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Abstract—Recent progress in video object detection (VOD) has
shown that aggregating features from other frames to capture
long-range contextual information is very important to deal
with the challenges in VOD, such as partial occlusion, motion
blur, etc. To exploit more effective feature aggregation, we
propose several improvements over previous works in this paper:
(1) a class-aware pixel-level feature aggregation module, which
characterizes a pixel by exploiting the context information lying
in the instances from both the current frame and other frames.
Different from the previous non-local operation, the proposed
class-aware pixel-level feature aggregation filters out most of
the noisy information from the large scope of background and
objects in different classes, and only enhances representation of
a foreground pixel with the same class instances with limited
ambiguous information; (2) a class-aware instance-level feature
aggregation module, which aggregates features for object propos-
als by learning two kinds of relations: the temporal dependencies
among the same class object proposals from support frames
sampled in a long time range or even the whole sequence, and
spatial topology relation among proposals of different objects in
the target frame. The homogeneity constraint in instance-level
feature aggregation filters out many defective proposals, making
the feature aggregation more accurate; and (3) a correlation-
based feature alignment module embedded in the instance-
level feature aggregation, which aligns the feature maps of the
support and target proposals. Without bells or whistles, the
proposed method achieves state-of-the-art performance on the
ImageNet VID dataset without any post-processing methods. This
project is publicly available https://github.com/LiangHann/Class-
aware-Feature-Aggregation-Network-for-Video-Object-Detection.

Index Terms—video object detection, class-aware, feature ag-
gregation, pixel-level, instance-level, feature alignment

I. INTRODUCTION

DUE to the advancement of deep neural networks, signif-

icant progress has been achieved on object detection in

still images [1], [2], [3], [4], [5], [6]. With the development
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of storage and communication, video is becoming a popular

media to convey more rich information, and video-based

analysis becomes inevitable. However, due to the deteriorated

appearance caused by occlusion, motion blur, out-of-focus

cameras, and rare poses in video capturing, directly applying

those image-based object detectors on a frame-by-frame basis

to a video often makes the performance unsatisfactory.

Recent research on VOD shows that it is useful to leverage

the temporal information inherently encoded in videos to deal

with the aforementioned challenges. Several works leverage

short-term temporal information from nearby frames to help

object detection in the current frame. For example, FGFA [7]

and MANet [8] use optical flow to conduct feature aggre-

gation, D&T [9] applies correlation features between nearby

frames, STSN [10] adopts deformable convolutions across

the temporal domain, and PSLA [11] explores the spatial

correspondence between features across frames in a local

region using progressive sparser strides. In those methods, only

short-term temporal information is used, and the lack of long-

term temporal information exploitation limits the detection

performance of these methods, especially for objects with fast

motion.

To take advantage of the long-term dependencies between

frames, the recently proposed relation-based network [12]

is widely adopted. Shvets et al. [13] propose to leverage

Long-Range Temporal Relationship (LLR) to encode the inter-

frame dependencies between object proposals in a long video

segment, Wu et al. [14] introduce the Sequence Level Seman-

tics Aggregation (SELSA) to further explore this long range

relation in the sequence level, and Deng et al. [15] propose the

Relation Distillation Networks (RDN) to progressively distill

the long range relation. To leverage both the global and local

temporal information, Chen et al. [16] design the Memory

Enhanced Global-local Aggregation (MEGA) to better exploit

the short- and long-term relations, and Jiang et al. [17]

develop the Learnable Spatial-Temporal Sampling (LSTS) to

mine the local motion information, and Sparsely Recursive

Feature Updating (SRFU) and Dense Feature Aggregation

(DFA) modules to exploit the global temporal information. To

exploit the inter-video proposal relations, Han et al. [18] in-

troduce the Hierarchical Video Relation Network (HVR-Net),

by integrating intra-video and inter-video proposal relations in

a hierarchical fashion.

There are several problems for most of the current relation-

based feature aggregation methods of VOD. Firstly, most

of them perform instance-level feature aggregation which

inevitably overlooks the fine-grained pixel-level feature repre-
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sentation; secondly, they only consider the temporal dependen-

cies among the objects, but neglect the spatial relations, which

has been proved to be very useful in still image detection [12];

thirdly, all of these methods directly aggregate the support

proposals in the temporal domain without considering whether

they belong to the same class or not, making it inevitably

bring defective proposals from irrelevant classes; lastly, these

methods aggregate the features directly from support proposals

without feature alignment, leading to unaligned features for the

following regression and classification.

To exploit better feature aggregation for VOD, we propose a

Class-aware Feature Aggregation network (CFA-Net) with the

following improvements: (1) a Class-aware Pixel-level Feature

Aggregation (CPFA) module, which enhances each pixel in the

target feature map with all other pixels constrained in the same

class instances of all support frames through self-adaptively

predicted attention weights. Different from previous non-local

operations [19], [20] which aggregate the global information,

the proposed CPFA filters out a lot of noisy information from

the large scope of background and different class instances,

and only enhances pixel representation using object propos-

als with limited ambiguous information; (2) a Class-aware

Instance-level Feature Aggregation (CIFA) network, which

aggregates features for object proposals by learning two kinds

of relations: the temporal dependencies among the same class

objects from support frames sampled in a long time range

or even the whole sequence, and spatial topology relation

among proposals of different objects in the target frame. In

CIFA, we separate spatial and temporal feature aggregation to

distinguish the heterogeneity of temporal and spatial context

information for instance-level feature aggregation. Moreover,

the homogeneity constraint in CIFA helps filter out many

defective proposals and only keep the object proposals which

carry the same class label with the target proposal as the

support proposals, which makes the feature aggregation more

accurate; (3) a correlation-based feature alignment operation

embedded in the instance-level feature aggregation, which

aligns the support and target proposals that may have quite

different poses, shapes, etc., making it more suitable for the

following regression and classification step.

This paper is an extension of [21]. Compared with the ACM

Multimedia 2020 conference paper, the extensions include:

(1) pixel-level feature aggregation is proposed to overcome

the drawback of the instance-level feature aggregation, i.e.,

enhance the fine-grained target pixel feature with the sup-

port pixel features; (2) a class constraint is added into the

pixel-level feature aggregation module, which filters out most

ambiguous information and keeps the most supportive and

class-related pixel features to aggregate the target pixel fea-

ture; (3) the proposed class-aware pixel-level feature aggrega-

tion achieves superior performance on the widely-used VOD

dataset; and (4) more experimental analyses are presented in

this paper.

This paper is organized as follows. Section II reviews the

related work on still image object detection and video object

detection. Section III describes the proposed method. The

experimental results are presented in Section IV, followed by

the conclusion in Section V.

II. RELATED WORK

A. Still Image Object Detection

There are two main branches for still image object detection:

one-stage object detector and two-stage object detector. One-

stage object detectors [2], [2], [22], [23], [4], [24] directly

predict the bounding box of interest based on the feature map

extracted by the backbone network. However, these methods

usually lead to foreground and background class imbalance

problem, which badly affects the training process [25]. Two

stage detectors usually generate object proposals with a Region

Proposal Network (RPN) [3] first, followed by a RoIAlign

pooling [6] to get the proposal features, then the majority of

negative proposals are filtered out, and the remaining proposal

features are used to perform the detection with a classification

layer and a regression layer. Two-stage detector is adopted in

this paper.

