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Abstract—Recent progress in video object detection (VOD) has
shown that aggregating features from other frames to capture
long-range contextual information is very important to deal
with the challenges in VOD, such as partial occlusion, motion
blur, etc. To exploit more effective feature aggregation, we
propose several improvements over previous works in this paper:
(1) a class-aware pixel-level feature aggregation module, which
characterizes a pixel by exploiting the context information lying
in the instances from both the current frame and other frames.
Different from the previous non-local operation, the proposed
class-aware pixel-level feature aggregation filters out most of
the noisy information from the large scope of background and
objects in different classes, and only enhances representation of
a foreground pixel with the same class instances with limited
ambiguous information; (2) a class-aware instance-level feature
aggregation module, which aggregates features for object propos-
als by learning two Kinds of relations: the temporal dependencies
among the same class object proposals from support frames
sampled in a long time range or even the whole sequence, and
spatial topology relation among proposals of different objects in
the target frame. The homogeneity constraint in instance-level
feature aggregation filters out many defective proposals, making
the feature aggregation more accurate; and (3) a correlation-
based feature alignment module embedded in the instance-
level feature aggregation, which aligns the feature maps of the
support and target proposals. Without bells or whistles, the
proposed method achieves state-of-the-art performance on the
ImageNet VID dataset without any post-processing methods. This
project is publicly available https://github.com/LiangHann/Class-
aware-Feature-Aggregation-Network-for-Video-Object-Detection.

Index Terms—video object detection, class-aware, feature ag-
gregation, pixel-level, instance-level, feature alignment

I. INTRODUCTION

UE to the advancement of deep neural networks, signif-
icant progress has been achieved on object detection in
still images [1], [2], [3], [4], [5], [6]. With the development
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of storage and communication, video is becoming a popular
media to convey more rich information, and video-based
analysis becomes inevitable. However, due to the deteriorated
appearance caused by occlusion, motion blur, out-of-focus
cameras, and rare poses in video capturing, directly applying
those image-based object detectors on a frame-by-frame basis
to a video often makes the performance unsatisfactory.

Recent research on VOD shows that it is useful to leverage
the temporal information inherently encoded in videos to deal
with the aforementioned challenges. Several works leverage
short-term temporal information from nearby frames to help
object detection in the current frame. For example, FGFA [7]
and MANet [8] use optical flow to conduct feature aggre-
gation, D&T [9] applies correlation features between nearby
frames, STSN [10] adopts deformable convolutions across
the temporal domain, and PSLA [11] explores the spatial
correspondence between features across frames in a local
region using progressive sparser strides. In those methods, only
short-term temporal information is used, and the lack of long-
term temporal information exploitation limits the detection
performance of these methods, especially for objects with fast
motion.

To take advantage of the long-term dependencies between
frames, the recently proposed relation-based network [12]
is widely adopted. Shvets et al. [13] propose to leverage
Long-Range Temporal Relationship (LLR) to encode the inter-
frame dependencies between object proposals in a long video
segment, Wu et al. [14] introduce the Sequence Level Seman-
tics Aggregation (SELSA) to further explore this long range
relation in the sequence level, and Deng et al. [15] propose the
Relation Distillation Networks (RDN) to progressively distill
the long range relation. To leverage both the global and local
temporal information, Chen et al. [16] design the Memory
Enhanced Global-local Aggregation (MEGA) to better exploit
the short- and long-term relations, and Jiang et al. [17]
develop the Learnable Spatial-Temporal Sampling (LSTS) to
mine the local motion information, and Sparsely Recursive
Feature Updating (SRFU) and Dense Feature Aggregation
(DFA) modules to exploit the global temporal information. To
exploit the inter-video proposal relations, Han et al. [18] in-
troduce the Hierarchical Video Relation Network (HVR-Net),
by integrating intra-video and inter-video proposal relations in
a hierarchical fashion.

There are several problems for most of the current relation-
based feature aggregation methods of VOD. Firstly, most
of them perform instance-level feature aggregation which
inevitably overlooks the fine-grained pixel-level feature repre-
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sentation; secondly, they only consider the temporal dependen-
cies among the objects, but neglect the spatial relations, which
has been proved to be very useful in still image detection [12];
thirdly, all of these methods directly aggregate the support
proposals in the temporal domain without considering whether
they belong to the same class or not, making it inevitably
bring defective proposals from irrelevant classes; lastly, these
methods aggregate the features directly from support proposals
without feature alignment, leading to unaligned features for the
following regression and classification.

To exploit better feature aggregation for VOD, we propose a
Class-aware Feature Aggregation network (CFA-Net) with the
following improvements: (1) a Class-aware Pixel-level Feature
Aggregation (CPFA) module, which enhances each pixel in the
target feature map with all other pixels constrained in the same
class instances of all support frames through self-adaptively
predicted attention weights. Different from previous non-local
operations [19], [20] which aggregate the global information,
the proposed CPFA filters out a lot of noisy information from
the large scope of background and different class instances,
and only enhances pixel representation using object propos-
als with limited ambiguous information; (2) a Class-aware
Instance-level Feature Aggregation (CIFA) network, which
aggregates features for object proposals by learning two kinds
of relations: the temporal dependencies among the same class
objects from support frames sampled in a long time range
or even the whole sequence, and spatial topology relation
among proposals of different objects in the target frame. In
CIFA, we separate spatial and temporal feature aggregation to
distinguish the heterogeneity of temporal and spatial context
information for instance-level feature aggregation. Moreover,
the homogeneity constraint in CIFA helps filter out many
defective proposals and only keep the object proposals which
carry the same class label with the target proposal as the
support proposals, which makes the feature aggregation more
accurate; (3) a correlation-based feature alignment operation
embedded in the instance-level feature aggregation, which
aligns the support and target proposals that may have quite
different poses, shapes, etc., making it more suitable for the
following regression and classification step.

This paper is an extension of [21]. Compared with the ACM
Multimedia 2020 conference paper, the extensions include:
(1) pixel-level feature aggregation is proposed to overcome
the drawback of the instance-level feature aggregation, i.e.,
enhance the fine-grained target pixel feature with the sup-
port pixel features; (2) a class constraint is added into the
pixel-level feature aggregation module, which filters out most
ambiguous information and keeps the most supportive and
class-related pixel features to aggregate the target pixel fea-
ture; (3) the proposed class-aware pixel-level feature aggrega-
tion achieves superior performance on the widely-used VOD
dataset; and (4) more experimental analyses are presented in
this paper.

This paper is organized as follows. Section II reviews the
related work on still image object detection and video object
detection. Section III describes the proposed method. The
experimental results are presented in Section IV, followed by
the conclusion in Section V.

II. RELATED WORK
A. Still Image Object Detection

There are two main branches for still image object detection:
one-stage object detector and two-stage object detector. One-
stage object detectors [2], [2], [22], [23], [4], [24] directly
predict the bounding box of interest based on the feature map
extracted by the backbone network. However, these methods
usually lead to foreground and background class imbalance
problem, which badly affects the training process [25]. Two
stage detectors usually generate object proposals with a Region
Proposal Network (RPN) [3] first, followed by a RolAlign
pooling [6] to get the proposal features, then the majority of
negative proposals are filtered out, and the remaining proposal
features are used to perform the detection with a classification
layer and a regression layer. Two-stage detector is adopted in
this paper.

