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Abstract

Aggregating temporal features from other frames is verified to be very effective for video object detection to overcome

the challenges in still images, such as occlusion, motion blur, and rare pose. Currently, proposal-level feature aggregation

dominates this direction. However, there are two main problems for the holistic proposal-level feature aggregation. First, the

object proposals generated by the region proposal network ignore the useful context information around the object which is

proved to be helpful for object classification. Second, the traditional proposal-level feature aggregation regards the proposal

as a whole without considering the important object structure information, which makes the similarity comparison between

two proposals less effective when occlusion or pose misalignment occurs on proposal objects. To deal with these problems,

we propose the Context and Structure Mining Network to better aggregate features for video object detection. In our method,

we first encode the spatial-temporal context information into object features in a global manner, which can benefit the object

classification. In addition, the holistic proposal is divided into several patches to capture the structure information of the object,

and cross patch matching is conducted to alleviate the pose misalignment between objects in target and support proposals.

Moreover, an importance weight is learned for each target proposal patch to indicate how informative this patch is for the

final feature aggregation, by which the occluded patches can be neglected. This enables the aggregation module to leverage

the most important and informative patches to obtain the final feature aggregation. The proposed framework outperforms all

the latest state-of-the-art methods on the ImageNet VID dataset with a large margin. This project is publicly available https://

github.com/LiangHann/Context-and-Structure-Mining-Network-for-Video-Object-Detection.
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1 Introduction

With the great success of deep neural networks, signifi-

cant progress has been made on object detection in static

images (Girshick 2015; Redmon et al. 2016; Ren et al. 2015;

Liu et al. 2016; Dai et al. 2016; He et al. 2017). Nowadays,

video-based analysis is becoming more and more popular

as the rapid development of 5G and “We Media”. However,

directly applying those image-based object detectors on a

video frame-by-frame often makes the performance unsatis-

factory, due to the challenges posed in video capturing, e.g.,

object occlusion, motion blur, out-of-focus cameras, and rare

poses (Fig. 1).
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Fig. 1 Challenges in video object detection. First row: part occlusion;

second row: motion blur; third row: out-of-focus camera; fourth row:

rare poses

It is natural to explore the temporal information inher-

ently encoded in videos to deal with the aforementioned

video object detection (VOD) challenges, and this is usu-

ally done by building relationship between nearby frames

in the video. For example, optical flow is adopted to build

correspondences across frames in FGFA (Zhu et al. 2017a)

and MANet (Wang et al. 2018a) to conduct feature aggre-

gation, D&T (Feichtenhofer et al. 2017) applies correlation

features between nearby frames, STSN (Bertasius et al. 2018)

uses deformable convolutions across the temporal domain,

and PSLA (Guo et al. 2019) explores the spatial correspon-

dence between features across frames in a local region using

progressive sparser strides. In those methods, only local

temporal information is used and the long range relation

exploration largely depends on some post-processing tech-

niques (Han et al. 2016; Kang et al. 2016, 2017), which are

usually not able to be jointly optimized with designed net-

works, making it sub-optimal. The lack of the capability for

long-term temporal exploitation in training makes the perfor-

mance of these methods degrade in the case of fast motion.

To take advantage of the long-term dependencies between

frames, several relation-based feature aggregation models are

proposed. Shvets et al. (2019) propose to leverage long-range

temporal relationship (LLR) to encode the inter-frame depen-

dencies between object proposals in a long video clip. Wu

et al. (2019) introduce the Sequence Level Semantics Aggre-

gation (SELSA) to further explore this long range relation

in the whole video sequence level. Deng et al. (2019b)

propose the Relation Distillation Networks (RDN) to pro-

gressively distill the long range relation. Han et al. (2020a)

propose a class-constrained spatial-temporal relation net-

work and a correlation-based feature alignment module for

better feature aggregation. To encode both local and global

range information, Chen et al. (2020) propose the memory

enhanced global-local aggregation (MEGA). Similarly, Jiang

et al. (2020) adopt the Learnable Spatial-Temporal Sam-

pling (LSTS) to mine the local motion information, and

Sparsely Recursive Feature Updating (SRFU) and Dense

Feature Aggregation (DFA) modules to exploit the global

temporal information. To exploit the inter-video proposal

relations, Han et al. (2020a) introduce the Hierarchical Video

Relation Network (HVR-Net), by integrating intra-video and

inter-video proposal relations in a hierarchical fashion. How-

ever, all of these methods are focused on how to build the

relationships across frames, and when it comes to feature

aggregation step, each proposal is treated as a whole; instead,

we believe that there is important spatial-temporal context

information around the objects and the structure informa-

tion inside the object, which have been ignored in VOD. The

spatial context information has been proved to be helpful

for static image detection (Kantorov et al. 2016; Chen et al.

2018b), and it is an auxiliary information that can assist sup-

pressing the false positive detection in noisy backgrounds,

and recognizing objects that have little distinctive appear-

ances with each other. The structure information of objects

is proved to be very important (Sharif Razavian et al. 2015;

Gao et al. 2018) for object retrieval to deal with object vari-

ances, such as translation, scaling, rotation and occlusion.

To deal with these problems, we propose the Context and

Structure Mining Network (CSMN) for video object detec-

tion. In our method, to explore the context information, each

object pixel in the feature map is aggregated with its sur-

rounding pixels in both the spatial and temporal dimension

to encode the useful context information. To leverage the

object structure information, each object proposal is divided

into several non-overlapping patches (9 patches in our exper-

iments). First, instead of directly comparing two holistic

proposals, we use divide-and-match strategy to alleviate the

pose misalignment between two object proposals, which

gives us a better similarity measurement of these two pro-

posals. Then, for each patch, an importance weight is learned

from the feature of this patch to indicate its importance for

the final feature aggregation. With these importance weights,

different patches play different important roles in aggregating

final features, and the occlusion problem can be mitigated by

focusing more on those non-occluded patches when aggre-

gating features. Through the divide-and-match process, the

structure information of the object is captured to deal with

the occlusion and pose misalignment challenge, which is

demonstrated to be able to benefit the final regression and

classification.

The main contributions of this work are summarized as

follows:

• We exploit the non-local network (Wang et al. 2018b) to

design a context information encoding module to encode

the useful context information into the object features for

more accurate object detection, in which we extend the
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original non-local network into the spatial and tempo-

ral dimension and fix the position of where we should

perform the context information encoding.

• The structure information of objects is exploited by using

a divide-and-match strategy to deal with the object pose

misalignment and occlusion problems, which is able to

aggregate more informative and supportive features for

target proposals.

• The proposed framework achieves much better results on

ImageNet VID dataset.

2 RelatedWork

In this section, we briefly review the object detection from

the image and video perspectives.

2.1 Object Detection in Static Images

Till the present, there are mainly two branches for static

image object detection: one-stage object detector and two-

stage object detector. In the one-stage detector, the bounding

box of interest is directly predicted based on the extracted fea-

ture map from CNN, such as YOLO (Redmon et al. 2016),

YOLO9000 (Redmon and Farhadi 2017), YOLOV3 (Red-

mon and Farhadi 2018), SSD (Liu et al. 2016), DSSD (Fu

et al. 2017) and FCOS (Tian et al. 2019). Compared with two-

stage object detectors, one-stage object detectors are with

fast inference speed. However, one-stage object detectors

are more likely to lead to foreground and background class

imbalance problem, and affect the training process and accu-

racy (Lin et al. 2017b). Instead, two stage detectors usually

generate region proposals first, with the majority of nega-

tive locations filtered out, and then the proposals are refined

by the classification and regression through the Regions

with Convolutional Neural Networks (R-CNN) stage (Gir-

shick et al. 2014). Faster R-CNN (Ren et al. 2015) proposes

Region Proposal Network (RPN) to generate region propos-

als. R-FCN (Dai et al. 2016) replaces the ROI pooling on

the intermediate feature maps with position-sensitivity ROI

pooling on the final score maps. Feature Pyramid Networks

(FPN) (Lin et al. 2017a) brings an inherent multiscale, pyra-

midal hierarchy of deep convolution networks to build feature

pyramids. Mask RCNN (He et al. 2017) proposes the ROI

align operation to replace ROI pooling to further improve the

detection accuracy. To explore the appearance and geome-

try relations among object proposals within a still image,

relation networks (Hu et al. 2018) and non-local neural net-

works (Wang et al. 2018b) are proposed, which enable the

detector to reason the topological relations of objects and

improve the performance. Our work adopts the idea of the

two-stage object detector and the relation networks to exploit

the relations in both spatial-temporal domain. However, our

work targets to encode the context information in the video

frames and the structure information contained in the object

proposals to improve the accuracy of detector in video object

detection.