B. Video Object Detection

There are two branches for video object detection. On the

one hand, the redundancy in video frames can be leveraged to

improve the detection speed. For example, Zhu et al. [26], [27]

adopt optical flow to propagate the key frame feature to other

frames to save the expensive feature extraction cost. Chen et

al. [28] design a time-scale lattice to improve the speed with an

extra classifier to re-score the bounding boxes. Liu et al. [29],

[30] adopt Bottleneck-LSTM with MobileNet [31], [32] as

the backbone and use SSD as the detector to improve the

speed on the mobile devices. Similarly, Yao et al. [33] adopt

object tracker for temporal propagation, and use reinforcement

learning for adaptive key-frame scheduling. Xu et al. [34]

propagate the previous reliable long-term detection in the form

of heatmap to boost results of upcoming images for one-stage

detector.

Temporal information encoded in videos can also be used to

improve the performance of VOD, and our paper follows this

trend. There are two major directions in exploiting temporal

information. The first is focused on post processing [35], [36],

[37]. These methods usually take the spatial and temporal

coherence into consideration, and explore bounding box as-

sociation rules across nearby frames to refine the per-frame

detection results. Those methods are sub-optimal because they

are highly dependent on the quality of initial detector which

is trained without any temporal information. In contrast, the

other category of methods [9], [7], [26], [28], [8], [38], [27],

[10], [39], [11], [15], [13], [14], [40] exploits the temporal

information in videos during training stage. Among these

methods, optical flow based feature warping [41] is widely

used to propagate the features across frames [7], [26], [8],

[37]. However, the optical flow only exploits the temporal

information between frames in short time range, and the

warping does not work well in occlusion. To address these

shortcomings, Guo et al. introduce PSLA [11] to model the

spatial correspondence between features across frames in a

local region using the progressive sparser stride, Tang et al.

design a cuboid proposal network [40] that extracts spatio-

temporal candidate cuboids and a short tubelet detection net-

work that detects short tubelets in short video segments, Chen
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Fig. 1: Flowchart of the proposed Class-aware Feature Aggregation Network (CFA-Net).

et al. develop a temporal refinement network (TRNet) and a

temporal dual refinement network (TDRNet) [42] to propagate

the refinement information across time. These methods only

exploit the short-term temporal information, thus only limited

support features are used to enhance the current feature. To

explore the long-range dependencies in the temporal domain,

Xiao and Lee [38] propose a spatial-temporal memory net-

work (STMN) as the recurrent operation to model long-term

temporal appearance and motion dynamics, with a MatchTrans

module proposed to align the spatial-temporal memory. Shvets

et al. [13] propose to use the relation module [43] to model

the inter-frame dependencies between the object proposals

in a long video segment, Wu et al. [14] further explore the

temporal relation across the whole sequence, Deng et al. [15]

propose the RDN to model the spatial-temporal relations

for video object detection, and Chen et al. [16] design the

MEGA to better exploit the short- and long-term temporal

relations. To exploit the inter-video proposal relations, Han

et al. [18] introduce the Hierarchical Video Relation Network

(HVR-Net), by integrating intra-video and inter-video proposal

relations in a hierarchical fashion. These works [13], [14],

[15], [16], [17], [18] achieved promising results on video

object detection. However, they are all instance-based feature

aggregation scheme, and the performance largely depends on

the quality of object proposals. Moreover, LLR [13] only ag-

gregates the temporal instances, while SELSA [14], RDN [15],

MEGA [16], and HVR-Net [18] treat all the instances equally

and ignore the topology information of the proposals in the

same frame.

III. PROPOSED METHOD

To perform accurate object detection on deteriorated frames

with partial occlusion, motion blur, or out-of-focus scene, a

detector should be able to aggregate features of the same or the

similar objects from other frames to enhance the appearance

feature of the target object in the current frame. Moreover,

the topology relation between different objects in the same

frame can also help object detection and recognition. Keeping

these motivations in mind, we propose a Class-aware Feature

Aggregation network (CFA-Net) for VOD.

A. Overview

Fig. 1 presents an overview of the proposed CFA-Net. First,

a backbone network (e.g., ResNet-101) is applied to extract

features for the target frame (the current frame on which

detection is performed) and the support frames (other frames

in this video). Then, a RPN is adopted to generate object

proposals for each frame, followed by a RoIAlign pooling

operator to pool features for each object proposal. Before

performing feature aggregation to enhance the target proposal

features, we propose a coarse object proposal classifier to

classify the generated object proposals, and the pixel- and

temporal instance-level feature aggregation are only conducted

on proposals with the same (predicted) class label. Specifi-

cally, the Class-aware Pixel-level Feature Aggregation module

(CPFA) aggregates feature for each pixel of the pooled RoI

feature map of each target proposal. Only the features of those

pixels which are inside a proposal carrying the same class

label as the target proposal can be used for feature aggre-

gation, and such a constraint could filter out plenty of noisy

and ambiguous support information. After pixel-level feature

aggregation, for each target proposal, its feature is further

enhanced by the features of other proposals at instance-level.

Considering the heterogeneity of the spatial and temporal in-

formation, the instance-level feature aggregation is performed

in these two dimensions separately. The Class-aware Temporal

Feature Aggregation module (CTFA) is designed to enhance

the target proposal features by aggregating proposal features

with the same class label from support frames, in which the

feature aggregation is guided by exploiting the appearance

feature similarity between these proposals. The Spatial Feature

Aggregation module (SFA) is designed to model the object

topology relation by analyzing the interactions among objects

in the same frame, and further aggregate features for the target
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proposal with the object proposals in the same target frame.

Note that a Feature Alignment Module (FAM) is embedded

in the temporal and spatial instance-level feature aggregation

to align the feature maps of the target and support proposals.

Finally, the aggregated target proposal features are input to two

fully-connected layers to predict the class labels and regress

the bounding box locations.

B. Object Proposal Classifier

Recently, the relation networks [12] and non-local neural

networks [19] are proposed to explore the appearance and

geometry relations among object proposals, and the feature

aggregation is conducted based on the built relations between

proposals. These two networks are adopted by many recent

VOD works, and get promising performance. Unfortunately,

the relations (i.e., the feature aggregation weights) are calcu-

lated mainly based on the proposal appearance feature, which

inevitably includes some ambiguous information coming from

the background or different kinds of objects when aggregating

features for the target proposal, especially when the appear-

ance feature of the target proposal is very similar to the ones

of the background or other kinds of objects.

To perform feature aggregation with the most supportive and

relative information, an object proposal classifier is designed

and inserted in the detection network just before the feature

aggregation modules. For the generated object proposals by

RPN, the object proposal classifier will classify the proposals

into different object classes or background. Then, the pixel-

level feature aggregation and the temporal instance-level fea-

ture aggregation are performed among object proposals with

the same (predicted) labels. This proposal classifier is jointly

trained with the detection network. The benefits brought by the

designed object proposal classifier are two-folds: first, with the

predicted labels, the most supportive and relative features can

be selected to perform feature aggregation; second, by training

this proposal classifier, the features of object proposals from

different classes extracted by the backbone network can be

more distinguishable between each other.

C. Class-aware Pixel-level Feature Aggregation (CPFA)

Most of the recent works try to solve the challenging

VOD task by instance-level aggregation only [13], [14], [15].