B. Video Object Detection

There are two branches for video object detection. On the
one hand, the redundancy in video frames can be leveraged to
improve the detection speed. For example, Zhu et al. [26], [27]
adopt optical flow to propagate the key frame feature to other
frames to save the expensive feature extraction cost. Chen et
al. [28] design a time-scale lattice to improve the speed with an
extra classifier to re-score the bounding boxes. Liu et al. [29],
[30] adopt Bottleneck-LSTM with MobileNet [31], [32] as
the backbone and use SSD as the detector to improve the
speed on the mobile devices. Similarly, Yao et al. [33] adopt
object tracker for temporal propagation, and use reinforcement
learning for adaptive key-frame scheduling. Xu et al. [34]
propagate the previous reliable long-term detection in the form
of heatmap to boost results of upcoming images for one-stage
detector.

Temporal information encoded in videos can also be used to
improve the performance of VOD, and our paper follows this
trend. There are two major directions in exploiting temporal
information. The first is focused on post processing [35], [36],
[37]. These methods usually take the spatial and temporal
coherence into consideration, and explore bounding box as-
sociation rules across nearby frames to refine the per-frame
detection results. Those methods are sub-optimal because they
are highly dependent on the quality of initial detector which
is trained without any temporal information. In contrast, the
other category of methods [9], [7], [26], [28], [8], [38], [27],
[10], [39], [11], [15], [13], [14], [40] exploits the temporal
information in videos during training stage. Among these
methods, optical flow based feature warping [41] is widely
used to propagate the features across frames [7], [26], [8],
[37]. However, the optical flow only exploits the temporal
information between frames in short time range, and the
warping does not work well in occlusion. To address these
shortcomings, Guo et al. introduce PSLA [11] to model the
spatial correspondence between features across frames in a
local region using the progressive sparser stride, Tang et al.
design a cuboid proposal network [40] that extracts spatio-
temporal candidate cuboids and a short tubelet detection net-
work that detects short tubelets in short video segments, Chen
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Fig. 1: Flowchart of the proposed Class-aware Feature Aggregation Network (CFA-Net).

et al. develop a temporal refinement network (TRNet) and a
temporal dual refinement network (TDRNet) [42] to propagate
the refinement information across time. These methods only
exploit the short-term temporal information, thus only limited
support features are used to enhance the current feature. To
explore the long-range dependencies in the temporal domain,
Xiao and Lee [38] propose a spatial-temporal memory net-
work (STMN) as the recurrent operation to model long-term
temporal appearance and motion dynamics, with a MatchTrans
module proposed to align the spatial-temporal memory. Shvets
et al. [13] propose to use the relation module [43] to model
the inter-frame dependencies between the object proposals
in a long video segment, Wu et al. [14] further explore the
temporal relation across the whole sequence, Deng et al. [15]
propose the RDN to model the spatial-temporal relations
for video object detection, and Chen et al. [16] design the
MEGA to better exploit the short- and long-term temporal
relations. To exploit the inter-video proposal relations, Han
et al. [18] introduce the Hierarchical Video Relation Network
(HVR-Net), by integrating intra-video and inter-video proposal
relations in a hierarchical fashion. These works [13], [14],
[15], [16], [17], [18] achieved promising results on video
object detection. However, they are all instance-based feature
aggregation scheme, and the performance largely depends on
the quality of object proposals. Moreover, LLR [13] only ag-
gregates the temporal instances, while SELSA [14], RDN [15],
MEGA [16], and HVR-Net [18] treat all the instances equally
and ignore the topology information of the proposals in the
same frame.

III. PROPOSED METHOD

To perform accurate object detection on deteriorated frames
with partial occlusion, motion blur, or out-of-focus scene, a
detector should be able to aggregate features of the same or the
similar objects from other frames to enhance the appearance
feature of the target object in the current frame. Moreover,
the topology relation between different objects in the same

frame can also help object detection and recognition. Keeping
these motivations in mind, we propose a Class-aware Feature
Aggregation network (CFA-Net) for VOD.

A. Overview

Fig. 1 presents an overview of the proposed CFA-Net. First,
a backbone network (e.g., ResNet-101) is applied to extract
features for the target frame (the current frame on which
detection is performed) and the support frames (other frames
in this video). Then, a RPN is adopted to generate object
proposals for each frame, followed by a RolAlign pooling
operator to pool features for each object proposal. Before
performing feature aggregation to enhance the target proposal
features, we propose a coarse object proposal classifier to
classify the generated object proposals, and the pixel- and
temporal instance-level feature aggregation are only conducted
on proposals with the same (predicted) class label. Specifi-
cally, the Class-aware Pixel-level Feature Aggregation module
(CPFA) aggregates feature for each pixel of the pooled Rol
feature map of each target proposal. Only the features of those
pixels which are inside a proposal carrying the same class
label as the target proposal can be used for feature aggre-
gation, and such a constraint could filter out plenty of noisy
and ambiguous support information. After pixel-level feature
aggregation, for each target proposal, its feature is further
enhanced by the features of other proposals at instance-level.
Considering the heterogeneity of the spatial and temporal in-
formation, the instance-level feature aggregation is performed
in these two dimensions separately. The Class-aware Temporal
Feature Aggregation module (CTFA) is designed to enhance
the target proposal features by aggregating proposal features
with the same class label from support frames, in which the
feature aggregation is guided by exploiting the appearance
feature similarity between these proposals. The Spatial Feature
Aggregation module (SFA) is designed to model the object
topology relation by analyzing the interactions among objects
in the same frame, and further aggregate features for the target
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proposal with the object proposals in the same target frame.
Note that a Feature Alignment Module (FAM) is embedded
in the temporal and spatial instance-level feature aggregation
to align the feature maps of the target and support proposals.
Finally, the aggregated target proposal features are input to two
fully-connected layers to predict the class labels and regress
the bounding box locations.

B. Object Proposal Classifier

Recently, the relation networks [12] and non-local neural
networks [19] are proposed to explore the appearance and
geometry relations among object proposals, and the feature
aggregation is conducted based on the built relations between
proposals. These two networks are adopted by many recent
VOD works, and get promising performance. Unfortunately,
the relations (i.e., the feature aggregation weights) are calcu-
lated mainly based on the proposal appearance feature, which
inevitably includes some ambiguous information coming from
the background or different kinds of objects when aggregating
features for the target proposal, especially when the appear-
ance feature of the target proposal is very similar to the ones
of the background or other kinds of objects.

To perform feature aggregation with the most supportive and
relative information, an object proposal classifier is designed
and inserted in the detection network just before the feature
aggregation modules. For the generated object proposals by
RPN, the object proposal classifier will classify the proposals
into different object classes or background. Then, the pixel-
level feature aggregation and the temporal instance-level fea-
ture aggregation are performed among object proposals with
the same (predicted) labels. This proposal classifier is jointly
trained with the detection network. The benefits brought by the
designed object proposal classifier are two-folds: first, with the
predicted labels, the most supportive and relative features can
be selected to perform feature aggregation; second, by training
this proposal classifier, the features of object proposals from
different classes extracted by the backbone network can be
more distinguishable between each other.

