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Abstract
We study the problem of efficiently refuting the k-colorability of a graph, or equivalently, certifying
a lower bound on its chromatic number. We give formal evidence of average-case computational
hardness for this problem in sparse random regular graphs, suggesting that there is no polynomial-
time algorithm that improves upon a classical spectral algorithm. Our evidence takes the form of
a computationally-quiet planting: we construct a distribution of d-regular graphs that has signif-
icantly smaller chromatic number than a typical regular graph drawn uniformly at random, while
providing evidence that these two distributions are indistinguishable by a large class of algorithms.
We generalize our results to the more general problem of certifying an upper bound on the maxi-
mum k-cut.

This quiet planting is achieved by minimizing the effect of the planted structure (e.g. colorings
or cuts) on the graph spectrum. Specifically, the planted structure corresponds exactly to eigenvec-
tors of the adjacency matrix. This avoids the pushout effect of random matrix theory, and delays
the point at which the planting becomes visible in the spectrum or local statistics. To illustrate
this further, we give similar results for a Gaussian analogue of this problem: a quiet version of the
spiked model, where we plant an eigenspace rather than adding a generic low-rank perturbation.

Our evidence for computational hardness of distinguishing two distributions is based on three
different heuristics: stability of belief propagation, the local statistics hierarchy, and the low-degree
likelihood ratio. Of independent interest, our results include general-purpose bounds on the low-
degree likelihood ratio for multi-spiked matrix models, and an improved low-degree analysis of the
stochastic block model.
Keywords: Refutation, quiet planting, chromatic number, random graphs, spectral methods
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1. Introduction

Assuming the widely believed P 6= NP hypothesis, many combinatorial problems in graphs are
known to be computationally hard. Prominent examples from graph theory and network science
include finding large cliques or independent sets, clustering or maximizing cuts, and finding vertex
colorings or computing chromatic numbers. Fortunately, the worst-case computational difficulty of
many of these problems appears to not be predictive of their feasibility in typical graphs, motivat-
ing the study of forms of average-case complexity for many of these problems. Many remarkable
examples exist dating back to at least the work of Karp and others in the mid 70s (Karp, 1976),1

they include the problem of vertex colorings (Grimmett and McDiarmid, 1975) in random graphs,
the related problem of finding the largest independent set2 (or, equivalently, clique) and many oth-
ers (Karp, 1976). In both of these problems, for certain natural distributions of random graphs, a
multiplicative gap of 2 is identified between the typical optimal solution and the solution found by
the best known polynomial-time algorithm (Karp, 1986), and improving over this has since been a
standing open problem. Motivated by this question, Kucera (1995) and Alon et al. (1998) studied
random graph models with planted structures (either a large independent set or clique, or a coloring
with an unusually small number of colors) and investigate when such structures are easy to detect.
Foreshadowing to what follows, we point out that the existence of a planted structure that cannot
be detected efficiently implies that that it is impossible to efficiently refute the existence of such a
structure in the underlying unplanted model. In this paper we will focus on the problem of comput-
ing the chromatic number, and the related problem of understanding the size of the largest k-cut.
The random graph model throughout is the uniform distribution over d-regular graphs on n nodes.

Refuting colorability. For an integer k � 1, a graph G = (V,E) is k-colorable if there exists an
assignment � : V ! [k] of “colors” to the vertices such that �(i) 6= �(j) for every edge (i, j) 2 E.
The chromatic number �(G) ofG is defined as the minimum value of k for whichG is k-colorable.

A random d-regular graph G on n vertices (we will write random variables in bold-face font
throughout the paper) is known to have a typical chromatic number �(G) ⇠ 1

2
d

log d (see, e.g., Coja-
Oghlan et al. (2016) and references therein) in the double limit n ! 1 followed by d ! 1,
where f ⇠ g denotes f/g ! 1. The problem we will study is that of algorithmically refuting
the k-colorability of a graph, which we define in Section 2.2. Informally speaking, an algorithm
that refutes k-colorability provides an efficiently-verifiable proof that G is not k-colorable. As a
simple example, an algorithm exhibiting a (k + 1)-clique refutes k-colorability. More generally,
one may encode a k-coloring as a collection of boolean variables satisfying certain logical relations
depending on G, and refute coloring by deriving a contradiction from those axioms.

We will provide evidence that the refutation problem is computationally hard when G is a
uniformly random d-regular graph. The proof strategy is to construct a different distribution over d-
regular graphs whose typical chromatic number is �(G) ⇠ 1

2

p
d, and to argue that this distribution

is computationally hard to distinguish from a uniformly random d-regular graph (whose chromatic
number is instead �(G) ⇠ 1

2
d

log d )—we think of this new distribution as having a computationally-
quiet planting3 of a coloring with few colors. We will see below that the value 1

2

p
d coincides with a

simple spectral bound on �(G) for G uniformly random, and so our result is a tight computational

1. See also Karp’s lecture on the occasion of his Turing Award (Karp, 1986).
2. Recall that the set of nodes of the same color in a vertex coloring is an independent set.
3. This terminology is inspired by the notion of quiet planting from prior work (Krzakala and Zdeborová, 2009; Zde-

borová and Krzakala, 2011), although our notion is somewhat different.
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lower bound on refutation algorithms. The formal evidence for computational hardness used in
this paper is threefold: we provide consistent pieces of evidence based on (i) the Kesten–Stigum
threshold for the belief propagation message-passing algorithm, (ii) the Local Statistics semidefinite
programming hierarchy, and (iii) the low-degree likelihood ratio for an analogous Gaussian model.

The spectral refutation. Instead of just refuting k-colorability, we will consider the more general
task of refuting the existence of large k-cuts in a graph. We define the fractional size of the largest
such cut as

MCk(G) := max
�:V![k]

|{(u, v) 2 E : �(u) 6= �(v)}|
|E| 2 (0, 1]. (1)

Intuitively, MCk(G) describes how close G is to being k-colorable, as the cut counts the fraction
of polychromatic edges under the coloring �. MCk(G) is non-decreasing in k, and for any k, G is
k-colorable if and only ifMCk(G) = 1; therefore, the chromatic number is given by

�(G) = min{k : MCk(G) = 1} = 1 +max{k : MCk(G) < 1}. (2)

Accordingly, upper bounds on MCk away from the maximum value of 1 yield lower bounds on
the chromatic number. This task is often called certifying a bound on the optimization problem
MCk. The relations (2) show how certifying such a bound in turn refutes colorability. In fact,
Hoffman’s early work (Hoffman, 1970) proposed a technique for any d-regular graph G that gives,
when rephrased in our notation, a refutation of colorability by bounding MCk via the minimum
eigenvalue �min(AG) of the adjacency matrix AG of G. Namely, Hoffman showed that for any
d-regular graph G,

MCk(G)  k � 1

k

✓
1 +

��min(AG)

d

◆
. (3)

(Note that �min(AG)  0 since Tr(AG) = 0.) A short proof of (3) will be given in Section 2.2. We
note that k�1

k is the expected value of the objective of (1) when � : V ! [k] is chosen uniformly
at random, so expressions like the right-hand side of (3) should be viewed as expressing a factor
of “gain” over this value. For G a uniformly random d-regular graph on n vertices, whose law we
denote Gn,d, a theorem due to Friedman (2003) states that �min(G) = �2

p
d� 1 + o(1) with high

probability4 for any fixed d � 3. This implies that when G ⇠ Gn,d, Hoffman’s spectral approach
with high probability certifies the upper bound

MCk(G)  k � 1

k

✓
1 +

2
p
d� 1

d
+ o(1)

◆
. (4)

This in turn translates to a lower bound on the chromatic number of �(G) � (1 � od(1))
1
2

p
d,

where od pertains to the double limit n ! 1 followed by d ! 1 (see Section 2.1).
Equipped with this direct analysis of a simple technique, the natural question arises: can any

polynomial-time algorithm produce a bound that, like Hoffman’s, is valid for any graph G, but is
typically tighter for G ⇠ Gn,d? Most prior work on this question has studied bounds provided by a
semidefinite program computing the Lovász # function, which, as shown by Banks et al. (2017), is
equivalent to the degree-2 sum-of-squares relaxation ofMCk(G). The work of Coja-Oghlan (2003)

4. Here and throughout, o(1) pertains to the limit n ! 1with d fixed. We say that an event occurswith high probability
(w.h.p.) if it has probability 1� o(1).
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and a later, more precise analysis by Banks et al. (2017) showed that, with high probability when
G ⇠ Gn,d, this relaxation certifies a bound still no better than

MCk(G)  k � 1

k

✓
1 +

2
p
d� 1

d+ 2
p
d� 1

� o(1)

◆
=

k � 1

k

✓
1 +

2
p
d� 1

d
�Od

✓
1

d

◆◆
. (5)

Note that (5) matches the spectral bound (4) in the double limit n ! 1 followed by d ! 1. No
polynomial-time certifier is known to asymptotically improve upon this bound. It appears plausible,
then, that the spectral bound (4) is an optimal efficiently-computable certificate on MCk(G) for
G ⇠ Gn,d. In this work, we will argue that this is indeed the case.

Detecting a planted k-cut. The following line of reasoning will be central to this work: to prove
computational hardness of a refutation problem, it is sufficient to construct a computationally-quiet
planted distribution (e.g. Bandeira et al. (2020)). To illustrate this, suppose our goal is to show com-
putational hardness of refuting (w.h.p.) k-colorability of a graph drawn from Gn,d. Suppose we are
able to construct a planted distribution P over d-regular graphs such that (i) a typical graph drawn
from P is k-colorable, and (ii) P is computationally quiet in the sense that no polynomial-time al-
gorithm can distinguish (w.h.p.) between a sample from P and a sample from Gn,d. It then follows
that no polynomial-time algorithm can refute k-colorability in Gn,d, because if such a refutation
algorithm were to exist, it must succeed w.h.p. on Gn,d and must fail w.h.p. on P , thus providing
a solution to the distinguishing problem. More generally, to show hardness of certifying an upper
bound on the maximum k-cut, we need a planted distribution for which there exists a large k-cut.

As discussed in Banks et al. (2017), a natural planted distribution with a large k-cut is a d-
regular variant of the popular stochastic block model (SBM). To sample a graph from this d-regular
distribution, which we will denote Gsbm

n,d,k,⌘, first sample a balanced labelling� : [n] ! [k] uniformly
at random (balanced means that |��1(i)| = n/k for every i 2 [k]), and then choose G uniformly
among d-regular graphs conditional on the event5

|{(u, v) 2 E : �(u) 6= �(v)}|
|E| =

k � 1

k
(1� ⌘). (6)

Note that this ensuresMCk(G) � k�1
k (1� ⌘), since the planted partition � witnesses a k-cut with

that fraction of bichromatic edges. We will mostly be concerned with the disassortative regime of
this model where ⌘ 2 [� 1

k�1 , 0], and the planted k-cut � is larger than a typical one; for instance,
if ⌘ = � 1

k�1 the planted cut includes every edge, giving the well-studied planted coloring model.
The relevance of this distribution to certifying bounds on MCk for G ⇠ Gn,d is as follows:

if an algorithm can with high probability over Gn,d certify that MCk(G) < k�1
k (1 � ⌘), then (as

discussed above) it is simple to build another testing (or detection) algorithm that distinguishes
between G ⇠ Gn,d and G ⇠ Gsbm

n,d,k,⌘ with high probability. The advantage of taking this point
of view is that there is a rich literature, originating in heuristic methods from statistical physics,
that has provided a great deal of evidence that polynomial-time testing between Gn,d and Gsbm

n,d,k,⌘ is
impossible below the Kesten–Stigum threshold, i.e., when

d < d sbm
KS = d sbm

KS (⌘) :=
1

⌘2
+ 1. (7)

5. For now, we will not consider the integrality conditions on the parameters (n, d, k, ⌘) that this implies, although these
types of considerations will be important later.
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We will refer to this claim as the SBM conjecture. Polynomial-time algorithms are known to succeed
when d > d sbm

KS (Massoulié, 2014; Mossel et al., 2018; Abbe and Sandon, 2016; Banks et al., 2019).
While proving such a conjecture seems to be beyond the reach of current techniques (even under
an assumption such as P 6= NP), various forms of concrete evidence have been given (either for the
d-regular SBM and other variants). These include results on stability of belief propagation (Decelle
et al., 2011a,b), the local statistics hierarchy (Banks et al., 2019), and the low-degree likelihood
ratio (Hopkins and Steurer, 2017; Hopkins, 2018). We will discuss all of these methods further in
Section 1.1.

Rearranging (7) we find that, conditional on the SBM conjecture, the above argument implies
that when G ⇠ Gn,d, no polynomial-time algorithm can certify with high probability a bound
stronger than

MCk(G)  k � 1

k

✓
1 +

1p
d� 1

� o(1)

◆
. (8)

Comparing this to (4) and (5), we see a discrepancy between the best known certification algorithms
and the above hardness result. For large d, this discrepancy amounts to a factor of 2 in the “gain”
term. This begs the question of whether better certification algorithms exist, or whether the hardness
result can be improved. We will see below that it is the latter.

A quieter planting. Our main contribution is to show an improved hardness result by using a
“better” planted distribution: namely, a more rigid version of the SBM in which, for each i, j 2 [k],
every vertex with label i has a fixed number of neighbors with label j. This is in contrast to the
d-regular SBM in (6) above, where we condition on the total number of bichromatic edges.

Definition 1 (Equitable stochastic block model) The equitable stochastic block model (eSBM),
denoted G eq

n,d,k,⌘, is the probability distribution over d-regular graphs on n vertices sampled as
follows: first, choose a uniformly random balanced partition � : V ! [k]. Then, letting

M = ⌘Ik +
1�⌘
k Jk

(where Ik and Jk are the k ⇥ k identity and all-ones matrices, respectively), for each i 2 [k] place
a random dMi,i-regular graph on the color class ��1(i), and for each i < j 2 [k] place a random
bipartite dMi,j-regular graph between ��1(i) and ��1(j). This model is only defined when k|n,
dM is a nonnegative integer matrix, and dMi,in/k is even6 for all i.

As in Gsbm
n,d,k,⌘, the planted cut � has fractional size k�1

k (1� ⌘), and we will again restrict to the dis-
assortative case ⌘ 2 [� 1

k�1 , 0]. This model is discussed in Brito et al. (2016), where it is called the
“regular block model.” We instead follow Newman and Martin (2014); Barucca (2017) in using the
term “equitable,” so as to differentiate it from the standard d-regular variant of the SBM discussed
in the previous section.

Using some of the same methods that provide concrete evidence for the SBM conjecture—
namely stability of belief propagation and the local statistics hierarchy—we will show that the eq-
uitable SBM appears to exhibit a different computational threshold from the standard SBM. Specif-
ically, we conjecture that no polynomial-time algorithm can distinguish (w.h.p.) between Gn,d and
G eq
n,d,k,⌘ when

d < d eq
KS = d eq

KS(⌘) :=
2

⌘2

⇣
1 +

p
1� ⌘2

⌘
. (9)

6. This last condition ensures that it is possible to place a dMi,i-regular graph on n/k vertices.
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We will state a formal version of this “eSBM conjecture” later (Conjecture 8), which actually per-
tains to a slightly “noisy” version of the equitable block model. We remark that when k is large, ⌘
must be close to zero (in the disassortative case), and so we have approximately d eq

KS ⇡ 4d sbm
KS .

Repeating our earlier argument for hardness of certification, with the eSBM in place of the SBM,
yields the following corresponding result: conditional on the eSBM conjecture, no polynomial-time
algorithm can certify a better bound than

MCk(G)  k � 1

k

✓
1 +

2
p
d� 1

d
� o(1)

◆
(10)

when G ⇠ Gn,d, which matches the spectral bound (4). However, we have ignored an important
caveat here: the equitable block model only exists when the parameters (n, d, k, ⌘) satisfy certain
integrality conditions. For this reason, our actual lower bound (Theorem 9) is sometimes weaker
than (10) would suggest; see Section A.2 for discussion.

When d � k2, the integrality conditions are negligible and we obtain a tight lower bound, es-
sentially matching (10). Another setting where we obtain tight results is for the problem of refuting
colorability (or more accurately, near-colorability) in the double limit n ! 1 followed by d ! 1,
which is discussed in Remarks 10 and 11. This corresponds to the choice ⌘ = � 1

k�1 . Here, when
G ⇠ Gn,d, the following results hold asymptotically: the true value of �(G) is 1

2
d

log d , the spec-
tral approach certifies a lower bound of 1

2

p
d on �(G), the basic SBM planting implies hardness

of certifying a lower bound better than
p
d, and the improved eSBM planting implies hardness of

certifying a lower bound better than 1
2

p
d (which is tight, matching the spectral bound).

Theorem 2 (Informal) Assuming Conjecture 8 on the computational hardness of hypothesis testing
for the eSBM, there exists no polynomial-time algorithm certifying a bound on MCk(G) asymptot-
ically tighter than the spectral bound (4) for G ⇠ Gn,d with d � k2. Furthermore, for any ✏ > 0
there exists no polynomial-time algorithm refuting k-colorings with at most ✏|E| monochromatic
edges for k  1

2(1� od(1))
p
d.

See Theorem 9 and Remark 10 for a formal and more complete version of this statement, where the
case d . k2 is also addressed.

Why is the equitable SBM quieter? Here we give some intuition for why the equitable model
is a good quiet planting. For the sake of illustration, it helps to consider the simple rank-1 Wigner
spiked matrix model: Y = ⌘vv> + W where ⌘ > 0 (the signal-to-noise ratio), kvk = 1 (the
planted “signal,” drawn from some prior), and W (the “noise”) is a GOE matrix, i.e., a symmetric
matrix with N (0, 1/n) entries (see Definition 14). For large n, the eigenvalues of W follow the
semicircle law and are contained in the interval [�2, 2]. For 1 < ⌘ < 2, a surprising “pushout”
effect occurs: although the planted signal v has quadratic form v>Y v ⇡ ⌘ < 2, its presence causes
there to exist some other unit vector u achieving u>Y u ⇡ ⌘+1/⌘ > 2 (Baik et al., 2005; Féral and
Péché, 2007; Capitaine et al., 2009); as a result, simply checking the largest eigenvalue allows one
to distinguish Y from W . Even though the signal v is “small”, the vector u (which is the leading
eigenvector of Y ) is able to achieve a “large” quadratic form by correlating nontrivially with both
the signal v and the noiseW . The main result of Bandeira et al. (2020) can be interpreted as giving
a “quieter” way to plant the signal “orthogonal to the noise” with no pushout effect, i.e., v>Y v ⇡ 2
and the maximum eigenvalue of Y is ⇡ 2.

6
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It turns out that a similar effect is at play in the SBM. Here the minimum eigenvalue of the
adjacency matrixA of a random d-regular graph converges to �min := �2

p
d� 1. As will be made

clear in Section 2.2, the SBM is in some sense analogous to the spiked Wigner model with multiple
planted vectors, namely k “coloring vectors” vi for i 2 [k], that encode the planted labelling � as
follows: (vi)u = c(k · 1 [�(u) = i] � 1), where c is chosen so that each kvik = 1. Planting a
k-cut of value k�1

k (1 + |⌘|) via either the SBM or eSBM has the effect that all planted coloring
vectors achieve a small quadratic form: v>

i Avi ⇡ �d|⌘|. In the SBM there is a pushout effect
similar to the spiked Wigner model, whereby an eigenvalue less than �min can be created even
when d|⌘| < |�min| (see Nadakuditi and Newman (2012) for results when the degree grows slowly
with n). The eSBM, however, has the property that each coloring vector vi is an eigenvector. In
particular, the subspace spanned by {vi}i2[k] is orthogonal to the other eigenvectors, which are thus
unaffected by the planted structure. As a result, there is no pushout effect in the eSBM, allowing
for a larger k-cut to be planted without disrupting the minimum eigenvalue.