However, without accurate feature alignment, it is highly

possible that a pixel in the target proposal is not aggregated

with the most supportive ones. To better aggregate features

for each target pixel, we propose to first perform feature

aggregation in pixel level, i.e., characterizing each pixel by

exploiting its contextual information in both the target frame

and support frames to enhance its feature representation. Note

that pixel here denotes a pixel location in the feature maps,

which corresponds to a small region in the original image.

For a target pixel of an object, if we sample the support

pixels without any constraint, the sampled support pixels may

be from background or objects in different classes, and the

aggregation blind to classes will degrade the representation of

the target pixel. An example is presented in Fig. 2 to illustrate

this problem. When performing feature aggregation for a pixel

Fig. 2: Pixel-level feature aggregation without and with the instance
constraint. For a target pixel (marked with red square), (b) shows the
pixel-level feature aggregation without any constraint, i.e., support
pixels (marked with blue squares) for feature aggregation can be
sampled from anywhere of a frame, (c) presents the pixel-level feature
aggregation with the class constraint, i.e., the sampled support pixels
(marked with pink squares) for feature aggregation must be in at least
one generated proposal which has the same predicted labels with the
target proposal.

of a cat (red square in Fig. 2(a)), if the non-local neural

network [19] is adopted to perform the pixel-level feature

aggregation, the support pixels (blue squares in Fig. 2(b))

can be sampled from anywhere of a frame without any

constraint. Thus, some pixels from background and different

object classes might be leveraged to aggregate features for the

target pixel, especially when the target object is very similar

to the background or another object. This will increase the

ambiguity of the representation of the target pixel, and harm

the detection task. To perform feature aggregation for a target

pixel with the most supportive ones, the selected support pixels

should be restricted to belong to the same object or objects in

the same class with the target pixel. Unfortunately, we can not

get the exact object mask in this object detection task to put

this instance constraint on the pixel-level feature aggregation.

Instead, we use the proposal label predicted by the proposal

classifier as a weak instance constraint, and restrict the selected

support pixels (pink squares in Fig. 2(c)) to be in at least

one of the proposals which have the same predicted labels

with the target proposal. With this class constraint for the

pixel-level feature aggregation, most background pixels and

unrelated pixels coming from different object classes will be

filtered out, which guarantees to sample the most supportive

pixels for feature aggregation to the greatest extent.

Let F denote the number of support frames, H ×W × C

the size of feature tensors extracted by the backbone network

with H , W and C as the height, width and channel dimension,

respectively, the proposed pixel-level feature aggregation with

class constraint can be formulated as

Xi,j=Φp
( 1

A

H
∑

k=1

W
∑

l=1

F
∑

f=1

(

wp(φp(Vi,j), ψ
p(Vf

k,l))·V
f
k,l ·I

f
k,l

)

)

+ Vi,j

(1)

where Xi,j is the final aggregated feature value of the pixel

at location (i, j) of the target frame; Vi,j is the original

feature value of this target pixel before feature aggrega-

tion; V
f
k,l denotes the original feature value of the sup-

port pixel at location (k, l) of support frame f ; Φp, φp

and ψp are three different fully-connected layers; A =
∑H

k=1

∑W

l=1

∑F

f=1
wp(φp(Vi,j), ψ

p(Vf
k,l)) · I

f
k,l, is a normal-

izing factor which serves as a softmax operation to preserve
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Fig. 3: Pixel-level feature aggregation. (a) The multi-head and multi-
layer architecture adopted in the proposed CPFA, which includes 2
layers and 16 heads in each layer. (b) The detailed operations of the
pixel-level feature aggregation in each PA head (Eq. 1). ⊗ denotes
the matrix inner-product, and ⊕ is the element-wise addition.

the magnitude of the aggregated feature; wp(·, ·) is the pixel

relation (similarity) measure function defined as:

wp(φp(Vi,j), ψ
p(Vf

k,l)) = φp(Vi,j)� ψp(Vf
k,l) (2)

where � is the dot-product of two vectors. I
f
k,l is an indicator

function defined as:

I
f
k,l =

{

1 if V
f
k,l ∈ Ω

0 otherwise
(3)

where Ω denotes the set of all pixels of support proposals

carrying the same predicted class with the target proposal.

Similar to [44], we design a multi-head and multi-layer

architecture for the CPFA, which is depicted in Fig. 3 (a).

There are two layers in the CPFA and each layer consists

of D (D is 16 in our experiments) Pixel Aggregation heads

(PA head). Fig. 3 (b) illustrates the detailed operations of the

pixel-level feature aggregation in each PA head. To keep the

CPFA in-place (i.e., input and output with the same feature

dimension), at the very beginning of each layer, we first use

a 1 × 1 convolutional layer conv to reduce the input feature

dimension to 1

D
of the original dimension before feeding it

into each PA head. The outputs of each PA head are then

concatenated together to get back the original dimension, and

the concatenated feature is then fed into the next layer. This

operation is performed in each layer of the CPFA.

D. Instance-level Feature Aggregation

The class-aware pixel-level feature aggregation is performed

on each pixel of the extracted proposal feature map, which

guarantees us to aggregate the representation of a pixel in

the target proposal with the most supportive pixels in the

support proposals which are in the same class with the target

proposal. However, the pixel-level feature aggregation can

not solve the occlusion problem effectively, i.e., if an object

is partially occluded by some other objects in a frame, the

original object information in the occluded part can not be

compensated by pixel-level feature aggregation because of the

lack of the holistic representation of object. Therefore, after

performing the pixel-level feature aggregation, we propose to

further aggregate proposals features on the instance level. The

instance-level feature aggregation consists of two steps: the

Class-aware Temporal Feature Aggregation (CTFA) and the

Spatial Feature Aggregation (SFA), the CTFA is performed

on the pixel-level aggregated proposal feature, i.e., the output

of the class-aware pixel-level feature aggregation, and the SFA

is performed on the output of the CTFA. The detailed process

of the instance-level feature aggregation can be found in Fig. 1

(the instance-level feature aggregation part).

Leveraging the holistic abstraction of an object to perform

instance-level feature aggregation is a feasible way to deal

with occlusions in VOD. Considering the heterogeneity of the

temporal and spatial feature for aggregation [45], [21], the

instance-level feature aggregation is separately performed in

temporal dimension and spatial dimension. Different from [45]

which performs feature aggregation first on spatial dimension

then on temporal dimension to generate the tracklet represen-

tation with the help of instance ID, which is their final goal,

our method adopts an opposite order, as the proposals from

the temporal domain are more reliable and can enhance the

feature for spatial relation exploration. This will be verified

by some experiments (in Sec. IV-D).

1) Class-aware Temporal Feature Aggregation (CTFA):

To select the most informative and relative support proposals

for the temporal instance-level feature aggregation, the class

constraint we used in the pixel-level feature aggregation is

also added here. More precisely, for a target proposal, only

the support proposals that are with the same (predicted) class

label are picked to perform the feature aggregation.

The CTFA designed for temporal instance-level feature

aggregation adopts the same architecture with the CPFA for

pixel-level feature aggregation (i.e., multi-head and multi-

layer architecture, which is shown in Fig. 3 (a)). For a target

proposal pt, let P s = {ps
1
, ps

2
, ..., psM} be the support proposal

set, Xt and Xs
m (m = 1, 2, ...,M) be the feature maps of

the target proposal and the support proposals, respectively.

