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Abstract

This research quantifies the spatiotemporal statistics of composite radar reflec-
tivity in the vicinity of severe thunderstorm reports. By using over 20 years
(1996-2017) of data and 500,000 severe thunderstorm reports, this study pre-
sents the most comprehensive analysis of the mesoscale presentation of radar
reflectivity composites during severe weather events to date. We first present
probability matched mean composites of approximately 5,000 radar images
centred on tornado reports that contain one of three types of manually-labelled
convective storm modes—namely, (a) quasi-linear convective system (QLCS);
(b) cellular; or (c) tropical system. Next, we generate composites for tornado
report data stratified by EF-scale and for four temporal periods during which
notable severe weather events took place. The data are then stratified by haz-
ard, region, season, and time of day. The results show marked spatiotemporal
and intra-hazard variability in radar presentation. In general, cellular convec-
tion is favoured in the Great Plains of the United States, whereas QLCS con-
vection is favoured in the Southeast United States. Night and cool-season
subsets showed a preference for QLCS convection, whereas day and warm-
season subsets showed a preference for cellular convection. These results agree
well with the existing literature and suggest that the data extraction and orga-
nization approach is sound. Because of this, these data will be useful for future
image classification studies in climate and atmospheric sciences—particularly
those involving storm mode classification.
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organizations like the National Oceanic and Atmospheric
Administration's Storm Prediction Center. Examples of

Severe thunderstorm events are responsible for many
weather-related injuries, deaths, and billion-dollar-losses
in the United States (Ashley, 2007; Black and Ashley,
2010; Schoen and Ashley, 2011; Smith and Katz, 2013).
Due to their high-impact nature, reports of these
events—including when and where they occurred—have
been gathered and systematically archived for decades by

how these data are used include storm warning verifica-
tion (Brooks and Correia Jr., 2018), generating hazard cli-
matologies (Brooks et al., 2003; Allen and Tippett, 2015;
Edwards et al., 2018), informing teleconnection relation-
ships (Allen et al., 2015), exploring changes in the spatio-
temporal occurrence of events (Brooks et al., 2014;
Gensini and Brooks, 2018), vulnerability and exposure

Int J Climatol. 2020;1-19.

wileyonlinelibrary.com/journal/joc

© 2020 Royal Meteorological Society | 1


https://orcid.org/0000-0001-9172-4028
mailto:ahaberlie1@lsu.edu
http://wileyonlinelibrary.com/journal/joc

RMetS

HABERLIE ET AL.

analyses (Strader et al., 2017), and environmental ana-
lyses (Thompson et al., 2012). Of particular interest in the
field of severe thunderstorm research has been the auto-
mated identification of convective storm mode (CSM) in
weather radar data through manual (Smith et al., 2012;
Ellis et al., 2019) or automated approaches (Haberlie and
Ashley, 2018; Gagne II et al., 2019; McGovern et al., 2019;
Jergensen et al., 2020).

Weather radar data has been used for decades to iden-
tify CSM (e.g., Fujita, 1965). CSM identification can help
assess the potential severity of an ongoing or imminent
severe weather event (McNulty, 1995; Smith et al., 2012),
and can also be a useful tool for assessing operational
(Snively and Gallus Jr., 2014) and climate model
(Haberlie and Ashley, 2019) performance. The matura-
tion of historical weather radar data archives has allowed
the climatological exploration of radar-derived event
(e.g., thunderstorms, CSM) frequency (Matyas, 2010;
Fabry et al., 2017). For example, mean composite fre-
quency of radar-derived events has been used to explore
the relationship between locations with significant
human-made land use modification and thunderstorm
frequency (Ashley et al., 2012; Haberlie et al., 2015).
Additionally, the millions of radar images generated and
archived since the 1990s have been a great resource for
applied machine learning researchers in the atmospheric
and climate sciences (McGovern et al., 2019), including
projects that train machine learning algorithms to iden-
tify CSM (e.g., Haberlie and Ashley, 2018; Ashley
et al., 2019; Jergensen et al., 2020). However, until now,
there has been no attempt to create a curated dataset of
radar images centred on classifiable “objects.” These
types of datasets are common in the field of machine
learning, and are widely used for comparing the efficacy
of different approaches. For example, the MNIST dataset
(LeCun et al., 1998)—a collection of hand-written
numbers—is publically available and has been referenced
by tens of thousands of papers. Domain-specific examples
include images of galaxies (Lintott et al., 2011) and satel-
lite images centred on tropical systems (Knapp
et al., 2016). This work is the first step in communicating
the general attributes of this novel dataset which can
inform future projects that use these data.

