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Abstract

Aggregating temporal features from other frames is verified to be very effective for video object detection to overcome
the challenges in still images, such as occlusion, motion blur, and rare pose. Currently, proposal-level feature aggregation
dominates this direction. However, there are two main problems for the holistic proposal-level feature aggregation. First, the
object proposals generated by the region proposal network ignore the useful context information around the object which is
proved to be helpful for object classification. Second, the traditional proposal-level feature aggregation regards the proposal
as a whole without considering the important object structure information, which makes the similarity comparison between
two proposals less effective when occlusion or pose misalignment occurs on proposal objects. To deal with these problems,
we propose the Context and Structure Mining Network to better aggregate features for video object detection. In our method,
we first encode the spatial-temporal context information into object features in a global manner, which can benefit the object
classification. In addition, the holistic proposal is divided into several patches to capture the structure information of the object,
and cross patch matching is conducted to alleviate the pose misalignment between objects in target and support proposals.
Moreover, an importance weight is learned for each target proposal patch to indicate how informative this patch is for the
final feature aggregation, by which the occluded patches can be neglected. This enables the aggregation module to leverage
the most important and informative patches to obtain the final feature aggregation. The proposed framework outperforms all
the latest state-of-the-art methods on the ImageNet VID dataset with a large margin. This project is publicly available https://
github.com/LiangHann/Context-and- Structure- Mining- Network-for- Video-Object-Detection.
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Fig. 1 Challenges in video object detection. First row: part occlusion;
second row: motion blur; third row: out-of-focus camera; fourth row:
rare poses

It is natural to explore the temporal information inher-
ently encoded in videos to deal with the aforementioned
video object detection (VOD) challenges, and this is usu-
ally done by building relationship between nearby frames
in the video. For example, optical flow is adopted to build
correspondences across frames in FGFA (Zhu et al. 2017a)
and MANet (Wang et al. 2018a) to conduct feature aggre-
gation, D&T (Feichtenhofer et al. 2017) applies correlation
features between nearby frames, STSN (Bertasius et al. 2018)
uses deformable convolutions across the temporal domain,
and PSLA (Guo et al. 2019) explores the spatial correspon-
dence between features across frames in a local region using
progressive sparser strides. In those methods, only local
temporal information is used and the long range relation
exploration largely depends on some post-processing tech-
niques (Han et al. 2016; Kang et al. 2016, 2017), which are
usually not able to be jointly optimized with designed net-
works, making it sub-optimal. The lack of the capability for
long-term temporal exploitation in training makes the perfor-
mance of these methods degrade in the case of fast motion.

To take advantage of the long-term dependencies between
frames, several relation-based feature aggregation models are
proposed. Shvets etal. (2019) propose to leverage long-range
temporal relationship (LLR) to encode the inter-frame depen-
dencies between object proposals in a long video clip. Wu
etal. (2019) introduce the Sequence Level Semantics Aggre-
gation (SELSA) to further explore this long range relation
in the whole video sequence level. Deng et al. (2019b)
propose the Relation Distillation Networks (RDN) to pro-
gressively distill the long range relation. Han et al. (2020a)
propose a class-constrained spatial-temporal relation net-
work and a correlation-based feature alignment module for
better feature aggregation. To encode both local and global
range information, Chen et al. (2020) propose the memory
enhanced global-local aggregation (MEGA). Similarly, Jiang

@ Springer

et al. (2020) adopt the Learnable Spatial-Temporal Sam-
pling (LSTS) to mine the local motion information, and
Sparsely Recursive Feature Updating (SRFU) and Dense
Feature Aggregation (DFA) modules to exploit the global
temporal information. To exploit the inter-video proposal
relations, Han et al. (2020a) introduce the Hierarchical Video
Relation Network (HVR-Net), by integrating intra-video and
inter-video proposal relations in a hierarchical fashion. How-
ever, all of these methods are focused on how to build the
relationships across frames, and when it comes to feature
aggregation step, each proposal is treated as a whole; instead,
we believe that there is important spatial-temporal context
information around the objects and the structure informa-
tion inside the object, which have been ignored in VOD. The
spatial context information has been proved to be helpful
for static image detection (Kantorov et al. 2016; Chen et al.
2018Db), and it is an auxiliary information that can assist sup-
pressing the false positive detection in noisy backgrounds,
and recognizing objects that have little distinctive appear-
ances with each other. The structure information of objects
is proved to be very important (Sharif Razavian et al. 2015;
Gao et al. 2018) for object retrieval to deal with object vari-
ances, such as translation, scaling, rotation and occlusion.

To deal with these problems, we propose the Context and
Structure Mining Network (CSMN) for video object detec-
tion. In our method, to explore the context information, each
object pixel in the feature map is aggregated with its sur-
rounding pixels in both the spatial and temporal dimension
to encode the useful context information. To leverage the
object structure information, each object proposal is divided
into several non-overlapping patches (9 patches in our exper-
iments). First, instead of directly comparing two holistic
proposals, we use divide-and-match strategy to alleviate the
pose misalignment between two object proposals, which
gives us a better similarity measurement of these two pro-
posals. Then, for each patch, an importance weight is learned
from the feature of this patch to indicate its importance for
the final feature aggregation. With these importance weights,
different patches play different important roles in aggregating
final features, and the occlusion problem can be mitigated by
focusing more on those non-occluded patches when aggre-
gating features. Through the divide-and-match process, the
structure information of the object is captured to deal with
the occlusion and pose misalignment challenge, which is
demonstrated to be able to benefit the final regression and
classification.

The main contributions of this work are summarized as
follows:

e We exploit the non-local network (Wang et al. 2018b) to
design a context information encoding module to encode
the useful context information into the object features for
more accurate object detection, in which we extend the
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original non-local network into the spatial and tempo-
ral dimension and fix the position of where we should
perform the context information encoding.

e The structure information of objects is exploited by using
a divide-and-match strategy to deal with the object pose
misalignment and occlusion problems, which is able to
aggregate more informative and supportive features for
target proposals.

e The proposed framework achieves much better results on
ImageNet VID dataset.

2 Related Work

In this section, we briefly review the object detection from
the image and video perspectives.

2.1 Object Detection in Static Images

Till the present, there are mainly two branches for static
image object detection: one-stage object detector and two-
stage object detector. In the one-stage detector, the bounding
box of interest is directly predicted based on the extracted fea-
ture map from CNN, such as YOLO (Redmon et al. 2016),
YOLO9000 (Redmon and Farhadi 2017), YOLOV3 (Red-
mon and Farhadi 2018), SSD (Liu et al. 2016), DSSD (Fu
etal.2017) and FCOS (Tian et al. 2019). Compared with two-
stage object detectors, one-stage object detectors are with
fast inference speed. However, one-stage object detectors
are more likely to lead to foreground and background class
imbalance problem, and affect the training process and accu-
racy (Lin et al. 2017b). Instead, two stage detectors usually
generate region proposals first, with the majority of nega-
tive locations filtered out, and then the proposals are refined
by the classification and regression through the Regions
with Convolutional Neural Networks (R-CNN) stage (Gir-
shick et al. 2014). Faster R-CNN (Ren et al. 2015) proposes
Region Proposal Network (RPN) to generate region propos-
als. R-FCN (Dai et al. 2016) replaces the ROI pooling on
the intermediate feature maps with position-sensitivity ROI
pooling on the final score maps. Feature Pyramid Networks
(FPN) (Lin et al. 2017a) brings an inherent multiscale, pyra-
midal hierarchy of deep convolution networks to build feature
pyramids. Mask RCNN (He et al. 2017) proposes the ROI
align operation to replace ROI pooling to further improve the
detection accuracy. To explore the appearance and geome-
try relations among object proposals within a still image,
relation networks (Hu et al. 2018) and non-local neural net-
works (Wang et al. 2018b) are proposed, which enable the
detector to reason the topological relations of objects and
improve the performance. Our work adopts the idea of the
two-stage object detector and the relation networks to exploit
the relations in both spatial-temporal domain. However, our

work targets to encode the context information in the video
frames and the structure information contained in the object
proposals to improve the accuracy of detector in video object
detection.