Mathematically, the temporal instance-level feature aggrega-

tion performed in a Temporal Aggregation head (TA head) is

represented as:

Yt =Φt
(

M
∑

m=1

softmax(wa(Xt,Xs
m))·A(Xs

m)
)

+Xt

=Φt
(

M
∑

m=1

exp
(

φt(Xt)�ψt(Xs
m)

)

∑M

j=1
exp

(

φt(Xt)�ψt(Xs
j)
)
·A(Xs

m)
)

+Xt,

(4)

where Φt, φt and ψt are three different 1×1 convolutional lay-

ers, wa is the proposal appearance similarity measure function,

which is defined the same as wp in Eq. 2, M is the number

of support proposals that have the same (predicted) class label

with the target proposal, Yt is the final aggregated feature

for the target proposal, and A represents a feature alignment

operation (this operation will be introduced in details in the

following subsection III-E) to align the features of the support

proposals to the ones of the target proposal.

2) Spatial Feature Aggregation (SFA): It has been well

believed in computer vision community that relations between

objects can help object recognition [12], [46], [47], [48].
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Therefore, we introduce a spatial relation module to further

explore the spatial topology relation of objects by embedding

the additional position and shape information of the proposals

besides its appearance feature to facilitate the video object

detection.

The SFA shares the same architecture with the CPFA and

CTFA (i.e., multi-head and multi-layer). However, the Spatial

Relation head (SR head) in SFA is an extension of the TA head

in CTFA. Besides capturing the appearance similarity between

a proposal pair with an appearance similarity weight wa as we

do in the CTFA, a geometric weight wg is also calculated to

capture the topology relation between object proposals in the

same target frame by using the shape and location information

of the proposals:

wg(ϕ(gt), ϕ(gs)) = ϕ(gt)� ϕ(gs), (5)

where ϕ is a position embedding operation, gt and gs are

the geometry information of the target proposal and support

proposal, respectively, which are defined as

gt = (xt, yt, ht, wt)

gs = (xs, ys, hs, ws),
(6)

where xt and yt are the location of the target proposal

bounding box center, ht and wt represent the height and width

of the target proposal bounding box, respectively. Symbols

mean the same for support proposal i. The location and shape

information of the proposal bounding box can be obtained

from the RPN. The new geometric weight wg is designed

to model the topology relation of objects and only consider

the relative geometric relationship between objects, which can

guarantee that the aggregation is invariant to scale transforma-

tion.

The final similarity w between the target proposal pt and the

support proposal ps is computed by combining the geometric

similarity wg with the original appearance similarity weight

wa

w =
wg · exp(wa)

∑

i w
g · exp(wa)

(7)

which enables the SR head in the SFA to capture both the

topology relation of objects and the appearance similarity

of objects in the same frame. Note that the spatial feature

aggregation is only performed in the target frame after its

temporal aggregation.

E. Feature Alignment Module (FAM)

When performing feature aggregation for the target proposal

with features of support proposals, it is highly possible that

the objects in the target proposal and support proposal have

quite different poses, shapes, etc., which makes the appearance

features of these two proposals misaligned, and further de-

grades the feature aggregation. Therefore, appearance feature

alignment is crucial for better feature aggregation. Different

from FGFA [7] and MANet [8] which adopt FlowNet [41]

to align features, and STMM [38] which adopts a local

“MatchTrans” for feature alignment, we design a Feature

Alignment Module (FAM) which tries to align the support

proposal feature to the target one globally.

Fig. 4: Idea of the proposed feature alignment module.

Fig. 4 depicts the idea of the designed feature alignment

module. For better illustration, we only show the feature

alignment at one pixel location in this figure. For the pixel

location (u, v) in target proposal Xt, a duplication operation

is performed on its feature to generate a feature map which has

the same size with the original target proposal feature map.

Then, the duplicated feature map together with the feature map

Xs of the support proposal goes through a 1× 1 convolution

layer to generate the target proposal relation feature Xt
r and

support proposal relation feature Xs
r. After that, a correlation

map is calculated with these two relation features:

Qcorr
t,s (u, v, x, y) =

(

Xt
r(u, v)−µ(X

t
r(u, v))

)(

Xs
r(x, y)−µ(X

s
r(x, y))

)

σ(Xt
r(u, v)) · σ(X

s
r(x, y))

(8)

where Qcorr
t,s (u, v, x, y) represents the correlation value be-

tween the support proposal feature at location (x, y) and the

target proposal feature at location (u, v), Xt
r(u, v) denotes

the relation feature vector at pixel location (u, v) of the

target proposal, µ(Xt
r(u, v)) and σ(Xt

r(u, v)) are the mean and

standard variation of this feature vector, respectively, Xs
r(x, y)

denotes the relation feature vector at pixel location (x, y) of the

support proposal, µ(Xs
r(x, y)) and σ(Xs

r(x, y)) are the mean

and standard variation of this feature vector, respectively. After

that, a softmax operation is applied on the correlation map

along the spatial location dimension to obtain the alignment

weight. Finally, the alignment weight Qcorr and the original

support proposal feature map Xs are multiplied, so that the

aligned feature at location (u, v) is obtained:

A(Xs)(u, v) =

U
∑

x=1

V
∑

y=1

Qcorr
t,s (u, v, x, y) · Xs(x, y). (9)

where U and V are the height and width of the proposal feature

map, respectively.

IV. EXPERIMENTS

The proposed framework is extensively evaluated in this

section. First, the data and evaluation metric used in our

experiments are introduced, followed by the detailed intro-

duction of the network implementation. Next, ablation studies

are conducted to evaluate the effectiveness of each proposed

module. After that, the effect of sampling strategy of support
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frames on detection performance is studied and analyzed.

Finally, the framework is compared with state of the art.

A. Dataset and Evaluation Metric

An intersection of the ImageNet DET and VID datasets [49]

by taking their shared 30 object classes is used to train the

proposed framework. The training and validation split settings

in [7] are adopted here. The framework is evaluated on the

VID validation set. The widely-used mean Average Precision

(mAP)@IoU=0.5 is adopted as the evaluation metric.

B. Implementation Details

Backbone network The ResNet-101 [50] is adopted as the

backbone network to extract features for each video frame.

Detection network The detection network is built upon Faster-

RCNN. RPN [3] is applied on the feature extracted by conv4
of ResNet-101 to generate the object proposals for the target

and support video frames. In total, 9 anchors with 3 different

scales (i.e., 642, 1282, 2562) and 3 different aspect ratios (i.e.,

1:2, 1:1, 2:1) are leveraged in RPN. During both training and

inference, we first pick 6000 proposals with the highest object-

ness scores for each frame, then Non-Maximum Suppression

(NMS) is performed on these proposals with IoU threshold

of 0.7 to finally keep 300 proposals for each frame. RoIAlign

pooling followed by a fully connected layer is applied on the

conv5 feature to extract the feature for each proposal.