2.2 Video Object Detection

There are two mainstream approaches for video object detec-

tion. In the first approach, the redundancy in video frames

is leveraged to improve the detection speed. For exam-

ple, optical flow is adopted by (Zhu et al. 2017b, 2018)

to propagate the key frame feature to other frames to save

the expensive feature extraction cost. A time-scale lattice

is designed by (Chen et al. 2018a) to improve the speed

with an extra classifier to re-score the bounding boxes. Liu

and Zhu (2018); Liu et al. (2019) adopt Bottleneck-LSTM

with MobileNet (Howard et al. 2017; Sandler et al. 2018)

as the backbone and use SSD as the detector to improve the

speed on the mobile devices. Similarly, Jiang et al. (2019)

adopt brain-inspired memory mechanism to propagate and

update the memory feature from keyframes to keyframes,

and propose the locally-weighted deformable neighbors to

align the high-level features between keyframes and non-

keyframes. Yao et al. (2020) adopt object tracker for temporal

propagation, and using reinforcement learning for adaptive

key-frame scheduling. Xu et al. (2020) propagate the pre-

vious reliable long-term detection in the form of heatmap

to boost results of upcoming image for one-stage detec-

tor.

In the second approach, temporal information encoded in

videos is explored to improve the performance of the detec-

tion, and our paper belongs to this approach. In the second

approach, there are two major branches. The first branch is

focused on post processing (Han et al. 2016; Kang et al.

2016, 2017). These methods usually take the spatial and

temporal coherence into consideration, and explore bound-

ing box association rules across nearby frames to refine the

per-frame detection results. Those methods are sub-optimal

because they are highly dependent on the quality of initial

detector which is trained without any temporal information.

In contrast, the other category of methods (Feichtenhofer

et al. 2017; Zhu et al. 2017a, b; Chen et al. 2018a; Wang et al.

2018a; Xiao and Jae Lee 2018; Zhu et al. 2018; Bertasius et al.

2018; Deng et al. 2019a; Guo et al. 2019; Deng et al. 2019b;

Shvets et al. 2019; Wu et al. 2019; Chen et al. 2020) directly

exploits the temporal information in videos during the train-

ing stage. Among these methods, optical flow based feature

warping (Dosovitskiy et al. 2015) is widely used to propagate

the features across frames (Zhu et al. 2017a, b; Wang et al.

2018a). However, the optical flow module here significantly

increases the overall model size of detectors, and it only

exploits the temporal information between frames in short

time range, and the warping does not works well in occlusion.
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To address these shortcomings, Guo et al. (2019) introduce

PSLA to model the spatial correspondence between fea-

tures across frames in a local region using the progressive

sparser stride, and Jiang et al. (2020) proposes the Learn-

able Spatial-Temporal Sampling (LSTS) to mine the local

motion information. To explore the long-range dependencies

in the temporal domain, Xiao and Jae Lee (2018) propose

a spatial-temporal memory networks (STMN) as the recur-

rent operation to model long-term temporal appearance and

motion dynamics, with a MatchTrans module proposed to

align the spatial-temporal memory. Shvets et al. (2019) pro-

pose to use the relation module (Vaswani et al. 2017) to model

the inter-frame dependencies between the object proposals

in a long video segment, Wu et al. (2019) further explore

the temporal relation across the whole sequence, Deng et al.

(2019b) propose the RDN to model the spatial-temporal rela-

tions for video object detection, Han et al. (2020a) adopt

a class-constrained spatial-temporal relation network and a

correlation-based feature alignment module for better fea-

ture aggregation, Chen et al. (2020) further exploit both

the global and local relationships between object proposals,

and Han et al. (2020b) propose the HVR-Net by integrating

intra-video and inter-video proposal relations in a hierarchi-

cal fashion. The six works (Shvets et al. 2019; Wu et al.

2019; Deng et al. 2019b; Han et al. 2020a, b; Chen et al.

2020) achieved promising results on video object detection.

However, they are all holistic proposal-based feature aggre-

gation scheme, and the context and structure information

contained in the objects are overlooked. Previous works in

image detection (Kantorov et al. 2016; Chen et al. 2018b)

and image retrieval (Sharif Razavian et al. 2015; Gao et al.

2018) verified that the context and structure information

are very important to deal with object variances in noisy

background, such as translation, scaling, rotation and occlu-

sion.

To deal with these problems, we propose to exploit the

spatial-temporal context contained in the video frames and

structure information in the proposals for better video object

detection.

3 ProposedMethod

Fully encoding spatial-temporal context information and

better aggregating temporal information of objects from

neighboring frames are the keys for detecting object in the

current video frame. In this section, we introduce the details

of the proposed framework called Context and Structure Min-

ing Network (CSMN), which consists of spatial-temporal

context information encoding module and structure-based

object feature aggregation module, for video object detec-

tion.

3.1 Overview

The pipeline of the proposed framework is depicted in Fig. 2.

Target frame is the frame where final object detection is per-

formed at the moment, and support frames are the frames

in the same video and are selected to provide additional

information for the target frame. First, a backbone network

(ResNet-101 in most of our experiments) is adopted to extract

features for the target frame and the support frames, and the

extracted frame features are fed into two modules: a Region

Proposal Network (RPN) which is used to generate target

proposals and support proposals, and a spatial-temporal Con-

text Information Encoding (stCIE) module to encode context

information into the features of the objects in the target and

support frames. Then, with the location and bounding box

shape information of the generated target and support pro-

posals, a ROI pooling operation is performed on the context

information encoded frame features to extract feature for

each proposal. After that, the target proposals and the support

proposals are thrown into a Structure-based Proposal Feature

Aggregation (SPFA) module, which aggregates target pro-

posal features with the support proposal features. Finally, the

aggregated target proposal features are used to perform the

final detection (i.e., classification and location regression).

3.2 Spatial-temporal Context Information Encoding

The spatial context information in a frame is helpful for

static image object detection (Kantorov et al. 2016; Chen

et al. 2018b). It is an auxiliary information that can assist in

recognizing and classifying objects that have little distinc-

tive appearances from the background or from other kind of

objects. Accordingly, in this subsection, we develop a spatial-

temporal Context Information Encoding (stCIE) module to

encode the spatial-temporal context information into the

object feature for better object detection. We borrow the idea

of the non-local network (Wang et al. 2018b) for our pro-

posed stCIE with the following modifications: (a) we extend

the original non-local network into the spatial and tempo-

ral dimension, (b) we fix the position of where we should

use the stCIE module to perform the context information

encoding, i.e., on the conv5 feature. Specifically, we first

adopt a Region Proposal Network (RPN) on the original

conv4 feature extracted by the backbone network without

encoding the context information to generate ROIs. Then,

we perform context information encoding on the conv5 fea-

ture maps extracted by the backbone network, and project the

generated ROIs onto the context information encoded conv5

featue maps to extract features for each proposal. Under these

modifications, the background pixel features in conv4 will

not be contaminated by the object information, and thus it is

easier for RPN to filter out the background proposals from
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Fig. 2 Pipeline of the proposed framework. First, ResNet-101 is used

to extract features for the target and support frames, and the extracted

conv4 feature maps are fed into a RPN to generate target proposals

and support proposals; while the extracted conv5 feature maps are fed

into a spatial-temporal Context Information Encoding (stCIE) module to

encode context information. Then, with the location and shape informa-

tion of the generated proposals, a ROI pooling operation is performed on

the context information encoded conv5 feature maps to extract features

for each target and support proposals. After that, the target and support

proposals are put into a Structure-based Proposal Feature Aggregation

(SPFA) module to aggregate target proposal features with the support

proposal features. Finally, the aggregated target proposal feature is used

to perform object detection

the object proposals, which will further benefit the target pro-

posal feature aggregation by keeping the purity of proposals.