2.2 Video Object Detection

There are two mainstream approaches for video object detec-
tion. In the first approach, the redundancy in video frames
is leveraged to improve the detection speed. For exam-
ple, optical flow is adopted by (Zhu et al. 2017b, 2018)
to propagate the key frame feature to other frames to save
the expensive feature extraction cost. A time-scale lattice
is designed by (Chen et al. 2018a) to improve the speed
with an extra classifier to re-score the bounding boxes. Liu
and Zhu (2018); Liu et al. (2019) adopt Bottleneck-LSTM
with MobileNet (Howard et al. 2017; Sandler et al. 2018)
as the backbone and use SSD as the detector to improve the
speed on the mobile devices. Similarly, Jiang et al. (2019)
adopt brain-inspired memory mechanism to propagate and
update the memory feature from keyframes to keyframes,
and propose the locally-weighted deformable neighbors to
align the high-level features between keyframes and non-
keyframes. Yao et al. (2020) adopt object tracker for temporal
propagation, and using reinforcement learning for adaptive
key-frame scheduling. Xu et al. (2020) propagate the pre-
vious reliable long-term detection in the form of heatmap
to boost results of upcoming image for one-stage detec-
tor.

In the second approach, temporal information encoded in
videos is explored to improve the performance of the detec-
tion, and our paper belongs to this approach. In the second
approach, there are two major branches. The first branch is
focused on post processing (Han et al. 2016; Kang et al.
2016, 2017). These methods usually take the spatial and
temporal coherence into consideration, and explore bound-
ing box association rules across nearby frames to refine the
per-frame detection results. Those methods are sub-optimal
because they are highly dependent on the quality of initial
detector which is trained without any temporal information.
In contrast, the other category of methods (Feichtenhofer
etal. 2017; Zhu et al. 2017a,b; Chen et al. 2018a; Wang et al.
2018a; Xiao and Jae Lee 2018; Zhu etal. 2018; Bertasius et al.
2018; Deng et al. 2019a; Guo et al. 2019; Deng et al. 2019b;
Shvets et al. 2019; Wu et al. 2019; Chen et al. 2020) directly
exploits the temporal information in videos during the train-
ing stage. Among these methods, optical flow based feature
warping (Dosovitskiy et al. 2015) is widely used to propagate
the features across frames (Zhu et al. 2017a,b; Wang et al.
2018a). However, the optical flow module here significantly
increases the overall model size of detectors, and it only
exploits the temporal information between frames in short
time range, and the warping does not works well in occlusion.
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To address these shortcomings, Guo et al. (2019) introduce
PSLA to model the spatial correspondence between fea-
tures across frames in a local region using the progressive
sparser stride, and Jiang et al. (2020) proposes the Learn-
able Spatial-Temporal Sampling (LSTS) to mine the local
motion information. To explore the long-range dependencies
in the temporal domain, Xiao and Jae Lee (2018) propose
a spatial-temporal memory networks (STMN) as the recur-
rent operation to model long-term temporal appearance and
motion dynamics, with a MatchTrans module proposed to
align the spatial-temporal memory. Shvets et al. (2019) pro-
pose to use the relation module (Vaswani et al. 2017) to model
the inter-frame dependencies between the object proposals
in a long video segment, Wu et al. (2019) further explore
the temporal relation across the whole sequence, Deng et al.
(2019b) propose the RDN to model the spatial-temporal rela-
tions for video object detection, Han et al. (2020a) adopt
a class-constrained spatial-temporal relation network and a
correlation-based feature alignment module for better fea-
ture aggregation, Chen et al. (2020) further exploit both
the global and local relationships between object proposals,
and Han et al. (2020b) propose the HVR-Net by integrating
intra-video and inter-video proposal relations in a hierarchi-
cal fashion. The six works (Shvets et al. 2019; Wu et al.
2019; Deng et al. 2019b; Han et al. 2020a,b; Chen et al.
2020) achieved promising results on video object detection.
However, they are all holistic proposal-based feature aggre-
gation scheme, and the context and structure information
contained in the objects are overlooked. Previous works in
image detection (Kantorov et al. 2016; Chen et al. 2018b)
and image retrieval (Sharif Razavian et al. 2015; Gao et al.
2018) verified that the context and structure information
are very important to deal with object variances in noisy
background, such as translation, scaling, rotation and occlu-
sion.

To deal with these problems, we propose to exploit the
spatial-temporal context contained in the video frames and
structure information in the proposals for better video object
detection.

3 Proposed Method

Fully encoding spatial-temporal context information and
better aggregating temporal information of objects from
neighboring frames are the keys for detecting object in the
current video frame. In this section, we introduce the details
of the proposed framework called Context and Structure Min-
ing Network (CSMN), which consists of spatial-temporal
context information encoding module and structure-based
object feature aggregation module, for video object detec-
tion.

@ Springer

3.1 Overview

The pipeline of the proposed framework is depicted in Fig. 2.
Target frame is the frame where final object detection is per-
formed at the moment, and support frames are the frames
in the same video and are selected to provide additional
information for the target frame. First, a backbone network
(ResNet-101 in most of our experiments) is adopted to extract
features for the target frame and the support frames, and the
extracted frame features are fed into two modules: a Region
Proposal Network (RPN) which is used to generate target
proposals and support proposals, and a spatial-temporal Con-
text Information Encoding (stCIE) module to encode context
information into the features of the objects in the target and
support frames. Then, with the location and bounding box
shape information of the generated target and support pro-
posals, a ROI pooling operation is performed on the context
information encoded frame features to extract feature for
each proposal. After that, the target proposals and the support
proposals are thrown into a Structure-based Proposal Feature
Aggregation (SPFA) module, which aggregates target pro-
posal features with the support proposal features. Finally, the
aggregated target proposal features are used to perform the
final detection (i.e., classification and location regression).

3.2 Spatial-temporal Context Information Encoding

The spatial context information in a frame is helpful for
static image object detection (Kantorov et al. 2016; Chen
et al. 2018b). It is an auxiliary information that can assist in
recognizing and classifying objects that have little distinc-
tive appearances from the background or from other kind of
objects. Accordingly, in this subsection, we develop a spatial-
temporal Context Information Encoding (stCIE) module to
encode the spatial-temporal context information into the
object feature for better object detection. We borrow the idea
of the non-local network (Wang et al. 2018b) for our pro-
posed stCIE with the following modifications: (a) we extend
the original non-local network into the spatial and tempo-
ral dimension, (b) we fix the position of where we should
use the stCIE module to perform the context information
encoding, i.e., on the conv5 feature. Specifically, we first
adopt a Region Proposal Network (RPN) on the original
conv4 feature extracted by the backbone network without
encoding the context information to generate ROIs. Then,
we perform context information encoding on the conv5 fea-
ture maps extracted by the backbone network, and project the
generated ROIs onto the context information encoded conv5
featue maps to extract features for each proposal. Under these
modifications, the background pixel features in conv4 will
not be contaminated by the object information, and thus it is
easier for RPN to filter out the background proposals from
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Fig. 2 Pipeline of the proposed framework. First, ResNet-101 is used
to extract features for the target and support frames, and the extracted
conv4 feature maps are fed into a RPN to generate target proposals
and support proposals; while the extracted conv5 feature maps are fed
into a spatial-temporal Context Information Encoding (stCIE) module to
encode context information. Then, with the location and shape informa-
tion of the generated proposals, a ROI pooling operation is performed on

the object proposals, which will further benefit the target pro-
posal feature aggregation by keeping the purity of proposals.