Training and testing The proposed model is trained end-to-

end on 4 GPUs. We first initialize the backbone network with

the pre-trained weights on ImageNet classification, then all

modules in the model are trained and optimized simultane-

ously. Note that the RPN, object proposal classifier, CPFA,

CTFA, SFA and the final detection layers are trained from

scratches. A total of 10 epochs are performed to train the

model with a SGD optimizer. Batch size is set to 4 with each

GPU holds one minibatch. We use an initial learning rate of

2.5e−4, which is divided by 10 after 4 epochs, and divided

again after another 4 epochs. During training, every training

target frame is sampled along with two random support frames

in the same video sequence (identical frames for the ImageNet

DET dataset). When testing, for every inference frame (target

frame), another F frames will be randomly sampled from the

same video sequence as the support frames.

C. Comparison with State of the Art

To evaluate the effectiveness of our proposed model, we

compare it with some state of the art, and summarize the

results in Table I.

The comparison is first performed under the circumstance

that all models are with the same backbone (ResNet-101).

The results show that our model outperforms the single-

frame object detection method D & T [9] (75.8% mAP) by

a large margin (+9.2%). Besides, our model is remarkably

better than FGFA [7] (76.3% mAP) and MANet [8] (78.1%

mAP), which both aggregate features based on optical flow

estimation, and the mAP improvements are +8.7% mAP and

+6.9% mAP, respectively. When compared with some relation-

based method (LRTRN [13] (81.0% mAP), RDN [39] (81.8%

TABLE I: Comparison with state of the art on ImageNet VID
validation set. ‘X+Y’ means post-processing strategy Y is employed
on method X. IT denotes the inference time.

Method Backbone base detector IT (ms) mAP (%)

D & T [9] ResNet-101 R-FCN 128.2 75.8
D & T + tubelet rescoring [9] ResNet-101 R-FCN - 79.8

FGFA [7] ResNet-101 R-FCN 714.3 76.3
FGFA + Seq-NMS [7] ResNet-101 R-FCN - 78.4

MANet [8] ResNet-101 R-FCN 200.0 78.1
MANet + Seq-NMS [8] ResNet-101 R-FCN - 80.3

ST-LA + tubelet rescoring [28] ResNet-101 Faster R-CNN 50.0 79.6

STSN + Seq-NMS [10] ResNet-101+DCN R-FCN - 80.4

STMN + Seq-NMS [38] ResNet-101 Faster R-CNN 833.3 80.5

PSLA [11] ResNet-101+DCN R-FCN - 80.0
PSLA + Seq-NMS [11] ResNet-101+DCN R-FCN - 81.4

LRTRN [13] ResNet-101 Faster R-CNN 100.0 81.0

RDN [15] ResNet-101 Faster R-CNN 94.4 81.8
RDN + BLR [15] ResNet-101 Faster R-CNN - 83.8

SELSA [14] ResNet-101 Faster R-CNN 820.3 82.7
SELSA + Seq-NMS [14] ResNet-101 Faster R-CNN - 82.7

MEGA [16] ResNet-101 Faster R-CNN 238.1 82.9
MEGA [16] ResNeXt-101 Faster R-CNN - 84.1
MEGA + BLR [16] ResNet-101 Faster R-CNN - 84.5

LSTS [17] ResNet-101 Faster R-CNN 43.5 77.2
LSTS [17] ResNet-101+DCN Faster R-CNN 47.2 80.1
LSTS + Seq-NMS [17] ResNet-101+DCN Faster R-CNN 217.4 82.1

HVR [18] ResNet-101 Faster R-CNN - 83.2
HVR + Seq-NMS [18] ResNet-101 Faster R-CNN - 83.8
HVR + Seq-NMS [18] ResNeXt-101 Faster R-CNN - 85.5

Ours ResNet-101 Faster R-CNN 884.2 85.0

Ours ResNeXt-101 Faster R-CNN 972.6 86.1

mAP), SELSA [14] (82.7% mAP)), MEGA [16] (82.9%mAP)

and HVR-Net [18] (83.2%mAP), our method also shows its

superior on detection precision. When a stronger backbone

(ResNeXt-101) is adopted, better performance is achieved.

We then take the HVR-Net [18] as an example and analyze

the reason of the performance gain of our proposed detection

model. Compared with HVR-Net, our proposed CFA-Net

has the following advantages: First, our proposed CFA-Net

performs feature aggregation both in the pixel level and the

proposal level, while the HVR-Net only conducts the proposal-

level feature aggregation. For the proposal level feature aggre-

gation, without accurate feature alignment, it is highly possible

that a pixel in the target proposal is not aggregated with the

most supportive ones, while the pixel level feature aggrega-

tion can characterize each pixel by exploiting its contextual

information in both the target frame and support frames to

enhance its feature representation. Second, we propose an

additional class constraint for both the pixel level feature

aggregation and the temporal proposal feature aggregation, i.e.,

a target pixel (or proposal) only aggregates its feature with

the features of the support pixels (or proposals) that are in the

same object class. The HVR-Net also performs the inter-video

proposal feature aggregation, and there are more than one

class objects in many videos. Without the class constraint, the

relation mining mechanism in the feature aggregation module

should be able to distinguish the same class support features

from the different class features to select the most supportive

features for feature aggregation, which intuitively increases

the difficulties of the feature aggregation. Third, the HVR-

Net exploits the intra-video and inter-video proposal relations,

while ingores the intra-frame proposal relations which we

leverage to boost video object detection by designing the

Spatial Feature Aggregation (SFA) module in our proposed de-

tection model. Last, when performing feature aggregation for

target proposal with features of support proposals, it is highly

possible that the objects in the target proposal and support
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TABLE II: Ablation studies on the proposed modules. ‘CPFA’ is the
class-aware pixel-level feature aggregation module, ‘CTFA’ is the
class-aware temporal feature aggregation module, ‘SFA’ is the spatial
feature aggregation module, and ‘FAM’ is the feature alignment
module. mAP slow/medium/fast represent the detection precision for
object with slow/medium/fast motion, respectively.

Method (a) (b) (c) (d) (e) (f) (g) (h)

CPFA
√ √ √

CTFA
√ √ √ √ √

SFA
√ √ √ √ √

FAM
√ √

mAP(%) 73.7 77.9 82.6 75.8 84.4 84.9 84.7 85.0

mAP(%)slow 82.4 85.3 88.1 84.4 88.9 89.4 89.2 89.4
mAP(%)medium 71.1 75.8 82.0 73.5 83.3 83.8 83.5 83.9
mAP(%)fast 51.7 56.7 67.6 54.1 69.1 70.2 69.7 70.4

proposal have quite different poses, shapes, etc., which makes

the appearance features of these two proposals misaligned, and

further degrades the feature aggregation. In our proposed CFA-

Net, we design a Feature Alignment Module (FAM) which

tries to align the support proposal feature to the target one

globally when performing the temporal and spatial proposal

feature aggregation, while the HVR-Net directly performs the

proposal feature aggregation without any feature alignment.

D. Ablation Study on Proposed Modules

The effectiveness of each designed module in the CFA-

Net is evaluated in this section, and the evaluation results are

summarized in Table II.

(a) Baseline: This is the baseline detector without any

feature aggregation, i.e., a single frame detector. It achieves

a reasonable detection mAP of 73.7% as in [14].