This work seeks to extend the methodology used by
“stationary window” radar analyses by instead centring
the radar images to be composited on locations and times
at which reported thunderstorm hazards occurred. This
moving window approach has been used in previous
work to assess the influence of multiple cities on thun-
derstorm activity (Fabry et al., 2017), generate composites
of current and future heavy rainfall events (Prein
et al., 2017), the successes and failures of machine learn-
ing model predictions (McGovern et al., 2019), and the

strengths and weaknesses of various multi-model averag-
ing approaches on modelled rainfall output (Clark, 2017).
However, those works used 10s or 100 s of “windows”
and did not examine the spatial variability of the compos-
ites. This research expands these results to examine com-
posites using over 500,000 radar images from various
regions, times of the day, seasons, and event magnitudes.
Additionally, it could provide a methodology for commu-
nicating morphological variability and evolution within
events of interest beyond morphological statistics (Zick
and Matyas, 2016; Matyas et al., 2018). Through a moving
window composite analysis, we visualize the spatiotem-
poral patterns in radar reflectivity in the vicinity of severe
thunderstorm events in the conterminous United States
(CONUS). Additionally, we show that the spatial, sea-
sonal, and diurnal composite CSM tendencies match
with those of existing CSM climatologies. This suggests
that the dataset created through this work will be useful
for machine learning applications, and in particular,
CSM identification using image classification algorithms
(LeCun et al., 1998).

2 | DATA AND METHODS

2.1 | Radar data

This study utilizes historical (1996-2017) national reflec-
tivity composite mosaic (2 X ~ 2 km grid spacing) data
called NOWrad,, (The Weather Company). The raw
data, which are integers (0-16) representing 5 dBZ bins
from 0 to 80 dBZ, are sampled at 15-min intervals and
interpolated to a 2 x 2 km (4 km?) equal area grid that
spans the CONUS in a rectangle from approximately
110-65 W and 25-50 N. These data have been used in a
number of climatological studies (Fabry et al., 2017).
Although issues exist within radar datasets, some of these
are reduced in composite reflectivity by using data from
multiple radars (Fabry et al., 2017). We address range-
and terrain-based issues by limiting the study area to
regions with good low-level radar coverage east of the
Rocky Mountains (Figure 1). One important caveat is
that dBZ was used in all calculations, and the values were
not first converted to Z. Although the literature has
argued for both approaches (Lakshmanan, 2012; Warren
and Protat, 2019), these differences will not have a large
influence on the interpretation of the results.

2.2 | Severe weather event data

The Storm Prediction Center's severe report dataset was
used for event selection (SVRGIS; http://www.spc.noaa.
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Study domain (black outline) and data from 1996 to 2017 for (a) severe weather report locations, and annual mean “report

box” frequencies for (b) tornadoes, (c) hail, and (d) wind. The black dashed box in (b-d) represents an example of the extent of a
512 x 512 km “report box” [Colour figure can be viewed at wileyonlinelibrary.com]

gov/gis/svrgis). Although the dataset contains well-
known biases (Allen and Tippett, 2015; Edwards et al.,
2018), no initial filtering is performed. All reports from
1996 to 2017 are cross-referenced with time-indexed
radar reflectivity data to only select event reports that
occurred within 7.5 min of available 15-min radar data.
An additional step subsets the data within the central
and eastern CONUS where event locations are at least
256 km from the edge of the interpolated radar domain
(Figure 1). After the filtering process is completed, over
90% of the original severe reports—24,940 tornado,
247,875 hail, and 275,568 wind—are retained. The large
sample size, cross-referencing with radar data, and no
temporal trend analyses limit the influence of the

biases in the dataset. The starting coordinates
(e.g., “slat,” “slon”) are used to determine the report's
location.

2.3 | Selection of radar data using
filtered SVRGIS reports

For all 548,383 filtered reports, radar data within a 256 by
256 pixel (~512 by ~512 km) box (herein, report box)
around the report's converted grid coordinate are
extracted and saved (Figure 1b-d). This distance was cho-
sen to represent the mesoscale neighbourhood around
each report since all CSMs exist within the meso-gamma
to lower meso-alpha range (Markowski and Richardson,
2011). To examine the accuracy of the process, bulk radar
statistics within 64 km of the report's grid location were
calculated. Over 99% of the events had at least 40 km?
(roughly the size of a convective cell; Miller and
Mote, 2017) of 40 dBZ or greater pixels in the buffer
region. That is, almost all of the filtered reports were near
legitimate (i.e., non-noise) dBZ values commonly
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associated with deep, moist convective precipitation rates
(Parker and Knievel, 2005). These images are used to
generate composites.