Figure 3a explains the basic idea of the spatial-temporal

context information encoding. A pixel in an object proposal

is called target object pixel (the red square), and all the pixels

in the target frame and support frames except for the target

object pixel are called support pixels (the blue squares). For

a certain target object pixel, the support pixels can be object

pixels and background pixels. Thus, the spatial-temporal con-

text information is included in the support pixel features. We

want to encode the spatial-temporal context information car-

ried in the support pixel features into the target pixel feature

by exploring the relation between the target object pixel and

each of the support pixels. It is worth noting that a pixel in the

extracted feature map corresponds to a patch in the original

image. Therefore, when performing the context information

encoding in the pixel level of the feature map, we actually

encode the context information in the patch level of the orig-

inal image.

The approach of exploring the relations between the target

object pixel and the support pixels is motivated by the great

success of the attention mechanism in natural language pro-

cessing (Vaswani et al. 2017) and computer vision (Hu et al.

2018) community, which is able to well capture the complex

relations between independent units (e.g., words, proposals,

etc.). Figure 3b presents how to capture the relations between

a target object pixel and its corresponding support pixels, and

how to encode the support pixel information into the target

object pixel based on the captured relations. More precisely,

for a target object pixel pt and a support pixel pi , a 1 × 1

convolution is applied on them to generate the target content

feature f t
ctnt and the support content feature f i

ctnt , respec-

tively. Another 1×1 convolution is then applied on these two

kinds of pixels to output the target relation feature f t
rela and

the support relation feature f i
rela , respectively. After obtain-

ing the relation features, the relation weight r t,i between the

target object pixel pt and the support pixel pi is computed

as

r t,i =
exp

(

cos( f t
rela, f i

rela)

)

∑I
i=1 exp

(

cos( f t
rela, f i

rela)

) , (1)

where cos(·, ·) is the cosine similarity of two vectors, and I

represents the set of all support pixels for this target object

pixel. The context information carried in the support pixels

is then summarized together based on the calculated relation

weights and added back onto the original target content fea-

ture to generate the context information encoded target pixel
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Fig. 3 The idea and detailed implementation of the proposed spatial-

temporal Context Information Encoding (stCIE) module (Color figure

online)

feature f t
ctnt+ctxt :

f t
ctnt+ctxt = f t

ctnt +

I
∑

i=1

r t,i · f i
ctnt . (2)

3.3 Structure-based Proposal Feature Aggregation

Leveraging the temporal information of objects from neigh-

boring frames to aggregate the target object feature is proven

to be an effective strategy for more accurate video object

detection (Chen et al. 2020; Wu et al. 2019; Deng et al. 2019b;

Shvets et al. 2019; Wang et al. 2018a; Zhu et al. 2017a). Usu-

ally, the support proposal features are weighted aggregated

onto the target proposal feature based on the calculated simi-

larities between the target proposal and the support proposals.

Unfortunately, it is error-prone to directly measure the sim-

ilarities of holistic proposals due to the challenges in videos

such as occlusion and pose misalignment of objects. For

example, when the target object proposal is partially occluded

(e.g., the first column in Fig. 4), though the support proposal

in the second column of Fig. 4 is very informative and sup-

portive (i.e., it can compensate the missing information of the

target proposal), the similarity between this support proposal

and the target proposal is small because the extracted feature

Fig. 4 Challenges in the video which harm the accurate measurement

of the similarity between the target proposal and support proposal

of the target proposal is contaminated by the occlusion. As

a result, the target proposal feature might be overwhelmed

by the proposal features of objects in other class or the back-

ground. The same thing happens for object proposals that are

not aligned (e.g., the third column and fourth column in Fig.

4).

To overcome these challenges, we propose a Structure-

based Proposal Feature Aggregation (SPFA) module which

can better aggregate the target proposal feature by exploit-

ing its structure information in the target proposal. Figure 5a

depicts the basic idea of the proposed SPFA. Let M denote

the number of support proposals generated from the sam-

pled support frames. First, we divide a target proposal into

N (N = 9 in our experiments) non-overlapping proposal

patches, and each target proposal patch and the M support

proposals will go into an aggregation head (Head 1 ... Head

N in Fig. 5a), which aggregates the support proposal fea-

ture based on this target proposal patch. Figure 5b presents

the detailed feature aggregation operation in each aggrega-

tion head. Let f
prop

m denote the feature of the m-th support

proposal, the similarity Sn
m between the target proposal and

the support proposal m based on the target proposal patch n

is calculated (Fig. 5c shows how to calculate the similarity,

which will be introduced in details later), and the feature f n
agg

aggregated by Head n is

f n
agg =

M
∑

m=1

Sn
m · f

prop
m , (3)

where n ∈ [1...N ] denotes the head index, and m ∈ [1...M]

is the support proposal index.

Note that for each patch in a target proposal, we can get

an aggregated feature with each aggregation head, and in

total N aggregated features are calculated for this target pro-

posal based on its N patches (aggregation 1 ... aggregation

N in Fig. 5a). As some proposal patches are informative

to represent the object in this proposal (e.g., patches that

are object body parts), while some are not (e.g., patches

which are heavily occluded), we need some weights to select

the most informative proposal patches and use the aggre-

gated feature obtained with these patches to compensate

the target proposal feature. Thus, different from the tradi-
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Fig. 5 Structure-based proposal feature aggregation. (a) shows the

basic idea of the SPFA, (b) presents the detailed feature aggregation

in each head, and (c) introduces how to better measure the similarity

between two proposals with cross patch matching

tional feature aggregation module, in our proposed SPFA

module, N patch importance weights (W1 ... WN in Fig.

5a) are learned from the corresponding N original target

proposal patch features with a fully connected layer, fol-

lowed by a so f tmax operation to normalize these weights.

These importance weights indicate how important each tar-

get proposal patch is for the final feature aggregation. The

final aggregated feature of the target proposal is obtained by

weighted adding up the features aggregated by the aggrega-

tion heads and with patch importance weights as the adding

weights

f
f inal

agg =

N
∑

n=1

Wn · f n
agg =

N
∑

n=1

(

Wn ·

M
∑

m=1

(Sn
m · f

prop
m )

)

. (4)

With the learned patch importance weights, the heavily

occluded parts can be ignored when searching for support

proposal features, which further alleviate the influence of the

occlusion. These N learnable patch weights enable the SPFA

module use the most informative target object parts to search

for the compensatory object feature for target proposal fea-

ture aggregation.

Note that an alternative but straightforward way to obtain

the patch weights is simply using equal importance weights

for all the patches of the target proposal, i.e., if we divide

the target proposal into N patches, the importance weight

of each patch is 1
N

. We treat this simple equal importance

weight way to aggregate patch feature as a baseline, and

compare it with our proposed learnable patch weights in the

experiments.