(b) Effectiveness of CPFA: We add the class-aware pixel-

level feature aggregation (CPFA) module into the baseline

detector, and it achieves a +4.2% mAP improvement com-

pared with the baseline. This is because pixel-level feature

aggregation can enhance the pixel feature representation by

encoding the context information from both target and support

frames. However, the pixel-level feature aggregation is not able

to effectively alleviate the partial occlusion problem, which is

very common in video sequences.

(c) Effectiveness of CTFA: The class-aware temporal fea-

ture aggregation (CTFA) module is individually added into the

baseline, which brings a +8.9%mAP improvement compared

with the baseline. Also, compared with CPFA, the CTFA gives

a better performance by robust occlusion handling. Besides,

the CTFA gains larger improvement when the motion in video

is faster, i,e., the gain for objects with fast motion is +15.9%

(from 51.7% to 67.6%), while the gain for objects with slow

motion and medium motion is +5.7% (from 82.4% to 88.1%)

and +10.9% (from 71.1% to 82.0%). This indicates that the

CTFA indeed does its job of exploiting temporal information

across frames, especially in fast motion cases where objects

are more likely to have partial occlusion and motion blur in

neighboring frames, and then the temporal relation exploited

by the CTFA can leverage information in other video frames

(support frames) to greatly alleviate these challenges.

(d) Effectiveness of SFA: The spatial feature aggregation

(SFA) only gains a +2.1% mAP improvement compared with

the baseline, which is the smallest gain among the improve-

ments brought by other kinds of feature aggregation. The rea-

son is that the spatial instance-level feature aggregation only

exploits the appearance and topology relation of proposals

within the same target frame, which can not effectively deal

with most of the VOD challenges such as occlusion, motion

blur and rare pose in the target frame.

(e) Effectiveness of instance-level feature aggregation:

The temporal and spatial instance-level feature aggregation

(CTFA+SFA) further improves the CTFA-only method by

additionally exploiting both the appearance and topology infor-

mation of the proposals in the target frame. It is worth noting

that both separating the instance-level feature aggregation in

spatial and temporal dimension and the order of perform-

ing instance-level feature aggregation matters. When mixing

the temporal and spatial instance-level feature aggregation

together (i.e., instance-level feature aggregation is performed

in one aggregation module by fairly treating proposals in the

support frames and the target frame, and no topology relation

between proposals in the target frame is exploited), it gives us

a -0.8% mAP degradation. While if we separate the instance-

level feature aggregation and adopt a different order, i.e., first

spatial, then temporal, the performance decreases by 0.3%

mAP compared with the proposed order. The reason is that

the proposals from the temporal domain are more reliable and

can enhance the feature for spatial relation exploration, since

the same object can appear in different frames, while can not

appear in the same frame.

(f) Effectiveness of pixel-level plus instance-level feature

aggregation: Combining the pixel- and instance-level (i.e.,

CPFA+CTFA+SFA) feature aggregation achieves better perfor-

mance compared with only performing pixel-level or instance-

level feature aggregation. Because the two-level feature aggre-

gation can not only perform fine-grained feature aggregation

in pixel level by effectively exploiting the context information

lying in the instances from both the current frame and the

support frames, but also perform instance-level feature aggre-

gation by separately aggregating the heterogeneous temporal

and spatial information.

(g) Effectiveness of FAM: The feature alignment module

(FAM) designed for the CTFA and SFA can benefit the

instance-level feature aggregation performance by aligning the

support proposal features to the target one globally. Compared

with the CPFA, the FAM brings less improvement to the

instance-level feature aggregation. The possible reason is that

the CPFA already aggregates pixel features by aligning the

pixels in both the spatial and temporal dimension.

(h) Effectiveness of the CFA-Net: The proposed CFA-Net

combines all the proposed modules together, and achieves the

best detection performance (85.0% mAP). Though for the case

where the CPFA is included, the improvement brought by the

FAM is very marginal, it is not completely replaceable by the

CPFA (+0.1% mAP is obtained compared with the detection

result of without FAM).

E. Analysis of Class-aware Pixel-level Feature Aggregation

The Class-aware Pixel-level Feature Aggregation (CPFA)

is performed on the pixels of the extracted proposal feature
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tensor along both the spatial and the temporal dimension, i.e.,

the feature of a pixel in a target proposal feature tensor is ag-

gregated with the same class pixel features both in the current

frame and the selected support frames. To better understand

the CPFA, we separate it in the temporal dimension and the

spatial dimension, i.e., we perform the Class-aware Pixel-level

Spatial Feature Aggregation (CPSFA) and Class-aware Pixel-

level Temporal Feature Aggregation (CPTFA) separately. The

experiment results are summarized in Table III.

(a) Baseline: This is the baseline detector without any

feature aggregation, i.e., an image object detector (we use the

Faster R-CNN in our experiment).

(b) CPSFA: The Class-aware Pixel-level Spatial Feature

Aggregation (CPSFA) is added into the baseline. From Ta-

ble III we can see that the CPSFA only brings limited detection

improvement. The reason is that the CPSFA performs the

feature aggregation for a pixel in a proposal feature tensor

only with the pixels of the same class proposals in the current

frame, while in the ImageNet VID, the video frames that are

with only one object in a class dominate the dataset. Thus,

for most frames, the CPSFA aggregates a pixel feature of an

object only with the ones of this object itself, while additional

information can not be provided for the objects in these frames.

(c) CPTFA: The Class-aware Pixel-level Temporal Feature

Aggregation (CPTFA) is individually added into the baseline.

Compared to the CPSFA, the CPTFA achieves a much bigger

detection improvement. This is because the CPTFA can en-

hance the pixel feature representation by encoding the object

information from other frames. This can greatly provide much

more additional information for the proposal pixels need to be

enhanced in the current frame.

(d) CPSFA + CPTFA: Finally, we add both the CPSFA

and CPTFA into the baseline, and the detection performance

is further boosted over the CPTFA alone. The reason is

that in some video frames, there are more than one objects

belonging to the same class, e.g., a group of sheep in the

last row of Fig.5. In this case, the CPSFA can enhance the

pixel feature of an object with the ones of the same class

objects in this current frame. Note that ‘CPSFA + CPTFA’

is slightly different from the original CPFA in our work, as

‘CPSFA + CPTFA’ performs the spatial and temporal pixel-

level feature aggregation separately, while the proposed CPFA

module performs the pixel-level feature aggregation along the

spatial and temporal dimension simultaneously. But if we

compare column (d) in Table III with column (b) in Table II,

we can see that both of them achieve almost the same detection

performance.

Further, we conduct a study on the pixel size in the pixel-

level feature aggregation. The original extracted proposal

feature is with the spatial size of 8 × 8, i.e., an object

proposal is divided into 64 pixels (each pixel is with the unit

spatial size of 1 × 1, and corresponds to a small patch in

the original image), it is intuitively considered that the pixel

can hardly contain structure information of the object in this

object proposal. We first divide each proposal into 2× 2 (i.e.,

4 patches) non-overlapping patches and consider each patch

as a pixel, in this case, each pixel is with the spatial size

of 4 × 4. Then, each proposal is divided into 4 × 4 (i.e., 16

TABLE III: Ablation studies on the Class-aware Pixel-level Feature
Aggregation (CPFA) module. ‘CPSFA’ is the class-aware pixel-level
spatial feature aggregation, and ‘CPTFA’ is the class-aware pixel-
level temporal feature aggregation. mAP slow/medium/fast represent
the detection precision for object with slow/medium/fast motion,
respectively.