2.4 | Archetype generation

To examine the attributes of select CSMs (Gallus Jr
et al., 2008), an initial labelled dataset of 5,156 images
was generated, consisting of: (a) quasi-linear convective
system, or QLCS (n = 2,330), (b) Cellular (n = 2,453),
and (c) Tropical (n = 373) examples. To create this
dataset, images centred on the starting location of tor-
nado reports from 1996 to 2017 were manually assigned
to one of the aforementioned CSMs. Although the classi-
fications are subjective, we followed the guidance of pre-
vious work (e.g., Gallus Jr et al., 2008; Smith et al., 2012;
Ashley et al., 2019; Ellis et al., 2019)—specifically,
(a) QLCSs are identified by noting a linear organization
of pixels >40 dBZ (i.e., at least a 3 to 1 length to width
ratio) with a length of at least 100 km, (b) Cellular cases
are identified by noting a circular organization to the >40
dBZ pixels in the vicinity of the report, and that contigu-
ous circular region is entirely within a 100 x 100 km box
around the report, and (c) Tropical cases are those that
occurred near a HURDAT track (Landsea et al., 2015).
The reports were gathered from the Southern United
States (i.e., Oklahoma, Texas, Arkansas, Louisiana, Mis-
sissippi, Tennessee, Alabama, Florida, Georgia, South
Carolina, and North Carolina).

Probability matched mean (PMM) composites
(Ebert, 2001) are generated to visualize the tendency of
reflectivity shape and intensity across the three CSMs
and temporal periods (Figure 2). The probability matched
approach is used over a simple mean because of the ten-
dency for the latter approach to “smooth out” the large
intensity gradients noted within precipitation rate prod-
ucts (Clark, 2017)—one of which is reflectivity (dBZ).
This approach produces more realistic spatial patterns of
intensity while preserving the shape of the simple mean.
Although this approach has historically been used to
assess forecast skill of accumulated precipitation fields
(Clark, 2017) and simulated reflectivity factor (Surcel
et al., 2014), recent work has used this method to generate
representative examples of subsets using many observed
radar images (McGovern et al., 2019; Lagerquist et al.,
2020). To further illustrate the variability that is captured
within the PMM composites, we first calculated the sums
of the 25th and 75th percentile ranked intensity distribu-
tions within each subset. We then stratify these subsets by
selecting only those images with a ranked intensity distri-
bution sum less than or equal to (greater than or equal to)
the 25th (75th) percentile distribution sums. In this way,

we can visualize the extremes within the subsets, and
communicate the morphological variability therein.

To confirm that the PMM composite images are more
representative than less complex approaches, we com-
pared them to composite images generated by a simple
mean and median using the same radar image subsets.
Specifically, we calculated the ranked reflectivity (dBZ)
found within the composites (i.e., mean, median, and
PMM) and compared those to the median ranked reflec-
tivity for the entire subset (Figure 3). The simple mean
composite image produces much broader areas of lower
reflectivity values (i.e., <15 dBZ) and fails to reproduce
higher reflectivity values (i.e, >15 dBZ) compared to any
given image within the subset. The median composite
image generally produces representative coverage for low
reflectivity values, but, like the simple mean, it fails to
reproduce higher reflectivity values. Ranked reflectivity
from the PMM composite image, however, closely traces
the median reflectivity ranks for all CSMs, suggesting it is
representative of the intensity distribution one would see
within the samples. This is consistent with previous work
that demonstrated the advantages of PMM composites
over the simple ensemble mean of precipitation accumula-
tion, particularly for higher intensity values (Clark, 2017).