An alternative viewpoint is that the standard plantings (the spikedWigner model or SBM) pick a
random solution (e.g., a cut) and then condition on that particular solution having the desired value.
In contrast, the quieter plantings are perhaps more similar to conditioning on the event “there exists
a solution having the desired value.”

Remark 3 The fact that the coloring vectors vi are eigenvectors of the eSBM can actually be
exploited to give a polynomial-time algorithm for distinguishing Gn,d from G eq

n,d,k,⌘ for any settings
of the parameters. See, for example, Barucca (2017) for some discussion of such algorithms. For
this reason, it is crucial that our eSBM conjecture (Conjecture 8) adds a small amount of noise to the
graph in order to “defeat” these types of algorithms. We discuss this issue further in Section 1.1.4.

The case k = 2: large cuts in Gn,d. Here, we briefly discuss the specific case k = 2, which is
better understood in the existing literature. In this case, MC2(G) is merely the fraction of edges
crossing the largest cut of G, and thus up to this scaling is the solution to the well-known max-
cut problem. Equivalently, letting AG be the adjacency matrix of G, we have MC2(G) = 1

2(1 +
1

2|E|�2(AG)) where
�2(A) := � min

x2{±1}n
x>Ax � 0.

WhenG ⇠ Gn,d, the behavior of �2(AG) turns out to be deeply connected to its Gaussian analogue
�2(W ) where W is a GOE matrix. The quantity �2(W ) has been studied in statistical physics,
being the ground state energy of the Sherrington-Kirkpatrick model of spin glasses (Sherrington
and Kirkpatrick, 1975). The deep but non-rigorous analysis of Parisi (1979) proposed an asymptotic
value 1

nE�2(W ) ! 2P⇤ ⇡ 1.526, which was later proven rigorously in a sequence of mathematical
works (Guerra, 2003; Talagrand, 2006; Panchenko, 2011, 2013). By relating the graph model to the
Gaussian model, Dembo et al. (2017) gave an asymptotic formula for the size of the largest cut in a
random regular graph with large degree:

lim
n!1

E
G⇠Gn,d

MC2(G) =
1

2

✓
1 +

2P⇤p
d
+ od

✓
1p
d

◆◆
. (11)

For the Gaussian setting, it was shown in Bandeira et al. (2020) using a quiet planting approach that
(conditional on a certain complexity assumption based on the low-degree likelihood ratio) the best
possible upper bound on 1

n�2(W ) that can be certified in polynomial time is 2, in contrast with the

7
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true value 2P⇤; the optimal bound is given by a simple spectral certificate involving the maximum
eigenvalue ofW . Given this, we might expect that the best efficiently-certifiable bound onMC2(G)
for G ⇠ Gn,d is given by replacing 2P⇤ in (11) with 2. Indeed, Montanari and Sen (2016) and Mo-
hanty et al. (2019) showed respectively that the degree-2 and degree-4 sum-of-squares relaxations
can certify a bound no better than

MC2(G)  1

2

✓
1 +

2p
d
+ od

✓
1p
d

◆◆
. (12)

Our results extend the picture emerging from this literature in two important ways. We show (see
Theorem 9 and discussion in Section A.2) that conditional on the eSBM conjecture, (12) is in fact the
optimal bound onMC2(G) certifiable in polynomial time. Thus, if the eSBM conjecture holds then
no constant-degree sum-of-squares relaxation can improve upon on the known results for degree-2
and degree-4. Furthermore, we justify this bound with an explicit quiet planting of a large cut in a
random regular graph.

The Gaussian k-cut model. Above, we have seen an intimate connection between �2(AG)where
AG is the adjacency matrix of G ⇠ Gn,d, and its Gaussian counterpart �2(W ) where W ⇠
GOE(n). More generally, MCk(G) can be written in terms of a certain quantity �k(AG) defined
in Section 2.2, which has a natural Gaussian counterpart �k(W ).

In fact, explicit formulas similar to (11) are also known that relate the asymptotic values (in the
double limit n ! 1 followed by d ! 1) of �k(AG) and �k(W ) even for k > 2 (Sen, 2018;
Jagannath et al., 2018). The broadly applicable techniques used in these results—the Lindeberg
exchange method and related probabilistic interpolation arguments—suggest that there is a general
and fundamental relationship between the graph model in the large-degree limit and the Gaussian
model. Yet, it is not clear whether this implies any relation between the respective thresholds for
efficient certification.

To clarify this matter, we also give results showing that the problem of certifying upper bounds
on �k(W ) under the Gaussian model exhibits similar behavior to the graph model (see Section A.3):
no polynomial-time certifier can improve over the basic spectral bound. The proof is again based
on quiet planting, and can be seen as an extension of the results of Bandeira et al. (2020) which
handled the k = 2 case. Our results rely on a complexity assumption concerning the low-degree
likelihood ratio, which we discuss further in Section 1.1.3. As a by-product, we develop a general
framework for bounding the low-degree likelihood ratio of certain Gaussian models, which may be
of independent interest. Specifically, we conduct the low-degree analysis of a broad class of multi-
spiked matrix models (both Wigner and Wishart), and give an improved low-degree analysis of
the stochastic block model which suggests that fully-exponential time is needed below the Kesten–
Stigum threshold (see Section A.3.2).

1.1. Heuristics for Average-Case Computational Hardness

Our results on hardness of certification rely on unproven conjectures about average-case hardness,
such as the eSBM conjecture. Proving these types of conjectures seems to be beyond the reach
of current techniques (even when assuming standard complexity conjectures such as P 6= NP), as
illustrated by the fact that no such proof is known for the famous planted clique problem. However,
a myriad of heuristic techniques have emerged for predicting hardness of average-case problems by
proving lower bounds against certain classes of algorithms. Taken together, these methods create a

8
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fairly coherent theory of computational complexity for a large class of high-dimensional Bayesian
inference problems. In this section we describe the three methods that will be used in this work:
belief propagation, the local statistics hierarchy, and the low-degree likelihood ratio. We remark
that these are not the only such methods, some others being average-case reductions (Berthet and
Rigollet, 2013; Brennan et al., 2018), sum-of-squares lower bounds (Barak et al., 2019), statistical
query lower bounds (Feldman et al., 2017), the overlap gap property (Gamarnik and Zadik, 2017),
and analysis of non-convex loss landscapes (Auffinger et al., 2013). Finally, in Section 1.1.4 we
discuss the XOR-SAT problem—an important counterexample for many of the above heuristics—
and the related issues of “robustness” that arise in our eSBM conjecture.

1.1.1. BELIEF PROPAGATION AND THE KESTEN–STIGUM THRESHOLD

The sharp computational phase transition known as theKesten–Stigum (KS) threshold in the stochas-
tic block model, was first predicted by Decelle et al. (2011a,b) using non-rigorous ideas inspired by
statistical physics. The idea is to consider the belief propagation (BP) algorithm, an iterative method
that attempts to recover the planted community structure by keeping track of “beliefs” about each
node’s community label and updating these in a locally-Bayesian-optimal way. BP has an “uninfor-
mative” fixed point, which is a natural starting point for the algorithm where the beliefs reflect no
knowledge of the communities. It was shown in Decelle et al. (2011a,b) that if the signal-to-noise
ratio (SNR) lies above the KS threshold then the uninformative fixed point is unstable, suggesting
that BP should leave it and find a community assignment that correlates with the truth; and if the
SNR lies below the KS threshold then the uninformative fixed point is stable, meaning that BP will
remain there and fail to find a nontrivial solution. It was later proven that indeed it is possible to
nontrivially recover the communities in polynomial time when above the KS threshold (Massoulié,
2014; Mossel et al., 2018; Abbe and Sandon, 2016), whereas no such algorithm is known below
the KS threshold. More generally, similar computational thresholds have been predicted in various
models (e.g., Lesieur et al. (2015b,a)) by examining the stability of BP or its simplified variant,
approximate message passing (AMP) (Donoho et al., 2009). For many high-dimensional infer-
ence problems, it is known that BP and AMP achieve optimal information-theoretic performance
(e.g. Deshpande et al. (2017)); and when they don’t, it is often conjectured that they achieve the best
possible performance among efficient algorithms. Thus, stability of BP provides concrete evidence
for computational hardness. (Strictly speaking, stability of BP suggests hardness of recovering a
partition that nontrivially correlates with the communities, whereas our eSBM conjecture pertains
to the detection problem. However, we expect that the detection and recovery thresholds for the
eSBM are the same, as is believed to be the case for the ordinary SBM. Also, the local statistics
hierarchy discussed below gives direct evidence for hardness of detection.)

1.1.2. THE LOCAL STATISTICS HIERARCHY

Introduced by Banks, Mohanty, and Raghavendra (Banks et al., 2019) and building off of the work
of Hopkins and Steurer (2017), the Local Statistics hierarchy is a family of increasingly powerful
semidefinite programming algorithms for solving Bayesian hypothesis testing problems. By anal-
ogy with the Sum-of-Squares algorithm, we take this hierarchy as a proxy for hardness: the higher
we need to go to perform the hypothesis test, the harder it is.

Consider a generic inference scheme where we are to distinguish between a null model Q which
outputs unstructured data G 2 Rm, and a planted model P generating structured data G 2 Rm
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according to some random and hidden signal x 2 Rn. Letting x = (x1, ..., xn) be a set of vari-
ables, we may regard the conditional expectation Ex⇠P[p(x)|G] as a random linear functional from
R[x] 7! R that is positive in a certain sense: Ex⇠P[p(x)2|G] � 0 for every polynomial p.

The Local Statistics hierarchy is parameterized by two integers (Dx, DG). Given as input some
G0 2 Rm, it attempts to find a linear functional that approximates this conditional expectation
E[p(x)|G] in the planted model. In particular, borrowing terminology from Sum-of-Squares pro-
gramming, we search for a “pseudoexpectation” functional eE that assigns a real number to ev-
ery polynomial of degree at most Dx in R[x], with the constraints that (i) eEp(x)2 � 0, and (ii)
eEp(x) ⇡ E(x,G)⇠P p(x) for every polynomial p(x) 2 R[x] whose coefficients are of degree at most
DG in the input G0. It is well-known that this may be written as a SDP on matrices of size O(nDx)
with O(mDG) affine constraints.

In many cases, this paper included, this problem is solvable with high probability when the
input G0 is sampled from the planted model P. For instance, the evaluation map p(x) 7! p(x)
is a feasible solution provided that the P is sufficiently concentrated and these polynomials do not
fluctuate too much about their expectations. On the other hand, by taking Dx and DG sufficiently
large it becomes infeasible when the input is drawn from a different distribution. The Dx and DG

necessary measure the hardness of the hypothesis testing problem.

1.1.3. THE LOW-DEGREE LIKELIHOOD RATIO

As was first discovered in a series of works in the sum-of-squares literature (Barak et al., 2019; Hop-
kins and Steurer, 2017; Hopkins et al., 2017; Hopkins, 2018), analyzing the low-degree likelihood
ratio gives predictions of computational hardness that match widely-believed conjectures for many
hypothesis testing problems (as corroborated by the various other heuristics mentioned above). In
essence, this method takes low-degree polynomials as a proxy for all polynomial-time algorithms,
and analyzes whether any low-degree polynomial can distinguish two distributions Q and P (with
the same interpretations as above) as n ! 1.

The key to making this analysis tractable is to choose the correct soft notion of “successfully
distinguishing.” This is done by considering the maximization

maximize Ex⇠P p(x)
(Ex⇠Q p(x)2)1/2

such that p 6= 0 is a polynomial of degree  D.
(13)

Thus we try to maximize p(x)’s expectation under P, while keeping its typical size under Qmodest.
We note that, if we did not restrict p to be a low-degree polynomial, then the optimal p would

equal the classical likelihood ratio, L := dP
dQ . In absence of computational constraints, thresholding

L gives an optimal test between P and Q in the sense of minimizing error probabilities, as shown
in the classical Neyman-Pearson lemma (Neyman and Pearson, 1933). Moreover, the value of the
above problem would be the norm kLk of L in L2(Q). If that norm is bounded as n ! 1, then
P and Q cannot be distinguished w.h.p. by any test, by an application of Le Cam’s second moment
method for contiguity (see Le Cam and Yang (2012); Kunisky et al. (2019) for further exposition).

With the further constraint to low-degree polynomials, the result is similar: the optimal p is
the aforementioned low-degree likelihood ratio, the orthogonal projection of L to the subspace of
degree-D polynomials in L2(Q), which we denote LD. The value of the problem is its norm,
kLDk. We again consider whether, as n ! 1, for D = D(n) slowly growing with n, this norm
diverges or remains bounded. If it diverges, we expect that low-degree polynomials can distinguish
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P from Q w.h.p. (at an intuitive level, the algorithm we have in mind is thresholding LD); if it
remains bounded, we conclude that low-degree polynomials cannot distinguish P from Q w.h.p. in
this particular sense, and therefore expect that no polynomial-time algorithm can do so either.

The precise scaling ofD(n) relates to the efficiency of algorithms that the heuristic pertains to—
higher degree polynomials describe more time-consuming computations. However, while constant-
degree polynomials may be evaluated in polynomial time, some other polynomial-time computa-
tions require slightly higher degree polynomials to express. A crucial example is approximating
the spectral norm of a matrix with dimensions polynomial in n, which requires a polynomial of
degree ⇥(log n) to approximate accurately. Taking this into account, a low-degree lower bound
with D(n) � log n is taken as evidence that no polynomial-time test exists. Similarly, we view a
low-degree lower bound with D(n) � n� for some � 2 (0, 1) as suggesting a lower bound against
tests with runtime O(exp(n�)). See Kunisky et al. (2019) for further discussion.

1.1.4. A CAVEAT: XOR-SAT

In the planted 3-XOR-SAT problem, we are given m clauses of the form xixjxk = b for some
choice of i, j, k 2 [n] and b 2 {±1}. The goal is to distinguish the case where the clauses are com-
pletely random from the case where there is a planted assignment of {±1} values to the variables
x1, . . . , xn such that all clauses are satisfied. This is a notable counterexample for many heuristics
for average-case hardness, including sum-of-squares and all three methods mentioned above (see
e.g., Lecture 3.2 of Barak and Steurer (2016) or Chapter 18 of Mezard andMontanari (2009)). These
heuristics predict that the distinguishing task is possible in polynomial time only when m & n3/2,
whereas in reality the problem is much easier: Gaussian elimination can be used to decide with
certainty whether or not there is a satisfying assignment. However, if we change the planted distri-
bution so that only a 1 � " fraction of the clauses are satisfied, Gaussian elimination breaks down
and the best known algorithms indeed requirem & n3/2. In this sense, the above heuristics seem to
predict the threshold for “robust” algorithms. We expect that a similar phenomenon is at play in the
eSBMmodel: while there exist algorithms to solve the problem by exploiting brittle algebraic struc-
ture in the eigenvectors (see Remark 3), we conjecture (Conjecture 8) that the threshold predicted
by the heuristics is the correct computational threshold for a noisy version of the problem.

2. Main Results

In this section we state our main results for the graph model, with additional results on the Gaussian
model deferred to Section A.

2.1. Notation

We use standard asymptotic notation such as o(·) and O(·); unless stated otherwise, this always
pertains to the limit n ! 1 with other parameters (such as d, k, ⌘) held fixed. We use e.g., od(·)
or Od(·) when considering the double limit n ! 1 followed by d ! 1; for example, f(n, d) =
od(g(n, d))means that for any " > 0 there exists d0 > 0 such that for all d � d0 there exists n0 > 0
such that for all n � n0 we have |f(n, d)/g(n, d)|  ". An event occurs with high probability
(w.h.p.) if it has probability 1� o(1). We write f ⇠ g to mean f/g ! 1.

11
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Throughout, all graphs are assumed to be simple—i.e., without self-loops and multiple edges—
unless stated otherwise. A d-regular graph has degree d at every vertex. Gn,d denotes the uniform
distribution over d-regular n-vertex graphs.

We will use Ik denote the k⇥k identity matrix and Jk for the k⇥k all-ones matrix; e1, e2, ... are
the standard unit basis vectors, and will denote the all-ones vector. For matrices, k · k denotes the
operator (spectral) norm and k ·kF denotes the Frobenius norm. We use 1 [A] for the ({0, 1}-valued)
indicator of an event A. We write [k] = {1, 2, . . . , k} and N = {0, 1, 2, . . .}.

2.2. Setup and Definitions

We consider a general framework that captures the problem of certifying bounds on max-k-cut in a
random graph, as well as a Gaussian variant of this problem.

Definition 4 For a labeling � : [n] ! [k], the associated partition matrix P = P (�) 2 Rn⇥n is
given by

Pi,j =

(
1 �(i) = �(j),

�1/(k � 1) �(i) 6= �(j).

A basic fact is that P ⌫ 0 and Rank(P ) = k � 1. This can be seen by realizing P as the Gram
matrix of a certain collection of vectors: assign each u 2 [n] one of the k unit vectors in Rk�1

pointing to the corners of a simplex, according to its label �(u) 2 [k].
Let ⇧ be the set of all partition matrices. For a given matrix A 2 Rn⇥n and a given k, we will

be interested the problem of algorithmically certifying an upper bound on the value

�k(A) := max
P2⇧

hP,�Ai. (14)

If AG 2 {0, 1}n⇥n is the adjacency matrix of a graph G = (V,E) (defined with (AG)i,i = 0), then
hP (�),�AGi = 2(k ·m�(G)� |E|)/(k�1), wherem�(G) is the number of monochromatic edges
of G under the labeling �. As a result,

MCk(G) =
k � 1

k

✓
1 +

�k(AG)

2|E|

◆
. (15)

Thus, an upper bound on �k(AG) translates to an upper bound on MCk(G), which in turn can be
used to refute k-colorability. We now formally define the certification task.

Definition 5 Let Q = Qn be a sequence of distributions Rn⇥n and let A = An : Rn⇥n ! R be a
sequence of algorithms. We say that A certifies the upper bound B on �k overA ⇠ Q if both of the
following hold:

(i) for every A 2 Rn⇥n, A(A) � �k(A), and

(ii) ifA ⇠ Qn then An(A)  B with probability 1� o(1).

Crucially, A(A) must always be a valid upper bound, even if A is atypical under Q. In exponential
time it is possible to compute �k(A) exactly and thus achieve perfect certification; we are interested
instead in polynomial-time certification procedures.
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There is a simple spectral approach (Hoffman, 1970) to certifying bounds on �k(A). Let �min =
�min(A) denote the minimum eigenvalue of A. For any P 2 ⇧ we have P ⌫ 0 and A��minI ⌫ 0,
so

0  hP,A� �minIi = hP,Ai � �minn

and ��minn is an efficiently-computable upper bound on �k(A). Our main results give evidence
that it is computationally hard to improve upon this spectral bound when A is drawn from certain
distributions Q: (i) random d-regular graphs, and (ii) Gaussian matrices.

2.3. Random Regular Graphs

We will be concerned with the following task of distinguishing two distributions, also called hy-
pothesis testing or detection.

Definition 6 Let Pn and Qn be probability measures on the same space ⌦n. We say that an algo-
rithm tn : ⌦n ! {P, Q} distinguishes Pn and Qn with high probability, or (equivalently) achieves
strong detection (between Pn and Qn) if

Pn[tn(x) = Q] + Qn[tn(x) = P] = o(1)

as n ! 1.

Our results for random regular graphs are conditional on a conjecture regarding computational hard-
ness of detection in a noisy variant of the equitable stochastic block model (eSBM). The extra noise
is crucial, as discussed in Remark 3 and Section 1.1.4. Specifically, the noise takes the form of
“rewiring” a small constant fraction of the edges as follows.