Aggregation (a) (b) (c) (d)

CPSFA
√ √

CPTFA
√ √

mAP(%) 73.7 74.2 77.7 78.0

mAP(%)slow 82.4 82.6 85.2 85.4
mAP(%)medium 71.1 71.7 75.6 75.9
mAP(%)fast 51.7 52.4 56.5 57.0

Pixel size 1 2 4 8

mAP(%) 77.9 78.3 79.5 83.1

mAP(%)slow 85.3 85.5 86.3 88.5
mAP(%)medium 75.8 76.3 77.7 82.6
mAP(%)fast 56.7 57.4 60.0 68.4

TABLE IV: Study on the pixel size in the Pixel-level Feature
Aggregation (CPFA). mAP slow/medium/fast represent the detection
precision for object with slow/medium/fast motion, respectively.

patches) non-overlapping patches and each patch is considered

as a pixel, in this case, each pixel is with the spatial size of

2 × 2. Finally, we regard each proposal as a big pixel, and

this pixel is with the spatial size of 8 × 8. By doing this,

we construct pixels with various spatial sizes, and perform

the Class-aware Pixel-level Feature Aggregation (CPFA) on

pixels with various sizes separately. Note that only the CPFA

is included into the baseline to perform the detection, and

the instance-level feature aggregation is not included in this

study. The experiment results are shown in Table IV, from

which we can see that the detection performance rapidly

improves with the increase of the pixel size. The reason is

that when we use pixels with larger spatial size, each pixel

can contain more object structure information and appearance

feature. Thus, the partial occlusion problem can be overcome

relatively easier. It is worth noting that when we regard the

whole proposal as a big pixel and perform the pixel-level

feature aggregation, it is actually the instance-level feature

aggregation. However, the performance is slightly better than

the Class-aware Temporal Feature Aggregation (CTFA) (col-

umn (c) in Table II). This is because the CPFA is performed

along both the temporal dimension and the spatial dimension

simultaneously, while the CTFA aggregates the proposal only

along the temporal dimension. Besides, the performance of

CPFA that regards the proposal as a big pixel is worse than

the performance of ‘CTFA+SFA’ (column (e) in Table II), i.e.,

separately performing the instance-level feature aggregation

in the temporal dimension and the spatial dimension. This

also callbacks our claim that the temporal and spatial proposal

feature is heterogeneous and we should perform the instance-

level feature aggregation separately in the temporal dimension

and the spatial dimension.

F. Analysis of Class Constraint

In our proposed framework, an object proposal classifier is

designed to predict the class label of each generated proposal.
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TABLE V: Analysis of class constraint.

class constraint CPFA-C CTFA-C CPFA-C&CTFA-C CPFA&CTFA

mAP(%) 84.8 84.3 84.0 85.0

mAP(%) slow 89.2 88.7 88.5 89.4
mAP(%) medium 83.6 83.1 82.7 83.9
mAP(%) fast 69.9 69.0 68.3 70.4

The pixel-level feature aggregation and the temporal instance-

level feature aggregation are performed only among proposals

with the same (predicted) class label, i.e., a class constraint is

added on these two aggregations. We evaluate the effectiveness

of the class constraint on these two aggregations by checking

the detection performance of these two aggregations without

the class constraint, and the results are shown in Table V.

If class constraint is deleted from the pixel-level feature

aggregation (‘CPFA-C’ column in Table V), i.e., all pixels

of the support frames are support pixels, which is exactly

how the non-local network [19] works, and this leads to

a performance degradation of -0.2% mAP. This shows that

the CPFA filters out much noisy information from the large

scope of background and different class objects, and enhances

representations of target pixels with the pixels of the same

class object proposals which only contain very limited back-

ground information. If we delete the class constraint from

CTFA (‘CTFA-C’ column in Table V), i.e., the CTFA enhances

the target proposal feature by considering all the support

proposals, even support proposals that do not belong to the

same class with the target one, the detection performance

worsens by a -0.7% mAP. This verifies that without the class

constraint, the features of some support proposals that are not

in the same (predicted) class with the target proposal will

also be partially used to aggregate the target proposal feature,

which can pollute the target proposal feature and make it

ambiguous, even the feature similarities are measured to guide

the feature aggregation. When the class constraint is removed

from both the CPFA and CTFA (the ‘CPFA-C&CTFA-C’

column in Table V), the detection result becomes worse, with

a -1.0% mP degradation compared to the detection result

with class constraint on both of these two feature aggregation

modules. This illustrates that the class constraint benefits both

of these two aggregations.

G. Analysis of Support Frame Sampling Settings

During training, every training target frame is sampled along

with two random support frames in the same video sequence

(for the ImageNet VID dataset, 2 different frames are ran-

domly selected in the same video clip, while for the ImageNet

DET dataset, the identical target frame is duplicated and used

for support frames). During inference, for every target frame,

another F frames will be randomly sampled from the same

video sequence as the support frames (only the ImageNet VID

validation dataset is used for inference). Thus, we use a fixed

number of support frames during training, while the number of

support frames F during inference is flexible. For inference,

the number of support frames F is an important parameter,

and sampling more support frames usually yields better results

[38], [7]. In our experiments, we adopt the promising random

TABLE VI: Effect of support frame number F on detection precision.

# frames 2 6 10 14 20

mAP(%) 82.6 84.0 84.7 84.9 85.0

mAP(%) slow 88.0 88.7 89.2 89.4 89.4
mAP(%) medium 80.4 82.7 83.5 83.7 83.9
mAP(%) fast 65.0 68.4 69.9 70.2 70.4

sampling strategy [14] to sample support frames. For a target

frame, the frames in the shuffled video sequence are randomly

selected as support frames without considering the temporal

order, i.e., both frames before and after the target frame can

be selected. The influence of the number of support frames on

detection accuracy is summarized in Table VI. The detection

performance improves consistently by sampling more support

frames. The reason is that with more support frames, more

appearance information (e.g., shape, pose, etc.) and context

information can be exploited by the aggregation modules

to enhance the feature of the target proposals. Then, the

performance saturates when enough support frames are used.

The reason is that with more support samples offered, more

appearance information (e.g., shape, pose, etc.) have been

mined, and adding more support frames does not bring in extra

information. Given the fact that more support frames means

longer processing time, we set the number of support frames

as 20 in our following experiments, for the trade-off between

detection precision and time efficiency.

Then we take a closer look at how support frame number

affects the detection of objects with different motion speeds

in videos. Table VI show that objects with fast motion gain

the most improvement by using more support frames, while

objects under slow motion gain the least. This is consistent

with our intuition. Usually objects under fast motion have

much more appearance variation, and are more easily occluded

by some other objects during video capturing. Sampling more

support frames can provide various and prolific supplementary

appearance information for the target proposal objects with de-

teriorated appearance, and therefore the detection performance

is improved with more support frames. On the other hand,

objects with slow motion usually have much less appearance

variation in a video sequence, therefore sampling more support

frames can not provide much extra information.