The resulting PMM composites suggest that, for all of
the selected tornado reports, the composite generated
using affiliated 25th percentile radar images (Figure 2a)
resemble Cellular CSM, whereas the composite of 75th
percentile images (Figure 2c) resemble QLCS CSM. The
ranks for the first 0 dBZ pixel suggests that the median
coverage of >5 dBZ pixels is around 36%, whereas this
value is 47% for the 75th percentile distribution and 24%
for the 25th percentile distribution (Figure 3a). QLCS
samples (Figure 2d,e,f) tend to exhibit an elongated area
of higher reflectivity values, and this pattern is consistent
for the 25th and the 75th percentile composite images.
The median coverage of non-zero pixels for QLCS images
is around 42%, and the 25th and 75th percentile coverage
are ~33% and ~52%, respectively (Figure 3b). On the
other hand, Cellular examples (Figure 2g,h,i) show some
variability between the 25th percentile images
(Figure 2g) and the 75th percentile images (Figure 2i).
Namely, there is a marked increase in coverage of non-
zero reflectivity values for the 75th percentile images.
This is the result of “cell-in-cluster” cases, which contrast
the “isolated cellular” examples that comprise the 25th
percentile subset. Median, 25th, and 75th percentile cov-
erage of non-zero pixels are approximately 26%, 17%, and
37%, respectively, for Cellular examples (Figure 3c). A
noticeable and ubiquitous difference between the QLCS
and Cellular composites is the lack of 30 dBZ and greater
reflectivity values in the southern two-fifths of the Cellu-
lar composite images. This reflects the non-contiguous
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FIGURE 2 Probability matched mean composites calculated using subsets of reflectivity images centred on manually identified
tornado (> EF1) reports from 1996 to 2017 in the southeast United States organized by convective storm mode. The convective storm modes
depicted are (a, b, ¢) QLCS, cellular, and tropical, (d, e, f) QLCS, (g, h, i) cellular, and (j, k, 1) tropical. Three probability matched mean
composites were generated from each convective storm mode subset, namely: (a, d, g, j) only images with distribution sums <25th percentile
distribution sum, (b, e, h, k) all images, and (c, f, i, 1) only images with distribution sums >75th percentile distribution sum [Colour figure
can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Median ranked intensity (black line) in units of dBZ for all images within each convective storm mode subset, namely
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distribution regions are colour filled [Colour figure can be viewed at wileyonlinelibrary.com]

nature of “cell-in-cluster” CSM and the preference for
tornado formation in “tail-end Charlies,” or supercells
that are on the southern flank of a storm -cluster
(Beveridge et al., 2019). Tropical examples (Figure 2j-1)
generally produce more widespread reflectivity values
compared to Cellular, but have intensities lower than
both QLCS and Cellular samples. Additionally, the

westward offset of lower intensities for Tropical samples,
particularly for the overall composite (Figure 2k) and
75th percentile composite (Figure 2I), matches up well
with the preferred location of tornadoes relative to the
centre of circulation for land falling storms in the CONUS
(Edwards, 2012). Median, 25th, and 75th percentile cover-
age of non-zero pixels for Tropical samples are
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approximately 50%, 39%,
(Figure 3d). Perhaps unsurprisingly, the QLCS/Cellular/
Tropical composite depicted in Figure 2b appears as a
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combination of the QLCS and Cellular composites
(i.e., “mixed mode”), due to their abundance within the
manually labelled data. It is also clear that Tropical
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FIGURE 4 Asin Figure 2, except for images affiliated with tornado reports from (a, b, ¢) 1800 UTC on April 27, 2011 to 0300 UTC on
April 28, 2011 and (d, e, f) 1400 UTC on September 24, 2005 to 0000 UTC on September 26, 2005 and wind reports from (g, h, i) 1300 UTC
on April 4, 2011 to 1100 UTC on April 5, 2011 and (j, k, 1) 1600 UTC on June 29, 2012 to 0600 UTC on June 30, 2012 [Colour figure can be
viewed at wileyonlinelibrary.com|
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samples generally have more non-zero pixels than QLCS
and Cellular examples. However, median > 40 dBZ cover-
age is greater for both QLCS (3.3%) and Cellular (2.2%),
compared to Tropical (1.5%). These PMM composite
archetypes and statistics are reasonable and can be used
to qualitatively assess the CSM tendency within various
subsets of unlabelled images.

3 | UNLABELLED IMAGE
DATASET
3.1 | Composites from notable events

PMM composite images were generated for tornado
reports during notable severe weather events (Figure 4).
Specifically, we generated images for the: (a) April
27, 2011 tornado outbreak (Knupp et al., 2014); (b) 24-25
September 2005 Hurricane Rita tornadoes (Moore and
Dixon, 2011); (c) 4-5 April 2011 serial derecho event
(Corfidi et al., 2016); and (d) June 29, 2012 progressive
derecho event (Corfidi et al., 2016). The purpose of these
analyses is to further communicate the utility of the com-
posites, as well as identify the variability seen within
even the same type of severe weather report. This also
provides further verification that the approach is produc-
ing reasonable results by affording a qualitative compari-
son to the radar presentation during these well-
documented events.