Figure 3a explains the basic idea of the spatial-temporal
context information encoding. A pixel in an object proposal
is called target object pixel (the red square), and all the pixels
in the target frame and support frames except for the target
object pixel are called support pixels (the blue squares). For
a certain target object pixel, the support pixels can be object
pixels and background pixels. Thus, the spatial-temporal con-
text information is included in the support pixel features. We
want to encode the spatial-temporal context information car-
ried in the support pixel features into the target pixel feature
by exploring the relation between the target object pixel and
each of the support pixels. It is worth noting that a pixel in the
extracted feature map corresponds to a patch in the original
image. Therefore, when performing the context information
encoding in the pixel level of the feature map, we actually
encode the context information in the patch level of the orig-
inal image.

The approach of exploring the relations between the target
object pixel and the support pixels is motivated by the great
success of the attention mechanism in natural language pro-
cessing (Vaswani et al. 2017) and computer vision (Hu et al.
2018) community, which is able to well capture the complex
relations between independent units (e.g., words, proposals,
etc.). Figure 3b presents how to capture the relations between

the context information encoded conv5 feature maps to extract features
for each target and support proposals. After that, the target and support
proposals are put into a Structure-based Proposal Feature Aggregation
(SPFA) module to aggregate target proposal features with the support
proposal features. Finally, the aggregated target proposal feature is used
to perform object detection

atarget object pixel and its corresponding support pixels, and
how to encode the support pixel information into the target
object pixel based on the captured relations. More precisely,
for a target object pixel p’ and a support pixel p', a1 x 1
convolution is applied on them to generate the target content
feature f! . and the support content feature f! ., respec-
tively. Another 1 x 1 convolution is then applied on these two
kinds of pixels to output the target relation feature f!, and
the support relation feature friela, respectively. After obtain-
ing the relation features, the relation weight r? i between the
target object pixel p’ and the support pixel p’ is computed

as

i e)CP<C05(frtela7 friela)> (1)
roo= ’
Zleexp(COS(ffeza, rlela))

where cos (-, -) is the cosine similarity of two vectors, and /
represents the set of all support pixels for this target object
pixel. The context information carried in the support pixels
is then summarized together based on the calculated relation
weights and added back onto the original target content fea-
ture to generate the context information encoded target pixel

@ Springer
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(a) The idea of spatial-temporal context information encoding.
For a target pixel (red square) in an object proposal, we want to
encode the feature information of the support pixels (blue square)
into its feature representation.
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Fig. 3 The idea and detailed implementation of the proposed spatial-
temporal Context Information Encoding (stCIE) module (Color figure
online)
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3.3 Structure-based Proposal Feature Aggregation

Leveraging the temporal information of objects from neigh-
boring frames to aggregate the target object feature is proven
to be an effective strategy for more accurate video object
detection (Chen etal. 2020; Wuetal. 2019; Deng et al. 2019b;
Shvets et al. 2019; Wang et al. 2018a; Zhu et al. 2017a). Usu-
ally, the support proposal features are weighted aggregated
onto the target proposal feature based on the calculated simi-
larities between the target proposal and the support proposals.
Unfortunately, it is error-prone to directly measure the sim-
ilarities of holistic proposals due to the challenges in videos
such as occlusion and pose misalignment of objects. For
example, when the target object proposal is partially occluded
(e.g., the first column in Fig. 4), though the support proposal
in the second column of Fig. 4 is very informative and sup-
portive (i.e., it can compensate the missing information of the
target proposal), the similarity between this support proposal
and the target proposal is small because the extracted feature
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Fig.4 Challenges in the video which harm the accurate measurement
of the similarity between the target proposal and support proposal

of the target proposal is contaminated by the occlusion. As
a result, the target proposal feature might be overwhelmed
by the proposal features of objects in other class or the back-
ground. The same thing happens for object proposals that are
not aligned (e.g., the third column and fourth column in Fig.
4).

To overcome these challenges, we propose a Structure-
based Proposal Feature Aggregation (SPFA) module which
can better aggregate the target proposal feature by exploit-
ing its structure information in the target proposal. Figure 5a
depicts the basic idea of the proposed SPFA. Let M denote
the number of support proposals generated from the sam-
pled support frames. First, we divide a target proposal into
N (N = 9 in our experiments) non-overlapping proposal
patches, and each target proposal patch and the M support
proposals will go into an aggregation head (Head 1 ... Head
N in Fig. 5a), which aggregates the support proposal fea-
ture based on this target proposal patch. Figure 5b presents
the detailed feature aggregation operation in each aggrega-
tion head. Let f,;"°" denote the feature of the m-th support
proposal, the similarity S, between the target proposal and
the support proposal m based on the target proposal patch n
is calculated (Fig. 5c shows how to calculate the similarity,
which will be introduced in details later), and the feature ;’g ¢
aggregated by Head n is

M
fangg = Z Srrplz : V{l)ropv (3)

where n € [1...N] denotes the head index, and m € [1...M]
is the support proposal index.

Note that for each patch in a target proposal, we can get
an aggregated feature with each aggregation head, and in
total N aggregated features are calculated for this target pro-
posal based onits N patches (aggregation1...aggregation
N in Fig. 5a). As some proposal patches are informative
to represent the object in this proposal (e.g., patches that
are object body parts), while some are not (e.g., patches
which are heavily occluded), we need some weights to select
the most informative proposal patches and use the aggre-
gated feature obtained with these patches to compensate
the target proposal feature. Thus, different from the tradi-
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Fig. 5 Structure-based proposal feature aggregation. (a) shows the
basic idea of the SPFA, (b) presents the detailed feature aggregation
in each head, and (c) introduces how to better measure the similarity
between two proposals with cross patch matching

tional feature aggregation module, in our proposed SPFA
module, N patch importance weights (W ... Wy in Fig.
S5a) are learned from the corresponding N original target

proposal patch features with a fully connected layer, fol-
lowed by a softmax operation to normalize these weights.
These importance weights indicate how important each tar-
get proposal patch is for the final feature aggregation. The
final aggregated feature of the target proposal is obtained by
weighted adding up the features aggregated by the aggrega-
tion heads and with patch importance weights as the adding
weights

N

N M
= W g = 30 (Wo 2 )

n=1 m=1

With the learned patch importance weights, the heavily
occluded parts can be ignored when searching for support
proposal features, which further alleviate the influence of the
occlusion. These N learnable patch weights enable the SPFA
module use the most informative target object parts to search
for the compensatory object feature for target proposal fea-
ture aggregation.

Note that an alternative but straightforward way to obtain
the patch weights is simply using equal importance weights
for all the patches of the target proposal, i.e., if we divide
the target proposal into N patches, the importance weight
of each patch is % We treat this simple equal importance
weight way to aggregate patch feature as a baseline, and
compare it with our proposed learnable patch weights in the
experiments.