Definition 7 (Noise Operator) If G = (V,E) is a d-regular n-vertex graph and � > 0, let T�(G)
denote the random d-regular graph obtained from G by making b�nc ‘swaps.’ That is, repeatedly
choose a pair of distinct edges (i, j), (k, `) uniformly at random7 conditioned on the following
events: i 6= k, j 6= `, (i, k) /2 E, and (j, `) /2 E. Remove edges (i, j) and (k, `), and add edges
(i, k) and (j, `).

Recall the definition of the eSBM (Definition 1) and the associated threshold d eq
KS(⌘) defined in (9).

Conjecture 8 (eSBM Conjecture) Let eG eq
n,d,k,⌘,� denote the distribution over d-regular n-vertex

graphs given by T�(G) where G ⇠ G eq
n,d,k,⌘. Suppose � > 0, ⌘ 2 [� 1

k�1 , 1], k � 2, and d <

d eq
KS(⌘) are all fixed. Also suppose k | (1� ⌘)d so that the equitable model is defined for an infinite

sequence of values of n. Then, there exists no polynomial-time algorithm that with high probability
distinguishes eG eq

n,d,k,⌘,� from Gn,d as n ! 1 (in the sense of Definition 6).

The above conjecture implies the following result on hardness of certifying bounds on max-k-cut.

Theorem 9 Assume the eSBM conjecture (Conjecture 8) holds. Fix d > 0 and k � 2 and let
⌘ 2 [� 1

k�1 , 0] be such that |⌘| < 2
p
d�1
d and k | (1� ⌘)d. Then for any ✏ > 0, no polynomial-time

algorithm can certify, in the sense of Definition 5, the upper bound nd(|⌘| � ✏) on �k over Gn,d.
Equivalently, no polynomial-time algorithm can certify for G ⇠ Gn,d the bound

MCk(G)  k � 1

k
(1 + |⌘|� ✏) . (16)

7. Here, the ordering of the tuples matters, so e.g., (i, j) and (j, i) should be chosen with equal probability.
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The proof idea is described in the Introduction; the full details are given in Section B.1. The effects
of the integrality condition k | (1 � ⌘)d are discussed in Section A.2; this condition can be ignored
when d � k2.

Remark 10 (Near-Coloring) An important special case where Theorem 9 is tight is ⌘ = � 1
k�1 ,

corresponding to refutation of near colorability. Here the integrality condition k | (1� ⌘)d reduces
to (k�1) | d. Thus for any d, k satisfying (k�1) | d and k > 1+ d

2
p
d�1

we have that for any ✏ > 0,
no polynomial-time algorithm can certify MCk(G)  1� ✏. There is an infinite sequence of (d, k)
values with k ⇠ 1

2

p
d for which the conditions on d, k are satisfied, namely d = 4(k � 1)(k � 2)

for all k > 2. Thus, our result is asymptotically tight, matching the spectral algorithm in the double
limit n ! 1 followed by d ! 1.

Remark 11 (Exact Coloring) As stated, Theorem 9 only shows hardness of refuting a near-coloring,
as opposed to an exact coloring. While we expect a similar hardness result to hold for exact col-
oring, this does not follow from the eSBM conjecture because the noise operator T� prevents us
from planting an exact coloring. Hardness of refuting exact coloring would follow from a variant of
the eSBM conjecture where the noise operator only makes swaps that do not affect the value of the
planted cut.

Our next two results give concrete evidence for the eSBM conjecture using two different heuris-
tics (discussed in Section 1.1): stability of belief propagation, and the local statistics hierarchy. Both
of these methods predict d eq

KS(⌘) as the computational threshold for the eSBM.

Theorem 12 (Informal; Kesten–Stigum threshold of eSBM) For k � 4, the Kesten–Stigum thresh-
old of the eSBM with parameters (n, d, k, ⌘), defined as the smallest number d eq

KS so that, for all
d > d eq

KS, the “uninformative” fixed point of the belief propagation iteration is unstable, is given by

d eq
KS = d eq

KS(⌘) :=
2

⌘2

⇣
1 +

p
1� ⌘2

⌘
.

Further details, as well as the full analysis leading to the above result, can be found in Section C.

Theorem 13 (Local Statistics analysis of eSBM) If d > d eq
KS(⌘), then there exist D sufficiently

large and � > 0 so that the degree-(2, D) Local Statistics algorithm with error tolerance � can
distinguish Gn,d and G eq

n,d,k,⌘ with high probability. If d  d eq
KS(⌘), no such D and � exist.

Further details on the Local Statistics hierarchy, and the proof of Theorem 13, can be found in
Section D.
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Appendix A. Additional Results

A.1. Outline of Paper

In Section A.2 we give some additional discussion regarding the integrality condition in Theorem 9.
In Section A.3 we state additional results for a Gaussian variant of the k-cut problem; these results
are analogous to those for the graph model in Section 2. One by-product of these results are a
number of new results on the low-degree likelihood ratio for spiked models and the stochastic block
model (see Section A.3.2). The rest of the paper is devoted to proofs. In Section B we give formal
reductions from the detection problem to the certification problem, for both the graph and Gaussian
models. Sections C and D contain evidence for the eSBM conjecture based on belief propagation
and the local statistics hierarchy, respectively. Sections E,F,G contain results on the low-degree
likelihood ratio.

A.2. Discussion of Integrality Condition

The integrality constraints in the eSBM (Definition 1) and in Theorem 9 may seem somewhat mys-
tifying. In this section we will try to shed some light on the limits of our method for quiet planting,
and how they compare to the power of spectral refutation. The integrality condition k | (1 � ⌘)d
from Theorem 9 is required so that the equitable block model exists for an infinite sequence of val-
ues of n. This condition can be written as ⌘d ⌘ d (mod k), which means ⌘ is constrained to lie in
a certain grid of spacing k

d within the interval [� 1
k�1 , 0]. In order to extract the strongest possible

hardness result from Theorem 9, the goal is to pick ⌘ as to maximize |⌘| subject to the integrality
condition and |⌘| < 2

p
d�1
d . If d � k2 then we have k

d ⌧ 2
p
d�1
d and so the grid allows ⌘ to be

chosen extremely close to 2
p
d�1
d ; this means the effects of the integrality condition are negligible

and we essentially obtain the ideal hardness result (10) which matches the spectral algorithm. In
particular, our results are tight in the regime d ! 1 with k fixed.

As discussed in Remark 10, we also get tight results in the particular case ⌘ = � 1
k�1 corre-

sponding to near-coloring, because the integrality condition simplifies in a helpful way.
On the other hand, for small degree the integrality conditions can impose significant limitations.

A particularly severe example is that of k = 2 and d = 3, which corresponds to Max-Cut in a
random 3-regular graph. The spectral bound corresponds to

MC2(G)  1

2

✓
1 +

2
p
3� 1

3

◆
⇡ 0.97. (17)

On the other hand, the integrality condition from Theorem 9 requires that 2|3(1� ⌘), in addition to
the condition |⌘| < 2

p
3�1
3 . Since 3

⇣
1 + 2

p
3�1
3

⌘
⇡ 5.83 the largest |⌘| admissible is such that that

3 (1� ⌘) = 4, corresponding to ⌘ = 1
3 . This means that Theorem 9 only addresses certification

below
MC2(G)  1

2

✓
1 +

1

3

◆
=

2

3
⇡ 0.67.

This is unfortunate since random 3-regular graphs have MC2(G) > 0.88 with high probabil-
ity (Dı́az et al., 2003), and calculations from statistical physics (Zdeborová and Boettcher, 2010)
suggest the even larger value MC2(G) ⇡ 0.92. That is, using the equitable block model to plant a
2-cut in a 3-regular graph, by giving each vertex one neighbor in its own group and two neighbors
in the other group, plants a cut that is smaller than naturally arising cuts in random 3-regular graphs.
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In general, aside from the special case of near-coloring (Remark 10), our results are most com-
pelling when k is small and d is large, so that the integrality condition in Theorem 9 does not create
a significant gap from the limiting threshold |⌘| = 2

p
d�1
d . We believe the investigation of quiet

plantings in small-degree graphs to be an interesting direction of future research.

A.3. The Gaussian k-Cut Model

A.3.1. HARDNESS OF CERTIFICATION

In this section we discuss a Gaussian analogue of the coloring problem, namely the problem of
certifying upper bounds on �k(W ) where W is a GOE matrix defined as follows.

Definition 14 The Gaussian orthogonal ensemble is the following distribution GOE(n) over ran-
dom matrices: W ⇠ GOE(n) is symmetric (Wu,v = Wv,u) with diagonal entries Wu,u ⇠
N (0, 2/n) and off-diagonal entries Wu,v ⇠ N (0, 1/n), where the values {Wu,v : u  v} are
independent.

It is well known that (as n ! 1) the eigenvalues of W ⇠ GOE(n) follow the Wigner semicircle
law supported on [�2, 2], and in particular, �min(W ) ! �2 almost surely. Thus, the spectral
approach (see Section 2.2) certifies the upper bound �k(W )  (2 + o(1))n. Our main results
give rigorous evidence in support of the following conjecture, which states that improving upon this
spectral bound requires fully exponential time.

Conjecture 15 For any constants k � 2, ✏ > 0 and � > 0, there is no algorithm of runtime
exp(O(n1��)) that certifies the upper bound (2� ✏)n on �k(W ) over W ⇠ GOE(n).

Our evidence for this conjecture can be seen as a generalization of Bandeira et al. (2020), which
handles the k = 2 case. In Section B.2 we give a reduction from a certain hypothesis testing prob-
lem to the certification problem in question. In analogy to our results on coloring, this reduction
can be seen as constructing a planted distribution that directly plants an eigenspace with no pushout
effect; this planting is computationally quiet, conditional on hardness of the testing problem. The
testing problem is a particular instance of the spiked Wishart model with a rank-(k � 1) nega-
tive spike. In Section A.3.2 below, we state results analyzing the low-degree likelihood ratio (see
Section 1.1.3) for this model; these results suggest that fully exponential time is required (in the
appropriate parameter regime).

As a by-product of our analysis, we give new bounds on the low-degree likelihood ratio for a
wide class of multi-spiked matrix models (both Wigner and Wishart), which may be of independent
interest. These results also extend to certain binary-values analogues of these problems, including
(a variant of) the stochastic block model. These results are also discussed in Section A.3.2 below.

A.3.2. LOW-DEGREE HARDNESS FOR GENERAL SPIKED MODELS

We consider general variants of the spiked Wigner and Wishart models, defined as follows.

Definition 16 Let X = (Xn) be a probability measure over Rn⇥n
sym , the symmetric n ⇥ n matrices.

The general spiked Wigner model with spike prior X and signal-to-noise ratio � 2 R is specified by
the following null and planted distributions over Rn⇥n

sym .
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• Under Q, draw Y ⇠ GOE(n).

• Under P, let Y = �X +W whereX ⇠ X andW ⇠ GOE(n), independently.

Definition 17 Let X = (Xn) be a probability measure over Rn⇥n
sym . The general spiked Wishart

model with spike priorX , signal-to-noise ratio � > �1, and number of samplesN 2 N, is specified
by the following null and planted distributions over (y1, . . . ,yN ) 2 (Rn)N .

• Under Q, draw yu ⇠ N (0, In) independently for u 2 [N ].

• Under P, first draw fX ⇠ X and define

X =

(
fX if �fX � �In,

0 else.
(18)

Then draw yu ⇠ N (0, In + �X) independently for u 2 [N ].

The purpose of (18) is to ensure that In + �X is a valid covariance matrix. We will consider priors
for which the first case of (18) occurs with high probability. Specifically, we focus on the following
class of priors that are PSD with constant rank.

Definition 18 Fix an integer k � 1. Let ⇡ be a probability measure supported on a bounded subset
of Rk, satisfying E[⇡] = 0 and kCov(⇡)k = 1. Let X (⇡) denote the spike prior which outputs
X = 1

nUU>, where U is n ⇥ k with each row distributed according to ⇡. (We do not allow ⇡ to
depend on n.)

It is well known in random matrix theory that polynomial-time detection in the Wigner model is
possible when |�| > 1, by thresholding the maximum (or minimum if � < 0) eigenvalue ofY (Féral
and Péché, 2007; Capitaine et al., 2009). Similarly, poly-time detection in the Wishart model is
possible when �2 > n/N , by thresholding the maximum or minimum eigenvalue of the sample
covariance matrix Y = 1

N

P
i yiy>

i (Baik et al., 2005; Baik and Silverstein, 2006). In the general
setting above, we have the following bounds on the norm of the low-degree likelihood ratio kLDk
(see Section 1.1.3), which suggest that fully exponential time is required to solve the detection
problem below this spectral threshold. Our results are consistent with the computational thresholds
predicted by Lesieur et al. (2015a), where it was shown that the approximate message passing
algorithm fails below the spectral threshold. The proofs are deferred to Section E.

Theorem 19 Fix constants k � 1 and � 2 R. Fix ⇡ satisfying the requirements in Definition 18.
Consider the general spiked Wigner model with spike prior X (⇡). If |�| < 1 then kLDk = O(1)
for any D = o(n/ log n).

Theorem 20 Fix constants k � 1, � > �1, and � > 0. Fix ⇡ satisfying the requirements in
Definition 18. Consider the general spiked Wishart model with any N = Nn satisfying n/N ! �
as n ! 1, and with spike prior X (⇡). If �2 < � then kLDk = O(1) for any D = o(n/ log n).

Remark 21 In the setting of Theorem 20, the first case of (18) holds with high probability because
� > �1 and kfXk ! kCov(⇡)k = 1 (in probability). To see this, write kfXk = k 1

nUU>k =
k 1
nU

>Uk; being an average of n i.i.d. k ⇥ k matrices, 1
nU

>U converges in probability to its
expectation, which is Cov(⇡).
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We also extend our framework to binary-valued problems. In Proposition 66 we give a general
result analyzing the low degree likelihood ratio in binary-valued problems via a comparison to
the analogous Gaussian-valued problem. As an application, we study the following variant of the
stochastic block model (SBM).

Definition 22 The stochastic block model with parameters k � 2, d > 0, ⌘ 2 [�1/(k � 1), 1]
(constants not depending on n) is specified by the following null and planted distributions over
n-vertex graphs.

• Under Q, for every u < v the edge (u, v) occurs independently with probability d/n.

• Under P, each vertex is independently assigned a community label drawn uniformly from [k].
Conditioned on these labels, edges occur independently. If u, v belong to the same community
then edge (u, v) occurs with probability (1 + (k � 1)⌘)d/n; otherwise (u, v) occurs with
probability (1� ⌘)d/n.

Here k is the number of communities, d is the average degree, and ⌘ is a signal-to-noise ratio: the
planted k-cut cuts a fraction k�1

k (1�⌘) of the edges on average. Known polynomial-time algorithms
only succeed at distinguishing P from Q above the so-called Kesten–Stigum (KS) threshold, i.e.,
when d⌘2 > 1 (Massoulié, 2014; Mossel et al., 2018; Abbe and Sandon, 2016). We prove the
following in Appendix G.

Theorem 23 Consider the stochastic block model as in Definition 22 with parameters k, d, ⌘ fixed.
If d⌘2 < 1 then kLDk = O(1) for any D = o(n/ log n).

Prior work (Hopkins and Steurer, 2017; Hopkins, 2018) has already given a low-degree analysis of
this variant of the SBM, showing that the problem is low-degree-hard below the KS bound. Our
result offers two advantages: (i) the proof is streamlined, following easily from our general-purpose
machinery, without the need for direct combinatorial calculations, and (ii) we bound kLDk for D
all the way up to o(n/ log n) instead of only n0.01. As discussed in Section 1.1.3, item (ii) constitutes
evidence that distinguishing P from Q in the SBM requires fully exponential time exp(n1�o(1))
below the KS bound.

Appendix B. Reduction from Detection to Certification

In this section we give formal proofs, for both the graph and Gaussian models, that hardness of a
particular detection problem implies hardness of certification.

B.1. The Graph Model

We now give the proof of Theorem 9, which shows that hardness of detection in the noisy eSBM
model implies hardness of certifying bounds on max-k-cut.
Proof [Proof of Theorem 9] Assume for the sake of contradiction that some algorithm A certifies
the upper bound MCk(G)  k�1

k (1 + |⌘| � ") when G ⇠ Gn,d. We will use this to distinguish
between eG eq

n,d,k,⌘,� and Gn,d for � = d"(k�1)
5k ; this contradicts Conjecture 8 because the assumption

|⌘| < 2
p
d�1
d implies d < d eq

KS(⌘). Our detection algorithm takes as input a graph G and outputs
Q (“null”) if A(G)  k�1

k (1 + |⌘| � ") and P (“planted”) otherwise. If G ⇠ Gn,d then A(G) 
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k�1
k (1 + |⌘| � ") with high probability by assumption, and so the distinguisher outputs Q. Now

consider the caseG ⇠ eG eq
n,d,k,⌘,�. A graph drawn from G eq

n,d,k,⌘ has a planted k-cut of fractional size
k�1
k (1 + |⌘|), and the noise operator T� can remove at most 2�n edges from this cut. Thus,

A(G) � MCk(G) � k � 1

k
(1 + ⌘)� 2�n

|E|

where
2�n

|E| =
4�

d
=

4

d
· d"(k � 1)

5k
< " · k � 1

k
.

This implies A(G) > k�1
k (1 + |⌘|� ") and so the distinguisher outputs P.

B.2. The Gaussian Model

Definition 24 Let ⇡k be the distribution over Rk given by
p
kei � /

p
k where i ⇠ [k] uniformly

at random. Let Xk = X (⇡k) be the associated spike prior, as defined in Definition 18.

Here, e1, e2, ... denote the standard unit basis vectors and denotes the all-ones vector.

Theorem 25 Suppose there exist constants k � 2 and ✏ > 0 such that there is a time-t(n) algo-
rithm to certify the upper bound (2� ✏)n on �k(W ) overW ⇠ GOE(n). Then for some constants
� 2 (�1, 0) and � > 1, there is a time-(t(n) + poly(n)) algorithm achieving strong detection in
the general spiked Wishart model with spike prior Xk.

Note that the above parameters satisfy �2 < �, which is in the “hard” regime of the Wishart model.
Thus, Theorem 25 together with the low-degree-hardness of the Wishart model in that regime (The-
orem 20) constitute rigorous evidence for Conjecture 15.
Proof Let A be the purported certification algorithm. We will use this to solve detection in the
Wishart model, given Wishart samples y1, . . . ,yN . Sample fW ⇠ GOE(n) and let �1  · · ·  �n

denote its (random) eigenvalues. Sample a uniformly random orthonormal basis vn�N+1, . . . ,vn
for V := span{y1, . . . ,yN} and a uniformly random orthonormal basis v1, . . . ,vn�N for the
orthogonal complement V ?. Let W =

Pn
i=1 �iviv>

i . Our Wishart detection algorithm is as
follows: if A(W )  (2� ✏)n then output Q; otherwise, output P.

We now prove that this achieves strong detection. If the Wishart samples were drawn from
Q then V is a uniformly random N -dimensional subspace and so W ⇠ GOE(n). This means
A(W )  (2� ✏)n with high probability by assumption, and so our algorithm correctly outputs Q.
It remains to show that if the Wishart samples were drawn from P, then �k(W ) > (2 � ✏)n with
high probability, and so the algorithm is forced to output P.