For the April 27, 2011 event, we focused on the early
afternoon to evening period (1800 UTC to 0300 UTC).
This period was chosen for demonstration purposes
because the predominant storm mode for tornado pro-
ducing storms was cellular (Knupp et al., 2014), and this
tendency is clearly illustrated in Figure 4a—c. Specifically,
the pattern shows a strong, high intensity (>50 dBZ),
“kidney-bean-shaped” region within 25 km of the center
of the image (i.e., the location of the storm reports) in the
overall PMM composite (Figure 4b), as well as the 25th
(Figure 4a) and 75th percentile (Figure 4c) composites.
Additionally, the northern half of the composite has
greater coverage of high-intensity pixels, which matches
the regional radar depiction during this event. The vari-
ability between the 25th and 75th percentile images
denote the “isolated cellular” and “cell-in-cluster” events
that occurred during this event, and the overall compos-
ite reflects these tendencies. Similarly, the composite
from the Rita event—where reports were selected from
1400 UTC on September 24, 2005 to 0000 UTC on Sep-
tember 26, 2005—depicts a “bulls-eye” in the center of
the image, but with a contrasting northward (Figure 4d)
and westward preference (Figure 4e,f) of higher pixel cov-
erage. This pattern represents the preferred location of

tornado reports relative to the center of Rita
(Edwards, 2012) and the evolution of this location during
the event. Initially, tornadoes were observed in the upper
right quadrant of the storm, but this region shifted to the
lower right quadrant later in the period. For the wind-
report examples, the squall line that produced a serial
derecho (Corfidi et al., 2016) is clearly resolved within
the 25th percentile (Figure 4g), overall (Figure 4h) and
75th percentile (Figure 4i) composites that include
images from 1300 UTC on April 4, 2011 to 0300 UTC on
April 5, 2011. Only the central part of the images depicts
the classic “quasi-linear” region of high-intensity pixels
associated with intense squall lines due to the shifting
orientation of the squall line across its ~1000 km axis.
Similarly, the progressive derecho event of June 29, 2012
(Figure 4j-1) captures the comparatively more compact
linear structure and trailing-stratiform precipitation that
is typical of the leading-line/trailing-stratiform pattern
(Parker and Johnson, 2000). Similar to the Rita event, the
stratification by percentile appears to capture the initial
cellular structure across the Midwest and the leading-
line/trailing-stratiform structure as it moved to the east
coast later in its life cycle. Again, Figure 5 illustrates that
the PMM approach is more representative of the reflectiv-
ity distribution than the mean or median composite
images for these events. The April 27th 2011 event
(Figure 5a) and the June 2012 derecho both have lower
median coverage of non-zero pixels compared to the Rita
event (Figure 5b) and the progressive derecho event
(Figure 5c). Although there is variability in the orienta-
tion, intensity, and location of CSM structures relative to
storm reports, tendencies in reflectivity patterns are cap-
tured by the composites.

3.2 | Composites stratified by tornado
damage rating

Previous work has shown a strong relationship between
CSM and EF-scale rating (Trapp et al., 2005; Smith
et al., 2012; Ashley et al., 2019). Namely, a Cellular CSM
is most commonly associated with significant (>EF2) to
violent (>EF4) tornadoes. Thus, composites stratified by
EF-scale rating should reflect these findings. For all tor-
nado events considered in this study that were given a
rating (n = 24,850), their associated images were strati-
fied into groups ranging from EF0 to EF5 (Figure 6;
Figure 7). Indeed, the PMM composites show a steady
transition from “mixed mode” QLCS and Cellular CSM
archetypes (Figure 2) for EFO to EF2 (Figure 6) to cellular
for EF3 and EF4 (Figure 7a-f) to isolated cellular for EF5
(Figure 7g-i). Although there is variability within these
composites, there is a clear trend of a reduction in
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FIGURE 5 Asin Figure 3, except for images affiliated with tornado reports from (a) 1800 UTC on April 27, 2011 to 0300 UTC on April
28, 2011 and (b) 1400 UTC on September 24, 2005 to 0000 UTC on September 26, 2005 and wind reports from (c) 1300 UTC on April 4, 2011
to 1100 UTC on April 5, 2011 and (d) 1600 UTC on June 29, 2012 to 0600 UTC on June 30, 2012 [Colour figure can be viewed at