To calculate the similarities Sn
1 ... Sn

M between the tar-

get proposal and support proposals 1 ... M based on target

proposal patch n in Fig. 5b, the cross patch matching strat-

egy is adopted. Figure 5c gives a detailed illustration of

how to calculate these similarities (Sn
m is taken as an exam-

ple to show the computation process). For a certain target

proposal patch, the correlations between this target pro-

posal patch and each of the patch in support proposal m

are calculated. Calculating the correlation between proposal

patches instead of the whole object proposal can mitigate

the influence of the occlusion in the maximum extent. After

that, the maximum correlation value is picked out of the

correlation matrix as the similarity between this target pro-

posal and the support proposal based on this target proposal

patch. By selecting the maximum correlation value, the most

related object parts in the target proposal and the support

proposal can be found and compared to calculate the sim-

ilarity between these two proposals, which means that the

misalignment problem can be alleviated. Mathematically, the

similarity score Sn
m between the target proposal and support

proposals m based on target proposal patch n is calculated

as
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Fig. 6 Detailed implementation of the structure-based proposal feature

aggregation. N is the number of non-overlapping patches generated

from each proposal, M denotes the number of support proposals, K

and C are the spatial size and feature channel dimension of the object

proposals after RoIAlign pooling

Sn
m = max

j=1...N
S

n, j
m

= max
j=1...N

corr(pn
t , p

j
m)

= max
j=1...N

∑D
d=1(pn

t (d) − pn
t )(p

j
m(d) − p

j
m)

var(pn
t ) · var(p

j
m)

(5)

where pn
t denotes the feature of the target proposal patch

n, p
j
m denotes the feature of the patch j in support pro-

posal m, pn
t (d) denotes the d-th dimension of feature pn

t ,

pn
t and var(pn

t ) denote the mean and variance of feature

pn
t , respectively. The similarity scores {Sn

m} (m ∈ [1, ...M])

between the target proposal and support proposal m based

on target proposal patch n are calculated with Eq. 5, and

a so f tmax operation is performed to normalize the sim-

ilarity scores before using them as summation weights in

Eq. 3.

The detailed implementation of the proposed SPFA is

shown in Fig. 6, where N is the number of non-overlapping

patches generated from each proposal, M denotes the num-

ber of support proposals, H , W and C are the height, width

and feature channels of the object proposals after RoIAlign

pooling.

4 Experiments

We implement our method based on the source codes of

SELSA (Wu et al. 2019). In the following, we briefly describe

the details of the backbone network, region feature extraction

network, dataset, evaluation metric and training&testing set-

tings. After that, we evaluate the effectiveness of the proposed

context information encoding module and the structure-

based proposal feature aggregation module. Finally, the

comparison with state of the art is performed.

4.1 Network Implementation

Similar to most previous VOD works, we select the ResNet-

101 (He et al. 2016) as the backbone to perform feature

extraction for each video frame, and the Region Proposal

Network (RPN) (Ren et al. 2015) is applied on the conv4

frame feature to generate object proposals for the target and

support frames. During training and inference, anchors are

set with 3 different scales and 3 different aspect ratios, and in

total 9 different kinds of anchors are used in RPN to first gen-

erate 6000 proposals with the highest objectness scores for

each video frame. After that, the Non-Maximum Suppres-

sion (NMS) is performed on these 6000 proposals to finally

keep 300 object proposals for each frame. Finally, RoI pool-

ing is performed on the context information encoded frame

feature, instead of the original conv5 frame feature, to extract

feature for each of the 300 object proposals.

4.2 Dataset and EvaluationMetric

We select the ImageNet DET and VID datasets (Russakovsky

et al. 2015), which are the most widely-used datasets for the

VOD task, to train and evaluate our proposed framework.

Specifically, we first get the intersection of these two datasets

by picking out the 30 object classes they shared in common

to train our proposed CSMN model. The validation set of

ImageNet VID is used to evaluate the performance of the pro-

posed model. We set the training/validation split as in (Zhu

et al. 2017a). Thus, the training and evaluation are conducted

on the 3,862 video snippets from the training set and the 555

snippets from the validation set, respectively. The snippets

are fully annotated, and are at frame rates of 25 or 30 fps

in general. For better analysis, following (Zhu et al. 2017a),

according to the motion speed, the ground truth objects are

categorized to slow, medium and fast motion. The object

speed is measured by its averaged intersection-over-union

(IoU) scores with its corresponding instances in the nearby

frames (±10 frames), and we denote it as ”motion IoU”. The

lower the motion IoU is, the faster the object moves. Accord-

ing to the score, the objects are divided into slow (score ∈

(0.9, 1.0]), medium (score ∈ [0.7, 0.9]), and fast (score ∈ [0.0,

0.7)) groups, respectively. In evaluation, besides the stan-

dard mean average-precision (mAP)(@IoU=0.5) scores, we

also report the mAP scores over the slow, medium, and fast

groups, respectively, denoted as mAP(slow), mAP(medium),

and mAP(fast). This provides us a more detailed analysis and

in-depth understanding.
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Table 1 Ablation study on proposed spatial-temporal Context Information Encoding (stCIE) module and Structure-based Proposal Feature Aggre-

gation (SPFA) module

method Baseline Baseline + stCIE Baseline + SPFA Baseline + stCIE + SPFA

mAP(%) 82.7 83.7 84.3 85.2

mAP(%) slow 88.9 89.7 90.2 90.8

mAP(%) medium 81.2 82.5 83.2 84.2

mAP(%) fast 65.4 67.9 69.3 70.5

We take SELSA (Wu et al. 2019) as the baseline. mAP slow/medium/fast are the detection precision for objects with slow motion/medium motion/fast

motion

4.3 Training and Inference

We train the proposed framework on 8 V100 GPUs for a

total of 10 epochs with a SGD optimizer. The backbone

network is first initialized with the weights pre-trained on

ImageNet classification task, then all modules in the frame-

work (backbone, stCIE, SPFA and final detection layers) are

trained and optimized simultaneously. We set the batch size

as 8 with each minibatch is allocated to one GPU. An initial

learning rate of 2.5e−4 is established, which is 10 times less

after 4 epochs, and decreases again after another 4 epochs.

During inference, for every target frame, we establish the

support frames by randomly sampling T frames from the

same video sequence. All of the video frames are resized to

be with shorter dimension of 600 pixels both for training and

inference. As our proposed CSMN is implemented based on

SELSA (Wu et al. 2019), the same training protocol from

SELSA is applied, i.e., the same data augmentation strategy

in (Wu et al. 2019) is adopted to train our CSMN model.

4.4 Quantitative Ablation Study on Proposed
Modules

In this subsection, we perform some ablation experiments

to show the effectiveness of the proposed spatial-temporal

context information encoding (stCIE) module and the

structure-based proposal feature aggregation (SPFA) mod-

ule. As the proposed method is implemented over the source

conde of SELSA (Wu et al. 2019), we take the SELSA

network as a baseline. First, the video object detection per-

formance of the baseline network is evaluated. Then, we

add the stCIE module into the baseline network (Base-

line+stCIE) and evaluate the object detection performance.

After that, the SPFA module is inserted into the baseline net-

work (Baseline+SPFA) and perform the detection. Finally,

both the stCIE module and the SPFA module are put into

the baseline network (Baseline+stCIE+SPFA) to detect the

objects in videos. The mAP results of each experiment are

reported in Table 1, from which we can get the following

observations: (1) The spatial-temporal context information

encoding brings us a +1.0% mAP improvement compared

with the baseline network (i.e., SELSA). This is because

some spatial-temporal context information is aggregated into

the object proposal feature, which enables the classifier dis-

tinguish some objects with confusing feature representations

more easily. Moreover, the stCIE module can enhance the

object features in pixel level, which makes the object features

more distinctive from each other. (2) The structure-based

proposal feature aggregation strategy makes a contribution

of +1.6% mAP to the detection improvement. The reason is

that the SPFA module is able to better aggregate target pro-

posal feature by exploiting the object structure in the target

proposal. By comparing the similarity between object parts

instead of two whole objects, the influence of the occlusion

and misalignment on similarity computation is greatly alle-

viated, and the most informative and supportive proposals

are searched to aggregate the target proposal feature. It is

worth noting that the baseline, SELSA, also adopts the pro-

posal level feature aggregation, but without considering the

structure information. In this work, we improve the proposal

level feature aggregation by exploiting the structure informa-

tion of the objects, which is able to better aggregate target

proposal features, especially for object proposals with occlu-

sions. Thus, the improvement of +1.6 % mAP brought by

the SPFA module is actually the contribution of exploiting

the structure information in the proposal feature aggregation.