To calculate the similarities S} ... S}, between the tar-
get proposal and support proposals 1 ... M based on target
proposal patch n in Fig. 5b, the cross patch matching strat-
egy is adopted. Figure 5c gives a detailed illustration of
how to calculate these similarities (S),, is taken as an exam-
ple to show the computation process). For a certain target
proposal patch, the correlations between this target pro-
posal patch and each of the patch in support proposal m
are calculated. Calculating the correlation between proposal
patches instead of the whole object proposal can mitigate
the influence of the occlusion in the maximum extent. After
that, the maximum correlation value is picked out of the
correlation matrix as the similarity between this target pro-
posal and the support proposal based on this target proposal
patch. By selecting the maximum correlation value, the most
related object parts in the target proposal and the support
proposal can be found and compared to calculate the sim-
ilarity between these two proposals, which means that the
misalignment problem can be alleviated. Mathematically, the
similarity score S, between the target proposal and support
proposals m based on target proposal patch n is calculated
as
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Fig.6 Detailed implementation of the structure-based proposal feature
aggregation. N is the number of non-overlapping patches generated
from each proposal, M denotes the number of support proposals, K
and C are the spatial size and feature channel dimension of the object
proposals after RolAlign pooling

n,j
SI = max S’
j=1..N

= max corr(p’, J
P (pt Pin) 5)

i Zdaa (P @) — PP (d) — pin)
j=1-N var(p}) - var(py)

where pj' denotes the feature of the target proposal patch
n, p,{l denotes the feature of the patch j in support pro-
posal m, pj'(d) denotes the d-th dimension of feature p;,
P} and var(p}') denote the mean and variance of feature
p}, respectively. The similarity scores {S,} (m € [1,...M])
between the target proposal and support proposal m based
on target proposal patch n are calculated with Eq. 5, and
a softmax operation is performed to normalize the sim-
ilarity scores before using them as summation weights in
Eq. 3.

The detailed implementation of the proposed SPFA is
shown in Fig. 6, where N is the number of non-overlapping
patches generated from each proposal, M denotes the num-
ber of support proposals, H, W and C are the height, width
and feature channels of the object proposals after RoIAlign
pooling.

4 Experiments

We implement our method based on the source codes of
SELSA (Wuetal. 2019). In the following, we briefly describe
the details of the backbone network, region feature extraction
network, dataset, evaluation metric and training&testing set-
tings. After that, we evaluate the effectiveness of the proposed
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context information encoding module and the structure-
based proposal feature aggregation module. Finally, the
comparison with state of the art is performed.

4.1 Network Implementation

Similar to most previous VOD works, we select the ResNet-
101 (He et al. 2016) as the backbone to perform feature
extraction for each video frame, and the Region Proposal
Network (RPN) (Ren et al. 2015) is applied on the conv4
frame feature to generate object proposals for the target and
support frames. During training and inference, anchors are
set with 3 different scales and 3 different aspect ratios, and in
total 9 different kinds of anchors are used in RPN to first gen-
erate 6000 proposals with the highest objectness scores for
each video frame. After that, the Non-Maximum Suppres-
sion (NMS) is performed on these 6000 proposals to finally
keep 300 object proposals for each frame. Finally, Rol pool-
ing is performed on the context information encoded frame
feature, instead of the original conv5 frame feature, to extract
feature for each of the 300 object proposals.

4.2 Dataset and Evaluation Metric

We select the ImageNet DET and VID datasets (Russakovsky
et al. 2015), which are the most widely-used datasets for the
VOD task, to train and evaluate our proposed framework.
Specifically, we first get the intersection of these two datasets
by picking out the 30 object classes they shared in common
to train our proposed CSMN model. The validation set of
ImageNet VID is used to evaluate the performance of the pro-
posed model. We set the training/validation split as in (Zhu
etal. 2017a). Thus, the training and evaluation are conducted
on the 3,862 video snippets from the training set and the 555
snippets from the validation set, respectively. The snippets
are fully annotated, and are at frame rates of 25 or 30 fps
in general. For better analysis, following (Zhu et al. 2017a),
according to the motion speed, the ground truth objects are
categorized to slow, medium and fast motion. The object
speed is measured by its averaged intersection-over-union
(IoU) scores with its corresponding instances in the nearby
frames (£10 frames), and we denote it as "motion IoU”. The
lower the motion IoU is, the faster the object moves. Accord-
ing to the score, the objects are divided into slow (score €
(0.9, 1.0]), medium (score € [0.7,0.9]), and fast (score € [0.0,
0.7)) groups, respectively. In evaluation, besides the stan-
dard mean average-precision (mAP)(@IoU=0.5) scores, we
also report the mAP scores over the slow, medium, and fast
groups, respectively, denoted as mAP(slow), mAP(medium),
and mAP(fast). This provides us a more detailed analysis and
in-depth understanding.



International Journal of Computer Vision

Table 1 Ablation study on proposed spatial-temporal Context Information Encoding (stCIE) module and Structure-based Proposal Feature Aggre-

gation (SPFA) module

method Baseline Baseline + stCIE Baseline + SPFA Baseline + stCIE + SPFA
mAP(%) 82.7 83.7 84.3 85.2

mAP(%) slow 88.9 89.7 90.2 90.8

mAP(%) medium 81.2 82.5 83.2 84.2

mAP(%) fast 65.4 67.9 69.3 70.5

We take SELSA (Wuetal. 2019) as the baseline. mAP slow/medium/fast are the detection precision for objects with slow motion/medium motion/fast

motion

4.3 Training and Inference

We train the proposed framework on 8 V100 GPUs for a
total of 10 epochs with a SGD optimizer. The backbone
network is first initialized with the weights pre-trained on
ImageNet classification task, then all modules in the frame-
work (backbone, stCIE, SPFA and final detection layers) are
trained and optimized simultaneously. We set the batch size
as 8 with each minibatch is allocated to one GPU. An initial
learning rate of 2.5¢~* is established, which is 10 times less
after 4 epochs, and decreases again after another 4 epochs.
During inference, for every target frame, we establish the
support frames by randomly sampling 7 frames from the
same video sequence. All of the video frames are resized to
be with shorter dimension of 600 pixels both for training and
inference. As our proposed CSMN is implemented based on
SELSA (Wu et al. 2019), the same training protocol from
SELSA is applied, i.e., the same data augmentation strategy
in (Wu et al. 2019) is adopted to train our CSMN model.

4.4 Quantitative Ablation Study on Proposed
Modules

In this subsection, we perform some ablation experiments
to show the effectiveness of the proposed spatial-temporal
context information encoding (stCIE) module and the
structure-based proposal feature aggregation (SPFA) mod-
ule. As the proposed method is implemented over the source
conde of SELSA (Wu et al. 2019), we take the SELSA
network as a baseline. First, the video object detection per-
formance of the baseline network is evaluated. Then, we
add the stCIE module into the baseline network (Base-
line+stCIE) and evaluate the object detection performance.
After that, the SPFA module is inserted into the baseline net-
work (Baseline+SPFA) and perform the detection. Finally,
both the stCIE module and the SPFA module are put into
the baseline network (Baseline+stCIE+SPFA) to detect the
objects in videos. The mAP results of each experiment are
reported in Table 1, from which we can get the following
observations: (1) The spatial-temporal context information
encoding brings us a +1.0% mAP improvement compared

with the baseline network (i.e., SELSA). This is because
some spatial-temporal context information is aggregated into
the object proposal feature, which enables the classifier dis-
tinguish some objects with confusing feature representations
more easily. Moreover, the stCIE module can enhance the
object features in pixel level, which makes the object features
more distinctive from each other. (2) The structure-based
proposal feature aggregation strategy makes a contribution
of +1.6% mAP to the detection improvement. The reason is
that the SPFA module is able to better aggregate target pro-
posal feature by exploiting the object structure in the target
proposal. By comparing the similarity between object parts
instead of two whole objects, the influence of the occlusion
and misalignment on similarity computation is greatly alle-
viated, and the most informative and supportive proposals
are searched to aggregate the target proposal feature. It is
worth noting that the baseline, SELSA, also adopts the pro-
posal level feature aggregation, but without considering the
structure information. In this work, we improve the proposal
level feature aggregation by exploiting the structure informa-
tion of the objects, which is able to better aggregate target
proposal features, especially for object proposals with occlu-
sions. Thus, the improvement of +1.6 % mAP brought by
the SPFA module is actually the contribution of exploiting
the structure information in the proposal feature aggregation.
When there is no proposal level feature aggregation in the
detection model, i.e., only Faster-RCNN + stCIE, the detec-
tion precision is only about 77 % mAP, which is much worse
than the result of the proposed CSMN. (3) These two modules
(stCIE and SPFA) together make a +2.5% mAP improve-
ment, which also demonstrates that these two modules are
not conflicting on improving object detection performance.
(4) Compared with the stCIE module, the SPFA is more effec-
tive for detecting objects with fast motion. The reason is
that compared with slow motion objects, objects with fast
motion are more easily occluded. Also, fast motion objects
have more various poses, which increases the misalignment
between objects in different frames. The stCIE encodes the
context information at the pixel level, which can benefit the
classification of the proposal by leveraging the surrounding
context information. However, the stCIE can not effectively
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Fig.7 Qualitative ablation study on the proposed stCIE module. First two rows: results of the proposed detection model without the stCIE module.
Last two rows: results of the proposed detection model with the stCIE module

overcome the challenges such as occlusion and misalign-
ment, which are fairly common in the video, especially for
fast-moving objects. While the SPFA module is specifically
designed to deal with these problems, which makes it more
effective for fast motion object detection.