wileyonlinelibrary.com]

reflectivity coverage consistent with a shift from QLCS
to Cellular CSM as EF-scale rating increases (Figure 8).
There is also a marked reduction in the coverage of non-
zero pixels in the “maximum” ranked distribution as
rating increases. More modest reductions within
increasing EF-scale rating are evident in the median,
25th, and 75th percentile non-zero pixel coverage, with

coverage maximizing at EF1 (32%, 21%, and 45%, respec-
tively), and minimizing for EF5s (18%, 12%, and 31%,
respectively). Interestingly, however, even the EF3 and
EF4 composites have areas of mean convective (> 40 dBZ)
reflectivity extending to the north, which suggests the pos-
sibility of more specific CSMs like those proposed by
Smith et al. (2012), namely, cell-in-line and cell-in-cluster,
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FIGURE 6 Asin Figure 2, except for images filtered by EF-scale. Namely, only those images associated with tornadoes rated (a, b, c)
EFO, (d, e, f) EF1, and (g, h, i) EF2 [Colour figure can be viewed at wileyonlinelibrary.com]

in addition to QLCS. This “mixed-mode” is illustrated
by the differences between the 25th (Figure 6a,d,g;
Figure 7a,d) and 75th (Figure 6c,f,i; Figure 7c,f) percen-
tile PMM composite images—specifically, the Cellular
CSM in the 25th percentile images and the QLCS/clus-
tered CSM in the 75th percentile images. The CSMs
depicted in the 75th percentile images are associated
with problematic issues like the highest fatality and
injury rate per tornado (supercell in line; Brotzge
et al., 2013) and lowest probability of detection (QLCS;
Brotzge et al., 2013). These results affirm that even sig-
nificant to violent tornadoes can occur in “messy” or
mixed-mode mesoscale convective scenarios, leading to
reductions in warning efficacy.

3.3 | Spatiotemporal variability of
composites

To facilitate spatial analyses and comparisons, the east-
ern CONUS is organized into 29 512 x 512 km grids and
one ocean control grid (Figure 9). Storm reports are asso-
ciated with a grid using a one-to-one spatial join in
ArcGIS Pro. Next, PMM composites are generated for
each grid by only using images associated with reports
that occur within that grid (Figure 9). For example, the
image plotted within grid 22 (Birmingham) in Figure 9a
is the PMM composite for all images associated with any
severe (tornado, hail, and wind) report that occurred
within that grid cell. All of the PMM composite images
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FIGURE 7 Asin Figure 2, except for those images associated with tornadoes rated (a, b, ¢) EF3, (d, e, f) EF4, and (g, h, i) EF5 [Colour

figure can be viewed at wileyonlinelibrary.com]

have the same scale as the original data. That is, the
PMM composite is inserted onto the 2-km equal area
grid by anchoring the centre of the image on the pixel
closest to the centroid of each grid, and filling out
128 pixels to the north, south, east and west of that cen-
tral pixel. Through this analysis, we can assess the spatial
variability in “typical” radar reflectivity appearance. The
colour map used in the composite figures was chosen to
replicate the typical colour scale used when presenting
weather radar reflectivity. The authors feel that the disad-
vantages of the generally poor colour map choice are bal-
anced by the familiarity experts and non-experts have
with this colour scale.

Marked spatial patterns are illustrated by stratifying
the data into gridded regions. The composites for all
events (Figure 9a), as well as those stratified by hazard
type (Figure 9b-d), show a tendency for radar images to
exhibit a more cellular appearance in the High Plains
with an increasingly QLCS-like appearance in Southeast
CONUS. This pattern is particularly evident within the
tornado composites (Figure 9b). Southern Great Plains
tornado grids (e.g., 14-Wichita and 20-Dallas) match up
well with the cellular archetype depicted in Figure 2g-i,
whereas tornado grids within the Southeast CONUS
(e.g., 21-Little Rock and 22-Birmingham) match with
the QLCS archetype (Figure 2d-f). Conversely, hail
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FIGURE 8 Asin Figure 3, except for (a) EFO, (b) EF1, (c) EF2, (d) EF3, (e) EF4, and (f) EF5 reports [Colour figure can be viewed at

wileyonlinelibrary.com]