C. Class-aware Pixel-level Feature Aggregation (CPFA)

Most of the recent works try to solve the challenging
VOD task by instance-level aggregation only [13], [14], [15].
However, without accurate feature alignment, it is highly
possible that a pixel in the target proposal is not aggregated
with the most supportive ones. To better aggregate features
for each target pixel, we propose to first perform feature
aggregation in pixel level, i.e., characterizing each pixel by
exploiting its contextual information in both the target frame
and support frames to enhance its feature representation. Note
that pixel here denotes a pixel location in the feature maps,
which corresponds to a small region in the original image.

For a target pixel of an object, if we sample the support
pixels without any constraint, the sampled support pixels may
be from background or objects in different classes, and the
aggregation blind to classes will degrade the representation of
the target pixel. An example is presented in Fig. 2 to illustrate
this problem. When performing feature aggregation for a pixel

Fig. 2: Pixel-level feature aggregation without and with the instance
constraint. For a target pixel (marked with red square), (b) shows the

pixel-level feature aggregation without any constraint, i.e., support
pixels (marked with blue squares) for feature aggregation can be
sampled from anywhere of a frame, (c) presents the pixel-level feature
aggregation with the class constraint, i.e., the sampled support pixels
(marked with pink squares) for feature aggregation must be in at least
one generated proposal which has the same predicted labels with the
target proposal.

of a cat (red square in Fig. 2(a)), if the non-local neural
network [19] is adopted to perform the pixel-level feature
aggregation, the support pixels (blue squares in Fig. 2(b))
can be sampled from anywhere of a frame without any
constraint. Thus, some pixels from background and different
object classes might be leveraged to aggregate features for the
target pixel, especially when the target object is very similar
to the background or another object. This will increase the
ambiguity of the representation of the target pixel, and harm
the detection task. To perform feature aggregation for a target
pixel with the most supportive ones, the selected support pixels
should be restricted to belong to the same object or objects in
the same class with the target pixel. Unfortunately, we can not
get the exact object mask in this object detection task to put
this instance constraint on the pixel-level feature aggregation.
Instead, we use the proposal label predicted by the proposal
classifier as a weak instance constraint, and restrict the selected
support pixels (pink squares in Fig. 2(c)) to be in at least
one of the proposals which have the same predicted labels
with the target proposal. With this class constraint for the
pixel-level feature aggregation, most background pixels and
unrelated pixels coming from different object classes will be
filtered out, which guarantees to sample the most supportive
pixels for feature aggregation to the greatest extent.

Let F' denote the number of support frames, H x W x C
the size of feature tensors extracted by the backbone network
with H, W and C as the height, width and channel dimension,
respectively, the proposed pixel-level feature aggregation with
class constraint can be formulated as

GrRy e

+ Vi

Xi, W) VL) VL)

(D

where X ; is the final aggregated feature value of the pixel
at location (i,j) of the target frame; V,; is the original
feature value of this target pixel before feature aggrega-
tion; Vil denotes the original feature value of the sup-
port pixel at location (k,1) of support frame f; PP, @P
and PP are three different fully-connected layers; A

Zk 121 IZf LwP (P (Vi 5), wp(Vkl)) ,{l, is a normal-

izing factor which serves as a softmax operation to preserve



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

support pixels

/
/

' PAhead‘ |PAhead \‘ /

/
; y
! o
VY FC i/
Feature layer-1 /{
- - { 1 softmax
‘ PA head ‘ | PA head !
7 7 i

|
concatenation \
T \

v FC | 2 T\

1x1 conv. ¥*

1x1 conv. ¢”

®
!

1x1 conv. ?

D

aggregated target pixel
(b)

Fig. 3: Pixel-level feature aggregation. (a) The multi-head and multi-
layer architecture adopted in the proposed CPFA, which includes 2
layers and 16 heads in each layer. (b) The detailed operations of the
pixel-level feature aggregation in each PA head (Eq. 1). ® denotes
the matrix inner-product, and @ is the element-wise addition.

the magnitude of the aggregated feature; w?(-,-) is the pixel
relation (similarity) measure function defined as:

wP(¢F (Vi g), WP (VL)) = ¢F (Vi) ©@ ¥P(VL)

where © is the dot-product of two vectors. [ ,f‘l is an indicator
function defined as:

2)

1 ifV], €Q

o=
0 otherwise

1= 3)
where () denotes the set of all pixels of support proposals
carrying the same predicted class with the target proposal.

Similar to [44], we design a multi-head and multi-layer
architecture for the CPFA, which is depicted in Fig. 3 (a).
There are two layers in the CPFA and each layer consists
of D (D is 16 in our experiments) Pixel Aggregation heads
(PA head). Fig. 3 (b) illustrates the detailed operations of the
pixel-level feature aggregation in each PA head. To keep the
CPFA in-place (i.e., input and output with the same feature
dimension), at the very beginning of each layer, we first use
a 1 x 1 convolutional layer conv to reduce the input feature
dimension to % of the original dimension before feeding it
into each PA head. The outputs of each PA head are then
concatenated together to get back the original dimension, and
the concatenated feature is then fed into the next layer. This
operation is performed in each layer of the CPFA.

D. Instance-level Feature Aggregation

The class-aware pixel-level feature aggregation is performed
on each pixel of the extracted proposal feature map, which
guarantees us to aggregate the representation of a pixel in
the target proposal with the most supportive pixels in the
support proposals which are in the same class with the target
proposal. However, the pixel-level feature aggregation can
not solve the occlusion problem effectively, i.e., if an object
is partially occluded by some other objects in a frame, the
original object information in the occluded part can not be
compensated by pixel-level feature aggregation because of the
lack of the holistic representation of object. Therefore, after
performing the pixel-level feature aggregation, we propose to
further aggregate proposals features on the instance level. The

instance-level feature aggregation consists of two steps: the
Class-aware Temporal Feature Aggregation (CTFA) and the
Spatial Feature Aggregation (SFA), the CTFA is performed
on the pixel-level aggregated proposal feature, i.e., the output
of the class-aware pixel-level feature aggregation, and the SFA
is performed on the output of the CTFA. The detailed process
of the instance-level feature aggregation can be found in Fig. 1
(the instance-level feature aggregation part).

Leveraging the holistic abstraction of an object to perform
instance-level feature aggregation is a feasible way to deal
with occlusions in VOD. Considering the heterogeneity of the
temporal and spatial feature for aggregation [45], [21], the
instance-level feature aggregation is separately performed in
temporal dimension and spatial dimension. Different from [45]
which performs feature aggregation first on spatial dimension
then on temporal dimension to generate the tracklet represen-
tation with the help of instance ID, which is their final goal,
our method adopts an opposite order, as the proposals from
the temporal domain are more reliable and can enhance the
feature for spatial relation exploration. This will be verified
by some experiments (in Sec. IV-D).

1) Class-aware Temporal Feature Aggregation (CTFA):
To select the most informative and relative support proposals
for the temporal instance-level feature aggregation, the class
constraint we used in the pixel-level feature aggregation is
also added here. More precisely, for a target proposal, only
the support proposals that are with the same (predicted) class
label are picked to perform the feature aggregation.