Suppose the Wishart samples were drawn from P with planted matrixX . With high probability
we are in the first case of (18), i.e., X = 1

nUU> where each row of U is drawn independently
from ⇡k. Note that 1

k�1UU> is a partition matrix, and so

�k(W ) � � 1

k � 1
hUU>,W i.
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We can bound

hUU>,W i =
*
UU>,

nX

i=1

�iviv
>
i

+


*
UU>,�n�N

n�NX

i=1

viv
>
i + �n

nX

i=n�N+1

viv
>
i

+

=

*
UU>,�n�N

 
In �

nX

i=n�N+1

viv
>
i

!
+ �n

nX

i=n�N+1

viv
>
i

+

=

*
UU>,�n�NIn + (�n � �n�N )

nX

i=n�N+1

viv
>
i

+

where we have used the fact that
Pn

i=1 viv
>
i = In since {vi}i2[n] is an orthonormal basis. We will

bound the pieces of this expression separately.
First we bound hUU>, Ini. The nonzero eigenvalues of UU> are the same as the nonzero

eigenvalues of U>U . Since U>U is the sum of n i.i.d. k ⇥ k matrices, 1
nU

>U converges in
probability to its expectation, which is Cov(⇡) = Ik � Jk/k where Jk is the k ⇥ k all-ones matrix.
This means hUU>, Ini = Tr(UU>) = nTr( 1nU

>U) = (1+o(1))n(k�1)with high probability.
Next we bound hUU>,

Pn
i=n�N+1 viv

>
i i. Recall that {vi}ni=n�N+1 is an orthonormal basis

for span{y1, . . . ,yN}, and so
Pn

i=n�N+1 viv
>
i � 1

µY where Y = 1
N

PN
i=1 yiy>

i and µ is the
smallest nonzero eigenvalue of Y . Since Y is a spiked covariance matrix, Theorem 1.2 of Baik and
Silverstein (2006) gives µ ! (

p
� � 1)2 > 0 in probability. Therefore,

*
UU>,

nX

i=n�N+1

viv
>
i

+

⌧
UU>,

1

µ
Y

�
=

1

µN

NX

i=1

kU>yik2.

For fixed U (and therefore fixed X), note that U>yi follows a multivariate Gaussian distribution
with mean zero and covariance

E[U>yiy
>
i U ] = U>E[yiy

>
i ]U = U>(I + �X)U = U>U +

�

n
U>UU>U.

Recalling that 1
nU

>U ! Ik � Jk/k, we have 1
n(U

>U + �
nU

>UU>U) ! (1 + �)(Ik � Jk/k)

in probability. Thus, 1
nN

PN
i=1 kU>yik2 converges in probability to (1 + �) Tr(Ik � Jk/k) =

(1 + �)(k � 1), and we can conclude that

hUU>,
nX

i=n�N+1

viv
>
i i  (1 + o(1))

n

µ
(1 + �)(k � 1) = (1 + o(1))n(

p
� � 1)2(1 + �)(k � 1)

with high probability.
The eigenvalues of fW converge to the Wigner semicircle law on [�2, 2], and so we have �n �

�n�N  4 + o(1) with high probability. Also, by taking � > 1 close enough to 1, we can ensure
�n�N  �2 + ✏/2 with high probability.
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Putting it all together, we now have

�k(W ) � � 1

k � 1
hUU>,W i

� � 1

k � 1

*
UU>,�n�NIn + (�n � �n�N )

nX

i=n�N+1

viv
>
i

+

� � 1

k � 1

⇥
(�2 + ✏/2)(1 + o(1))n(k � 1) + (4 + o(1))n(

p
� � 1)�2(1 + �)(k � 1)

⇤

> (2� ✏)n

for sufficiently large n, provided we choose � > �1 sufficiently close to �1. This completes the
proof.

Appendix C. Belief Propagation and the Kesten–Stigum Transition

In this section, we carry out a stability analysis of belief propagation (as discussed in Section 1.1.1)
and derive the result presented in Theorem 12. The analysis resembles that of the original work
of Decelle et al. (2011a,b) that predicted the Kesten–Stigum threshold in the ordinary stochastic
block model, but the equitability constraints create additional technical complexity in our setting.
We start with the special case of the equitable coloring model in Section C.1, and generalize to
the equitable block model in Section C.2. Throughout this section, it turns out to be convenient to
parametrize the equitable model in a different way (defined below) than used in the Introduction.

C.1. The Equitable Coloring Model

The equitable coloring model is obtained by setting ⌘ = � 1
k�1 in Definition 1. For brevity let’s

define
c :=

1� ⌘

k
d , (19)

so that in the planted coloring, each vertex has exactly c neighbors of every other color. From the
point of view of the vertices, this is a complicated constraint affecting a star of d + 1 vertices. As
a result, a factor graph with a variable node for each vertex, and a constraint node corresponding
to each vertex and its neighbors, is not even locally treelike. Instead, we define a variable for each
edge, giving a pair of colors. The constraint then demands that the d edges incident to each vertex
agree on its color, and that the colors of their other endpoints are equitable.

This lets us define a message-passing algorithm. Regarding each edge (u, v) of the graph G ⇠
Geq
n,d,k,(k�1)�1 as a pair of directed edges u ! v, v ! u, each directed edge u ! v sends a message

µu!v to vertex v consisting of the estimated probabilities µu!v
r,s that u and v are color r and s

respectively, for each r, s 2 [k] with r 6= s. Vertex v then sends out messages µv!w to the directed
edges (v, w) which are computed as follows:

1. For each of v’s neighbors u other than w, choose a pair of colors (ru, su) independently from
the distribution µu!v = (µu!v

rs ).

2. Condition on the event that the su are identical for all u. Call this color s.
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3. Condition on the event that all but one of the colors other than s appear c times in the list (ru),
and that one color appears c� 1 times. Call this color t.

4. Then µv!w = (µv!w
st ) is the resulting conditional distribution of the pair (s, t), i.e., the

probability that v and w are color s and t respectively.

Formally we can write

µv!w
st =

 v!w
st

zv!w
(20)

where

 v!w
st =

X

(ru:u2@v\w)2[k]d�1

 
Y

u

µu!v
ru,s

!0

@
Y

q2[k],q 6=s

1

"
|{u : ru = q}| =

(
c q 6= s, t

c� 1 q = t

#1

A

(21)

zv!w =
X

r,s2[k]:r 6=s

 v!w
rs , (22)

where the product over q in (21) enforces condition 3 above.
Clearly the uniform messages µu!v

rs = 1/(k(k � 1)) are a fixed point of this algorithm. We
want to study its stability to small perturbations, and in particular the matrix of partial derivatives

Yrs,s0t =
@µv!w

s0t

@µu!v
rs

. (23)

To compute this matrix, suppose that we perturb the incoming message µu!v for a pair (r, s) with
r 6= s,

µu!v
r0s0 =

1

k(k � 1)
(1 + "�rr0�ss0)

where � is the Kronecker delta, �rr0 = 1 if r = r0 and 0 otherwise. This perturbation does not
respect the normalization

P
rs µ

u!v
rs = 1, but this will simply show up as Y having zero row

and column sums since normalization projects perturbations to the subspace perpendicular to the
uniform vector.

We then have several cases. If s0 6= s, for all t 6= s0 then  v!w
s0t is unchanged from its value at

the uniform fixed point, namely

 v!w
s0t =

✓
1

k(k � 1)

◆d�1✓ d� 1

c� 1, c, . . . , c

◆
=

✓
1

k(k � 1)

◆d�1 c(d� 1)!

c!k�1
:=  . (24)

For s0 = s and t = r, we have

 v!w
st =

✓
1

k(k � 1)

◆d�1✓
(1 + ")

✓
d� 2

c� 2, c, . . . , c

◆
+ (k � 2)

✓
d� 2

c� 1, c� 1, c, . . . c

◆◆

=  

✓
(1 + ")

c� 1

d� 1
+ (k � 2)

c

d� 1

◆

=  

✓
1 + "

c� 1

d� 1

◆
, (t = r) (25)
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where the two terms in the first line come from ru = r and ru 6= r, s respectively. Finally, for s0 = s
and t 6= r, we have

 v!w
st =

✓
1

k(k � 1)

◆d�1✓
(1 + ")

✓
d� 2

c� 1, c� 1, c, . . . , c

◆
+

✓
d� 2

c� 2, c, . . . c

◆
+ (k � 3)

✓
d� 2

c� 1, c� 1, c, . . . c

◆◆

=  

✓
(k � 2 + ")

c

d� 1
+

c� 1

d� 1

◆

=  

✓
1 + "

c

d� 1

◆
, (t 6= r) (26)

where the three terms in the first line come from ru = r, ru = t, and ru 6= r, s, t respectively.
While this level of bookkeeping is comforting, both (25) and (26) are simply  (1 + "P ) where

P is the fraction of (d� 1)-tuples that contribute to (21) such that ru = r. We can write (24), (25),
and (26) as

 v!w
s0t =  

✓
1 + "�ss0

c� �rt
d� 1

◆
. (27)

Summing over all distinct s0, t gives the normalization factor

zv!w = k(k � 1) + " 

✓
c� 1

d� 1
+ (k � 2)

c

d� 1

◆

= k(k � 1) + " 

= k(k � 1) 

✓
1 +

"

k(k � 1)

◆
, (28)

with the multiplicative factor 1+ "P where P = 1/(k(k� 1)) is now the probability that a random
edge u ! v has colors r and s on its endpoints.

Combining (28) with (27), and (20) gives

µv!w
s0t =

1

k(k � 1)

✓
1 + "

✓
��ss0�rt

d� 1
+

c�ss0

d� 1
� 1

k(k � 1)

◆
+O("2)

◆
. (29)

Canceling the factor 1/(k(k � 1)) gives the matrix of partial derivatives (23),

Yrs,s0t = ��ss0�rt
d� 1

+
c�ss0

d� 1
� 1

k(k � 1)
. (30)

Using (30) and (19) the reader can check that the rows and columns of Y sum to zero, as alluded to
above:

8r, s :
X

s0,t:
s0 6=t

Yrs,s0t = 0 , 8s0, t :
X

r,s:
r 6=s

Yrs,s0t = 0 . (31)

To diagonalize Y , it is useful to treat the k(k � 1)-dimensional space U spanned by ordered
pairs (r, s) with r 6= s as the space of k ⇥ k matrices U = (Urs) with zeroes on the diagonal. Then
we can interpret the three terms in (30) as follows:

• The term �ss0�rt is the transpose operator, sending U to U>.
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• The term �ss0 sends U to (UJ)> where J is the all-1s matrix.

• The term �1/k(k � 1) subtracts the mean entry of U from each entry of Y (U).

• Finally, we set all the diagonal elements of Y (U) to zero.

Thus we can rewrite (30) as

Y (U) = ⇧


� 1

d� 1
U> +

c

d� 1
(UJ)> � 1

k(k � 1)
JUJ

�
(32)

where ⇧ is the projection operator that sets the diagonal entries of a matrix to zero.
To diagonalize Y , recall that if two linear operators commute, they share the same eigenvectors.

Clearly Y commutes with relabelings of the colors, i.e., with the Sk-action that conjugates U with
a permutation matrix. This action preserves the following subspaces of matrices:

• The symmetric matrices with zero diagonal

• The antisymmetric matrices

• The matrices whose row (resp. column) sums are zero

• The matrices whose rows (resp. columns) are uniform, other than being zero on the diagonal

. . . and their intersections. More abstractly, U is the k(k � 1)-dimensional combinatorial represen-
tation where Sk acts on distinct ordered pairs (r, s) by sending (r, s) to (⇡(r),⇡(s)). We can find
the eigenvectors and eigenvalues of Y by decomposing U into a direct sum of irreducible repre-
sentations of Sk. This decomposition includes one copy of the trivial representation ⇢(k) = I , and
one copy each of ⇢(k�2,1,1) and ⇢(k�2,2). (To avoid some case-checking we assume that k � 4. In
particular, if k = 3 then ⇢(k�2,2) disappears.) By Schur’s Lemma, when restricted to each of these
irreducible subspaces Y is a scalar matrix with a single eigenvalue. These are as follows:

• The trivial representation is spanned by the matrix with 1s everywhere off the diagonal.
By (31) this has eigenvalue zero.

• The copy of ⇢(k�2,1,1) consists of antisymmetric matrices with zero row and column sums.
These are annihilated by v and are eigenvectors of the transpose with eigenvalue �1. Thus
they are eigenvectors of Y with eigenvalue +1/(d � 1). This eigenspace has dimension
(k � 1)(k � 2)/2.

• The copy of ⇢(k�2,2) consists of symmetric matrices with zero row and column sums and
zeroes on the diagonal. These are annihilated by v and are eigenvectors of the transpose with
eigenvalue+1. Thus they are eigenvectors of Y with eigenvalue�1/(d�1). This eigenspace
has dimension (k � 1)(k � 2)/2� 1 = k(k � 3)/2.

However, we are not done. In addition to these multiplicity-free irreducible representations,
U includes two copies of the “standard” representation ⇢(k�1,1), one each in the symmetric and
antisymmetric subspace. Each one has dimension k�1, and together they span an isotypic subspace
of dimension 2(k� 1). By Schur’s lemma, when restricted to this subspace, Y is the tensor product
of the identity with a 2 ⇥ 2 matrix, giving it two additional eigenvalues. One of these will turn out
to be the dominant one and will control where the Kesten–Stigum transition occurs.
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This isotypic subspace is spanned by matrices of the form

Uij =

8
>>>><

>>>>:

0 i = j

↵ i = 1, j 6= 1

� j = 1, i 6= 1

� i 6= 1, j 6= 1, i 6= j

where � = �↵+ �

k � 2
, (33)

and their images under conjugation by permutation matrices, i.e., where the “special” row and
column ranges from 1 to k. That is,

U =

0

BBBBBB@

0 ↵ ↵ · · · ↵
� 0 � · · · �

� � 0
...

...
...

. . . �
� � · · · � 0

1

CCCCCCA

where � is set so that U ’s entries sum to zero. The reader can check that these matrices are orthog-
onal to the other irreducible subspaces with respect to the trace inner product hU,U 0i = Tr U>U 0.

Using (32), we find that Y (U) is also of this form but with entries ↵0 and �0, where
✓
↵0

�0

◆
= m ·

✓
↵
�

◆
where m =

✓
0 1
�1
d�1

�c
d�1

◆
. (34)

Thus Y on this isotypic subspace is m ⌦ I where I is the (k � 1)-dimensional identity. The
corresponding eigenvalues of Y are those ofm, namely the roots  of

(d� 1)2 + c+ 1 = 0 ,

which are

± =
�c±

p
c2 � 4(d� 1)

2(d� 1)
.

When c2 < 4(d � 1) the discriminant is negative, so these eigenvalues are complex and lie on the
unit circle |±| = 1/

p
d� 1. But when c2 > 4(d� 1) they are real, and + > 1/

p
d� 1.

The full Jacobian of belief propagation is the tensor product of this local matrix Y with the non-
backtracking matrix B. It is a consequence of Theorem 2 in Bordenave and Collins (2019) that,
with high probability over G sampled from the equitable SBM with d < deqKS, the spectrum of the
non-backtracking matrix consists of a “trivial” eigenvalue d whose left and right eigenvectors is the
all-ones vector, and remaining eigenvalues with modulus at most

p
d� 1 + on(1) in the complex

plane. Since perturbations along the uniform eigenvector of B would violate the balance of colors,
we are left with these remaining eigenavlues. Multiplying + by

p
d� 1 + on(1) tells us that the

Kesten–Stigum transition, where the largest eigenvalue of the Jacobian exceeds 1 in absolute value,
occurs when c2 ⇡ 4(d� 1), with ⇡ hiding on(1) terms. Given (19) this is

c ⇡ 2
⇣
(k � 1) +

p
k(k � 2)

⌘
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or

d ⇡ 2(k � 1)2
 
1 +

s
k(k � 2)

(k � 1)2

!
⇡ 2

�2

⇣
1 +

p
1� �2

⌘

where � = �1/(k � 1). Solving this condition for � in terms of d gives

|�| = 2
p
d� 1

d
+ on(1) . (35)

C.2. Generalizing to the Equitable Block Model

Referring again to Definition 1, let a and b beMi,jd where i = j and i 6= j respectively:

a :=
1 + (k � 1)⌘

k
d and b :=

1� ⌘

k
d

so that
d = a+ b(k � 1) . (36)

Then a legal labeling of the equitable block model on a d-regular graph is a k-coloring where each
vertex has exactly a neighbors of its own color, and exactly b neighbors of each of the k � 1 other
colors. The case of equitable k-colorings corresponds to a = 0 and b = c.

We can generalize the message-passing algorithm of the previous section as follows. Each
directed edge (u, v) again sends a message µu!v to vertex v consisting of the estimated probability
µu!v
rs that u and v are color r and s respectively, for each r, s 2 [k] with r 6= s. Vertex v then sends

out messages µv!w to the directed edges (v, w) which are computed as follows:

1. Give pairs (s, t) the prior distribution

P (s, t) =
1

kd

(
a (s = t)

b (s 6= t) .
(37)

2. Multiplicatively reweight this distribution by the probability that, if for each of v’s neighbors
u other thanw we choose a pair of colors (ru, su) independently from the distribution µu!v =
(µu!v

rs ), then:

• su = s for all u, and

• (if s = t) s appears a � 1 times in the list (ru), and every color other than s appears b
times,

• (if s 6= t) s appears a times in the list (ru), t appears b � 1 times, and all other colors
appear b times each.

3. Then µv!w = (µv!w
st ) is the resulting posterior distribution of (s, t).

Generalizing (21) and (22), we can write

µv!w
st =

 v!w
st

zv!w
(38)

30



SPECTRAL PLANTING AND THE HARDNESS OF REFUTING CUTS

where

 v!w
st =

X

(ru:u2@v\k)2[k]d�1

 
Y

u

µu!v
ru,s

!

8
>>>>>>><

>>>>>>>:

a
Y

q2[k]

1

"
|{u : ru = q}| =

(
a� 1 q = s

b q 6= s

#
(s = t)

b
Y

q2[k]

1

2

64|{u : ru = q}| =

8
><

>:

a q = s

b� 1 q = t

b q 6= s, t

3

75 (s 6= t)

(39)

zv!w =
X

r,s2[k]:r 6=s

 v!w
rs , (40)

where the product over q in (39) enforces the second and third parts of condition 2 above.
Note that the factors of a and b in (39), which did not appear in the coloring case, come from

the prior distribution (37). The reader can check that the prior distribution on (s, t) is now a fixed
point of this algorithm,

µu!v
st =

1

kd

(
a (s = t)

b (s 6= t) .

At this fixed point, (39) gives

 v!w
st =

(
a (s = t)

b (s 6= t)
(41)

where

 :=
aa�1bb(k�1)

(kd)d�1

✓
d� 1

a� 1, b, . . . , b

◆
=

aabb(k�1)�1

(kd)d�1

✓
d� 1

a, b� 1, b, . . . , b

◆
=

aabb(k�1)

(kd)d�1

(d� 1)!

a!b!k�1
,

and where as always 00 = 0! = 1.
We again consider perturbing the incoming message µu!v for a pair (r, s),

µu!v
r0s0 = (1 + "�rr0�ss0)

1

kd

(
a (r = s)

b (r 6= s) .
(42)

As before, if s0 6= s then  v!w
s0t is unchanged for all t, and is still given by (41). For the other cases

where s0 = s, let us first assume that r 6= s. There are now three cases: t = s (now that some
neighbors have the same color), t = r, and t /2 {r, s}. We have

 v!w
st =

8
>>><

>>>:

a 
⇣
1 + " b

d�1

⌘
t = s

b 
⇣
1 + " b�1

d�1

⌘
t = r

b 
⇣
1 + " b

d�1

⌘
t /2 {r, s}

(r 6= s) (43)
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where in each case we multiply by 1 + "P where P is the fraction of (d� 1)-tuples that contribute
to (39) where ru = r. Summing over all s0, t gives

zv!w = kd + "b 

✓
b� 1

d� 1
+ (k � 2)

b

d� 1
+

a

d� 1

◆

= kd + "b 

= kd 

✓
1 + "

b

kd

◆
(r 6= s) . (44)

This multiplicative factor is 1 + "P where P = b/(kd) is the prior probability that a random edge
u ! v has colors r, s on its endpoints where r 6= s.