When there is no proposal level feature aggregation in the

detection model, i.e., only Faster-RCNN + stCIE, the detec-

tion precision is only about 77 % mAP, which is much worse

than the result of the proposed CSMN. (3) These two modules

(stCIE and SPFA) together make a +2.5% mAP improve-

ment, which also demonstrates that these two modules are

not conflicting on improving object detection performance.

(4) Compared with the stCIE module, the SPFA is more effec-

tive for detecting objects with fast motion. The reason is

that compared with slow motion objects, objects with fast

motion are more easily occluded. Also, fast motion objects

have more various poses, which increases the misalignment

between objects in different frames. The stCIE encodes the

context information at the pixel level, which can benefit the

classification of the proposal by leveraging the surrounding

context information. However, the stCIE can not effectively
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Fig. 7 Qualitative ablation study on the proposed stCIE module. First two rows: results of the proposed detection model without the stCIE module.

Last two rows: results of the proposed detection model with the stCIE module

overcome the challenges such as occlusion and misalign-

ment, which are fairly common in the video, especially for

fast-moving objects. While the SPFA module is specifically

designed to deal with these problems, which makes it more

effective for fast motion object detection.

4.5 Qualitative Ablation Study on ProposedModules

Figure 7 shows the ablation study on the proposed stCIE mod-

ule. The top two rows and bottom two rows shown the results

of the proposed detection model without the stCIE module

and with stCIE module, respectively. In the first example (1st

row vs. 3rd row), when context information encoding is per-

formed, the detection model successfully eliminates the label

of “car” with the aid of the context information (the surround-

ing water). In the second example (2nd row vs. 4th row), the

context information (the water) helps the detection model to

consistently detect the turtle correctly. Besides, even though

the model falsely detects a piece of wood, the classification

is more reasonable by assigning a label of “whale” with the

help of the context information, compared with the label of

“bicycle” or “motorcycle” in the results without stCIE. From

these two examples we can see that the proposed stCIE mod-

ule improves the detection model by using the surrounding

context information.

The ablation study on the proposed SPFA module is visu-

alized Fig. 8. The top two rows and bottom two rows are the

results of the proposed detection model without the SPFA

module and with the SPFA module, respectively. From the

first example (1st row vs. 3rd row) we can see that with an

object partially occluded, the proposed SPFA module helps

the detection model to correctly detect this occluded object

with higher confidence scores. The second example (2nd row

vs. 4th row) shows that the SPFA helps eliminating misclassi-

fication of the partially occluded objects. These two examples

demonstrate that the proposed SPFA module can better deal
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Fig. 8 Qualitative ablation study on the proposed SPFA module. First two rows: results of the proposed detection model without the SPFA module.

Last two rows: results of the proposed detection model with the SPFA module

with the occlusion challenge in the video object detection

by performing feature aggregation with the object structure

information.

4.6 Ablation Study on stCIE

We then dive deeper into the proposed stCIE module by sepa-

rating the context information encoding along the spatial and

temporal dimensions, i.e., only the spatial context informa-

tion (‘sCIE’ in Table 2) is encoded in the current target frame,

to check the efficiency of the spatial context and temporal

context in the proposed stCIE. From the comparison results

in Table 2 it can be concluded that compared with the baseline

[SELSA Wu et al. (2019)], performing the context informa-

tion encoding along the spatial dimension can improve the

detection accuracy (i.e., ‘SELSA + sCIE’ in Table 2, con-

text information encoded for the objects with the context

information in this single frame). This is because the con-

text information in this frame can help the detection model

better classify the objects (some examples can be found in

Fig. 7). When we encode both the spatial and temporal con-

text information for the object pixels (i.e., ‘SELSA + stCIE’

in Table 2), the final detection accuracy is further improved

compared with that of only encoding the spatial context infor-

mation. The reason is that for some video frames with motion

blur or out-of-focus scene, the spatial context information in

the current frame may be obscure and not very helpful for

object classification. By encoding the temporal context fea-

ture, more robust and informative context information will

be aggregated to the object pixels, which then assists the

classification of confusing objects. Objects with fast motion

gains more detection precision improvement from the tem-

poral context information encoding than objects with slow

motion, which also confirms the point, because frames with

fast-motion objects are more likely to have motion blur.
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Table 2 Ablation study on the

spatial context and temporal

context in the proposed

spatial-temporal Context

Information Encoding (stCIE)

module

# method SELSA (baseline) SELSA + sCIE SELSA + stCIE

mAP(%) 82.7 83.2 83.7

mAP(%) slow 88.9 89.4 89.7

mAP(%) medium 81.2 81.8 82.5

mAP(%) fast 65.4 66.6 67.9

‘sCIE’ means encoding context information only along the spatial dimension

Table 3 Quantitative comparison between different importance weight

types

# importance weight type Fixed Learnable

mAP(%) 84.7 85.2

mAP(%) slow 90.5 90.8

mAP(%) medium 83.5 84.2

mAP(%) fast 69.4 70.5

‘Fixed’ means that we use the same value for all the importance weights,

i.e., importance weights are 1/9 for the case of 9 patches in each pro-

posal, and ‘learnable’ means that the importance weights of the target

proposal patches are learnt from the patch feature with our proposed

SPFA

4.7 Evaluation of SPFA

As we discussed in the methodology section, an alternative

but straightforward way to obtain the patch weights is simply

using equal importance weights for all the patches of the

target proposal. We treat this simple equal importance weight

way to aggregate patch feature as a baseline, and compare it

with the learnable patch weights in the proposed SPFA. The

comparison results are summarized in Table 3, which shows

that the detection accuracy decreases when we replace the

learnable patch importance weights with fixed ones (i.e., the

importance weights of all proposal patches are equal).

We further study the proposed SPFA module by visual-

izing some examples in Fig. 9. Note that we use 18 support

frames for inference, and here 3 support frames are randomly

selected out of the 18 frames for visualization. In each row

of this figure, the first column shows the target proposal and

the other columns are the selected support proposals to pro-

vide feature aggregation to the target proposal. The yellow

scores in the dashed green boxes under the target proposals

are the corresponding normalized importance weights Wi of

the patches cropped by the green boxes, and the green scores

in the dashed green boxes under the support proposals are the

normalized similarity scores Sn
m between the target proposal

and the support proposals based on the target proposal patch

cropped by the green boxes. From these examples we can

see that when an object is partially occluded, the importance

weights of the occluded patches are much smaller than that

of the non-occluded patches when performing feature aggre-

gation with the proposed Structure-based Proposal Feature

Aggregation (SPFA) module, which demonstrates that the

proposed SPFA works as we expect.

Combining the comparison results in Table 3 with the

visual examples in Fig. 9, we can conclude that the proposed

SPFA can automatically learn the corresponding importance

weight for each target proposal patch, with which the heav-

ily occluded patches can be underrated or even ignored when

searching for support proposal features.

4.8 Position of Context Information Encoding

An alternative way to encode context information into object

feature is directly using the non-local network (Wang et al.

2018b) on the conv4 feature map in the pixel level. There are

two ablation factors, RPN with or without context encoding,

and aggregation position (conv4 or conv5 feature). Based

on these two ablation factors, we design the corresponding

experiments to evaluate the effectiveness of the proposed

stCIE.

