPLIT-1) AND

HOLLYWOOD2 DATASETS.

γ HMDB51 UCF101 HOLLYWOOD2

0.3 81.3 97.7 83.7
0.4 81.9 97.9 84.2
0.5 82.6 98.0 84.8

0.6 82.1 97.8 84.5
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