composites (Figure 9c) suggest that the preferred storm
mode is predominately cellular. Although, the cells
appear to be more isolated in grids like 13-Denver com-
pared to 16-Nashville. Wind composites (Figure 9d)
show a QLCS-like pattern in the Southeast CONUS, and

a “mixed mode” pattern as depicted in Figure 2b in the
Midwest CONUS. The lack of >5 dBZ to the NW and SE
of severe thunderstorm reports is expected and ubiqui-
tous throughout the composites. The initiation and sus-
tenance of deep, moist convection that produces severe
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2017 that are spatially filtered by grid (1-30) region. A minimum of 10 reports within a grid was necessary to plot the composites. Each box
has the dimensions of 512 x 512 km [Colour figure can be viewed at wileyonlinelibrary.com]

weather requires a lifting mechanism, which is typically
provided by frontal boundaries (McNulty, 1995). To the
NW of the report, this is often an area where cold or dry
air has undercut warm or moist air, and instability has
decreased. To the SE of the report, this area often experi-
ences a capping inversion and air parcels are spatially
displaced from an adequate lifting mechanism.
Extending the analysis to warm (April-September)
and cool (October-March) seasons reveals temporal vari-
ability within the grids (Figure 10). In general, the spatial
coverage of the “mean storm” either increases or
becomes more elongated during the cool season, particu-
larly for tornado and wind events. Summer tornado
events produce composites most similar to the cellular
archetype (Figure 2g-i) in the Great Plains and Midwest

CONUS, and an increasing QLCS-like pattern as one
moves into the Southeast CONUS (Figure 10a). Focusing
on the eastward transition between grids 19-Amarillo,
20-Dallas, 21-Little Rock, and 22-Birmingham, there is a
clear evolution from cellular to QLCS-like composites. In
contrast, the eastward transition from 7-Casper, 8-Sioux
Falls, 9-Des Moines, and 10-Chicago shows a more subtle
cellular to QLCS-like transition, potentially caused by
more compact QLCSs or a more balanced mix of Cellular
and QLCS structures compared to the Southeast. Perhaps
not surprisingly, 27-Baton Rouge, 28-Mobile, and
29-Orlando, exhibit a Tropical-like structure in their
warm-season tornado composites. These CSMs shift
towards QLCS-like structures in the cool season
(Figure 10b), and this change is ubiquitous across the
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grids. This shift is not as obvious for hail events
(Figure 10c-d), and although a clear elongation of the
spatial coverage of reflectivity intensity is noted, the best
qualitative fit for the grids would still be the cellular

archetype in Figure 2g-i. Similar to the tornado compos-
ites, the composites for wind events shift from a cellular
or mixed-mode pattern in the warm season to a QLCS
pattern in the cool season (Figure 10e,f). The seasonal
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dichotomy could be explained by a balance between
instability and convective inhibition. Convective (>40
dBZ) reflectivity values are often associated with vigorous
deep, moist convection (Ashley et al., 2012), and environ-
mental conditions that support such convection have
favourable thermodynamics and kinematics (McNulty,
1995). However, the utilization of these ingredients by
potential storms is conditioned on other factors such as
the strength of a capping inversion and forcing for ascent.
During the spring and early summer, a large portion of
the study area experiences supportive thermodynamics,
kinematics, and conditional environmental factors that
lead to the frequent development of widespread convec-
tion (Doswell, 2001; Gensini and Ashley, 2011). Moving
into the late summer and early fall, stronger capping
inversions and weaker forcing can limit the coverage of
convection. The result within the composites is the con-
traction of the “mean storms” due to the limited coverage
of non-zero reflectivity values as a response to increas-
ingly localized and less widespread supportive environ-
ments during this period.

We stratified the reports into two subsets to examine
the influence time of day had on the composites, namely:
(a) an early afternoon and early evening subset
(1700-0500 UTC); and (b) a night and morning subset
(0500-1700 UTC). The limitations of choosing these sub-
sets is that the amount of daylight hours, as well as local
noon and local midnight, differs over the course of a year
and within the study area. Thus, these periods should be
considered only roughly representative of the typical time
periods in which initial convection develops (early after-
noon and evening) and when upscale growth has
occurred (night and morning) based on previous work
(Carbone and Tuttle, 2008). Similar patterns to the sea-
sonal analyses emerge from the diurnally-stratified com-
posites (Figure 11). In particular, the transition from the
afternoon and evening subset to the night and morning
subset results in an increased area covered by the 5 dBZ
contour for all of the hazard types and most of the grids.
Tornado composites (Figure 1la,b) exhibit a marked
expansion in spatial coverage during the night and morn-
ing period, including higher intensity contours that
denote regions of convection (i.e., 40 dBZ). Some of the
more dramatic diurnal increases in reflectivity coverage
includes 9-Des Moines and 15-St. Louis. Hail events
(Figure 11c,d) experience an expansion in spatial cover-
age and a change in how the most intense reflectivities
are oriented relative to the areas of weaker mean reflec-
tivity during the night and morning period. Specifically,
areas of higher intensity are on the southern flank of the
5 dBZ contour region, whereas the afternoon to evening
composites have this area on the southwest flank, and
this pattern is particularly evident in grids 9-Des Moines