Analogously, if r = s = s0 we have

 v!w
st =

8
<

:
a 
⇣
1 + " a�1

d�1

⌘
t = s

b 
⇣
1 + " a

d�1

⌘
t 6= s

(r = s) , (45)

and

zv!w = kd + "a 

✓
a� 1

d� 1
+ (k � 1)

b

d� 1

◆

= kd + "a 

= kd 
⇣
1 + "

a

kd

⌘
(r = s) , (46)

where the multiplicative factors are again 1 + "P where P is the fraction of (d � 1)-tuples con-
tributing to (39), or in (46) the prior probability P = a/(kd) of an edge having colors r = s on its
endpoints.

Putting all this together generalizes (29) to

µv!w
s0t =

1

kd

8
>>>>>><

>>>>>>:

a
⇣
1 + "

⇣
�ss0

a�1
d�1 � a

kd

⌘
+O("2)

⌘
[s0 = t, r = s]

a
⇣
1 + "

⇣
�ss0

b
d�1 � b

kd

⌘
+O("2)

⌘
[s0 = t, r 6= s]

b
⇣
1 + "

⇣
�ss0

a
d�1 � a

kd

⌘
+O("2)

⌘
[s0 6= t, r = s]

b
⇣
1 + "

⇣
�ss0

b��rt
d�1 � b

kd

⌘
+O("2)

⌘
[s0 6= t, r 6= s] ,

(47)

the fourth case of which coincides with (29) when a = 0 and b = c. Comparing with (42) and
accounting for factors of a and b gives the matrix of partial derivatives,

Yrs,s0t = ��ss0�rt
d� 1

+

✓
�ss0

d� 1
� 1

kd

◆(
a (s0 = t)

b (s0 6= t)
. (48)

The reader can check the normalization conditions: the rows of Y sum to zero, so that the uni-
form vector is a right eigenvector of eigenvalue zero, but the columns are orthogonal to the prior
distribution (37) so that it is a left eigenvector of eigenvalue zero. Thus (31) becomes

8r, s :
X

s0,t

Yrs,s0t = 0 , 8s0, t :
X

r,s

Yrs,s0t

(
a (r = s)

b (r 6= s)
= 0 . (49)
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At the risk of multiplying entities without necessity, we can also write Y in the style of (32).
If we think of Y ’s action by right multiplication on k2-dimensional vectors as a linear operator on
k-dimensional matrices U = (Us0t), then

Y (U) = � 1

d� 1
U> +

1

d� 1
(⌥(U)J)> � 1

kd
J⌥(U)J , (50)

where J is again the all-1s matrix and⌥ is a linear operator on matrices that reweights diagonal and
off-diagonal elements by a and b respectively,

⌥(U)s0t = Us0t

(
a (s0 = t)

b (s0 6= t)
. (51)

As in the coloring case, we use representation theory to diagonalize Y . The k-dimensional ma-
trices form a k2-dimensional representation of Sk where permutation matrices act by conjugation.
Since this representation sends pairs of colors (r, s) to (⇡(r),⇡(s)), this is the tensor product of
the natural permutation representation with itself. The permutation representation is a direct sum
of the trivial representation (spanned by the uniform vector) with the (k � 1)-dimensional standard
representation (spanned by vectors that sum to zero). Taking its tensor square and decomposing
gives the representations described above, as well as the subspace spanned by diagonal matrices,
giving one additional copy each of the trivial representation and the standard representation.

Thus in total we have a two-dimensional trivial subspace, one copy each of ⇢(k�2,1,1) and
⇢(k�2,2) with dimension (k� 1)(k� 2)/2 and k(k� 3)/2 respectively, and a 3(k� 1)-dimensional
subspace consisting of three copies of the standard representation ⇢(k�1,1). We go through each of
these subspaces, focusing on Y ’s right eigenvectors.

First, the trivial subspace is spanned by the identity matrix I = (�s0t) and the all-1s matrix J .
As in (49) J is a right eigenvector with eigenvalue zero, so Y (J) = 0. Observing (50), we have
I> = I , ⌥(I) = aI , IJ = J , and JIJ = kJ . This gives

Y (I) = � 1

d� 1
I +

✓
a

d� 1
� a

d

◆
J = � 1

d� 1
I +

a

d(d� 1)
J.

Thus in this two-dimensional subspace Y acts as the matrix

1

d� 1

✓
�1 0
a/d 0

◆

giving the eigenvalues �1/(d� 1) and 0.
Next, as before the copy of ⇢(k�2,1,1) consists of antisymmetric matrices U with zero row and

column sums. For these matrices we have ⌥(U) = bU and UJ = 0, while U> = �U . Thus they
are again eigenvectors of Y with eigenvalue +1/(d� 1).

The copy of ⇢(k�2,2) consists of symmetric matrices U with zero row and column sums and
zeroes on the diagonal. Now we have ⌥(U) = bU , UJ = 0, and U> = U , and (50) again makes
them eigenvectors with eigenvalue �1/(d� 1).
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This leaves the three copies of the standard representation. This isotypic subspace is spanned
by matrices like those in (33) but with nonzero diagonal entries, namely

Uij =

8
>>>>>><

>>>>>>:

� i = j = 1

⇣ i = j 6= 1

↵ i = 1, j 6= 1

� j = 1, i 6= 1

� i 6= 1, j 6= 1, i 6= j

where � = �↵+ �

k � 2
and ⇣ = � �

k � 1
, (52)

and their images under conjugation by permutation matrices, i.e., where the “special” row and
column ranges from 1 to k. That is,

U =

0

BBBBBB@

� ↵ ↵ · · · ↵
� ⇣ � · · · �

� � ⇣
...

...
...

. . . �
� � · · · � ⇣

1

CCCCCCA

where � and ⇣ are set so that U ’s entries sum to zero and U has zero trace. In particular, U is
orthogonal to both J and I , and hence to the trivial subspace. The reader can confirm that It is
orthogonal to ⇢(k�2,1,1) and ⇢(k�2,2) as well.

Using (50) and a little work, we find that Y (U) is also of this form but with entries ↵0,�0, �0,
where 0

@
↵0

�0

�0

1

A = m ·

0

@
↵
�
�

1

A where m =
1

d� 1

0

@
�b �1 �a

k�1
b(k � 1)� 1 0 a
b(k � 1) 0 a� 1

1

A . (53)

Thus Y on this isotypic subspace is m ⌦ I where I is the (k � 1)-dimensional identity. The
corresponding eigenvalues of Y are those ofm, which are namely the roots  of

� 1

d� 1
and ± =

a� b±
p

(a� b)2 � 4(d� 1)

2(d� 1)
.

Analogous with the coloring case, if (a� b)2 < 4(d� 1) these eigenvalues are complex and lie on
the unit circle |±| = 1/

p
d� 1. But when (a�b)2 > 4(d�1), they are real, and + > 1/

p
d� 1.

We again multiply + by the modulus of the largest non-trivial eigenvalue of the non-backtracking
matrix,

p
d� 1 + on(1), to obtain the dominant eigenvalue of the Jacobian of belief propagation.

The Kesten–Stigum transition occurs when this eigenvalue exceeds the unit circle, or when

(a� b)2 = 4(d� 1) + on(1) .

Since in the equitable block model we have

� =
a� b

d
,

this again occurs at

|�| = 2
p
d� 1

d
+ on(1) .
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Appendix D. Local Statistics

Throughout this section, we will for the sake of brevity write Q = (Qn) for the uniform distribution
Gn,d on d-regular graphs, and P = (Pn) for the equitable stochastic block model Geq

n,k,d,⌘ from
Definition 1.

As in the preceding text, we are most concerned with the behavior of the null and planted
models when the number of vertices is very large, and we will write with high probability (w.h.p.) to
describe a sequence of events that hold with probability 1�on(1) in Pn or Qn as n ! 1, with other
parameters (d, k, ⌘) held fixed. The constant in the on(1) may depend on these other parameters,
and we will not make any attempt to quantify its rate, leaving us free to take union bounds over
constantly many events.

In this section we study a family of semidefinite programming algorithms for the P vs. Q distin-
guishing problem. Like Sum of Squares, the Local Statistics algorithm is phrased in the language
of polynomials. Let us define a set of variables x = {xu,i} indexed by vertices u 2 [n] and group
labels i 2 [k], and G = {Gu,v} indexed by pairs of distinct vertices. We think of the planted
model as outputting a random evaluation of these variables, namely a pair (x,G), where x 2 Rn⇥k

encodes the hidden community structure—with xu,i = 1 if �(u) = i and zero otherwise—and
G 2 R(

[n]
2 ) is the Boolean vector indicating which edges are present in the graph. This allows us to

regard polynomials p 2 R[x,G] as statistics of the planted distribution P, and we will in particular
focus on the quantities E(x,G)⇠P p(x,G).

The planted model outputs random variables x andG with a particular combinatorial structure:
each variable is {0, 1}-valued, and each vertex has exactly one label. This can be encoded in a set
of polynomial constraints:

G2
u,v �Gu,v = 0 8(u, v) 2

✓
[n]

2

◆

x2u,i � xu,i = 0 8u 2 [n], i 2 [k]
X

i2[k]

xu,i � 1 = 0 8u 2 [n].

Calling Ik the ideal of R[x,G] generated by the polynomials on the left hand side of the equations
above, then for any p 2 Ik, p(x,G) = 0. Moreover, the planted distribution has a pleasant sym-
metry property: the symmetric group Sn acts naturally and simultaneously on the variables x and
G, with a permutation ⇠ acting as xu,i 7! x⇠(u),i and Gu,v 7! G⇠(u),⇠(v), and for any polynomial
p 2 R[x,G], the expectation E(x,G)⇠Pp(x,G) is constant on the orbits of this action. The Local
Statistics algorithm, given as input a graphG0, endeavors to find a “pseudoexpectation” that mimics
the conditional expectation E[·|G0] on polynomials p(x,G0) of sufficiently low degree.

Definition 26 (Local Statistics Algorithm with Informal Moment Constraints) The degree-
(Dx, DG) Local Statistics algorithm is the following SDP: given an input graph G0, find eE :
R[x]Dx ! R s.t.

1. (Positivity) eEp(x)2 � 0 whenever deg p2  Dx

2. (Hard Constraints) eEp(x,G0) = 0 for every p 2 Ik
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3. (Moment Constraints) eEp(x,G0) ⇡ E(x,G)⇠P p(x,G) whenever degG p(x,G)  DG,
degx p(x,G)  Dx, and p is fixed under the Sn action.

See, e.g., the survey Laurent (2009) for detailed discussion of how optimization problems of this
form can be solved as SDPs.

We use the Local Statistics SDP for the P vs. Q hypothesis testing problem as follows: givenG
sampled from one of these two distributions, we run Local Statistics, outputting P if the SDP is fea-
sible, and Q otherwise. The symbol ⇡ in the moment constraints indicates that we will permit some
additive error; this is necessary so that, when G ⇠ P, the SDP is with high probability satisfiable,
by setting eEp(x,G0) = Ep(x,G). In fact, we will instantiate these moment constraints only on the
elements of a certain combinatorially meaningful basis, and we will allow different additive error
for different basis elements. In so doing we automatically satisfy positivity and the hard constraints,
and the additive slack allows for for fluctuations of the p(x,G) around their expectations. When
we make this precise below, we will write this additive slack in terms of an ‘error tolerance’ � > 0.

Theorem 27 If (d⌘)2 > 4(d�1), then there exists a constant (in n) � > 0 so that the degree (2, 2)
Local Statistics algorithm with error tolerance � can distinguish P and Q. If (d⌘)2  4(d�1), then
there do not exist constants D and � for which the degree (2, D) Local Statistics algorithm with
tolerance � can do so.

The proof of Theorem 27 closely follows Banks et al. (2019). As in that work, we will first
study a simpler SDP hierarchy for the P vs. Q hypothesis testing problem, and then show that its
feasiblity is equivalent to that of degree (2, D) local statistics SDP. We begin with some standard
facts about non-backtracking walks, which will be a central tool in our analysis.

D.1. Non-Backtracking Walks

Let AG be the adjacency matrix for a d-regular graph G (which may have self-loops and multi-
edges). A length-s non-backtracking walk on G is an alternating sequence of vertices and edges
v1, e1, v2, e2, ..., vs without terms of the form v, e, w, e, v. The matrices A(s)

G whose u, v entries
count the number of such walks between vertices u and v are given by

A(0)
G = 1

A(1)
G = AG

A(2)
G = A2

G � d

A(s+1)
G = AA(s)

G � (d� 1)A(s�1)
G s � 2.

In particular, A(s)
G = qs(AG), for a sequence of monic univariate polynomials qs 2 R[z], with

deg qs = s, which are known to be orthogonal with respect to the Kesten-McKay measure

dµKM(z) :=
d

2⇡

p
4(d� 1)� z2

d2 � z2
1
h
|z| < 2

p
d� 1

i
dz

on the interval (�2
p
d� 1, 2

p
d� 1). This fact has appeared innumerable times in the literature,

dating back at least to McKay (1981). Thus the polynomials qs are a basis for the Hilbert space of
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square integrable functions on this interval, equipped with the inner product

hf, giKM :=

Z
f(z)g(z)dµKM(z),

and associated norm
kfk2KM := hf, fiKM =

Z
f(z)2dµKM(z),

and in particular for any polynomial f 2 R[z], we have the orthogonal decomposition

f =
X

s�0

hf, qsiKM

kqsk2KM
qs.

We record for later use that

kqsk2KM = qs(d) =

(
1 s = 1

d(d� 1)s�1 s > 1
;

this is equal to the number of vertices at depth s in a rooted d-regular tree, or equivalently n�1

times the total number of length-s non-backtracking walks in a d-regular graph on n vertices. For
a derivation of this and other related facts, the reader may refer to Solé (1996) or Sodin (2007), but
should beware of differing normalization conventions.

We will also require some standard and generic properties sequences of univariate polynomials
orthogonal with respect to a measure on an interval of R (Szeg, 1939, Theorems 3.3.1, 6.6.1, and
3.4.1-2): each qs has s roots in the interval (�2

p
d� 1, 2

p
d� 1), the union of these roots over all

s � 0 are dense in this interval, and we have a nonnegative quadrature rule

Lemma 28 (Quadrature) For each s, call r1 < r2 < · · · < rs there roots of qs. There exist
weights w1, ..., ws � 0 with the property that

hf, qsiKM =
X

i2[s]

f(ri)qs(ri)wi

for every polynomial f of degree at most 2s� 1.

D.2. The Symmetric Path Statistics SDP

In this section we study a simplified version of the Local Statistics SDP, which will ultimately be
key to our analysis of the full Local Statistics SDP. Let (x,G) ⇠ P, thinking of x as a collection of
k vectors x1, ...,xk 2 {0, 1}n. One can check that the partition matrix for the planted labelling, in
the sense of Definition 4, is

P :=
k

k � 1

0

@
X

i2[k]

xix
>
i � 1

k
Jk

1

A

Since deterministically x1 + · · ·+ xk = 1, we as well have

=
k

k � 1

0

@
X

i2[k]

xix
>
i � 1

k

X

i,j

xix
>
j

1

A
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As we observed in the Introduction, P is PSD with ones on the diagonal, and (k/n)P is the orthog-
onal projector onto the (k � 1)-dimensional subspace spanned by x1, ...,xk and orthogonal to the
vector of all-ones.

We will be particularly interested in the inner products hP , A(s)
G i, which count non-backtracking

walks onG, with weight 1 if the endpoints share a group label, and �(k� 1)�1 if they do not. The
following is a consequence of Lemma 39 in the sequel.

Lemma 29 For every s � 1 and increasing, nonnegative function �(n),

P
h���hP , A(s)

G i � qs(d⌘)n
��� > �(n)

i
= O

✓
n

�(n)2

◆
.

The Symmetric Path Statistics SDP, given as input a graph G0, attempts to find a “pseudo-partition
matrix,” i.e. PSD matrix with ones on the diagonal, and whose inner products with the matrices
A(s)

G0
are equal to qs(d⌘)n, at least up to the fluctuations in Lemma 29.

Definition 30 (Symmetric Path Statistics) The level-D Symmetric Path Statistics Algorithm with
error tolerance � > 0, on input a d-regular graphG0 on n vertices, is the following SDP: find eP ⌫ 0
so that

1. ePu,u = 1 for every u 2 [n]

2.
���h eP , Jni

���  �n2

3.
���h eP ,A(s)

G0
i � qs(d⌘)n

���  �n for every s 2 [D].

Theorem 31 If (d⌘)2 > 4(d � 1), then for every D � 2 there exists an error tolerance � > 0 at
which the levelD Symmetric Path Statistics SDP can w.h.p. distinguish P andQ. If (d⌘)2  4(d�1),
then no such D and � exist.

Proof By Lemma 8.5, this SDP is with high probability feasible on input G ⇠ P. Our proof will
therefore show that when ⌘2 is sufficiently large, the SDP for some constantD is infeasible on input
G ⇠ Q, whereas for ⌘2 sufficiently small, it is feasible for every constant D.

First, fixD � 2 and assume (d⌘)2 > 4(d�1). We will show that there exists � > 0 so that with
high probability the level-D Symmetric Path Statistics is infeasible on input G ⇠ Q. Our strategy
will be to find a polynomial f ith the property that f(AG) ⌫ 0 with high probability, but we can
deduce hP, f(AG)i < 0 from the affine constraints in Definition 30.

Let f be a degreeD polynomial which is strictly positive on the closed interval [�2
p
d� 1, 2

p
d� 1]

and satisfies f(d⌘) < 0; our assumption on ⌘ ensures that this is possible, for instance by setting
f(z) = 2(d� 1) + 1

2(d⌘)
2 � z2. From our preliminaries on non-backtracking walks and the poly-

nomials qs we know

f =
DX

s=0

hf, qsiKM

kqsk2KM
qs.

WhenG ⇠ Q,AG has an eigenvalue at dwhose eigenvector is the all-ones vector and by Friedman’s
Theorem (Friedman, 2003) its remaining eigenvalues with high probability have absolute value at
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most 2
p
d� 1+o(1). Our assumptions on f therefore imply f(AG)�f(d)J/n = f(AG�dJ/n) ⌫

0 with high probability.
On the other hand, if eP ⌫ 0 is a feasible solution for the degree-D Symmetric Path Statistics

SDP on inputG ⇠ Qn, then

0  h eP , f(AG)� f(d)J/ni

=
DX

s=0

hf, qsiKM

kqsk2KM
h eP , qs(AG)i+ �|f(d)|n


DX

s=0

hf, qsiKM

kqsk2KM
qs(d⌘)n+ �

�
kfk2KM + |f(d)|

�
n

=
�
f(d⌘) + �

�
kfk2KM + |f(d)|

��
n < 0,

if we set � sufficiently small.
We can now turn to the case (d⌘)2  4(d � 1), seeking to prove that on input G ⇠ Q, with

high probability every level of the Symmetric Path Statistics hierarchy is feasible, for every error
tolerance �. We will use the following lemma, which may be proved by adapting the proof of (Banks
et al., 2019, Proposition 4.8). The proof proceeds by setting eP equal to a mild modification of the
matrix g(AG)� g(d)Jn/n.8

Lemma 32 Assume there exists a constant-degree polynomial g 2 R[z] that is strictly positive on
[�2

p
d� 1, 2

p
d� 1] and satisfies

|hg, qsiKM � qs(d⌘)|  �

for every s = 1, ..., D. Then the level-D Symmetric Path Statistics SDP with error tolerance � is
w.h.p. feasible on input G ⇠ Q.

Lemma 8.9 in hand, we need only to construct such a polynomial. Assume that (d⌘)2  4(d�
1), so that d⌘ 2 [�2

p
d� 1, 2

p
d� 1], the interval in which lie the roots of every polynomial qs.