The CTFA designed for temporal instance-level feature
aggregation adopts the same architecture with the CPFA for
pixel-level feature aggregation (i.e., multi-head and multi-
layer architecture, which is shown in Fig. 3 (a)). For a target
proposal pt, let P* = {p§, p, ..., p5,} be the support proposal
set, X" and X® (m = 1,2,..., M) be the feature maps of
the target proposal and the support proposals, respectively.
Mathematically, the temporal instance-level feature aggrega-
tion performed in a Temporal Aggregation head (TA head) is
represented as:

Y! :<I>t( Z softmax(w"’(Xt,an))-A(an)) +X!
(N e (@' (X ov' (X)) :
- & CAXS X',
(;Z?ﬂ exp(¢t(X") Oyt (X3)) ( ))+
“4)

where ®*, ¢ and 1" are three different 1 x 1 convolutional lay-
ers, w? is the proposal appearance similarity measure function,
which is defined the same as w? in Eq. 2, M is the number
of support proposals that have the same (predicted) class label
with the target proposal, Y’ is the final aggregated feature
for the target proposal, and A represents a feature alignment
operation (this operation will be introduced in details in the
following subsection III-E) to align the features of the support
proposals to the ones of the target proposal.

2) Spatial Feature Aggregation (SFA): It has been well
believed in computer vision community that relations between
objects can help object recognition [12], [46], [47], [48].
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Therefore, we introduce a spatial relation module to further
explore the spatial topology relation of objects by embedding
the additional position and shape information of the proposals
besides its appearance feature to facilitate the video object
detection.

The SFA shares the same architecture with the CPFA and
CTFA (i.e., multi-head and multi-layer). However, the Spatial
Relation head (SR head) in SFA is an extension of the TA head
in CTFA. Besides capturing the appearance similarity between
a proposal pair with an appearance similarity weight w® as we
do in the CTFA, a geometric weight w9 is also calculated to
capture the topology relation between object proposals in the
same target frame by using the shape and location information
of the proposals:

w9 (p(g"), 0(g%)) = p(g") © »(g*), (5)

where ¢ is a position embedding operation, gt and g° are
the geometry information of the target proposal and support
proposal, respectively, which are defined as

gt = (at,yt, b, wt) ©

gs —_ (x.s7:,J.s7hs7,u}s)7
where ! and 3' are the location of the target proposal
bounding box center, k! and w’ represent the height and width
of the target proposal bounding box, respectively. Symbols
mean the same for support proposal . The location and shape
information of the proposal bounding box can be obtained
from the RPN. The new geometric weight wY is designed
to model the topology relation of objects and only consider
the relative geometric relationship between objects, which can
guarantee that the aggregation is invariant to scale transforma-
tion.

The final similarity w between the target proposal p! and the
support proposal p°® is computed by combining the geometric
similarity w9 with the original appearance similarity weight
v w9 - exp(w®)
Yo w9 - exp(w?)
which enables the SR head in the SFA to capture both the
topology relation of objects and the appearance similarity
of objects in the same frame. Note that the spatial feature
aggregation is only performed in the target frame after its
temporal aggregation.

(7

w =

E. Feature Alignment Module (FAM)

When performing feature aggregation for the target proposal
with features of support proposals, it is highly possible that
the objects in the target proposal and support proposal have
quite different poses, shapes, etc., which makes the appearance
features of these two proposals misaligned, and further de-
grades the feature aggregation. Therefore, appearance feature
alignment is crucial for better feature aggregation. Different
from FGFA [7] and MANet [8] which adopt FlowNet [41]
to align features, and STMM [38] which adopts a local
“MatchTrans” for feature alignment, we design a Feature
Alignment Module (FAM) which tries to align the support
proposal feature to the target one globally.

) P s
A(x)
1x1 .
conv.
Xt
& : X! : appearance feature of target proposal
X? : appearance feature of support proposal |

2 Q™™ correlation value on each pixel location

: element-wise correlation operation (Eq.8) |
: element-wise multiplication :
: summation over all pixel location

Fig. 4: Idea of the proposed feature alignment module.

Fig. 4 depicts the idea of the designed feature alignment
module. For better illustration, we only show the feature
alignment at one pixel location in this figure. For the pixel
location (u,v) in target proposal X', a duplication operation
is performed on its feature to generate a feature map which has
the same size with the original target proposal feature map.
Then, the duplicated feature map together with the feature map
X? of the support proposal goes through a 1 x 1 convolution
layer to generate the target proposal relation feature X' and
support proposal relation feature X;. After that, a correlation
map is calculated with these two relation features:

te (U, 0,2,y) =

(Xt 0) =X (1, 0)) ) (X (@) — (X (1))
(X} (u,0)) - o(X (2, 1))

where fo’;r(u,v,x,y) represents the correlation value be-
tween the support proposal feature at location (z,y) and the
target proposal feature at location (u,v), X' (u,v) denotes
the relation feature vector at pixel location (u,v) of the
target proposal, (X" (u, v)) and o(X" (u, v)) are the mean and
standard variation of this feature vector, respectively, X; (z,y)
denotes the relation feature vector at pixel location (z, y) of the
support proposal, (X} (z,y)) and (X} (z,y)) are the mean
and standard variation of this feature vector, respectively. After
that, a softmax operation is applied on the correlation map
along the spatial location dimension to obtain the alignment
weight. Finally, the alignment weight Q“°"" and the original
support proposal feature map X° are multiplied, so that the
aligned feature at location (u,v) is obtained:

u Vv
AX*)(u,0) = D> QU

r=1y=1

®)

u7v7x,y) Xs(xay) &)
where U and V are the height and width of the proposal feature
map, respectively.

IV. EXPERIMENTS

The proposed framework is extensively evaluated in this
section. First, the data and evaluation metric used in our
experiments are introduced, followed by the detailed intro-
duction of the network implementation. Next, ablation studies
are conducted to evaluate the effectiveness of each proposed
module. After that, the effect of sampling strategy of support
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frames on detection performance is studied and analyzed.
Finally, the framework is compared with state of the art.

A. Dataset and Evaluation Metric

An intersection of the ImageNet DET and VID datasets [49]
by taking their shared 30 object classes is used to train the
proposed framework. The training and validation split settings
in [7] are adopted here. The framework is evaluated on the
VID validation set. The widely-used mean Average Precision
(mAP)@IoU=0.5 is adopted as the evaluation metric.

B. Implementation Details

Backbone network The ResNet-101 [50] is adopted as the
backbone network to extract features for each video frame.
Detection network The detection network is built upon Faster-
RCNN. RPN [3] is applied on the feature extracted by conv4
of ResNet-101 to generate the object proposals for the target
and support video frames. In total, 9 anchors with 3 different
scales (i.e., 642, 1282, 2562) and 3 different aspect ratios (i.e.,
1:2, 1:1, 2:1) are leveraged in RPN. During both training and
inference, we first pick 6000 proposals with the highest object-
ness scores for each frame, then Non-Maximum Suppression
(NMS) is performed on these proposals with IoU threshold
of 0.7 to finally keep 300 proposals for each frame. RolAlign
pooling followed by a fully connected layer is applied on the
convb feature to extract the feature for each proposal.
Training and testing The proposed model is trained end-to-
end on 4 GPUs. We first initialize the backbone network with
the pre-trained weights on ImageNet classification, then all
modules in the model are trained and optimized simultane-
ously. Note that the RPN, object proposal classifier, CPFA,
CTFA, SFA and the final detection layers are trained from
scratches. A total of 10 epochs are performed to train the
model with a SGD optimizer. Batch size is set to 4 with each
GPU holds one minibatch. We use an initial learning rate of
2.5e~*, which is divided by 10 after 4 epochs, and divided
again after another 4 epochs. During training, every training
target frame is sampled along with two random support frames
in the same video sequence (identical frames for the ImageNet
DET dataset). When testing, for every inference frame (target
frame), another F' frames will be randomly sampled from the
same video sequence as the support frames.