4.5 Qualitative Ablation Study on Proposed Modules

Figure 7 shows the ablation study on the proposed stCIE mod-
ule. The top two rows and bottom two rows shown the results
of the proposed detection model without the stCIE module
and with stCIE module, respectively. In the first example (1st
row vs. 3rd row), when context information encoding is per-
formed, the detection model successfully eliminates the label
of “car” with the aid of the context information (the surround-
ing water). In the second example (2nd row vs. 4th row), the
context information (the water) helps the detection model to
consistently detect the turtle correctly. Besides, even though
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the model falsely detects a piece of wood, the classification
is more reasonable by assigning a label of “whale” with the
help of the context information, compared with the label of
“bicycle” or “motorcycle” in the results without stCIE. From
these two examples we can see that the proposed stCIE mod-
ule improves the detection model by using the surrounding
context information.

The ablation study on the proposed SPFA module is visu-
alized Fig. 8. The top two rows and bottom two rows are the
results of the proposed detection model without the SPFA
module and with the SPFA module, respectively. From the
first example (1st row vs. 3rd row) we can see that with an
object partially occluded, the proposed SPFA module helps
the detection model to correctly detect this occluded object
with higher confidence scores. The second example (2nd row
vs. 4th row) shows that the SPFA helps eliminating misclassi-
fication of the partially occluded objects. These two examples
demonstrate that the proposed SPFA module can better deal
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Fig.8 Qualitative ablation study on the proposed SPFA module. First two rows: results of the proposed detection model without the SPFA module.
Last two rows: results of the proposed detection model with the SPFA module

with the occlusion challenge in the video object detection
by performing feature aggregation with the object structure
information.

4.6 Ablation Study on stCIE

We then dive deeper into the proposed stCIE module by sepa-
rating the context information encoding along the spatial and
temporal dimensions, i.e., only the spatial context informa-
tion (‘sCIE’ in Table 2) is encoded in the current target frame,
to check the efficiency of the spatial context and temporal
context in the proposed stCIE. From the comparison results
in Table 2 it can be concluded that compared with the baseline
[SELSA Wu et al. (2019)], performing the context informa-
tion encoding along the spatial dimension can improve the
detection accuracy (i.e., ‘SELSA + sCIE’ in Table 2, con-
text information encoded for the objects with the context
information in this single frame). This is because the con-

text information in this frame can help the detection model
better classify the objects (some examples can be found in
Fig. 7). When we encode both the spatial and temporal con-
text information for the object pixels (i.e., ‘SELSA + stCIE’
in Table 2), the final detection accuracy is further improved
compared with that of only encoding the spatial context infor-
mation. The reason is that for some video frames with motion
blur or out-of-focus scene, the spatial context information in
the current frame may be obscure and not very helpful for
object classification. By encoding the temporal context fea-
ture, more robust and informative context information will
be aggregated to the object pixels, which then assists the
classification of confusing objects. Objects with fast motion
gains more detection precision improvement from the tem-
poral context information encoding than objects with slow
motion, which also confirms the point, because frames with
fast-motion objects are more likely to have motion blur.
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Table2 Ablation study on the

SELSA (baseline)

SELSA + sCIE SELSA + stCIE

) # method
spatial context and temporal
contfext in the proposed mAP(%) 827
spatial-temporal Context
Information Encoding (stCIE) mAP(%) slow 88.9
module mAP(%) medium 81.2
mAP(%) fast 65.4

83.2 83.7
89.4 89.7
81.8 82.5
66.6 67.9

‘sCIE’” means encoding context information only along the spatial dimension

Table3 Quantitative comparison between different importance weight
types

# importance weight type Fixed Learnable
mAP(%) 84.7 85.2
mAP(%) slow 90.5 90.8
mAP(%) medium 83.5 84.2
mAP(%) fast 69.4 70.5

‘Fixed” means that we use the same value for all the importance weights,
i.e., importance weights are 1/9 for the case of 9 patches in each pro-
posal, and ‘learnable’ means that the importance weights of the target
proposal patches are learnt from the patch feature with our proposed
SPFA

4.7 Evaluation of SPFA

As we discussed in the methodology section, an alternative
but straightforward way to obtain the patch weights is simply
using equal importance weights for all the patches of the
target proposal. We treat this simple equal importance weight
way to aggregate patch feature as a baseline, and compare it
with the learnable patch weights in the proposed SPFA. The
comparison results are summarized in Table 3, which shows
that the detection accuracy decreases when we replace the
learnable patch importance weights with fixed ones (i.e., the
importance weights of all proposal patches are equal).

We further study the proposed SPFA module by visual-
izing some examples in Fig. 9. Note that we use 18 support
frames for inference, and here 3 support frames are randomly
selected out of the 18 frames for visualization. In each row
of this figure, the first column shows the target proposal and
the other columns are the selected support proposals to pro-
vide feature aggregation to the target proposal. The yellow
scores in the dashed green boxes under the target proposals
are the corresponding normalized importance weights W; of
the patches cropped by the green boxes, and the green scores
in the dashed green boxes under the support proposals are the
normalized similarity scores S, between the target proposal
and the support proposals based on the target proposal patch
cropped by the green boxes. From these examples we can
see that when an object is partially occluded, the importance
weights of the occluded patches are much smaller than that
of the non-occluded patches when performing feature aggre-
gation with the proposed Structure-based Proposal Feature
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Aggregation (SPFA) module, which demonstrates that the
proposed SPFA works as we expect.

Combining the comparison results in Table 3 with the
visual examples in Fig. 9, we can conclude that the proposed
SPFA can automatically learn the corresponding importance
weight for each target proposal patch, with which the heav-
ily occluded patches can be underrated or even ignored when
searching for support proposal features.

4.8 Position of Context Information Encoding

An alternative way to encode context information into object
feature is directly using the non-local network (Wang et al.
2018b) on the conv4 feature map in the pixel level. There are
two ablation factors, RPN with or without context encoding,
and aggregation position (conv4 or conv5 feature). Based
on these two ablation factors, we design the corresponding
experiments to evaluate the effectiveness of the proposed
stCIE.

For the first experiment, we perform the context informa-
tion encoding on conv4 feature map. The context information
encoded conv4 feature map is input to a RPN to generate
ROIs, and the backbone network to further obtain the conv5
feature. The conv5 feature is then used to extract the object
proposal feature by a Rol pooling operation. We denote this
experiment as ‘Non-local (conv4 and RPN)’. In the sec-
ond experiment, the original conv4 is used to generate the
ROIs with the RPN. We still perform the context information
encoding on conv4 feature map, but the context information
encoded convé4 feature map is only input to the backbone
network to obtain the conv5 feature, which is then used to
extract the object proposal feature by a Rol pooling opera-
tion. We denote this experiment as ‘Non-local (conv4)’. In
the last experiment, we use the proposed stCIE to perform
context information encoding, and we denote this experiment
as ‘stCIE’. Note that the structure-based feature aggregation
(SPFA) is always included in each experiment. To get rid of
the influence of randomness, each experiment has been run
for 3 times to get the mean and standard deviation of the
detection accuracy. The results are presented in Table 4.