For the first experiment, we perform the context informa-

tion encoding on conv4 feature map. The context information

encoded conv4 feature map is input to a RPN to generate

ROIs, and the backbone network to further obtain the conv5

feature. The conv5 feature is then used to extract the object

proposal feature by a RoI pooling operation. We denote this

experiment as ‘Non-local (conv4 and RPN)’. In the sec-

ond experiment, the original conv4 is used to generate the

ROIs with the RPN. We still perform the context information

encoding on conv4 feature map, but the context information

encoded conv4 feature map is only input to the backbone

network to obtain the conv5 feature, which is then used to

extract the object proposal feature by a RoI pooling opera-

tion. We denote this experiment as ‘Non-local (conv4)’. In

the last experiment, we use the proposed stCIE to perform

context information encoding, and we denote this experiment

as ‘stCIE’. Note that the structure-based feature aggregation

(SPFA) is always included in each experiment. To get rid of

the influence of randomness, each experiment has been run

for 3 times to get the mean and standard deviation of the

detection accuracy. The results are presented in Table 4.

From Table 4 it can be concluded that compared to encode

context information on conv4 feature with a non-local net-

work (‘non-local (conv4+RPN) + SPFA’ and ‘non-local

(conv4) + SPFA’ in Table 4), mining context information
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Fig. 9 Visualization of the calculated patch importance weights and the

similarity scores between the target proposal and the support proposals.

The yellow scores in the dashed green boxes under the target proposals

are the corresponding normalized importance weights Wi of the patches

cropped by the green boxes, and the green scores in the dashed green

boxes under the support proposals are the normalized similarity scores

Sn
m between the target proposal and each support proposal based on the

target proposal patch cropped by the green boxes

on conv5 feature with the proposed stCIE module (‘stCIE +

SPFA’ in Table 4) improves the detection accuracy. Besides,

the standard variation of detection accuracy of mining con-

text information on conv5 feature map with the proposed

stCIE is much smaller than that of the non-local on conv4,

which means that the stCIE based context information min-

ing on conv5 feature map generates more stable detections.

The possible reason is that the context information encoded

conv4 feature, will further go through some convolutional

layers in the backbone to generate the conv5 feature, in which

the object feature will inevitably include some background

information. Thus, when extracting proposal feature with the

conv5 feature map, the extracted proposal feature may con-

tain some background information, which will affect the final

detection.

Further, when performing context information encod-

ing on the conv4 feature and generating the ROIs with

this context information encoded conv4 feature (‘non-local

(conv4+RPN) + SPFA’ in Table 4), the detection accuracy is

worse than that of performing context information encoding

on the conv4 feature but generating the ROIs with the original

conv4 feature (‘non-local (conv4) + SPFA’ in Table 4). The

reason is that when performing a pixel level feature aggre-

gation on the conv4 feature maps with a non-local network,

some object information will also be encoded into the back-

ground pixel features. When a RPN is adopted on the feature

aggregated conv4 maps to generate proposals, some back-

ground proposals might be labeled as object proposals by

the RPN, which will then pollute the target proposal features

during feature aggregation.

We then visualize some detection results in Fig. 10. The

first two columns are some detection results of performing

the context information encoding on the conv4 feature map

and using the encoded conv4 feature map to generate propos-

als (i.e., conv4+RPN) + SPFA’ in Table 4), and the last two

columns are the corresponding detection results of perform-

ing the context information encoding with the proposed stCIE

(i.e., ‘stCIE + SPFA’ in Table 4). From the examples in the

first two columns we can see that some background proposals

which have similar appearance features with object proposals

are more likely to be classified as the corresponding objects.

This is because when we perform the context information

encoding on the conv4 feature map and use the encoded

conv4 feature map to generate proposals, the background

proposals will be encoded with some object information if

these background proposals have similar appearance feature
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Table 4 Ablation studies on the position of perform context information encoding

Method Metric Experiment 1 Experiment 2 Experiment 3 Mean ± Std.

Non-local (conv4+RPN) + SPFA mAP(%) overall 84.77 84.45 84.60 84.61 ± 0.160

mAP(%) slow 90.44 90.28 90.33 90.35 ± 0.082

mAP(%) medium 83.62 83.15 83.36 83.38 ± 0.235

mAP(%) fast 69.88 68.97 69.29 69.38 ± 0.462

Non-local (conv4) + SPFA mAP(%) overall 84.89 84.95 85.01 84.95 ± 0.060

mAP(%) slow 90.52 90.57 90.61 90.57 ± 0.045

mAP(%) medium 83.80 83.88 83.96 83.88 ± 0.080

mAP(%) fast 70.00 70.10 70.19 70.10 ± 0.095

Non-local (conv5) (i.e., stCIE) + SPFA mAP(%) overall 85.18 85.21 85.10 85.16 ± 0.057

mAP(%) slow 90.73 90.75 90.67 90.72 ± 0.042

mAP(%) medium 84.18 84.23 84.07 84.16 ± 0.082

mAP(%) fast 70.46 70.55 70.30 70.44 ± 0.127

‘std.’ denotes the standard deviation

Fig. 10 Visualization of some detection results. First two columns:

detection results of performing the context information encoding on

the conv4 feature map and using the encoded conv4 feature map to

generate proposals (i.e., conv4+RPN) + SPFA’ in Table 4). Last two

columns: the corresponding detection results of performing the context

information encoding with the proposed stCIE (i.e., ‘stCIE + SPFA’ in

Table 4

with the object, and as a result, the RPN might mistakenly

regard these background proposals as object proposals. How-

ever, in the last two columns, these background proposals can

be classified as background correctly because in our proposed

stCIE module, we perform the context information encoding

on the conv5 feature map, and when the RPN classifies the

proposals, the object information will not be encoded into the

background proposals, and thus it is easier for RPN to dis-

tinguish the background proposals. This comparison verifies

our statement that with the modifications in our proposed

stCIE, the background pixel features in conv4 will not be

contaminated by the object information, and thus it is eas-

ier for RPN to filter out the background proposals from the

object proposals.

4.9 Analysis on Number of Support Frames

Intuitively, sampling more support frames will yield bet-

ter detection results during inference, because with more

support frames sampled, more temporal information can be

extracted from the support frames and then leveraged to

aggregate features for target proposals. Unfortunately, more

support frames means more computation cost (GPU memory,

inference time). Accordingly, establishing a suitable support
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Table 5 Influence of support frame number F on detection precision

# frames 0 2 6 10 14 18

mAP(%) 74.4 83.1 84.3 84.7 85.0 85.2

mAP(%) slow 82.4 89.3 90.2 90.6 90.7 90.8

mAP(%) medium 71.6 81.5 82.9 83.6 84.1 84.2

mAP(%) fast 52.4 66.6 69.4 70.1 70.3 70.5

frame number is very important. Considering the promis-

ing performance of the random sampling strategy (Wu et al.

2019), we adopt it for our support frame sampling. Table 5

summarizes the influence of the support frame number on

detection performance. When the number of support frames

is 0, i.e., no support frame is sampled, the detection result is

very bad (only 74.4%mAP), because no feature aggregation

is performed to deal with the challenges such as occlusion,

motion blur, and rare pose in target frames without sampling

any support frame. When two support frames are sampled in

the experiment for feature aggregation, we get a much bet-

ter detection performance (+8.7%mAP), which demonstrates

the effectiveness of the feature aggregation operation. With

the number of support frames increasing, the detection per-

formance improves consistently. This is because with more

support frames sampled, more temporal information such as

object appearance, pose, shape, etc. can be mined by the

feature aggregation module to enhance the target proposal

features. Moreover, more support frames will provide more

informative context, which will then be encoded into the

object proposal features and benefit the final detection. One

interesting thing is that objects with faster motion gain more

improvement than objects with slower motion when using

more support frames for feature aggregation. The reason is

that fast-moving objects usually have much more shape and

pose variations, which cause the pose misalignment. Also,

fast-moving objects are more likely to be occluded, or with

motion blur. Sampling more support frames can provide var-

ious supportive information for the target proposal objects

with deteriorated appearance. Unfortunately, the improve-

ment is saturated when support frames are up to a certain

number. This is reasonable, because when the number of sup-

port frames is large enough, adding more support frames only

can provide very limited extra supportive information. Thus,

to balance the detection accuracy and computation cost, we

set the number of support frames as 18 for our experiments.