C. Comparison with State of the Art

To evaluate the effectiveness of our proposed model, we
compare it with some state of the art, and summarize the
results in Table I.

The comparison is first performed under the circumstance
that all models are with the same backbone (ResNet-101).
The results show that our model outperforms the single-
frame object detection method D & T [9] (75.8% mAP) by
a large margin (+9.2%). Besides, our model is remarkably
better than FGFA [7] (76.3% mAP) and MANet [8] (78.1%
mAP), which both aggregate features based on optical flow
estimation, and the mAP improvements are +8.7% mAP and
+6.9% mAP, respectively. When compared with some relation-
based method (LRTRN [13] (81.0% mAP), RDN [39] (81.8%

TABLE I: Comparison with state of the art on ImageNet VID
validation set. ‘X+Y’ means post-processing strategy Y is employed
on method X. IT denotes the inference time.

[ Method I Backbone [ base detector [ IT (ms) | mAP (%) |
D & T [9] ResNet-101 R-FCN 128.2 75.8
D & T + tubelet rescoring [9] ResNet-101 R-FCN - 79.8
FGFA [7] ResNet-101 R-FCN 714.3 76.3
FGFA + Seq-NMS [7] ResNet-101 R-FCN - 78.4
MANet [8] ResNet-101 R-FCN 200.0 78.1
MANet + Seq-NMS [8] ResNet-101 R-FCN - 80.3
ST-LA + tubelet rescoring [28] ResNet-101 Faster R-CNN 50.0 79.6
STSN + Seq-NMS [10] ResNet-101+DCN R-FCN - 80.4
STMN + Seq-NMS [38] ResNet-101 Faster R-CNN 833.3 80.5
PSLA [11] ResNet-101+DCN R-FCN - 80.0
PSLA + Seq-NMS [11] ResNet-101+DCN R-FCN - 81.4
LRTRN [13] ResNet-101 Faster R-CNN 100.0 81.0
RDN [15] ResNet-101 Faster R-CNN 94.4 81.8
RDN + BLR [15] ResNet-101 Faster R-CNN - 83.8
SELSA [14] ResNet-101 Faster R-CNN 820.3 82.7
SELSA + Seq-NMS [14] ResNet-101 Faster R-CNN - 82.7
MEGA [16] ResNet-101 Faster R-CNN 238.1 829
MEGA [16] ResNeXt-101 Faster R-CNN - 84.1
MEGA + BLR [16] ResNet-101 Faster R-CNN - 84.5
LSTS [17] ResNet-101 Faster R-CNN 435 77.2
LSTS [17] ResNet-101+DCN | Faster R-CNN 47.2 80.1
LSTS + Seq-NMS [17] ResNet-101+DCN | Faster R-CNN 217.4 82.1
HVR [18] ResNet-101 Faster R-CNN - 832
HVR + Seq-NMS [18] ResNet-101 Faster R-CNN 83.8
HVR + Seq-NMS [18] ResNeXt-101 Faster R-CNN - 85.5
Ours ResNet-101 Faster R-CNN 884.2 85.0
Ours ResNeXt-101 Faster R-CNN 972.6 86.1

mAP), SELSA [14] (82.7% mAP)), MEGA [16] (82.9%mAP)
and HVR-Net [18] (83.2%mAP), our method also shows its
superior on detection precision. When a stronger backbone
(ResNeXt-101) is adopted, better performance is achieved.
We then take the HVR-Net [18] as an example and analyze
the reason of the performance gain of our proposed detection
model. Compared with HVR-Net, our proposed CFA-Net
has the following advantages: First, our proposed CFA-Net
performs feature aggregation both in the pixel level and the
proposal level, while the HVR-Net only conducts the proposal-
level feature aggregation. For the proposal level feature aggre-
gation, without accurate feature alignment, it is highly possible
that a pixel in the target proposal is not aggregated with the
most supportive ones, while the pixel level feature aggrega-
tion can characterize each pixel by exploiting its contextual
information in both the target frame and support frames to
enhance its feature representation. Second, we propose an
additional class constraint for both the pixel level feature
aggregation and the temporal proposal feature aggregation, i.e.,
a target pixel (or proposal) only aggregates its feature with
the features of the support pixels (or proposals) that are in the
same object class. The HVR-Net also performs the inter-video
proposal feature aggregation, and there are more than one
class objects in many videos. Without the class constraint, the
relation mining mechanism in the feature aggregation module
should be able to distinguish the same class support features
from the different class features to select the most supportive
features for feature aggregation, which intuitively increases
the difficulties of the feature aggregation. Third, the HVR-
Net exploits the intra-video and inter-video proposal relations,
while ingores the intra-frame proposal relations which we
leverage to boost video object detection by designing the
Spatial Feature Aggregation (SFA) module in our proposed de-
tection model. Last, when performing feature aggregation for
target proposal with features of support proposals, it is highly
possible that the objects in the target proposal and support
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TABLE II: Ablation studies on the proposed modules. ‘CPFA’ is the
class-aware pixel-level feature aggregation module, ‘CTFA’ is the
class-aware temporal feature aggregation module, ‘SFA’ is the spatial
feature aggregation module, and ‘FAM’ is the feature alignment
module. mAP slow/medium/fast represent the detection precision for
object with slow/medium/fast motion, respectively.

Method @[ ® [ ©[@[E©[ 0O @]H
CPFA v v Vv
CTFA v VIV IVIV
SFA VIV IVIVIV
FAM vV 1V
mAP(%) 737 [ 779 | 826 | 758 | 844 | 849 | 847 | 850
mAP(%)slow 82.4 | 853 | 88.1 844 | 889 | 894 | 89.2 | 894
mAP(%)medium | 71.1 75.8 | 82.0 | 73.5 | 83.3 | 83.8 | 83.5 | 839
mAP(%)fast 51.7 | 56.7 | 67.6 | 54.1 69.1 70.2 | 69.7 | 70.4

proposal have quite different poses, shapes, etc., which makes
the appearance features of these two proposals misaligned, and
further degrades the feature aggregation. In our proposed CFA-
Net, we design a Feature Alignment Module (FAM) which
tries to align the support proposal feature to the target one
globally when performing the temporal and spatial proposal
feature aggregation, while the HVR-Net directly performs the
proposal feature aggregation without any feature alignment.

D. Ablation Study on Proposed Modules

The effectiveness of each designed module in the CFA-
Net is evaluated in this section, and the evaluation results are
summarized in Table II.

(a) Baseline: This is the baseline detector without any
feature aggregation, i.e., a single frame detector. It achieves
a reasonable detection mAP of 73.7% as in [14].

(b) Effectiveness of CPFA: We add the class-aware pixel-
level feature aggregation (CPFA) module into the baseline
detector, and it achieves a +4.2% mAP improvement com-
pared with the baseline. This is because pixel-level feature
aggregation can enhance the pixel feature representation by
encoding the context information from both target and support
frames. However, the pixel-level feature aggregation is not able
to effectively alleviate the partial occlusion problem, which is
very common in video sequences.