Let P � D, and write r1 < r2 < · · · < rP for the roots of qP . Let I ⇢ [P ] contain the indices of
the (D + 1)/2 roots of qP closest to d⌘, and set

g⌘ =
1

⇣

Y

i/2I

(z � ri)
2,

where ⇣ is a normalizing factor to ensure that hg⌘, 1iKM = 1.
This polynomial is certainly nonnegative, and its degree is 2P �D�1. From Lemma 8.4, then,

there exist w1, ..., wP � 0 so that for any s = 0, ..., D

hg⌘, qsiKM =
X

i2I
wig⌘(ri)qs(ri).

8. The referenced result in Banks et al. (2019) was proved for an SDP which shared constraints (1) and (2) from
Definition 30, but in which constraint (3) read hP,A(s)

G0
i = �skqsk2KMn. The proof may be adapted simply by

adopting the hypotheses below, changing every instance of the aforementioned constraints, and taking some care
with the � slack.
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In particular, setting s = 0 and recalling the definition of ⇣, we have

1 = hg⌘, 1iKM =
X

i2I
wig⌘(ri).

This means that for any s = 0, ..., D, the inner product hg⌘, qsi is a weighted average of qs evaluated
at the (D + 1)/2 roots of qP closest to the point d⌘. Since the roots of the q polynomials are dense
in (�2

p
d� 1, 2

p
d� 1), and d⌘ is in the closure of this interval, for eachD and � > 0, there exists

a constant P for which |hg⌘, qsiKM � qs(d⌘)| < � for every s = 0, .., D.

D.3. Partially Labelled Subgraphs

We are now ready to study the full Local Statistics algorithm. To start, we will need to develop
a basis for the symmetric polynomials appearing as affine moment matching constraints in Defini-
tion 26. Because Ep(x,G) = 0 for any p 2 Ik, a constraint shared by the pseudoexpectation, it
would suffice to study the subspace of R[x,G]/Ik fixed under the Sn action inherited from R[x,G].
However, it is computationally favorable to work in a slightly larger vector space instead.

Definition 33 Let us write S[x,G]Dx,DG ⇢ R[x,G] for the vector space of polynomials that (1)
satisfy degx  Dx and degG  DG, (2) are symmetric with respect to the Sn action, (3) are
multilinear in G and x, and (4) for which at most one of xu,1, ..., xu,k appears in each monomial,
for every u 2 V .

Every polynomial appearing as a moment constraint in the level-(Dx, DG) Local Statistics al-
gorithm belongs to S[x,G]Dx,DG . We now give a combinatorially structured basis for this vector
space, similar to the ‘shapes’ of Barak et al. (2019).

Definition 34 A partially labelled graph (H,S, ⌧) consists of a graph H , a subset S ⇢ V (H),
and a map ⌧ : S ! [k]; we say that a graph is fully labelled if S = V (H), and in this case
write (H, ⌧) for short. A homomorhism from (H,S, ⌧) into a fully labelled graph (G,�) is a map
� : V (H) ! V (G) that takes edges to edges and agrees on labels; an occurrence of (H,S, ⌧)
in (G,�) is an injective homomorphism. For each partially labelled graph (H,S, ⌧) there is an
associated polynomial in S[x,G],

p(H,S,⌧)(x,G) =
X

�:V (H),![n]

Y

(u,v)2E(H)

G�(u),�(v)

Y

u2S
x�(u),⌧(u).

Each point in the zero locus of Ik may be identified with a fully labelled graph (G,�). Evaluated
at such a point, this polynomial counts the number of occurrences of (H,S, ⌧) in (G,�). Finally,
degx p(H,S,⌧) = |S| and degG p(H,S,⌧) = |E(H)|.

Lemma 35 The polynomials p(H,S,⌧) with |E(H)|  DG and |S|  Dx are a vector space basis
for S[x,G]Dx,DG

Proof Let s : R[x,G] ! S[x,G] be the map that sends a polynomial p to the sum over its Sn

orbit. The vector space S[x,G]Dx,DG is spanned by the images under s of the multilinear mono-
mials with x-degree Dx and G-degree DG in R[x] in which at most one of xu,1, ..., xu,k appears
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for each u 2 [n]. From each such monomial m(x,G) one can extract a partially labelled graph
(Hm, Sm, ⌧m), where |Sm|  Dx, |E(Hm)|  DG, and Hm is a subgraph of the complete graph:
E(Hm) is the union of all pairs (u, v) appearing as an index of a G variable, Sm is the union of all
u occurring as an index of an x variable, V (Hm) is the union of S and the endpoints of every edge,
and ⌧(u) = i if the variable xu,i appears. Because Sn acts transitively on [n], the orbit of m(x)
corresponds to every possible injection V (Hm) ,! [n], and thus

s(m(x,G)) = p(Hm,Sm,⌧m)(x,G).

This shows that the p(H,S,⌧) span. To see that they are independent, observe that each monomial
appears as a term in exactly one p(H,S,⌧).

In view of this lemma, the moment constraints in Definition 26 are equivalent to the require-
ment that eEp(H,S,⌧)(x,G0) ⇡ Ep(H,S,⌧)(x,G) for every (H,S, ⌧) with at most DG edges and Dx

distinguished vertices, up to isomorphism. In order to instantiate and analyze the Local Statistics
algorithm, we now need to compute these expectations, and bound the fluctuations around them.

D.4. Local Statistics in the Planted Model

Instead of working directly in P, we will as usual work in the configuration model bP, a distribution
on multigraphs with two key properties: (i) with probability bounded away from zero as n ! 1,
bG ⇠ bP is simple, and (ii) the conditioal distribution of bP on this event is equal to P. In this model,
conditional on a balanced partition �, we adorn each vertex in every group i with dMi,j ‘half-edges’
labelled i ! j, and then for each i, j 2 [k] randomly match the i ! j half-edges with the j ! i
half-edges. When k = 1, this is the usual configuration model on d-regular graphs, and when k = 2
andMi,i = 0, it gives bipartite regular graphs. Thus many results we prove for P will apply to Q as
well.

Claim 36 Write Gn and bGn for the sets of all d-regular, n-vertex graphs and multigraphs, respec-
tively. If bEn ⇢ bGn is a sequence of events holding w.h.p. in bPn, then bEn \ Gn holds w.h.p. in Pn.

Proof Since bPn[Gn] is bounded away from zero and bP[bEn] = 1� on(1), we have

Pn[bEn \ Gn] =
bPn[bEn \ Gn]
bPn[Gn]

� P̂n[Gn]� on(1)

P̂n[Gn]
= 1� on(1).

As a warm-up, let us recall some standard calculations of subgraph probabilities in these two
simpler situations.

Lemma 37 Let bG be a multi-graph produced by the d-regular configuration model on n vertices.
IfH is a simple graph, the probability that a fixed injection � : V (H) ,! V ( bG) is a homomorphism
is

Y

v2V (H)

d!

(d� deg(v))!
· (dn� 2|E(H)|� 1)!!

(dn� 1)!!
=

Y

v2V (H)

d!

(d� deg(v))!
· (dn)�|E(H)|

+O
⇣
n�|E(H)|�1

⌘
.
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Similarly, let ( bG,�) be generated by the d-biregular configuration model on 2n vertices, � :
V ( eG) ! [2] its left/right labelling. If (H, ⌧) is a simple bipartite graph with left/right labelling ⌧ ,
then the probability that a fixed injection � : V (H) ,! V ( bG) agreeing on labels is a homomor-
phism is

Y

v2V (H)

d!

(d� deg(v))!
· (dn� |E(H)|)!

(dn)!
=

Y

v2V (H)

d!

(d� deg(v))!
· (dn)�|E(H)|

+O
⇣
n�|E(H)|�1

⌘
.

Proof [Sketch] In the case of the d-regular configuration model, once an injective � has been chosen,
there are d!

(d�deg(v))! ways to choose deg(v) stubs from the d available at each vertex v to be matched
with the appropriate stubs at each intended neighbor of v, and then (dn � 2|E(H)| � 1)!! ways to
match the remaining stubs. On the other hand, the total number of multi-graphs possible to output
is (dn� 1)!!. The calculation is analogous in the bipartite regular case.

We will use Lemma 37 to compute local statistics in the planted model, but first we will need
a bit more notation. Let (H,S, ⌧) be a partially labelled graph, and b⌧ an extension of ⌧ , i.e. b⌧ :
V (H) ! [k], and b⌧ |S = ⌧ ; for each i, j 2 [k] and u 2 Vi(H), write degj(u) for the number of
neighbors that u has in group j according to b⌧ . Let us define

(dM)(H,S)
⌧ :=

X

b⌧ :b⌧ |S=⌧

Q
v

Q
j2[k] dMb⌧(v),j(dMb⌧(v),j � 1) · · · (dMb⌧(v),j � degi!j(v) + 1)

Q
(u,v)2E(H) dMb⌧(u),b⌧(v)

(54)

if dMi,j � degj(v) for every i, j 2 [k] and v 2 b⌧�1(i), and zero otherwise. Note that this operation
is multiplicative on disjoint unions:

(dM)(H1tH2,S1tS2)
⌧1t⌧2 = (dM)(H1,S1)

⌧1 (dM)(H2,S2)
⌧2 .

Finally, let us write �(H) := |V (H)|�|E(H)| and cc(H) for the number of connected components.
Since we are aiming to prove high probability statements regarding p(H,S,⌧)(x,G) for (x,G) ⇠

P by studying the configuration model, we need to extend the quantities p(H,S,⌧)(x,G) to the case
whenG is a multigraph with self-loops. For convenience, we will define an occurrence of (H,S, ⌧)
in a fully labelled, loopy multigraph as an occurence of (H,S, ⌧) in the simple graph obtained by
deleting all self-loops and merging all multiedges between each pair of vertices. Our key lemma
computes the expected number of occurrences in the configuration model.

Lemma 38 Let (H,S, ⌧) be a partially labelled graph on O(1) edges, and (x, bG) be drawn from
the configuration model bP. Then

Ep(H,S,⌧)(x, bG) = (n/k)�(H)(dM)(H,S)
⌧ +O

⇣
n�(H)�1

⌘
.

Proof Let V ( bG) = [n], fix a labelling � : [n] ! [k], and let bG be drawn from the configuration
model. Fix an extension b⌧ of ⌧ . If � : V (H) ,! V ( bG) is an injection that agrees on labels, applying
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Lemma 8.9 to the multigraphs on each set of vertices ��1(i) and between each pair of sets ��1(i)
and ��1(j),

P[� is an occurrence] = (n/k)|E(H)| ·
Y

ij

(dMi,j)
�|Ei,j(H,b⌧)| ·

Y

v2V (H,b⌧)

Y

i,j

(dMi,j)!

(dMi,j � degj(v))!

+O
⇣
n�|E(H)|�1

⌘
,

and there are (n/k)V (H) +O(n|V (H)|�1) injective choices for � that agree on labels.
Finally, writing �(H,S, ⌧) for the total number of occurrences of (H,S, ⌧) in bG, and �(H, b⌧)

for the number of occurrences of the fully labelled graph (H, b⌧),

E�(H,S, ⌧) = E
X

b⌧ :b⌧ |S=⌧

�(H, b⌧)

= (n/k)�(H)(dM)(H,S)
⌧ +O

⇣
n|V (H)|�|E(H)|�1

⌘
.

This lemma has some immediate consequences. First, it tells us that occurrences of partially
labelled forests are sharply concentrated.

Lemma 39 Let (H,S, ⌧) =
F

t2[cc(H)](Ht, St, ⌧t) be a partially labelled graph withO(1) vertices,
cc(H) connected components Ht, and no cycles. Then for any function f(n) > 0,

P

2

4

������
p(H,S,⌧)(x,G)� (n/k)cc(H)

Y

t2[cc(H)]

(dM)(Ht,St)
⌧t

������
> f(n)

3

5 = O

 
n2cc(H)�1

f(n)2

!
.

Proof The expectation E[p(H,S,⌧)(x,G)2] is a sum over all pairs of injective, label-consistent maps
�1,�2, of the probability that both maps are occurrences. The image of two disjoint copies of H
under these two injective maps is a graph H 0 that is either H t H , or is obtained by identifying
some pairs of vertices whose ⌧ labels agree—each pair with one vertex from each copy of H . We
can promoteH 0 to a partially labelled graph by taking the induced partial labelling ⌧ 0 from ⌧ . Thus,
let us think of the pair �1,�2 as a single injective map ' : V (H 0) ,! V ( eG) that agrees with ⌧ 0.
Thus

E[p(H,S,⌧)(x,G)2] =
X

H0

Ep(H0,S0,⌧ 0)(x,G)

=
X

H0

⇣
(n/k)�(H

0)(dM)(H
0,S0

⌧ 0 +O
⇣
n�(H0)�1

⌘⌘
.

When H 0 = H tH , from our observation above

(dM)(H
0,S0)

⌧ 0 = ((dM)(H,S)
⌧ )2 =

0

@
Y

t2[cc(H)]

((dM)(Ht,St)
⌧t )

1

A
2

.
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As H has no cycles, every other H 0 satisfies �(H 0) < 2�(H). Thus since cc(H) = �(H), the
assertion is true in the configuration model by Chebyshev, and transfers immediately to the planted
model. For good measure, an application of the triangle inequality shows as well that

P

2

4

������
p(H,S,⌧)(x,G)�

Y

t2[cc(H)]

p(Ht,St,⌧t)(x,G)

������
> f(n)

3

5 = O

 
n2cc(H)�1

f(n)2

!
.

Thus with high probability, the counts of partially labelled forests enjoy concentration of±o(ncc(H)).
On the other hand, an immediate application of Markov in eP tells us that there are very few occur-
rences of partially labelled graphs with cycles.

Lemma 40 Let (H,S, ⌧) be a partially labelled graph with O(1) edges and at least one cycle.
Then for any function f(n) > 0,

P
⇥
p(H,S,⌧)(x,G) > f(n)

⇤
= O

 
ncc(H)�1

f(n)

!
.

In particular, we will need later on the fact that there are very few vertices within constant distance
of a constant length cycle. The proof is once again Markov, combined with a union bound.

Lemma 41 Let G ⇠ P or Q. Fix constants L and C, and call a vertex bad if it is at most L steps
a way from a cycle of length at most C. Then w.h.p. there are fewer than f(n) bad vertices, for any
increasing function f(n).

We can now restate the local statistics algorithm more precisely.

Definition 42 (Local Statistics Algorithm with Formal Moment Constraints) The degree-(Dx, DG)
Local Statistics algorithm with error tolerance � is the following SDP. Given an input graphG0, find
eE : R[x]Dx ! R s.t.

1. (Positivity) eEp(x)2 � 0 whenever deg p2  Dx

2. (Hard Constraints) eEp(x,G0) = 0 for every p 2 Ik

3. (Moment Constraints) For every (H,S, ⌧) with at mostDx distinguished vertices,DG edges,
and ` connected components,

eEp(H,S,⌧)(x,G0) = (dM)(H,S)
⌧ (n/k)�(H) ± �ncc(H).

The n�(H) vs. ncc(H) scaling may seem ad hoc, but as promised above we have arranged things so
that the the SDP is w.h.p. feasible when its input is drawn from the planted model.

Lemma 43 Fix Dx, DG constant, and � > 0. with high probability, the degree-(Dx, DG) Local
Statistics Algorithm with error tolerance � is feasible on input G ⇠ P.
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Proof Let (x,G) ⇠ P, and for each p(x,G) 2 R[x,G]Dx,DG define

eEp(x,G) = p(x,G).

This satisfies positivity, as eEp(x,G)2 = p(x,G)2 � 0, and obeys the hard constraints because
(x,G) lies in the zero locus of Ik. Finally, let (H,S, ⌧) be a partially labelled graph. If H has a
cycle, then by Corollary 8.15, w.h.p.

���p(H,S,⌧)(x,G)� (n/k)�(H)(dM)(H,S)
⌧

���  p(H,S,⌧)(x,G) +O(n�(H))  �ncc(H).

On the other hand, if H has no cycles, then �(H) = cc(H) and w.h.p.
���p(H,S,⌧)(x,G)� (n/k)�(H)(dM)(H,S)

⌧

���  �ncc(H)

by Proposition 8.14. There are only constantly many partially labelled subgraphs with at most Dx

vertices and DG edges, so a union bound finishes the proof.

Finally, we end this subsection with the proof of Lemma 29, which concerned the affine con-
straints in the Symmetric Path Statistics SDP
Proof of Lemma 29 Recall the partition matrix

P =
k

k � 1

0

@
X

i2[k]

xix
>
i � 1

k

X

i,j2[k]

xix
>
j

1

A

from Section 8.2, where each xi 2 {0, 1}n is the indicator vector for membership in the ith group.
We are interested in hP , A(s)

G i.
Let (Ps, {0, s}, {i, j}) denote a path of length s with distinguished endpoints labelled i and j,

and write its vertices as V (Ps) = {0, 1, ..., s}. From Lemma 39, w.h.p. for (x,G) ⇠ P,

p(Ps,{0,s},{i,j}(x,G) =
1

k
(dM)(Ps,{0,s}

i,j n± o(n).

Expanding the right hand side,

(dM)(Ps,{0,s}))
i,j =

X

b⌧ :b⌧ |S=⌧

Q
v2V (Ps)

Q
j02[k] dMb⌧(v),j0(dMb⌧(v),j0 � 1) · · · (dMb⌧(v),j0 � degj(v))Q

(u,v)2E(Ps) dMb⌧(u),b⌧(v)

=
X

b⌧ :b⌧ |S=⌧

dMi,b⌧(1)
Y

t=1,...,s�1

�
dMb⌧(t),b⌧(t+1) � {b⌧(t+ 1) = b⌧(t� 1)}

�

= qs(dM)i,j .

The expression in the second to last line counts the number of non-backtracking walks of length s
between vertices i and j on the multi-graph whose adjacency matrix is dM ; from Section D.1 these
may be enumerated using the polynomial qs applied to dM .

Now, let us define Ahsi
G as the n ⇥ n matrix whose entries count self-avoiding (as opposed to

non-backtracking) walks onG. By definition

p(Ps,{0,s},{i,i})(x,G) =
X

u,v

⇣
Ahsi

G

⌘

u,v
· xu,ixv,j .
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Thus, with high probability

hP , Ahsi
G i = k

k � 1

0

@
X

i

p(Ps,{0,s},{i,i})(x,G)� 1

k

X

i,j

p(Ps,{0,s},{i,j})(x,G)

1

A

=
1

k � 1
hqs(dM), I � J/kin± o(n)

=
1

k � 1

⇣
Tr qs(dM)� qs(d)

⌘
n+ o(n)

= qs(d�)n+ o(n).

The last equality follows from the fact that the spectrum of dM consists of an eigenvalue d with
multiplicity one, and an eigenvalue d� with multiplicty k � 1.

We need finally to ensure that the same inner product constraint holds for the matrices A(s)
G . It

is an easy consequence of Lemma 8.16 that w.h.p. for G ⇠ Q, the matrices A(s)
G and Ahsi

G disagree
in at most o(n) rows. Thus, since the L1 norm of every row is bounded by a constant (by degree-
regularity), w.h.p. kA(s)

G � Ahsi
G k2F = o(n). Since X is PSD with ones on the diagonal, every

off-diagonal element has magnitude at most one—thus

hX,A(s)
G i = hX,Ahsi

G i+ o(n),

and we are done.

D.5. Proof of Theorem 27: Upper Bound

We will show that if (d�)2 > 4(d � 1), then the degree (2, D) Local Statistics algorithm can
distinguish P and Q for every D � 2. Specifically, we will show that for any such D, with high
probability over input G ⇠ Q there exists a � at which the SDP is infeasible. Our goal, here and
in the proof of the lower bound, will be to reduce to our characterization of the Symmetric Path
Statistics SDP in Theorem 8.7.