From Table 4 it can be concluded that compared to encode
context information on conv4 feature with a non-local net-
work (‘non-local (conv4+RPN) + SPFA’ and ‘non-local
(conv4) + SPFA’ in Table 4), mining context information
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target proposal
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Fig.9 Visualization of the calculated patch importance weights and the
similarity scores between the target proposal and the support proposals.
The yellow scores in the dashed green boxes under the target proposals
are the corresponding normalized importance weights W; of the patches

on conv5 feature with the proposed stCIE module (‘stCIE +
SPFA’ in Table 4) improves the detection accuracy. Besides,
the standard variation of detection accuracy of mining con-
text information on conv5 feature map with the proposed
stCIE is much smaller than that of the non-local on conv4,
which means that the stCIE based context information min-
ing on conv5 feature map generates more stable detections.
The possible reason is that the context information encoded
conv4 feature, will further go through some convolutional
layers in the backbone to generate the conv5 feature, in which
the object feature will inevitably include some background
information. Thus, when extracting proposal feature with the
convS feature map, the extracted proposal feature may con-
tain some background information, which will affect the final
detection.

Further, when performing context information encod-
ing on the conv4 feature and generating the ROIs with
this context information encoded conv4 feature (‘non-local
(conv4+RPN) + SPFA’ in Table 4), the detection accuracy is
worse than that of performing context information encoding
on the conv4 feature but generating the ROIs with the original
conv4 feature (‘non-local (conv4) + SPFA’ in Table 4). The
reason is that when performing a pixel level feature aggre-

support proposals

cropped by the green boxes, and the green scores in the dashed green
boxes under the support proposals are the normalized similarity scores
S! between the target proposal and each support proposal based on the
target proposal patch cropped by the green boxes

gation on the conv4 feature maps with a non-local network,
some object information will also be encoded into the back-
ground pixel features. When a RPN is adopted on the feature
aggregated conv4 maps to generate proposals, some back-
ground proposals might be labeled as object proposals by
the RPN, which will then pollute the target proposal features
during feature aggregation.

We then visualize some detection results in Fig. 10. The
first two columns are some detection results of performing
the context information encoding on the conv4 feature map
and using the encoded conv4 feature map to generate propos-
als (i.e., conv4+RPN) + SPFA’ in Table 4), and the last two
columns are the corresponding detection results of perform-
ing the context information encoding with the proposed stCIE
(i.e., ‘stCIE + SPFA’ in Table 4). From the examples in the
first two columns we can see that some background proposals
which have similar appearance features with object proposals
are more likely to be classified as the corresponding objects.
This is because when we perform the context information
encoding on the conv4 feature map and use the encoded
conv4 feature map to generate proposals, the background
proposals will be encoded with some object information if
these background proposals have similar appearance feature
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Table 4 Ablation studies on the position of perform context information encoding

Method Metric Experiment 1 Experiment 2 Experiment 3 Mean =+ Std.
Non-local (conv4+RPN) + SPFA mAP(%) overall 84.77 84.45 84.60 84.61 £+ 0.160
mAP(%) slow 90.44 90.28 90.33 90.35 4+ 0.082
mAP(%) medium 83.62 83.15 83.36 83.38 £+ 0.235
mAP(%) fast 69.88 68.97 69.29 69.38 4 0.462
Non-local (conv4) + SPFA mAP(%) overall 84.89 84.95 85.01 84.95 + 0.060
mAP(%) slow 90.52 90.57 90.61 90.57 4+ 0.045
mAP(%) medium 83.80 83.88 83.96 83.88 £ 0.080
mAP(%) fast 70.00 70.10 70.19 70.10 + 0.095
Non-local (conv5) (i.e., stCIE) + SPFA mAP(%) overall 85.18 85.21 85.10 85.16 + 0.057
mAP(%) slow 90.73 90.75 90.67 90.72 £+ 0.042
mAP(%) medium 84.18 84.23 84.07 84.16 £+ 0.082
mAP(%) fast 70.46 70.55 70.30 70.44 +0.127

‘std.” denotes the standard deviation

bear 0.616

Fig. 10 Visualization of some detection results. First two columns:
detection results of performing the context information encoding on
the conv4 feature map and using the encoded conv4 feature map to
generate proposals (i.e., conv4+RPN) + SPFA’ in Table 4). Last two

with the object, and as a result, the RPN might mistakenly
regard these background proposals as object proposals. How-
ever, in the last two columns, these background proposals can
be classified as background correctly because in our proposed
stCIE module, we perform the context information encoding
on the conv5 feature map, and when the RPN classifies the
proposals, the object information will not be encoded into the
background proposals, and thus it is easier for RPN to dis-
tinguish the background proposals. This comparison verifies
our statement that with the modifications in our proposed
stCIE, the background pixel features in conv4 will not be
contaminated by the object information, and thus it is eas-
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columns: the corresponding detection results of performing the context
information encoding with the proposed stCIE (i.e., ‘stCIE + SPFA’ in
Table 4

ier for RPN to filter out the background proposals from the
object proposals.

4.9 Analysis on Number of Support Frames

Intuitively, sampling more support frames will yield bet-
ter detection results during inference, because with more
support frames sampled, more temporal information can be
extracted from the support frames and then leveraged to
aggregate features for target proposals. Unfortunately, more
support frames means more computation cost (GPU memory,
inference time). Accordingly, establishing a suitable support
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Table 5 Influence of support frame number F on detection precision

# frames 0 2 6 10 14 18

mAP(%) 74.4 83.1 84.3 84.7 85.0 85.2
mAP(%) slow 82.4 89.3 90.2 90.6 90.7 90.8
mAP(%) medium 71.6 81.5 82.9 83.6 84.1 84.2
mAP(%) fast 524 66.6 69.4 70.1 70.3 70.5

frame number is very important. Considering the promis-
ing performance of the random sampling strategy (Wu et al.
2019), we adopt it for our support frame sampling. Table 5
summarizes the influence of the support frame number on
detection performance. When the number of support frames
is 0, i.e., no support frame is sampled, the detection result is
very bad (only 74.4%mAP), because no feature aggregation
is performed to deal with the challenges such as occlusion,
motion blur, and rare pose in target frames without sampling
any support frame. When two support frames are sampled in
the experiment for feature aggregation, we get a much bet-
ter detection performance (+8.7%mAP), which demonstrates
the effectiveness of the feature aggregation operation. With
the number of support frames increasing, the detection per-
formance improves consistently. This is because with more
support frames sampled, more temporal information such as
object appearance, pose, shape, etc. can be mined by the
feature aggregation module to enhance the target proposal
features. Moreover, more support frames will provide more
informative context, which will then be encoded into the
object proposal features and benefit the final detection. One
interesting thing is that objects with faster motion gain more
improvement than objects with slower motion when using
more support frames for feature aggregation. The reason is
that fast-moving objects usually have much more shape and
pose variations, which cause the pose misalignment. Also,
fast-moving objects are more likely to be occluded, or with
motion blur. Sampling more support frames can provide var-
ious supportive information for the target proposal objects
with deteriorated appearance. Unfortunately, the improve-
ment is saturated when support frames are up to a certain
number. This is reasonable, because when the number of sup-
port frames is large enough, adding more support frames only
can provide very limited extra supportive information. Thus,
to balance the detection accuracy and computation cost, we
set the number of support frames as 18 for our experiments.