4.10 Analysis on number of patches

Detection models do benefit from the parallel multi-head

attention module (Hu et al. 2018), which runs through an

attention mechanism in each head in parallel, and the inde-

pendent attention outputs are then concatenated and linearly

transformed into the expected dimension. Intuitively, multi-

ple attention heads are expected to capture different relations

between the input features. We also adopt the multiple head

strategy in our proposed structure-based proposal feature

aggregation (SPFA) module. However, the biggest difference

between the SPFA and the traditional multi-head attention

module is that the input to each head of the traditional multi-

head attention module is the same, and each head is expected

to learn different relations between the input, while the inputs

to each head of our SPFA are different, i.e., each head in our

SPFA takes as input a certain patch of the target proposal and

all the patches of the support proposals. Different heads in

the SPFA exploit the relation between the target proposal and

support proposals based on different object parts, and finally

the individual relation outputs are concatenated together. By

doing this, the SPFA measures the relation between different

proposals by exploiting the object structure information.

The number of segmented proposal patches N is another

important hyper-parameter in our experiment settings, and

can have significant influence on our final detection precision.

In this subsection, we conduct some experiments to analyze

the influence of the patch number.

In the experiments, the proposal patches are divided in

equal stride and with equal size. The proposal features gen-

erated with RoIAlign pooling are with the size of K × K ×C

(K = 8 in our experiments) where C is the feature channel

dimension. We keep the proposal size invariant in all the

experiments. When dividing each proposal into 2 × 2 (i.e.,

4 patches) non-overlapping patches, each patch is with the

size of 4 × 4 × C . When dividing each proposal into 3 × 3

(i.e., 9 patches) non-overlapping patches, we first increase

the proposal size to 9 × 9 × C by replicatively padding the

proposal feature by 1 on the top and on the left, and then

equally divide the proposal into patches. In this case, each

patch is with the spatial size of 3 × 3 × C . When dividing

each proposal into 4 × 4 (i.e., 16 patches) non-overlapping

patches, each patch is with the size of 2 × 2 × C .

Table 6 presents the influence of the patch number N on

detection precision. N = 1 means that the object propos-

als (both the target proposal and the support proposals) are

not divided into patches, instead, the proposals themselves

are used to calculate the similarities between proposals and

perform feature aggregation without computing the patch

importance weights [i.e., proposal feature aggregation is per-

formed in the way as in SELSA (Wu et al. 2019)]. When the

patch number is too small (e.g., N = 4), the detection pre-

cision is not good enough, because the structure information

can not be fully captured. When the patch number is too

big (e.g., N = 16), the detection precision also drops, since

small patches (patches with small spatial size) capture lim-

ited object feature, and the object structure information can

not be mined well either. Besides, this also shows that more

heads in the SPFA do not always give us higher accuracy.
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Table 7 Ablation studies on

attention modules
# module Multi-head attention (8 heads) Multi-head attention (16 heads) SPFA

mAP(%) 83.9 83.9 85.2

mAP(%) slow 89.8 89.8 90.8

mAP(%) medium 82.7 82.8 84.2

mAP(%) fast 68.2 68.4 70.5

‘Multi-head attention’ denotes the traditional multi-head attention module Hu et al. (2018)

Table 6 Influence of patch number N on detection precision

# patches 1 4 9 16

mAP(%) 83.7 85.0 85.2 84.8

mAP(%) slow 89.7 90.6 90.8 90.5

mAP(%) medium 82.5 84.0 84.2 83.9

mAP(%) fast 67.9 70.4 70.5 70.1

To further verify that the detection model benefits from

the cross-patch feature compensation design instead of the

multi-head model capacity, we design another experiment,

in which we replace the proposed SPFA with a traditional

multi-head attention module (Hu et al. 2018). The multi-head

attention module does not divide the proposal into patches,

instead, it takes as input the extract target and support pro-

posal features for each head to exploit the relation between

the target and support proposals, just as many state of the

art (Deng et al. 2019a; Wu et al. 2019; Chen et al. 2020) do

for aggregating target proposal feature. We use 8 (8 is used

here instead of 9 because the input feature channel is usually

an exponent of 2 and is divisible by 8) and 16 heads in the

multi-head attention module, and the results are summarized

in Table 7. When adopting the traditional multi-head atten-

tion module (Hu et al. 2018) for proposal feature aggregation,

the performance is worse than that of using SPFA, even when

more heads (16 heads) are used in the traditional multi-head

attention module. This demonstrates that the proposed SPFA

module benefits from the cross-patch feature compensation

design instead of the multi-head model capacity.

4.11 Comparison with State of the Art

In this subsection, we compare the proposed framework with

13 baseline methods to show its effectiveness. The compared

methods are:

• D & T (Feichtenhofer et al. 2017) is a ConvNet archi-

tecture for simultaneous detection and tracking. It uses

correlation features that represent object co-occurrences

across time to aid the ConvNet during tracking, and link

the frame level detections based on the tracklets.

• FGFA (Zhu et al. 2017a) adopts optical flow to guide the

feature aggregation. It improves the per-frame features

by aggregation of nearby features along the motion paths

to improve the video object detection.

• MANet (Wang et al. 2018a) jointly calibrates the fea-

tures of objects on both pixel-level and instance-level.

The pixel-level calibration targets to modeling detailed

motion, while the instance-level calibration aims to cap-

ture more global motion cues in order to be robust to

occlusion.

• ST-Lattice (Chen et al. 2018a) performs expensive detec-

tion sparsely and propagates the results across both scales

and time with substantially cheaper networks, by exploit-

ing the strong correlations among them.

• STSN (Bertasius et al. 2018) uses deformable con-

volutions across space and time to leverage temporal

information for object detection in video. It learns to

spatially sample useful feature points from nearby video

frames.

• STMN (Xiao and Jae Lee 2018) adopts recurrent compu-

tation unit to model long-term temporal appearance and

motion dynamics. It also proposes a MatchTrans mod-

ule to align the spatial-temporal memory from frame to

frame to tackle object motion in videos.

• PSLA (Guo et al. 2019) establishes the spatial correspon-

dence between features across frames in a local region

with progressively sparser stride and uses the correspon-

dence to propagate features. It can be used to replace the

expensive optical flow models.

• LWDN (Jiang et al. 2019) designs the locally-weighted

deformable neighbors to latently aligh the high-level

features between keyframes and keyframes or non-

keyframes without utilizing time-consuming optical flow

extraction.

• LRTRN (Shvets et al. 2019) leverages the temporal rela-

tion module by operating on object proposals to learn

the similarities between proposals from different frames,

and selects proposals from past and/or future to support

current proposals.

• RDN (Deng et al. 2019a) uses object guided hard atten-

tion to improve storage-efficiency and propagate tem-

poral information through external memory to address

long-term dependency in video object detection.