(c) Effectiveness of CTFA: The class-aware temporal fea-
ture aggregation (CTFA) module is individually added into the
baseline, which brings a +8.9%mAP improvement compared
with the baseline. Also, compared with CPFA, the CTFA gives
a better performance by robust occlusion handling. Besides,
the CTFA gains larger improvement when the motion in video
is faster, i,e., the gain for objects with fast motion is +15.9%
(from 51.7% to 67.6%), while the gain for objects with slow
motion and medium motion is +5.7% (from 82.4% to 88.1%)
and +10.9% (from 71.1% to 82.0%). This indicates that the
CTFA indeed does its job of exploiting temporal information
across frames, especially in fast motion cases where objects
are more likely to have partial occlusion and motion blur in
neighboring frames, and then the temporal relation exploited
by the CTFA can leverage information in other video frames
(support frames) to greatly alleviate these challenges.

(d) Effectiveness of SFA: The spatial feature aggregation
(SFA) only gains a +2.1% mAP improvement compared with

the baseline, which is the smallest gain among the improve-
ments brought by other kinds of feature aggregation. The rea-
son is that the spatial instance-level feature aggregation only
exploits the appearance and topology relation of proposals
within the same target frame, which can not effectively deal
with most of the VOD challenges such as occlusion, motion
blur and rare pose in the target frame.

(e) Effectiveness of instance-level feature aggregation:
The temporal and spatial instance-level feature aggregation
(CTFA+SFA) further improves the CTFA-only method by
additionally exploiting both the appearance and topology infor-
mation of the proposals in the target frame. It is worth noting
that both separating the instance-level feature aggregation in
spatial and temporal dimension and the order of perform-
ing instance-level feature aggregation matters. When mixing
the temporal and spatial instance-level feature aggregation
together (i.e., instance-level feature aggregation is performed
in one aggregation module by fairly treating proposals in the
support frames and the target frame, and no topology relation
between proposals in the target frame is exploited), it gives us
a -0.8% mAP degradation. While if we separate the instance-
level feature aggregation and adopt a different order, i.e., first
spatial, then temporal, the performance decreases by 0.3%
mAP compared with the proposed order. The reason is that
the proposals from the temporal domain are more reliable and
can enhance the feature for spatial relation exploration, since
the same object can appear in different frames, while can not
appear in the same frame.

(f) Effectiveness of pixel-level plus instance-level feature
aggregation: Combining the pixel- and instance-level (i.e.,
CPFA+CTFA+SFA) feature aggregation achieves better perfor-
mance compared with only performing pixel-level or instance-
level feature aggregation. Because the two-level feature aggre-
gation can not only perform fine-grained feature aggregation
in pixel level by effectively exploiting the context information
lying in the instances from both the current frame and the
support frames, but also perform instance-level feature aggre-
gation by separately aggregating the heterogeneous temporal
and spatial information.

(g) Effectiveness of FAM: The feature alignment module
(FAM) designed for the CTFA and SFA can benefit the
instance-level feature aggregation performance by aligning the
support proposal features to the target one globally. Compared
with the CPFA, the FAM brings less improvement to the
instance-level feature aggregation. The possible reason is that
the CPFA already aggregates pixel features by aligning the
pixels in both the spatial and temporal dimension.

(h) Effectiveness of the CFA-Net: The proposed CFA-Net
combines all the proposed modules together, and achieves the
best detection performance (85.0% mAP). Though for the case
where the CPFA is included, the improvement brought by the
FAM is very marginal, it is not completely replaceable by the
CPFA (+0.1% mAP is obtained compared with the detection
result of without FAM).

E. Analysis of Class-aware Pixel-level Feature Aggregation

The Class-aware Pixel-level Feature Aggregation (CPFA)
is performed on the pixels of the extracted proposal feature
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tensor along both the spatial and the temporal dimension, i.e.,
the feature of a pixel in a target proposal feature tensor is ag-
gregated with the same class pixel features both in the current
frame and the selected support frames. To better understand
the CPFA, we separate it in the temporal dimension and the
spatial dimension, i.e., we perform the Class-aware Pixel-level
Spatial Feature Aggregation (CPSFA) and Class-aware Pixel-
level Temporal Feature Aggregation (CPTFA) separately. The
experiment results are summarized in Table III.

(a) Baseline: This is the baseline detector without any
feature aggregation, i.e., an image object detector (we use the
Faster R-CNN in our experiment).

(b) CPSFA: The Class-aware Pixel-level Spatial Feature
Aggregation (CPSFA) is added into the baseline. From Ta-
ble III we can see that the CPSFA only brings limited detection
improvement. The reason is that the CPSFA performs the
feature aggregation for a pixel in a proposal feature tensor
only with the pixels of the same class proposals in the current
frame, while in the ImageNet VID, the video frames that are
with only one object in a class dominate the dataset. Thus,
for most frames, the CPSFA aggregates a pixel feature of an
object only with the ones of this object itself, while additional
information can not be provided for the objects in these frames.

(c) CPTFA: The Class-aware Pixel-level Temporal Feature
Aggregation (CPTFA) is individually added into the baseline.
Compared to the CPSFA, the CPTFA achieves a much bigger
detection improvement. This is because the CPTFA can en-
hance the pixel feature representation by encoding the object
information from other frames. This can greatly provide much
more additional information for the proposal pixels need to be
enhanced in the current frame.

(d) CPSFA + CPTFA: Finally, we add both the CPSFA
and CPTFA into the baseline, and the detection performance
is further boosted over the CPTFA alone. The reason is
that in some video frames, there are more than one objects
belonging to the same class, e.g., a group of sheep in the
last row of Fig.5. In this case, the CPSFA can enhance the
pixel feature of an object with the ones of the same class
objects in this current frame. Note that ‘CPSFA + CPTFA’
is slightly different from the original CPFA in our work, as
‘CPSFA + CPTFA’ performs the spatial and temporal pixel-
level feature aggregation separately, while the proposed CPFA
module performs the pixel-level feature aggregation along the
spatial and temporal dimension simultaneously. But if we
compare column (d) in Table IIT with column (b) in Table II,
we can see that both of them achieve almost the same detection
performance.

Further, we conduct a study on the pixel size in the pixel-
level feature aggregation. The original extracted proposal
feature is with the spatial size of 8 x 8, i.e., an object
proposal is divided into 64 pixels (each pixel is with the unit
spatial size of 1 x 1, and corresponds to a small patch in
the original image), it is intuitively considered that the pixel
can hardly contain structure information of the object in this
object proposal. We first divide each proposal into 2 x 2 (i.e.,
4 patches) non-overlapping patches and consider each patch
as a pixel, in this case, each pixel is with the spatial size
of 4 x 4. Then, each proposal is divided into 4 x 4 (i.e., 16

TABLE III: Ablation studies on the Class-aware Pixel-level Feature
Aggregation (CPFA) module. ‘CPSFA’ is the class-aware pixel-level
spatial feature aggregation, and ‘CPTFA’ is the class-aware pixel-
level temporal feature aggregation. mAP slow/medium/fast represent
the detection precision for object with slow/medium/fast motion,
respectively.