4.10 Analysis on number of patches

Detection models do benefit from the parallel multi-head
attention module (Hu et al. 2018), which runs through an
attention mechanism in each head in parallel, and the inde-
pendent attention outputs are then concatenated and linearly

transformed into the expected dimension. Intuitively, multi-
ple attention heads are expected to capture different relations
between the input features. We also adopt the multiple head
strategy in our proposed structure-based proposal feature
aggregation (SPFA) module. However, the biggest difference
between the SPFA and the traditional multi-head attention
module is that the input to each head of the traditional multi-
head attention module is the same, and each head is expected
to learn different relations between the input, while the inputs
to each head of our SPFA are different, i.e., each head in our
SPFA takes as input a certain patch of the target proposal and
all the patches of the support proposals. Different heads in
the SPFA exploit the relation between the target proposal and
support proposals based on different object parts, and finally
the individual relation outputs are concatenated together. By
doing this, the SPFA measures the relation between different
proposals by exploiting the object structure information.

The number of segmented proposal patches N is another
important hyper-parameter in our experiment settings, and
can have significant influence on our final detection precision.
In this subsection, we conduct some experiments to analyze
the influence of the patch number.

In the experiments, the proposal patches are divided in
equal stride and with equal size. The proposal features gen-
erated with RolAlign pooling are with the size of K x K x C
(K = 8 in our experiments) where C is the feature channel
dimension. We keep the proposal size invariant in all the
experiments. When dividing each proposal into 2 x 2 (i.e.,
4 patches) non-overlapping patches, each patch is with the
size of 4 x 4 x C. When dividing each proposal into 3 x 3
(i-e., 9 patches) non-overlapping patches, we first increase
the proposal size to 9 x 9 x C by replicatively padding the
proposal feature by 1 on the top and on the left, and then
equally divide the proposal into patches. In this case, each
patch is with the spatial size of 3 x 3 x C. When dividing
each proposal into 4 x 4 (i.e., 16 patches) non-overlapping
patches, each patch is with the size of 2 x 2 x C.

Table 6 presents the influence of the patch number N on
detection precision. N = 1 means that the object propos-
als (both the target proposal and the support proposals) are
not divided into patches, instead, the proposals themselves
are used to calculate the similarities between proposals and
perform feature aggregation without computing the patch
importance weights [i.e., proposal feature aggregation is per-
formed in the way as in SELSA (Wu et al. 2019)]. When the
patch number is too small (e.g., N = 4), the detection pre-
cision is not good enough, because the structure information
can not be fully captured. When the patch number is too
big (e.g., N = 16), the detection precision also drops, since
small patches (patches with small spatial size) capture lim-
ited object feature, and the object structure information can
not be mined well either. Besides, this also shows that more
heads in the SPFA do not always give us higher accuracy.
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Table 7 Ablation studies on

attent qul # module Multi-head attention (8 heads) Multi-head attention (16 heads) SPFA

attention modutes mAP(%) 83.9 83.9 85.2
mAP(%) slow 89.8 89.8 90.8
mAP(%) medium 82.7 82.8 84.2
mAP(%) fast 68.2 68.4 70.5

‘Multi-head attention’ denotes the traditional multi-head attention module Hu et al. (2018)

Table 6 Influence of patch number N on detection precision

# patches 1 4 9 16

mAP(%) 83.7 85.0 85.2 84.8
mAP(%) slow 89.7 90.6 90.8 90.5
mAP(%) medium 82.5 84.0 84.2 83.9
mAP(%) fast 67.9 70.4 70.5 70.1

To further verify that the detection model benefits from
the cross-patch feature compensation design instead of the
multi-head model capacity, we design another experiment,
in which we replace the proposed SPFA with a traditional
multi-head attention module (Hu et al. 2018). The multi-head
attention module does not divide the proposal into patches,
instead, it takes as input the extract target and support pro-
posal features for each head to exploit the relation between
the target and support proposals, just as many state of the
art (Deng et al. 2019a; Wu et al. 2019; Chen et al. 2020) do
for aggregating target proposal feature. We use 8 (8 is used
here instead of 9 because the input feature channel is usually
an exponent of 2 and is divisible by 8) and 16 heads in the
multi-head attention module, and the results are summarized
in Table 7. When adopting the traditional multi-head atten-
tion module (Hu et al. 2018) for proposal feature aggregation,
the performance is worse than that of using SPFA, even when
more heads (16 heads) are used in the traditional multi-head
attention module. This demonstrates that the proposed SPFA
module benefits from the cross-patch feature compensation
design instead of the multi-head model capacity.

4.11 Comparison with State of the Art

In this subsection, we compare the proposed framework with
13 baseline methods to show its effectiveness. The compared
methods are:

e D & T (Feichtenhofer et al. 2017) is a ConvNet archi-
tecture for simultaneous detection and tracking. It uses
correlation features that represent object co-occurrences
across time to aid the ConvNet during tracking, and link
the frame level detections based on the tracklets.

e FGFA (Zhu et al. 2017a) adopts optical flow to guide the
feature aggregation. It improves the per-frame features
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by aggregation of nearby features along the motion paths
to improve the video object detection.

MANet (Wang et al. 2018a) jointly calibrates the fea-
tures of objects on both pixel-level and instance-level.
The pixel-level calibration targets to modeling detailed
motion, while the instance-level calibration aims to cap-
ture more global motion cues in order to be robust to
occlusion.

ST-Lattice (Chen et al. 2018a) performs expensive detec-
tion sparsely and propagates the results across both scales
and time with substantially cheaper networks, by exploit-
ing the strong correlations among them.

STSN (Bertasius et al. 2018) uses deformable con-
volutions across space and time to leverage temporal
information for object detection in video. It learns to
spatially sample useful feature points from nearby video
frames.

STMN (Xiao and Jae Lee 2018) adopts recurrent compu-
tation unit to model long-term temporal appearance and
motion dynamics. It also proposes a MatchTrans mod-
ule to align the spatial-temporal memory from frame to
frame to tackle object motion in videos.

PSLA (Guoetal. 2019) establishes the spatial correspon-
dence between features across frames in a local region
with progressively sparser stride and uses the correspon-
dence to propagate features. It can be used to replace the
expensive optical flow models.

LWDN (Jiang et al. 2019) designs the locally-weighted
deformable neighbors to latently aligh the high-level
features between keyframes and keyframes or non-
keyframes without utilizing time-consuming optical flow
extraction.

LRTRN (Shvets et al. 2019) leverages the temporal rela-
tion module by operating on object proposals to learn
the similarities between proposals from different frames,
and selects proposals from past and/or future to support
current proposals.

RDN (Deng et al. 2019a) uses object guided hard atten-
tion to improve storage-efficiency and propagate tem-
poral information through external memory to address
long-term dependency in video object detection.
SELSA (Wu et al. 2019) aggregates semantic features
across frames on the proposal level in the full-sequence
level using relation networks.
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Table 8 Comparison with state
of the art on ImageNet VID
validation set

e CenterNet (Zhou et al. 2019) is a center point based
approach, which uses keypoint estimation to estimate
a heatmap to identify the locations of the object center
points, and regresses to the bounding box sizes.

e MEGA (Chen et al. 2020) takes full consideration of both
global and local information for proposal level feature