• SELSA (Wu et al. 2019) aggregates semantic features

across frames on the proposal level in the full-sequence

level using relation networks.
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Table 8 Comparison with state

of the art on ImageNet VID

validation set

Method Backbone RT (FPS) mAP (%)

D & T (Feichtenhofer et al. 2017) ResNet-101 7.8 75.8

D & T+TR (Feichtenhofer et al. 2017) ResNet-101 – 79.8

D & T+TR (Feichtenhofer et al. 2017) ResNeXt-101 – 81.6

FGFA (Zhu et al. 2017a) ResNet-101 1.4 76.3

FGFA+Seq-NMS (Zhu et al. 2017a) ResNet-101 – 78.4

MANet (Wang et al. 2018a) ResNet-101 5.0 78.1

MANet+Seq-NMS (Wang et al. 2018a) ResNet-101 – 80.3

ST-Lattice+TR (Chen et al. 2018a) ResNet-101 20.0 79.6

STSN+Seq-NMS (Bertasius et al. 2018) ResNet-101 – 80.4

STMN+Seq-NMS (Xiao and Jae Lee 2018) ResNet-101 1.2 80.5

PSLA (Guo et al. 2019) ResNet-101 – 80.0

PSLA+Seq-NMS (Guo et al. 2019) ResNet-101 – 81.4

LWDN (Jiang et al. 2019) ResNet-101 20.0 76.3

LRTRN (Shvets et al. 2019) ResNet-101 10.0 81.0

RDN (Deng et al. 2019a) ResNet-101 10.6 (V) 81.8

RDN (Deng et al. 2019a) ResNeXt-101 – 83.2

RDN+BLR (Deng et al. 2019a) ResNet-101 – 83.8

SELSA (Wu et al. 2019) ResNet-101 1.2 82.7

SELSA (Wu et al. 2019) ResNeXt-101 – 84.3

CenterNet (Zhou et al. 2019) ResNet-101 47.0 73.6

CenterNet+Seq-NMS (Zhou et al. 2019) ResNet-101 43.0 75.9

MEGA (Chen et al. 2020) ResNet-101 4.2 82.9

MEGA (Chen et al. 2020) ResNeXt-101 – 84.1

MEGA+BLR (Chen et al. 2020) ResNet-101 – 84.5

CenterNetHP (Xu et al. 2020) ResNet-101 37.0 76.7

CenterNetHP+Seq-NMS (Xu et al. 2020) ResNet-101 34.0 78.4

KCF-RL(CenterNet-LSTM) (Yao et al. 2020) ResNet-101 95.2 (C) 53.3

KCF-RL(YOLOV3-LSTM) (Yao et al. 2020) ResNet-101 71.5 (C) 59.9

LSTS (Jiang et al. 2020) ResNet-101 23.0 77.2

LSTS (Jiang et al. 2020) ResNet-101+DCN 21.2 80.1

LSTS+Seq-NMS (Jiang et al. 2020) ResNet-101+DCN 4.6 82.1

HVR (Han et al. 2020b) ResNet-101 – 83.2

HVR+Seq-NMS (Han et al. 2020b) ResNet-101 – 83.8

HVR+Seq-NMS (Han et al. 2020b) ResNeXt-101 – 85.5

CSMN (Ours) ResNet-101 1.1 85.2

CSMN (Ours) ResNeXt-101 1.0 86.2

CSMN w/o data augmentation (Ours) ResNet-101 1.1 83.1

CSMN w/o data augmentation (Ours) ResNeXt-101 1.0 84.3

‘RT’ repsents ‘Runtime’ ‘X+Y’ means post-processing strategy Y is employed on method X. ‘A-B’ means

technique A is combined with technique B. ‘TR’ is tubelet rescoring, ‘BLR’ means box linking with relations.

V means that the speed is tested on TITAN V GPU, and C means that the speed is tested on Intel Xeon E5

CPU

• CenterNet (Zhou et al. 2019) is a center point based

approach, which uses keypoint estimation to estimate

a heatmap to identify the locations of the object center

points, and regresses to the bounding box sizes.

• MEGA (Chen et al. 2020) takes full consideration of both

global and local information for proposal level feature

aggregation using relation networks, and designs a long

range memory to get access to more contents.

• CenterNetHP (Xu et al. 2020) is a video object detector

based on CenterNet. It propagates the previous reliable

long-term detection in the form of heatmap to boost

results of upcoming image with a heatmap propagation.
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Fig. 11 Qualitative results on some challenging cases of the VID dataset

• KCP-RL (Yao et al. 2020) adopt object tracker for tem-

poral propagation, and using reinforcement learning for

adaptive key-frame scheduling.

• LSTS (Jiang et al. 2020) learns the semantic-level

correspondences among adjacent frame features using

learnable spatial-temporal sampling. Temporal relations

are enhanced by sparsely recursive feature updating and

dense feature aggregation.

• HVR (Han et al. 2020b) tries to learn effective object

representations via modeling relations of hard propos-

als among different videos, based on a multi-level triplet

selection scheme.

The comparison results are summarized in Table 8. For

fair comparison, we first compare our model with state of

the art by adopting the same backbone network (ResNet-

101) in all of the models. From the results we can see that

our model beats D & T (Feichtenhofer et al. 2017) (75.8%

mAP), a single-frame object detection method without fea-

ture aggregation, by a large margin (+9.4%). When compared

with some optical flow based feature aggregation methods,

our model is significantly better than FGFA (Zhu et al. 2017a)

(76.3% mAP) and MANet (Wang et al. 2018a) (78.1% mAP),

and the detection improvements are +8.9% mAP and +7.1%

mAP, respectively. Besides, our method also shows its supe-

rior over some relation based feature aggregation methods

(e.g., LRTRN (Shvets et al. 2019) (81.0% mAP), RDN (Deng

et al. 2019a) (81.8% mAP), SELSA (Wu et al. 2019) (82.7%

mAP), MEGA (Chen et al. 2020) (82.9% mAP), LSTS (Jiang

et al. 2020) (82.1% mAP), HVR (Han et al. 2020b) (83.2%

mAP)), which are considered as the most advanced VOD

algorithms, on the detection precision. Like many previous

state of the art that could gain further improvement by adopt-

ing a more powerful backbone network (ResNeXt-101), it

could also benefit our model, and with no doubt, our model

still performs the best.

To get rid of the affect of data augmentation during train-

ing and make fair comparison with the state of the art, we

also train our CSMN model without data augmentation, and

the detection results are summarized in the last two rows of

Table 8. Training without data augmentation degrades the

detection accuracy by ∼ 2% mAP, while the performance is

still competitive to the state of the art such as MEGA Chen

et al. (2020) and HVR Han et al. (2020b).

Our proposed CSMN is built on SELSA Wu et al. (2019),

and it improves the detection accuracy of SELSA by more
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than 2% mAP. This demonstrates the effectiveness of the

proposed CSMN.

Post-processing benefits most of these methods more or

less on detection precision (mAP). For example, the D &

T algorithm achieves a +4.0% mAP improvement with the

tubelet rescoring post-processing. FGFA, MANet, and PLSA

get an improve of +1∼2% mAP by using the Seq-NMS post-

processing strategy. In Deng et al. (2019a), they also design

a novel post-processing technique called Box Linking with

Relations (BLR) for their proposed RDN algorithm, which

gives better refined detection performance (83.8% mAP).

Nonetheless, our proposed framework still achieves the best

performance.

For runtime, our methods achieves 1.1 FPS, compara-

ble to the relation networks based methods, SELSA (Wu

et al. 2019) and MEGA (Chen et al. 2020), with ∼ +2 mAP

improvement. It is worth noting that some state of the art

(Zhou et al. (2019); Yao et al. (2020); Xu et al. (2020); Jiang

et al. (2019, 2020), etc.) aim at accelerating the video object

detection, while our proposed CSMN targets on improving

detection accuracy. Thus, the detection algorithms proposed

in these three references achieve high detection speed, but

the detection accuracy of these algorithms are much worse

compared with the proposed CSMN.

Figure 11 presents the qualitative evaluation of the pro-

posed method on some challenging VOD cases (e.g., part

occlusion, motion blur, out-of-focus camera), which demon-

strates that the proposed framework can handle these chal-

lenges well.

5 Conclusion

In this work, we propose a context and structure mining

network for video object detection, which includes a spatial-

temporal context information encoding module to encode

the spatial-temporal context information in video frames into

object features, and a structure-based proposal feature aggre-

gation module to better aggregate target proposal features

with temporal information in support frames. By encod-

ing the spatial-temporal context information, more accurate

object classification is achieved. Moreover, the object struc-

ture information enables us to find the most informative and

supportive features to aggregate target proposal features even

when some VOD challenges such as occlusion, pose mis-

alignment, etc. exits on video objects. Experiments show the

effectiveness of the the proposed framework, which achieves

state-of-the-art video object detection performance.
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