Next, we evaluate the effectiveness of the random sampling

strategy. First, we perform testing with 20 consecutive support

frames (i.e., 10 consecutive frames before the target frame and

10 frames after), and the performance is shown in the second

column of Table VII (‘Con W/O NMS’). Then we adopt the

Seq-NMS post-processing to refine the result, which is shown

in the third column of Table VII (‘Con W/ NMS’). The result

of randomly sampling support frames is in the last column

of Table VII. From this table we can see that consecutively

sampling 20 support frames to perform feature aggregation

while without any post-processing performs the worst among

these three methods. This is because 20 consecutive frames

capture a scene happening within ∼1 second, which means

the object motion and appearance information are limited,

especially for objects under slow motion. Moreover, for objects
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TABLE VII: Effect of different sampling strategies on detection
precision. ‘Con W/O NMS’ means sampling 20 consecutive support
frames and without Seq-NMS, ‘Con W/ NMS’ means sampling 20
consecutive support frames and with Seq-NMS, ‘Random’ means
sampling 20 support frames from the video randomly.

Sampling strategy Con W/O NMS Con W/ NMS Random

mAP(%) 81.4 82.7 85.0

with fast motion, it is very possible that the object appears,

disappears and re-appears in the video, but the 20 consecutive

support frames are only a small portion of the whole sequence

and only provide limited object information for the objects

in the target frame, making the feature aggregation not ideal.

When the Seq-NMS post-processing strategy is adopted, video

level object information can be explored for object detection,

and the detection result of the consecutive sampling can be

improved (+1.6% mAP). Random sampling strategy achieves

the best performance (+3.8 % mAP) over consecutive sampling

(both with or without Seq-NMS), showing that the random

sampling strategy can capture the object information from the

whole sequence, and is more robust to deal with fast motion,

sudden shot change that Seq-NMS suffers from.

H. Analysis of Computation Efficiency and Complexity

To better evaluate the computation efficiency and compu-

tational complexity of the proposed modules, we separately

calculate the number of parameters and the Floating Point

Operations (FLOPs) in each module of the detection model.

Our proposed detection model mainly consists of the fol-

lowing modules: the backbone for frame feature extraction

(ResNet-101 is adopted for backbone in our experiments),

the Object Proposal Classifier (OPC), the Class-aware Pixel-

level Feature Aggregation (CPFA) module, the Class-aware

Temporal Feature Aggregation (CTFA) module, the Spatial

Feature Aggregation (SFA) module and the final Detection

Head (DH). Note that the Feature Alignment Module (FAM)

is embedded in the CTFA module and SFA module to align the

feature maps of the target proposal and the support proposals.

When calculating the FLOPs for each module, we follow

the same experiment settings as in most of our experiments.

Specifically, for each target frame, we randomly select 20

frames in the same video clip as the support ones, and 300

object proposals are generated for each frame. Table VIII sum-

marizes the number of learnable parameters and the FLOPs for

each module in our proposed detection model.

From Table VIII we can see that in the proposed detection

model, the backbone network used for frame feature extraction

has the most learnable parameters and the most FLOPs. This

means that the backbone network costs the most memory size

and has the highest computational complexity. Thus, it could

be a good way to optimize the backbone network if we want

to speed up the detection (e.g., replace the heavy ResNet-

101 with MobileNet [31], [32]), and some previous works

[29], [30] have already exploited this strategy to accelerate

the detection. The Class-aware Temporal Feature Aggregation

(CTFA) module have the second most learnable parameters

and FLOPs, and the ablation studies (Table II) on each module

also show that this module is the most important one among

the proposed modules to improve the detection accuracy. For

example, when CTFA is removed from the method (columns

(a), (b) and (d) in Table II), the related mAPs are much lower

than those columns with the CTFA module. Compared with

the backbone and the CTFA modules, the learnable parameters

and FLOPs in the Class-aware Pixel-level Feature Aggregation

(CPFA) module are much less. In other words, the proposed

CPFA module improves the detection accuracy by occupying

very small memory size and consuming little computational

resource. The Spatial Feature Aggregation (SFA) module has

a large number of learnable parameters, almost the same

with the CTFA module, however, the FLOPs in the SFA

module is much less than the ones in the CTFA module.

The reason is that the CTFA module performs the proposal

feature aggregation for the target proposals with the support

proposals in the 20 support frames, while the SFA module

conducts the spatial proposal feature aggregation for the target

proposals only with the proposals in the target frame. Finally,

we separate the Feature Alignment Module (FAM) from the

CTFA module and SFA module to check the computational

complexity and computation efficiency of this module alone,

and from Table VIII we can see that the FAM module also

has a small number of learnable parameters and FLOPs.

I. Failure Case Analysis

We show some failure cases in Fig.5. The first row is an

example of false classification in the whole video clip. There

are two different object classes in this video clip, domestic

cat and monkey. The proposed detection model classifies the

monkey as a domestic cat in each frame of this video clip. The

monkey in this video clip has a similar appearance feature

with some yellow cats in some other video clips, and the

proposed object proposal classifier wrongly labels the monkey

proposal as a cat. Further, the temporal and spatial proposal

feature aggregation modules aggregate the monkey feature

with cat feature, and finally the detection head classifies the

monkey as domestic cat. The reason of this failure case is

that our proposed detection model lacks the capability of

exploiting the inter-video proposal relations. Thus, combining

the intra-video and inter-video proposal relations is a possible

way to solve this problem, as the HVR-Net [18] does. The

second row shows an example of temporally inconsistent

detection. In a frame of this video clip, a background proposal

(i.e., a blur house) is incorrectly labeled as a car, while

the detection model detects the neighboring frames correctly.

This is because our proposed detection model does not fully

exploit the temporal consistency property of the video. The

detection is performed in a frame-by-frame manner, and each

target frame is individually detected, although some temporal

information is leveraged by aggregating features from other

frames. One possible solution for this problem is to leverage

the tracking technique, e.g., performing the detection for a

short frame sequence instead of a single frame at one time

by generating object proposal triplet, as is done in [36]. The

last row presents an example of duplicated detection. There

are three sheep in each frame of this video clip, however, the
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TABLE VIII: Computational complexity analysis for each module in the detection model.

module backbone OPC CPFA CTFA SFA DH FAM

parameters (×10
6) 42.6 0.06 0.7 16.0 15.0 1.1 0.1

FLOPs (×10
9) 159.6 0.4 13.8 136.9 5.7 1.1×10

−3 1.7

Fig. 5: Failure case analysis. First row: false classification in each frame of the video clip. Second row: temporally inconsistent detection.
Third row: duplicated detection.

detection model detects four or even more sheep for some

frames. Usually, the Non-Maximum Suppression (NMS) is

adopted to delete the duplicated detection. Unfortunately, a

pre-defined IOU threshold is used to perform the NMS for

each frame, and this pre-defined IOU threshold can not work

well for all the cases. Replacing the NMS operation by some

specifically designed module might be helpful for this failure

case, such as the relation network in [12].

V. CONCLUSION

In this work, we propose a class-aware feature aggregation

network for video object detection. The class-aware pixel-level

feature aggregation encodes each pixel with the context in-

formation from the same class instances, filtering out massive

ambiguous information and enhancing the fine-grained feature

representation. The class-aware temporal feature aggregation

module considers the long-range temporal dependencies be-

tween objects in the same class across frames, and the spatial

feature aggregation module exploits the topology relations

between different objects in the same frame. The class-aware

feature aggregation puts the video object detection to the edge,

achieving state-of-the-art results.
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