Method Backbone RT (FPS) mAP (%)
D & T (Feichtenhofer et al. 2017) ResNet-101 7.8 75.8
D & T+TR (Feichtenhofer et al. 2017) ResNet-101 - 79.8
D & T+TR (Feichtenhofer et al. 2017) ResNeXt-101 - 81.6
FGFA (Zhu et al. 2017a) ResNet-101 1.4 76.3
FGFA+Seq-NMS (Zhu et al. 2017a) ResNet-101 - 78.4
MANet (Wang et al. 2018a) ResNet-101 5.0 78.1
MANet+Seq-NMS (Wang et al. 2018a) ResNet-101 - 80.3
ST-Lattice+TR (Chen et al. 2018a) ResNet-101 20.0 79.6
STSN+Seq-NMS (Bertasius et al. 2018) ResNet-101 - 80.4
STMN+Seq-NMS (Xiao and Jae Lee 2018) ResNet-101 1.2 80.5
PSLA (Guo et al. 2019) ResNet-101 - 80.0
PSLA+Seq-NMS (Guo et al. 2019) ResNet-101 - 81.4
LWDN (Jiang et al. 2019) ResNet-101 20.0 76.3
LRTRN (Shvets et al. 2019) ResNet-101 10.0 81.0
RDN (Deng et al. 2019a) ResNet-101 10.6 (V) 81.8
RDN (Deng et al. 2019a) ResNeXt-101 - 83.2
RDN+BLR (Deng et al. 2019a) ResNet-101 - 83.8
SELSA (Wu et al. 2019) ResNet-101 1.2 82.7
SELSA (Wu et al. 2019) ResNeXt-101 - 84.3
CenterNet (Zhou et al. 2019) ResNet-101 47.0 73.6
CenterNet+Seq-NMS (Zhou et al. 2019) ResNet-101 43.0 75.9
MEGA (Chen et al. 2020) ResNet-101 4.2 82.9
MEGA (Chen et al. 2020) ResNeXt-101 - 84.1
MEGA+BLR (Chen et al. 2020) ResNet-101 - 84.5
CenterNetHP (Xu et al. 2020) ResNet-101 37.0 76.7
CenterNetHP+Seq-NMS (Xu et al. 2020) ResNet-101 34.0 78.4
KCF-RL(CenterNet-LSTM) (Yao et al. 2020) ResNet-101 95.2 (C) 53.3
KCF-RL(YOLOV3-LSTM) (Yao et al. 2020) ResNet-101 71.5 (C) 59.9
LSTS (Jiang et al. 2020) ResNet-101 23.0 77.2
LSTS (Jiang et al. 2020) ResNet-101+DCN 21.2 80.1
LSTS+Seq-NMS (Jiang et al. 2020) ResNet-101+DCN 4.6 82.1
HVR (Han et al. 2020b) ResNet-101 - 83.2
HVR+Seq-NMS (Han et al. 2020b) ResNet-101 - 83.8
HVR+Seq-NMS (Han et al. 2020b) ResNeXt-101 - 85.5
CSMN (Ours) ResNet-101 1.1 85.2
CSMN (Ours) ResNeXt-101 1.0 86.2
CSMN w/o data augmentation (Ours) ResNet-101 1.1 83.1
CSMN w/o data augmentation (Ours) ResNeXt-101 1.0 84.3

‘RT” repsents ‘Runtime’ ‘X+Y’ means post-processing strategy Y is employed on method X. ‘A-B’ means
technique A is combined with technique B. ‘TR’ is tubelet rescoring, ‘BLR’ means box linking with relations.
V means that the speed is tested on TITAN V GPU, and C means that the speed is tested on Intel Xeon E5

CPU

aggregation using relation networks, and designs a long
range memory to get access to more contents.

e CenterNetHP (Xu et al. 2020) is a video object detector
based on CenterNet. It propagates the previous reliable
long-term detection in the form of heatmap to boost
results of upcoming image with a heatmap propagation.

@ Springer
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Fig. 11 Qualitative results on some challenging cases of the VID dataset

e KCP-RL (Yao et al. 2020) adopt object tracker for tem-
poral propagation, and using reinforcement learning for
adaptive key-frame scheduling.

e LSTS (Jiang et al. 2020) learns the semantic-level
correspondences among adjacent frame features using
learnable spatial-temporal sampling. Temporal relations
are enhanced by sparsely recursive feature updating and
dense feature aggregation.

e HVR (Han et al. 2020b) tries to learn effective object
representations via modeling relations of hard propos-
als among different videos, based on a multi-level triplet
selection scheme.

The comparison results are summarized in Table 8. For
fair comparison, we first compare our model with state of
the art by adopting the same backbone network (ResNet-
101) in all of the models. From the results we can see that
our model beats D & T (Feichtenhofer et al. 2017) (75.8%
mAP), a single-frame object detection method without fea-
ture aggregation, by a large margin (+9.4%). When compared
with some optical flow based feature aggregation methods,
our model is significantly better than FGFA (Zhu et al.2017a)
(76.3% mAP) and MANet (Wang et al. 2018a) (78.1% mAP),
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and the detection improvements are +8.9% mAP and +7.1%
mARP, respectively. Besides, our method also shows its supe-
rior over some relation based feature aggregation methods
(e.g.,LRTRN (Shvets etal. 2019) (81.0% mAP), RDN (Deng
etal. 2019a) (81.8% mAP), SELSA (Wu et al. 2019) (82.7%
mAP), MEGA (Chen et al. 2020) (82.9% mAP), LSTS (Jiang
et al. 2020) (82.1% mAP), HVR (Han et al. 2020b) (83.2%
mAP)), which are considered as the most advanced VOD
algorithms, on the detection precision. Like many previous
state of the art that could gain further improvement by adopt-
ing a more powerful backbone network (ResNeXt-101), it
could also benefit our model, and with no doubt, our model
still performs the best.

To get rid of the affect of data augmentation during train-
ing and make fair comparison with the state of the art, we
also train our CSMN model without data augmentation, and
the detection results are summarized in the last two rows of
Table 8. Training without data augmentation degrades the
detection accuracy by ~ 2% mAP, while the performance is
still competitive to the state of the art such as MEGA Chen
et al. (2020) and HVR Han et al. (2020b).

Our proposed CSMN is built on SELSA Wu et al. (2019),
and it improves the detection accuracy of SELSA by more
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than 2% mAP. This demonstrates the effectiveness of the
proposed CSMN.

Post-processing benefits most of these methods more or
less on detection precision (mAP). For example, the D &
T algorithm achieves a +4.0% mAP improvement with the
tubelet rescoring post-processing. FGFA, MANet, and PLSA
getan improve of +1 ~2% mAP by using the Seq-NMS post-
processing strategy. In Deng et al. (2019a), they also design
a novel post-processing technique called Box Linking with
Relations (BLR) for their proposed RDN algorithm, which
gives better refined detection performance (83.8% mAP).
Nonetheless, our proposed framework still achieves the best
performance.

For runtime, our methods achieves 1.1 FPS, compara-
ble to the relation networks based methods, SELSA (Wu
et al. 2019) and MEGA (Chen et al. 2020), with ~ +2 mAP
improvement. It is worth noting that some state of the art
(Zhou et al. (2019); Yao et al. (2020); Xu et al. (2020); Jiang
et al. (2019, 2020), etc.) aim at accelerating the video object
detection, while our proposed CSMN targets on improving
detection accuracy. Thus, the detection algorithms proposed
in these three references achieve high detection speed, but
the detection accuracy of these algorithms are much worse
compared with the proposed CSMN.

Figure 11 presents the qualitative evaluation of the pro-
posed method on some challenging VOD cases (e.g., part
occlusion, motion blur, out-of-focus camera), which demon-
strates that the proposed framework can handle these chal-
lenges well.

5 Conclusion

In this work, we propose a context and structure mining
network for video object detection, which includes a spatial-
temporal context information encoding module to encode
the spatial-temporal context information in video frames into
object features, and a structure-based proposal feature aggre-
gation module to better aggregate target proposal features
with temporal information in support frames. By encod-
ing the spatial-temporal context information, more accurate
object classification is achieved. Moreover, the object struc-
ture information enables us to find the most informative and
supportive features to aggregate target proposal features even
when some VOD challenges such as occlusion, pose mis-
alignment, etc. exits on video objects. Experiments show the
effectiveness of the the proposed framework, which achieves
state-of-the-art video object detection performance.
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