Aggregation (a) (b) (c) (d)
CPSFA v/ v/
CPTFA v/ v/
mAP(%) 73.7 | 742 | 7777 | 78.0
mAP(%)slow 824 | 82.6 | 852 | 85.4
mAP(%)medium | 71.1 | 71.7 | 75.6 | 759
mAP(%)fast 51.7 | 524 | 56.5 | 57.0
[ Pixel size [ T [T 21 47138
mAP(%) 779 | 783 | 79.5 | 83.1
mAP(%)slow 853 | 85.5 | 86.3 | 88.5
mAP(%)medium | 758 | 763 | 77.7 | 82.6
mAP(%)fast 56.7 | 574 | 60.0 | 684

TABLE IV: Study on the pixel size in the Pixel-level Feature
Aggregation (CPFA). mAP slow/medium/fast represent the detection
precision for object with slow/medium/fast motion, respectively.

patches) non-overlapping patches and each patch is considered
as a pixel, in this case, each pixel is with the spatial size of
2 x 2. Finally, we regard each proposal as a big pixel, and
this pixel is with the spatial size of 8 x 8. By doing this,
we construct pixels with various spatial sizes, and perform
the Class-aware Pixel-level Feature Aggregation (CPFA) on
pixels with various sizes separately. Note that only the CPFA
is included into the baseline to perform the detection, and
the instance-level feature aggregation is not included in this
study. The experiment results are shown in Table IV, from
which we can see that the detection performance rapidly
improves with the increase of the pixel size. The reason is
that when we use pixels with larger spatial size, each pixel
can contain more object structure information and appearance
feature. Thus, the partial occlusion problem can be overcome
relatively easier. It is worth noting that when we regard the
whole proposal as a big pixel and perform the pixel-level
feature aggregation, it is actually the instance-level feature
aggregation. However, the performance is slightly better than
the Class-aware Temporal Feature Aggregation (CTFA) (col-
umn (c) in Table II). This is because the CPFA is performed
along both the temporal dimension and the spatial dimension
simultaneously, while the CTFA aggregates the proposal only
along the temporal dimension. Besides, the performance of
CPFA that regards the proposal as a big pixel is worse than
the performance of ‘CTFA+SFA’ (column (e) in Table II), i.e.,
separately performing the instance-level feature aggregation
in the temporal dimension and the spatial dimension. This
also callbacks our claim that the temporal and spatial proposal
feature is heterogeneous and we should perform the instance-
level feature aggregation separately in the temporal dimension
and the spatial dimension.

F. Analysis of Class Constraint

In our proposed framework, an object proposal classifier is
designed to predict the class label of each generated proposal.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

TABLE V: Analysis of class constraint.

TABLE VI: Effect of support frame number F' on detection precision.

class constraint

[ CPFA-C | CTFA-C | CPFA-C&CTFA-C | CPFA&CTFA |

mAP(%) 84.8 84.3 84.0 85.0
mAP(%) slow 89.2 88.7 88.5 89.4
mAP(%) medium 83.6 83.1 82.7 83.9
mAP(%) fast 69.9 69.0 68.3 70.4

The pixel-level feature aggregation and the temporal instance-
level feature aggregation are performed only among proposals
with the same (predicted) class label, i.e., a class constraint is
added on these two aggregations. We evaluate the effectiveness
of the class constraint on these two aggregations by checking
the detection performance of these two aggregations without
the class constraint, and the results are shown in Table V.

If class constraint is deleted from the pixel-level feature
aggregation (‘CPFA-C’ column in Table V), i.e., all pixels
of the support frames are support pixels, which is exactly
how the non-local network [19] works, and this leads to
a performance degradation of -0.2% mAP. This shows that
the CPFA filters out much noisy information from the large
scope of background and different class objects, and enhances
representations of target pixels with the pixels of the same
class object proposals which only contain very limited back-
ground information. If we delete the class constraint from
CTFA (‘CTFA-C’ column in Table V), i.e., the CTFA enhances
the target proposal feature by considering all the support
proposals, even support proposals that do not belong to the
same class with the target one, the detection performance
worsens by a -0.7% mAP. This verifies that without the class
constraint, the features of some support proposals that are not
in the same (predicted) class with the target proposal will
also be partially used to aggregate the target proposal feature,
which can pollute the target proposal feature and make it
ambiguous, even the feature similarities are measured to guide
the feature aggregation. When the class constraint is removed
from both the CPFA and CTFA (the ‘CPFA-C&CTFA-C’
column in Table V), the detection result becomes worse, with
a -1.0% mP degradation compared to the detection result
with class constraint on both of these two feature aggregation
modules. This illustrates that the class constraint benefits both
of these two aggregations.

G. Analysis of Support Frame Sampling Settings

During training, every training target frame is sampled along
with two random support frames in the same video sequence
(for the ImageNet VID dataset, 2 different frames are ran-
domly selected in the same video clip, while for the ImageNet
DET dataset, the identical target frame is duplicated and used
for support frames). During inference, for every target frame,
another F' frames will be randomly sampled from the same
video sequence as the support frames (only the ImageNet VID
validation dataset is used for inference). Thus, we use a fixed
number of support frames during training, while the number of
support frames F' during inference is flexible. For inference,
the number of support frames F' is an important parameter,
and sampling more support frames usually yields better results
[38], [7]. In our experiments, we adopt the promising random

| # frames | 2 [ 6 | 10 [ 14 | 20 |
mAP(%) 82.6 | 84.0 | 84.7 84.9 85.0
mAP(%) slow 88.0 | 88.7 | 89.2 | 894 | 89.4
mAP(%) medium | 80.4 | 82.7 83.5 83.7 83.9
mAP(%) fast 650 | 684 | 699 | 70.2 | 70.4

sampling strategy [14] to sample support frames. For a target
frame, the frames in the shuffled video sequence are randomly
selected as support frames without considering the temporal
order, i.e., both frames before and after the target frame can
be selected. The influence of the number of support frames on
detection accuracy is summarized in Table VI. The detection
performance improves consistently by sampling more support
frames. The reason is that with more support frames, more
appearance information (e.g., shape, pose, etc.) and context
information can be exploited by the aggregation modules
to enhance the feature of the target proposals. Then, the
performance saturates when enough support frames are used.
The reason is that with more support samples offered, more
appearance information (e.g., shape, pose, etc.) have been
mined, and adding more support frames does not bring in extra
information. Given the fact that more support frames means
longer processing time, we set the number of support frames
as 20 in our following experiments, for the trade-off between
detection precision and time efficiency.

Then we take a closer look at how support frame number
affects the detection of objects with different motion speeds
in videos. Table VI show that objects with fast motion gain
the most improvement by using more support frames, while
objects under slow motion gain the least. This is consistent
with our intuition. Usually objects under fast motion have
much more appearance variation, and are more easily occluded
by some other objects during video capturing. Sampling more
support frames can provide various and prolific supplementary
appearance information for the target proposal objects with de-
teriorated appearance, and therefore the detection performance
is improved with more support frames. On the other hand,
objects with slow motion usually have much less appearance
variation in a video sequence, therefore sampling more support
frames can not provide much extra information.