Assume that eE is a feasible pseudoexpectation for the degree (2, D) Local Statistics SDP with
tolerance � > 0, on input G ⇠ Q, and consider the matrix X with entries

ePu,v =
k

k � 1

0

@
X

i2[k]

eE(xu,i � 1/k)(xv,i � 1/k)

1

A =
k

k � 1

0

@
X

i2[k]

eExu,ixv,i �
1

k

X

i,j2[k]

eExu,ixv,j

1

A .

We will show that eP is a feasible solution to the level-D Symmetric Path Statistics SDP with the
input G, at some tolerance �0 = c�—thus by Theorem 8.7, when (d�)2 > 4(d � 1) and � is
sufficiently small, we will have a contradiction. We observe first that X is PSD with ones on the
diagonal—these facts follow immediately from the hard constraints in Definition 8.17, which tell us
that eEx2u,i = eExu,i for every u and i, and eE

P
i2[k] xu,i = 1 for every u.

We turn now to the moment constraints, with the goal of showing

h eP , A(s)
G i = qs(d�)n± �0n 8s 2 [D]

h eP , Ji = 0± �0n2.
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Rehashing our calculations from the proof of Lemma 29, we find that w.h.p.

hP , A(s)
G i = h eP , Ahsi

G i+ o(n)

= eE k

k � 1

0

@
X

i

p(Ps,{0,s},{i,i})(x,G)� 1

k

X

i,j

p(Ps,{0,s},{i,j})(x,G)

1

A+ o(n)

=
1

k � 1
hqs(dM), I � J/kin± k

k � 1
· 2k�n+ o(n)

= qs(d�)n± k3

k � 1
�n+ o(n).

To verify thatX has the correct inner product against the all-ones matrix, consider two partially
labelled subgraphs: a single vertex labelled i 2 [k], and two disjoint vertices both labelled i 2 [k].
The sum of their corresponding polynomials is

P
u,v xu,ixv,i, and identically in the planted model

X

u,v

xu,ixv,i = (n/k)2.

Our pseudoexpectation is required to match this up to an additive �(n + n2), the n and n2 terms
respectively coming from the additive slack in the one vs. two vertex graphs. Thus

h eP , Ji = k

k � 1

�
n2/k ± �(n2 + n)� n2/k

�
= 0± 2k

k � 1
�n2.

D.6. Proof of Theorem 27: Lower Bound

Assume that (d�)2  4(d � 1); we need to explicitly construct a degree-(2, D) pseudoexpectation
that is with high probability feasible for G ⇠ Q. Our tactic will be to show that such an operator
can be constructed from a feasible solution to the Symmetric Path Statistics SDP guaranteed us by
Theorem 8.7.

Before building the degree-(2, D) pseudoexpectation asserted to exist in the theorem statement,
we will first prove a series of structural lemmas showing that it suffices to check only a subset of
the moment constraints of a Local Statistics pseudoexpectation.

First, we show that the moment constraints regarding the pseudo-expected counts of partially
labelled graphs containing cycles are satisfied more or less for free.

Lemma 44 LetG ⇠ Q, and eE = eE(G) be a degree (Dx, DG) pseudoexpectation, perhaps depen-
dent on G, that satisfies positivity and the hard constraints. For every error tolerance �, w.h.p. eE
satisfies the moment constraints for all partially labelled subgraphs containing a cycle.

Proof It is a routine sum-of-squares calculation that for any monomial µ(x),

(eEµ(x))2  eEµ(x)2 = eEµ(x),

meaning that |eEµ(x)|  1. Thus for any (H,S, ⌧),

|eEp(H,S,⌧)(x,G)| =

������

X

�:V (H),![n]

Y

(↵,�)2E(H)

G�(↵),�(�)
eE
Y

↵2S
x�(↵),⌧(↵)

������


������

X

�:V (H)

Y

(↵,�)2E(H)

G�(↵),�(�)

������
,
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and the right hand side is simply the number of occurrences of the unlabelled graph H in G. From
Proposition 8.15, if H has cc(H) connected components and at least one cycle, (i) w.h.p. this
quantity is smaller than �0ncc(H) for every �0 > 0, and (ii) �(H) < cc(H). Thus trivially, if we set
�0 < �, w.h.p.

|eEp(H,S,⌧)(x,G)� (dM)(H,S)
⌧ |  �0ncc(H) + (dM)(H,S)

⌧ n�(H)  �ncc(H).

It therefore suffices to check only the moment constraints for partially labelled forests. In fact, only
a subset of these are important.

Definition 45 Let (H,S, ⌧) be a partialy labelled tree. The pruning of (H,S, ⌧) is the unique
partially labelled subtree in which every leaf belongs to S. The pruning of an unlabelled graph is
the empty graph, and the pruning of a forest is defined tree-by-tree. We say that a partially labelled
forest is pruned if it is equal to its pruning.

Lemma 46 Let (H,S, ⌧) be a partially labelled forest with maximal degree d, ( eH,S, ⌧) its prun-
ing, and write deg and gdeg for the vertex degrees in H and eH respectively. If X is a symmetric
nonnegative integer matrix with row and column sums equal to d, then

X(H,S)
⌧

X( eH,S)
⌧

=
Y

v2V (H)

deg(v)�1Y

q=gdeg(v)

(d� q).

Proof Let’s reason combinatorially. Any such matrix X can be thought of as the adjacency matrix
for a d-regular multigraph with self-loops; let’s fix X and call this graph �. Since �’s vertex set
is [k], we will think of it as a fully labelled graph. By multiplicativity on disjoint unions, we may
freely assume that (H,S, ⌧) is a tree. Let’s choose a root r 2 V ( eH) ⇢ V (H); having done so,
E(H) is in bijection with V (H) \ r (and similarly for E( eH) and V ( eH)). Let’s write p(v) for the
unique parent of every vertex. We can thus write

X(H,S)
⌧ =

X

e⌧ :e⌧ |S=⌧

Y

j2[k]

Xe⌧(r),j(Xe⌧(r),j � 1) · · · (Xe⌧(r),j � degj(r) + 1)

⇥
Y

v2V (H)\r

Q
j2[k]Xe⌧(v),j · · · (Xe⌧(v),j � degj(v) + 1)

Xe⌧(v),e⌧(p(v))
.

Thinking of each e⌧ as a map V (H) ! V (�), the summand above gives the number of ways to map
⌘ : E(H) ! E(�) with the following constraints: (1) each edge (u, v) must be mapped to one of
theX⌧(u),⌧(v) edges between ⌧(u) and ⌧(v), and (2) no two edges in E(H) with the same endpoint
may be mapped to the same edge in �. We’ll call the pair (e⌧ , ⌘) a locally injective occurrence
of (H,S, ⌧) in the fully labelled graph �. Thus the expression X(H,S)

⌧ gives the number of such
occurrences.

The same argument applies to the pruning ( eH,S, ⌧). Now, the graph (H,S, ⌧) consists pruning
( eH,S, ⌧), plus some trees hanging off the edges. For each locally injective occurrence of ( eH,S, ⌧),
there are

Y

v2V (H)

deg(v)�1Y

q=gdeg(v)

(d� q)
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ways to extend it to a locally injective occurrence of (H,S, ⌧), since � is d-regular.

Lemma 47 Let G ⇠ Q, (H,S, ⌧) be a partially labelled forest, and ( eH,S, ⌧) its pruning. Then
w.h.p. �����p(H,S,⌧)(x,G)� ncc(H)�cc( eH) (dM)(H,S)

⌧

(dM)(
eH,S)

⌧

p( eH,S,⌧)(x,G)

�����
1

= o(ncc(H)),

where k · k1 is the coefficient-wise L1 norm.

Proof Let (H,S, ⌧) be a partially labelled forest, ( eH,S, ⌧) its pruning. If e� : V ( eH) ,! V (G) is
an occurrence of ( eH,S, ⌧), then we call � : V (H) ,! V (G) an extension of e� if its an occurrence
of (H,S, ⌧) and agrees with e� on V ( eH). Let’s write e� for the set of occurrences of ( eH,S, ⌧) in
(G,�), and for each e� 2 e�, write ⌅(e�) for its set of extensions. Thus, incorporating Lemma 8.20,

�����p(H,S,⌧)(x,G)� ncc(H)�cc( eH) (dM)(H,S)
⌧

(dM)(
eH,S)

⌧

p( eH,S,⌧)(x,G)

�����
1


X

e�2e�

������
|⌅(e�)|� ncc(H)�cc( eH)

Y

v2V (H)

deg(v)�1Y

q=gdeg(v)

(d� q)

������
.

By Proposition 8.15, with high probability there are o(ncc( eH) occurrences of eH whose |E(H)|
neighborhoods in eG either intersect or contain a cycle, so we can safely restrict the right hand side
above to the remaining ones. Let’s fix such an occurrence and enumerate the possible extensions.
First, for each connected component eJ of eH , and its corresponding component J of H , because G
is d-regular and locally treelike in the neighborhood of �( eJ), there are exactly

Y

v2V (J)

deg(v)�1Y

q=gdeg(v)

(d� q)

ways to extend e� to the remainder of J . Having already chosen how to extend the occurrence
on these connected components, call K the union of all connected components in H that have
no distinguished vertex. We need to find an injective homomorphism from K into G that does
not collide with e�( eH) or the portion of the extension that we have already constructed. Since
|V (H)| = O(1), there are

ncc(H)�cc( eH)
Y

v2V (K)

deg(v)�1Y

q=0

(d� q) +O(ncc(H)�cc( eH)�1)

ways to do this. Since |e�| = O(ncc( eH)),

X

e�2e�

������
|⌅(e�)|� ncc(H)�cc( eH)

Y

v2V (H)

deg(v)�1Y

q=gdeg(v)

(d� q)

������
= O(ncc( eH))·O(ncc(H)�cc( eH)�1) = O(ncc(H)�1)

as desired.
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Lemma 48 Let G ⇠ Q and eE = eE(G) be a degree-(Dx, DG) pseudoexpectation, perhaps depen-
dent on G. If eE w.h.p. satisfies the moment constraints for pruned partially labelled forests, w.h.p.
it does so for every partially labelled forest.

Proof This is a direct consequence of Lemma 8.21. Retaining (H,S, ⌧) and ( eH,S, ⌧) from the
proof of that lemma, since the pseudoexpectation of any monomial has absolute value at most one,

eEp(H,S,⌧)(x,G) =
(dM)(H,S)

⌧

(dM)(
eH,S)

⌧

p( eH,S,⌧)(x,G)± o(n`) = (dM)(H,S)
⌧ ± �n`

for every � > 0. We can take a union bound over all finitely many (H,S, ⌧).

We are finally ready to describe our own degree (2, D) pseudoexpectation. Our key building
block will be the feasible solution P ⌫ 0 to the degree-D Symmetric Path Statistics on input
G ⇠ Q SDP whose asymptotic almost sure existence is guaranteed us by Theorem 8.7. Recall that
this matrix satisfies

1. Pu,u = 1 for every u 2 [n]

2. hP , Ji = 0

3.
���hP , A(s)

G i � qs(d�)
���  �n for every s = 1, ..., D.

A degree-2 pseudoexpectation eE : R[x]2 ! R may be expressed as a (1 + nk) ⇥ (1 + nk) block
matrix

✓
1 l>

l Q

◆
=

0

BBB@

1 l>1 · · · l>n
l1 Q1,1 · · · Q1,n
...

...
. . .

...
ln Qn,1 · · · Qn,n

1

CCCA

where (lu)i = eExu,i and (Qu,v)i,j = eExu,ixv,j . Our construction will set (lu)i = 1/k for every u
and i, and

Q =
1

k
(Jnk/k + P ⌦ (I � Jk/k))

Let us first check the hard consstraints. For positivity it suffices to observe that

Q� ll> =
1

k
P ⌦ (I � Jk/k) ⌫ 0,

as P , (I � Jk/k) ⌫ 0. We also have

eEx2u,i = (Qu,u)i,i =
1

k
(1/k + (1� 1/k)Pi,i) = 1/k = eExu,i

since Pu,u = 1 for every u 2 [n]. It remains only to check that eE(xu,1 + · · ·+ xu,k)p(x) = eEp(x)
for every p(x) of degree one. For this it is sufficient to verify that

eE(xu,1 + · · ·+ xu,k)xv,j =
X

i

(Qu,v)i,j =
1

k

X

i

(1/k + Pu,v(1� Jk/k)i,j) = 1/k = eExv,j .
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Finally, we need to verify the moment constraints. By Lemmas 8.21-22, if we do so only on the
minimal partially labelled forests with at most two distinguished vertices, then w.h.p. the remainder
of the moment constraints are satisfied. A minimal partially labelled forest with one distinguished
vertex is just a single vertex with a label i 2 [k]; the associated polynomial in this case is just
x1,k + · · · + xn,k, and its required pseudoexpectation is n/k ± �n, since there are identically n/k
vertices with each label in the planted model. Our pseudoexpectation assigns a value of

eE
X

u

xu,i =
X

u

(lu)i = n/k

as desired.
A minimal partially labelled forest on two vertices is either a path of length s 2 [d] with end-

points labelled i, j 2 [k], or two isolated vertices labelled i, j 2 [k]. In the former case, the
pseudoexpectation is required to read 1

kq(dM)i,jn± �n Recycling some calculations from Section
8.4, our pseudoexpectation on this polynomial reads

hQi,j , A
hsi
G i = hQi,j , A

(s)
G i± o(n)

=
1

k

⇣
hJn/k,A(s)

G i+ hP , A(s)
G i(I � Jk/k)i,j

⌘

=
1

k
(qs(d)(J/k)i,j + qs(d�)(I � Jk/k)i,j)n± (�/k)n

=
1

k
qs(dM)i,j ± (�/k)n.

The last line follows since dM = dJk/k + d�(I � Jk/k) is the spectral decomposition of dM .
Finally, we verify the case of two disjoint vertices labelled i, j 2 [k]. The polynomial here isP

u6=v xu,ixv,j , and the pseudoexpectation is requried to give a value of (n/k)2 ± �n2. As needed,
our pseudoexpectation gives

hQi,j , Jni =
1

k
(hJn/k, Jni+ hP , Jni(I � Jk/k)i,j) = (n/k)2,

as hP , Jni = 0.

Appendix E. Low-Degree Analysis of Spiked Models

In this section, we develop machinery for low-degree analysis of general spiked Wigner andWishart
models, culminating in the proofs of Theorems 19 and 20.

E.1. Preliminaries

Definition 49 A random vector x is "-local c-subgaussian if for any fixed vector v with kvk  ",

E exp(hv,xi)  exp
⇣ c
2
kvk2

⌘
.

It is straightforward to verify the following fact.

Fact 50 Suppose x is "-local c-subgaussian. For a (non-random) scalar ↵ 6= 0, ↵x is "/|↵|-local
c↵2-subgaussian. Also, the sum of n independent copies of x is "-local cn-subgaussian.
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Proposition 51 If a random vector x is "-local c-subgaussian then it admits the following local
Chernoff bound: for any kvk = 1 and 0  t  "c,

Pr{hv,xi � t}  exp

✓
� t2

2c

◆
.

Proof Apply the standard Chernoff bound argument: for any ↵ > 0,

Pr{hv,xi � t} = Pr{exp(↵hv,xi) � exp(↵t)}
 E[exp(↵hv,xi)]/ exp(↵t)
 exp(c↵2/2� ↵t) provided ↵  ".

Set ↵ = t/c to complete the proof.

Proposition 52 If a random vector x 2 Rk is "-local c-subgaussian then for any � > 0 and any
0  t  "c/(1� �),

Pr{kxk � t}  C(�, k) exp

✓
� 1

2c
(1� �)2t2

◆

where C(�, k) is a constant depending only on � and k.

Proof Let N ✓ Rk be a �-net of the unit sphere in Rk, in the sense that for any v 2 Rk,

max
u2N

hu, vi � (1� �)kvk

where kuk = 1 for all u 2 N . Let C(�, k) = |N |. Using a union bound and the local Chernoff
bound (Proposition 51), for all 0  t  "c/(1� �),

Pr{kxk � t}  Pr

⇢
max
u2N

hu,xi � (1� �)t

�
 C(�, k) exp

✓
� 1

2c
(1� �)2t2

◆
.

Proposition 53 Let � > 0. If a random vector x 2 Rk is "-local c-subgaussian with c < (1��)2/2
then

E
⇥
1 [kxk  "c/(1� �)] exp(kxk2)

⇤
 1 +

C(�, k)

(1� �)2/(2c)� 1

where C(�, k) is a constant depending only on � and k.

Proof Let � = "c/(1� �), and integrate the tail bound from Proposition 52:

E
⇥
1 [kxk  �] exp(kxk2)

⇤
=

Z 1

0
Pr{1 [kxk  �] exp(kxk2) � t} dt

 1 +

Z exp(�2)

1
Pr{exp(kxk2) � t} dt

= 1 +

Z exp(�2)

1
Pr{kxk �

p
log t} dt

 1 + C(�, k)

Z 1

1
exp

✓
� 1

2c
(1� �)2 log t

◆
dt

= 1 +
C(�, k)

(1� �)2/(2c)� 1
.
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E.2. The Wigner Model

Proof [Proof of Theorem 19] We start with a formula for kLDk2 from Kunisky et al. (2019)
(adapted slightly for the case of symmetric Gaussian noise):

kLDk2 = E
X,X0

expD

✓
�2n

2
hX,X 0i

◆
(55)

where X 0 is an independent copy of X and expD(x) =
PD

d=0
xd

d! denotes the Taylor series trun-
cation of exp. Write kLDk2 = L1 + L2 where L1 is the small deviations term

L1 := E
X,X0

1
⇥
hX,X 0i  �

⇤
expD

✓
�2n

2
hX,X 0i

◆
,

and L2 is the large deviations term

L2 := E
X,X0

1
⇥
hX,X 0i > �

⇤
expD

✓
�2n

2
hX,X 0i

◆
,

where� > 0 is a small constant to be chosen later. Lemmas 54 and 55, proved in the following two
subsections, show that for some choice of �, L1 and L2 are both O(1), completing the proof.

E.2.1. SMALL DEVIATIONS

Lemma 54 In the setting of Theorem 19, if |�| < 1 then there exists � > 0 such that L1 = O(1)
for any D.

Proof Note that
hX,X 0i = 1

n2
hUU>,U 0(U 0)>i = 1

n2
kRk2F (56)

whereR = U>U 0. In particular, hX,X 0i � 0. Since expD(x)  exp(x) for all x � 0,

L1  E1
⇥
kRk2F  �n2

⇤
exp

✓
�2

2n
kRk2F

◆
. (57)

We have R =
Pn

i=1Ri where the Ri are independent k ⇥ k matrices, each distributed as ⇡(⇡0)>.
Since ⇡ has bounded support, the moment-generating functionM(T ) = E exp(hT,Rii) exists in a
neighborhood of T = 0 (in fact, it exists everywhere) and thus, by the defining property of the MGF,
has gradient rM(0) = E[Ri] = 0 and Hessian (HessM)(0) = Cov(Ri) = Cov(⇡)⌦2 � Ik2 .
Thus for any ⌘ > 0 there exists " > 0 such that

M(T )  exp

✓
1

2
(1 + ⌘)kTk2F

◆
for all kTkF  ".

In other words,Ri is "-local (1+⌘)-subgaussian. From Fact 50, this impliesR is "-local (1+⌘)n-
subgaussian, and �R/

p
2n is "

p
2n/�-local (1 + ⌘)�2/2-subgaussian. Since �2 < 1, we can
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choose � > 0 and ⌘ > 0 such that (1 + ⌘)�2 < (1 � �)2. Letting � =
�
"(1 + ⌘)/(1 � �)

�2 and
using Proposition 53,

L1  E1
h
k�R/

p
2nkF  �

p
�n/2

i
exp

⇣
k�R/

p
2nk2F

⌘
= O(1).