and 10-Chicago. Based on when hail typically occurs in
this area (i.e., late spring and early summer), it is possible
that this signal is related to the nocturnal low level jet
interacting with frontal boundaries (Walters et al., 2008).
Wind composites similarly show an expansion of weaker
reflectivity (=5 dBZ) and convective reflectivity (>40
dBZ) for many of the grids in the night and morning sub-
sets (Figure 11e,f). This strong signal suggests a prefer-
ence for QLCS-like structures over cellular structures
during this time of the day. Although peak heating
occurs during the afternoon, the upscale growth of orga-
nized convection associated with severe thunderstorm
events is largely relegated to the overnight hours, particu-
larly during the summer (Carbone and Tuttle, 2008;
Geerts et al., 2017). The merging and subsequent rein-
forcement of cold pools as an event matures results in the
mesoscale area favourable for lifting parcels to the level
of free convection to increase from the meso-gamma
scale (~10km) to the meso-beta scale (~100 km;
Coniglio et al., 2010). Additionally, supportive thermody-
namics and kinematics that develop exclusively during
the overnight hours allows the development of convec-
tion that is displaced from surface frontal boundaries
(Walters et al., 2008; Weckwerth et al., 2019). The overall
effect of these factors results in the increase in coverage
of convection during the overnight and morning period.

4 | DISCUSSION AND
CONCLUSIONS

This study used a moving window composite analysis to
illustrate the climatological tendency of radar-derived
spatial patterns affiliated with recorded severe thunder-
storm hazards in the eastern two-thirds of the CONUS.
Three CSMs were chosen to illustrate the variability
between composites generated for approximately 5,000
manually identified QLCS, Cellular, and Tropical sam-
ples. For unlabelled tornado samples, the images were
first stratified by F/EF scale to examine the CSM ten-
dency within the resulting composites. To examine the
spatiotemporal variability of the composites, over 500,000
images were used to create composites for 30 “report
box” grids over the eastern CONUS. This analysis
informed an exploration of not only the regional variabil-
ity of these composites, but also the seasonal and diurnal
variability therein.

The results affirm previous work that examined CSM
within the CONUS (Smith et al., 2012; Ashley
et al., 2019). In particular, strong tornadoes were associ-
ated with a “Cellular” CSM tendency, whereas weaker
tornadoes were associated with “QLCS” or mixed Cellu-
lar/QLCS CSM tendency. CSM tendency within Great
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Plains grids was Cellular, whereas the tendency for
Southeast CONUS grids was QLCS or mixed Cellular/
QLCS. Day and warm-season events preferred a Cellular
CSM, whereas cool-season and night events preferred
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Future work using these data should explore ways of
using semi-supervised (Zhu and Goldberg, 2009) machine
learning classification techniques to assign CSM labels to
the 500,000 extracted images. A large dataset of labelled
images would be useful to the meteorology and climate
research community, particularly those who are engaged
in image classification applications. For example, these
data can populate an “image search engine” that can per-
form image retrieval tasks (Guo et al., 2016). Users of
the image search engine would then be able to query the
severe weather report dataset by the appearance of the
radar image, in addition to the attributes provided within
SVRGIS (time, location, magnitude, etc.). Such projects
have been successful in other domains (LeCun
et al., 1998; Lintott et al., 2011; Knapp et al., 2016) by:
(a) providing a consistent dataset from which to draw
examples; and (b) adding context to the performance of
new machine learning approaches. Additionally, these
and similar projects have improved public access to scien-
tific datasets, educated non-experts on physical phenom-
ena, and even included so-called “citizen scientists” in
the dataset-building process. Like other projects, this
dataset can be modular and add new data as it becomes
available through a versioning process.
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