Next, we evaluate the effectiveness of the random sampling
strategy. First, we perform testing with 20 consecutive support
frames (i.e., 10 consecutive frames before the target frame and
10 frames after), and the performance is shown in the second
column of Table VII (‘Con W/O NMS’). Then we adopt the
Seq-NMS post-processing to refine the result, which is shown
in the third column of Table VII (‘Con W/ NMS’). The result
of randomly sampling support frames is in the last column
of Table VII. From this table we can see that consecutively
sampling 20 support frames to perform feature aggregation
while without any post-processing performs the worst among
these three methods. This is because 20 consecutive frames
capture a scene happening within ~1 second, which means
the object motion and appearance information are limited,
especially for objects under slow motion. Moreover, for objects
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TABLE VII: Effect of different sampling strategies on detection
precision. ‘Con W/O NMS’ means sampling 20 consecutive support
frames and without Seq-NMS, ‘Con W/ NMS’ means sampling 20
consecutive support frames and with Seq-NMS, ‘Random’ means
sampling 20 support frames from the video randomly.

Con W/O NMS
81.4

Con W/ NMS
82.7

Random
85.0

Sampling strategy
mAP(%)

with fast motion, it is very possible that the object appears,
disappears and re-appears in the video, but the 20 consecutive
support frames are only a small portion of the whole sequence
and only provide limited object information for the objects
in the target frame, making the feature aggregation not ideal.
When the Seq-NMS post-processing strategy is adopted, video
level object information can be explored for object detection,
and the detection result of the consecutive sampling can be
improved (+1.6% mAP). Random sampling strategy achieves
the best performance (+3.8 % mAP) over consecutive sampling
(both with or without Seq-NMS), showing that the random
sampling strategy can capture the object information from the
whole sequence, and is more robust to deal with fast motion,
sudden shot change that Seq-NMS suffers from.

H. Analysis of Computation Efficiency and Complexity

To better evaluate the computation efficiency and compu-
tational complexity of the proposed modules, we separately
calculate the number of parameters and the Floating Point
Operations (FLOPs) in each module of the detection model.
Our proposed detection model mainly consists of the fol-
lowing modules: the backbone for frame feature extraction
(ResNet-101 is adopted for backbone in our experiments),
the Object Proposal Classifier (OPC), the Class-aware Pixel-
level Feature Aggregation (CPFA) module, the Class-aware
Temporal Feature Aggregation (CTFA) module, the Spatial
Feature Aggregation (SFA) module and the final Detection
Head (DH). Note that the Feature Alignment Module (FAM)
is embedded in the CTFA module and SFA module to align the
feature maps of the target proposal and the support proposals.

When calculating the FLOPs for each module, we follow
the same experiment settings as in most of our experiments.
Specifically, for each target frame, we randomly select 20
frames in the same video clip as the support ones, and 300
object proposals are generated for each frame. Table VIII sum-
marizes the number of learnable parameters and the FLOPs for
each module in our proposed detection model.

From Table VIII we can see that in the proposed detection
model, the backbone network used for frame feature extraction
has the most learnable parameters and the most FLOPs. This
means that the backbone network costs the most memory size
and has the highest computational complexity. Thus, it could
be a good way to optimize the backbone network if we want
to speed up the detection (e.g., replace the heavy ResNet-
101 with MobileNet [31], [32]), and some previous works
[29], [30] have already exploited this strategy to accelerate
the detection. The Class-aware Temporal Feature Aggregation
(CTFA) module have the second most learnable parameters
and FLOPs, and the ablation studies (Table II) on each module

also show that this module is the most important one among
the proposed modules to improve the detection accuracy. For
example, when CTFA is removed from the method (columns
(a), (b) and (d) in Table II), the related mAPs are much lower
than those columns with the CTFA module. Compared with
the backbone and the CTFA modules, the learnable parameters
and FLOPs in the Class-aware Pixel-level Feature Aggregation
(CPFA) module are much less. In other words, the proposed
CPFA module improves the detection accuracy by occupying
very small memory size and consuming little computational
resource. The Spatial Feature Aggregation (SFA) module has
a large number of learnable parameters, almost the same
with the CTFA module, however, the FLOPs in the SFA
module is much less than the ones in the CTFA module.
The reason is that the CTFA module performs the proposal
feature aggregation for the target proposals with the support
proposals in the 20 support frames, while the SFA module
conducts the spatial proposal feature aggregation for the target
proposals only with the proposals in the target frame. Finally,
we separate the Feature Alignment Module (FAM) from the
CTFA module and SFA module to check the computational
complexity and computation efficiency of this module alone,
and from Table VIII we can see that the FAM module also
has a small number of learnable parameters and FLOPs.

1. Failure Case Analysis

We show some failure cases in Fig.5. The first row is an
example of false classification in the whole video clip. There
are two different object classes in this video clip, domestic
cat and monkey. The proposed detection model classifies the
monkey as a domestic cat in each frame of this video clip. The
monkey in this video clip has a similar appearance feature
with some yellow cats in some other video clips, and the
proposed object proposal classifier wrongly labels the monkey
proposal as a cat. Further, the temporal and spatial proposal
feature aggregation modules aggregate the monkey feature
with cat feature, and finally the detection head classifies the
monkey as domestic cat. The reason of this failure case is
that our proposed detection model lacks the capability of
exploiting the inter-video proposal relations. Thus, combining
the intra-video and inter-video proposal relations is a possible
way to solve this problem, as the HVR-Net [18] does. The
second row shows an example of temporally inconsistent
detection. In a frame of this video clip, a background proposal
(i.e., a blur house) is incorrectly labeled as a car, while
the detection model detects the neighboring frames correctly.
This is because our proposed detection model does not fully
exploit the temporal consistency property of the video. The
detection is performed in a frame-by-frame manner, and each
target frame is individually detected, although some temporal
information is leveraged by aggregating features from other
frames. One possible solution for this problem is to leverage
the tracking technique, e.g., performing the detection for a
short frame sequence instead of a single frame at one time
by generating object proposal triplet, as is done in [36]. The
last row presents an example of duplicated detection. There
are three sheep in each frame of this video clip, however, the
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TABLE VIII: Computational complexity analysis for each module in the detection model.

module backbone | OPC | CPFA | CTFA | SFA DH FAM
parameters (x 10°) 42.6 0.06 0.7 16.0 15.0 1.1 0.1
FLOPs (x107) 159.6 0.4 13.8 136.9 5.7 1.1x1073 1.7

a2 stic_cat 0.848 dggpestic_cat 0.569

Hdogpestic_cat 0.827

igmestic_cat 0.672

o iccat 0.862

o ic_cat 0.702 do;
) ‘I J ' 4 -‘
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Fig. 5: Failure case analysis. First row: false classification in each frame of the video clip. Second row: temporally inconsistent detection.

Third row: duplicated detection.

detection model detects four or even more sheep for some
frames. Usually, the Non-Maximum Suppression (NMS) is
adopted to delete the duplicated detection. Unfortunately, a
pre-defined IOU threshold is used to perform the NMS for
each frame, and this pre-defined IOU threshold can not work
well for all the cases. Replacing the NMS operation by some
specifically designed module might be helpful for this failure
case, such as the relation network in [12].

V. CONCLUSION

In this work, we propose a class-aware feature aggregation
network for video object detection. The class-aware pixel-level
feature aggregation encodes each pixel with the context in-
formation from the same class instances, filtering out massive
ambiguous information and enhancing the fine-grained feature
representation. The class-aware temporal feature aggregation
module considers the long-range temporal dependencies be-
tween objects in the same class across frames, and the spatial
feature aggregation module exploits the topology relations
between different objects in the same frame. The class-aware
feature aggregation puts the video object detection to the edge,
achieving state-of-the-art results.
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