E.2.2. LARGE DEVIATIONS

Lemma 55 In the setting of Theorem 19, for any constants � 2 R and � > 0, and for any
D = o(n/ log n), we have L2 = o(1).

Proof Recall from above thatR is "-local (1 + ⌘)n-subgaussian. By Proposition 52 (taking t to be
n times a small constant),

Pr{hX,X 0i > �}  Pr{kRkF >
p
�n} = exp(�⌦(n)). (58)

The boundedness of ⇡ guarantees |hX,X 0i|  nC for some constant C > 0, and so

L2  exp(�⌦(n))
DX

d=0

✓
�2n

2
nC

◆d

 exp(�⌦(n))(D + 1)nO(D),

which is o(1) provided D = o(n/ log n).

E.3. The Wishart Model

Proof [Proof of Theorem 20] In Appendix F we derive a formula for kLDk2 in the general spiked
Wishart model. The version we will need here is summarized in Proposition 65. The formula takes
the form

kLDk2 = E
X,X0

DX

d=0

rd(�X,�X 0) (59)

for some polynomials rd. As in the Wigner case, we write kLDk2 = L1 + L2 where

L1 := E
X,X0

1
⇥
hX,X 0i  �

⇤ DX

d=0

rd(�X,�X 0)

and

L2 := E
X,X0

1
⇥
hX,X 0i > �

⇤ DX

d=0

rd(�X,�X 0)

for a small constant � > 0 to be chosen later. Lemmas 58 and 59, proved in the following two
subsections, show that for some choice of �, L1 and L2 are both O(1), completing the proof.
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E.3.1. SMALL DEVIATIONS

Before bounding the small deviations term in Lemma 58, we state two deterministic facts that will
be useful in the proof.

Proposition 56 (Sylvester Determinant Identity) For n⇥m matrices A and B,

det(In �AA>BB>) = det(Im �A>BB>A).

Proof If A,B are square and A is nonsingular, this can be shown by taking determinants on both
sides of the equation (I �AA>BB>)A = A(I �A>BB>A). For the general case, pad A,B with
zeros to make them square, and consider a sequence of nonsingular matrices converging to A.

Lemma 57 For any ⌘ > 0 there exists " > 0 such that for all 0  t  ", we have (1 � t)�1 
exp((1 + ⌘)t).

Proof Letting f(t) = (1 � t)�1 and g(t) = exp((1 + ⌘)t), we have f(0) = g(0) = 1 and
f 0(0) = 1 < 1 + ⌘ = g0(0).

We are now ready to bound the small deviations term.

Lemma 58 In the setting of Theorem 20, if �2 < � then there exists � > 0 such that L1 = O(1)
for any D.

Proof SinceX ⌫ 0, we have from Proposition 65(c,d) that rd(�X,�X 0) � 0. Analogous to (56),
we have either hX,X 0i = 0 or hX,X 0i = 1

n2 kRk2F. Recall from Definition 17 that, when drawing
from P, we first draw fX ⇠ X , and then threshold to form X as:

X =

(
fX if �fX � �In,

0 else.
(60)

We can upper bound L1 by dropping the low-degree truncation and using Proposition 65(b):

L1  EX,X0 1
⇥
hX,X 0i  �

⇤ 1X

d=0

rd(�X,�X 0)

= EX,X0 1
⇥
hX,X 0i  �

⇤
det(In � �2XX 0)�N/2

 1 + E1
⇥
kRk2F  �n2

⇤
det(In � �2fXfX 0)�N/2

where the +1 in the last line covers the second case of (60). Let {�i} be the eigenvalues of RR>

(which are nonnegative). Let ⌘ > 0 (to be chosen later), take " according to Lemma 57, and choose
�  "/�2. Note that kRk2F =

P
i �i. Provided kRk2F  �n2, we have �i  �n2 for all i, i.e.,
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�2n�2�i  ", and so

det(In � �2fXfX 0)�N/2 = det(In � �2n�2UU>U 0U 0>)�N/2

= det(In � �2n�2U>U 0U 0>U)�N/2 (using Proposition 56)

= det(In � �2n�2RR>)�N/2

=
Y

i

(1� �2n�2�i)
�N/2


Y

i

exp((1 + ⌘)�2n�2�i)
N/2 (using Lemma 57)

= exp

 
(1 + ⌘)

�2N

2n2

X

i

�i

!

= exp

✓
(1 + ⌘)

�2N

2n2
kRk2F

◆
.

We now have

L1  1 + E1
⇥
kRk2F  �n2

⇤
exp

✓
(1 + ⌘)

�2N

2n2
kRk2F

◆
.

Comparing this to (57), we see that we have reduced to the case of Wigner small deviations. In
place of �2, we have (1 + ⌘)�

2N
n ! (1 + ⌘)�

2

� . Thus, provided �2 < �, we can choose ⌘ > 0 and
� > 0 small enough so that L1 = O(1).

E.3.2. LARGE DEVIATIONS

Lemma 59 In the setting of Theorem 20, for any constants � > �1, � > 0, and � > 0, and for
any D = o(n/ log n), we have L2 = o(1).

Proof Consider the case � > 0 so that �X ⌫ 0; the case � < 0 is handled similarly. We will use
the formula for rd given in Proposition 65(c):

rd(�X,�X 0) =
X

d1,...,dN22NPN
i=1 di=d

NY

i=1

1

di!
E

x⇠N (0,�X)
x0⇠N (0,�X0)

hx,x0idi .

Let {�i,vi} be an eigendecomposition ofX , and letXi = �iviv>
i so thatX = X1+· · ·+Xk. Let

xi ⇠ N (0,�Xi) independently so that x :=
Pk

i=1 xi ⇠ N (0,�X). Similarly define X 0
i,x

0
i,x

0.
For fixedX,X 0, {Xi}, {X 0

i},

E[hx,x0id]  Ekxkdkx0kd = Ekxkd · Ekx0kd.

The boundedness of ⇡ guarantees
P

i �
2
i = kXk2F  nC for some constant C > 0. Recall that

xi ⇠ N (0,��iviv>
i ), so for g a standard Gaussian vector, xi has the same law as

p
��i · hvi, givi.

Since vi is a unit vector, kxik then has the same law as
p
��i · |hvi, gi|, which in turn has the same

law as
p
��i · |g1|. So, for d even, Ekxikd = (��i)d/2(d� 1)!!  �d/2nCd/4dd. This means

Ekxkd  E

 
kX

i=1

kxik
!d

 E
✓
kmax

i
kxik

◆d

 kd E
kX

i=1

kxikd  kd+1�d/2nCd/4dd.
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Since Ekxkd = 1 when d = 0, we can rewrite this as Ekxkd  k2d�d/2nCd/4dd  (dn)O(d). Thus
for d1, . . . , dN 2 2N with

P
i di = d  D,

NY

i=1

E[hx,x0idi ] 
NY

i=1

(din)
O(di)  (Dn)O(D).

Now we have
rd(X,X 0)  ND(Dn)O(D)

and so

L2  Pr{hX,X 0i > �}
DX

d=0

ND(Dn)O(D).

Similarly to (58) we have Pr{hX,X 0i > �}  exp(�⌦(n)) and so L2 = o(1) provided D =
o(n/ log n).

Appendix F. Low-Degree Analysis of General Wishart Models

In this section we derive the formula (59) for kLDk2 in the general spiked Wishart model.

F.1. Hermite Polynomial Facts

We first define and give the key facts that we will use about the Hermite polynomials, the orthogonal
polynomials with respect to the standard Gaussian measure.

Definition 60 (Hermite polynomials) The univariate Hermite polynomials are the sequence of
polynomials hk(y) 2 R[y] for k 2 N, defined by the recursion

h0(y) = 1, (61)
hk+1(y) = yhk(y)� h0k(y). (62)

The n-variate Hermite polynomials are the polynomialsH↵(y) 2 R[y1, . . . , yn] indexed by ↵ 2 Nn

and H↵(y) =
Qn

i=1 h↵i(yi). Finally, the normalized n-variate Hermite polynomials are bH↵(y) =
(↵!)�1/2H↵(y), where we abbreviate ↵! =

Qn
i=1 ↵i!.

The main and defining property of the Hermite polynomials is their orthogonality, which we
record below.

Proposition 61 (Orthogonality under Gaussian measure) For any ↵,� 2 Nn,

E
y⇠N (0,I)

[ bH↵(y) bH�(y)] = �↵� . (63)

Beyond this, the key additional tool for our analysis is a generalization of the following fact
from the “umbral calculus” of Hermite polynomials (a proof will be subsumed in our more general
result below).
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Proposition 62 (Mismatched Variance Formula) Let x > �1. Then,

E
y⇠N (0,1+x)

hk(y) =

(
(k � 1)!! · xk/2 k even
0 k odd

(64)

Note that the formula on the right-hand side is that for the moments of a Gaussian random variable
with variance x, but we extend it to apply even for negative x, which is the “umbral” case of
the result, admitting an interpretation in terms of a fictitious Gaussian of negative variance—even if
x 2 (�1, 0), the right-hand side may be viewed formally as the value of “Eg⇠N (0,x)g

k.” A thorough
exposition of such analogies arising in combinatorics and the theory of orthogonal polynomials is
given in Roman (2005).

In fact, the same holds even for multivariate Gaussians. The correct result in this case is given
by imitating the formula for the moments of a multivariate Gaussian, via Wick’s (or Isserlis’) for-
mula. While Proposition 62 is well-known in the literature on Hermite polynomials and the umbral
calculus, we are not aware of previous appearances of the formula below.

Proposition 63 (Multivariate Mismatched Variance Formula) Let X 2 Rn⇥n
sym with X � �In.

For ↵ 2 Nn viewed as a multiset of elements of [n] (specifically, the multiset containing ↵i copies
of i, for each i 2 [n]),let P(↵) be the set of pairings of elements of ↵, and for each P 2 P(↵) write
XP denote the product of the entries of X located at paired indices from P . Then,

E
y⇠N (0,I+X)

H↵(y) =
X

P2P(↵)

XP . (65)

Note that if X ⌫ 0, then the right-hand side equals Ex⇠N (0,X)x
↵ by Wick’s formula, but we again

have an umbral extension to non-PSD matrices X .

Proof Define

`↵ := E
y⇠N (0,I+X)

H↵(y). (66)

Let ei 2 Nn have ith coordinate equal to 1 and all other coordinates equal to zero, and write 0 2 Nn

for the vector with all coordinates equal to zero. Clearly `0 = 1 and `ei = 0 for any i 2 [n]. We
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then proceed by induction and use Gaussian integration by parts:

`↵+ei = E
y⇠N (0,I+X)

h↵i+1(yi)
Y

j2[n]\{i}

h↵j (yj)

= E
y⇠N (0,I+X)

�
yih↵i(yi)� h0↵i

(yi)
� Y

j2[n]\{i}

h↵j (yj) (Definition 60)

= E
y⇠N (0,I+X)

2

4
nX

k=1

(I +X)ik
Y

j2[n]

h
(�jk)
↵j (yj)�

Y

j2[n]

h
(�ij)
↵j (yj)

3

5 (integration by parts)

=
X

k2[n]
↵k>0

Xik E
y⇠N (0,I+X)

Y

j2[n]

h
(�jk)
↵j (yj)

=
X

k2[n]
↵k>0

↵kXik E
y⇠N (0,I+X)

Y

j2[n]

h↵j��jk(yj)

=
X

k2[n]
↵k>0

↵kXik`↵�ek (inductive hypothesis)

so `↵ satisfy the same recursion and initial condition as the sum-of-products formula on the right-
hand side of (65).

F.2. Components of the LDLR

Let Q, P be as in the general spiked Wishart model (Definition 17), and let L be the associated
likelihood ratio. Throughout this section, we assume without loss of generality that (i) � = 1 (since
� can be absorbed into X), and (ii) the prior X is supported on X for which X � �In. For
↵ 2 (Nn)N , we denote

m↵ := E
Y ⇠Q

H↵(Y )L(Y ), (67)

bm↵ := E
Y ⇠Q

bH↵(Y )L(Y ) =
1p
↵!

m↵. (68)

We may compute these numbers as follows. For any ↵ 2 (Nn)N , we have, passing to an
expectation under P rather than Q and then using Proposition 63,

m↵ = E
Y ⇠P

H↵(Y )

= E
X⇠X

NY

i=1

E
y⇠N (0,I+X)

H↵i(y)

= E
X⇠X

NY

i=1

0

@
X

P2P(↵i)

XP

1

A . (69)
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F.3. Taylor Expansion of the LDLR

Lemma 64 Suppose X is as in Definition 17. Denote by T D the operation of truncating the
Taylor series of a function that is real-analytic in a neighborhood of zero to degree-D polynomials.
For the sake of clarity, this will only ever apply to the variable named t. Then,

kLDk2 = E
X,X0⇠X

T D
h
det(In � t2XX 0)�N/2

i
(1), (70)

by which we mean evaluation of the function of t on the RHS at t = 1.

Proof We have

kLDk2 =
X

|↵|D

bm2
↵

= E
X,X0⇠X

X

|↵|D

NY

i=1

1

↵i!

0

@
X

P2P(↵i)

XP

1

A

0

@
X

P2P(↵i)

(X 0)P

1

A

= E
X,X0⇠X

DX

d=0

X

|↵|=d

NY

i=1

1

↵i!

0

@
X

P2P(↵i)

XP

1

A

0

@
X

P2P(↵i)

(X 0)P

1

A . (71)

On the other hand, we may expand the right-hand side of (70) by repeatedly differentiating with
respect to t to extract Taylor coefficients. In doing so we will repeatedly apply the chain rule, and
since d

dt det(I � tA) = Tr(A) each derivative will be a rational function in (t,X,X 0). Therefore,
the Taylor coefficients are some rational functions rd(X,X 0) (depending on N ) for d 2 N, and for
these coefficients

E
X,X0⇠X

T D
h
det(In � t2XX 0)�N/2

i
(1) = E

X,X0⇠X

DX

d=0

rd(X,X 0). (72)

We will show that in fact termwise equality holds, inside the expectations, namely

rd(X,X 0) =
X

|↵|=d

NY

i=1

1

↵i!

0

@
X

P2P(↵i)

XP

1

A

0

@
X

P2P(↵i)

(X 0)P

1

A =: r0d(X,X 0) (73)

for each d 2 N and for all (deterministic) X,X 0 2 Rn⇥n
sym . Since either side of (73) is a rational

function of (X,X 0), it suffices to show that this is true on a set of matrices of positive measure. We
will show that it holds for all X,X 0 ⌫ 0.

In this case, we have the convenient Gaussian interpretation of the expression for r0d(X,X 0)
from Wick’s formula:

r0d(X,X 0) =
X

|↵|=d

NY

i=1

1

↵i!

 

E
x⇠N (0,X)

x↵i

! 

E
x⇠N (0,X0)

x↵i

!

= E
x1,...,xN⇠N (0,X)
x0
1,...,x

0
N⇠N (0,X0)

X

|↵i| even
|↵|=d

NY

i=1

1

↵i!
(xi)

↵i(x0
i)
↵i (74)
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and grouping by the values of |↵i|,

= E
x1,...,xN⇠N (0,X)
x0
1,...,x

0
N⇠N (0,X0)

X

d1,...,dN22NPN
i=1 di=d

1
QN

i=1 di!

X

↵1,...,↵N2Nn

|↵i|=di

NY

i=1

✓
di
↵i

◆ nY

j=1

((xi)j(x
0
i)j)

↵i(j)

= E
x1,...,xN⇠N (0,X)
x0
1,...,x

0
N⇠N (0,X0)

X

d1,...,dN22NPN
i=1 di=d

NY

i=1

hxi,x0
iidi

di!

=
X

d1,...,dN22NPN
i=1 di=d

NY

i=1

1

di!
E

x⇠N (0,X)
x0⇠N (0,X0)

hx,x0idi . (75)

From here, we introduce the moment-generating function of the inner overlap variables. Define

�X,X0(t) := E
x⇠N (0,X)
x0⇠N (0,X0)

exp
�
thx,x0i

�
=

1X

d=0

td

d!
E

x⇠N (0,X)
x0⇠N (0,X0)

hx,x0id. (76)

Then, r0d(X,X 0) is simply the coefficient of td in the Taylor series of �X,X0(t)N .
On the other hand, we may actually compute �X,X0(t):

�X,X0(t) = E
g,h⇠N (0,In)

exp
⇣
tg>pX

p
X 0h

⌘

= E
g⇠N (0,I2n)

exp

✓
g>


0 t
2

p
X
p
X 0

t
2

p
X 0

p
X 0

�
g

◆

which may be calculated as a moment generating function of the “matrix �2” variable gg>, giving

= det

✓
In �t

p
X 0

p
X 0

�t
p
X 0

p
X In

�◆�1/2

= det
⇣
In � t2

p
XX 0pX

⌘�1/2

and applying Proposition 56,

= det
�
In � t2XX 0��1/2

. (77)

Thus r0d(X,X 0) is also the coefficient of td in the Taylor series of det(In � t2XX 0)�N/2, whereby
r0d(X,X 0) = rd(X,X 0), completing the proof.

Implicit in the above proof are the following facts which we have made use of in Section E.3.

Proposition 65 Consider the general spiked Wishart model (Definition 17), and assume (without
loss of generality) that � = 1 andX is supported onX for whichX � �In. The following formulas
hold:
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(a) kLDk2 = E
X,X0⇠X

DX

d=0

rd(X,X 0) for some polynomials rd,

(b)
1X

d=0

rd(X,X 0) = det(In �XX 0)�N/2,

(c) if X ⌫ 0 and X 0 ⌫ 0 then rd(X,X 0) =
X

d1,...,dN22NPN
i=1 di=d

NY

i=1

1

di!
E

x⇠N (0,X)
x0⇠N (0,X0)

hx,x0idi , and

(d) if X � 0 and X 0 � 0 then rd(X,X 0) =
X

d1,...,dN22NPN
i=1 di=d

NY

i=1

1

di!
E

x⇠N (0,�X)
x0⇠N (0,�X0)

hx,x0idi .

Appendix G. Exponential Low-Degree Hardness for SBM

The goal of this section is to prove Theorem 23. We first prove a general statement that reduces
binary-valued models to the analogous Gaussian model.

G.1. Comparing Binary-Valued Models to Gaussian

Proposition 66 Consider the following general binary-valued problem.

• Under the null distribution Q, we observe Y 2 RN where Yi are independent, satisfy E[Yi] =
0 and E[Y 2

i ] = 1, and each take two possible values: Yi 2 {ai, bi} with ai < bi.

• Under the planted distribution P, a signal X 2 RN is drawn from some prior, and then
Yi 2 {ai, bi} are drawn independently (conditioned on X) such that E[Yi|Xi] = Xi. (This
requiresXi 2 [ai, bi].)

In the above setting,

kLDk2 
DX

d=0

1

d!
E

X,X0
hX,X 0id (78)

whereX 0 denotes an independent copy of X .

The significance of (78) is that the right-hand side is the exact formula for kLDk2 in the following
additive Gaussian model (see Kunisky et al. (2019)): under Q, Y ⇠ N (0, IN ); and under P, Y =
X+Z withZ ⇠ N (0, IN ) andX drawn from some prior. Thus, Proposition 66 can be interpreted
as saying that a binary-valued problem is at least as hard as the corresponding Gaussian problem.
Proof [Proof of Proposition 66] The Fourier characters �S(Y ) =

Q
i2S Yi for S ✓ [N ] with

|S|  D are orthonormal with respect to Q, in the sense that EY ⇠Q[�S(Y )�T (Y )] = 1 [S = T ].
They also span the subspace of degree  D polynomials, since for any r 2 N, any Y r

i can be
written as a degree-1 polynomial in Yi. Thus, {�S}|S|D is an orthonormal basis for the degree D

polynomials. It is a standard fact that this allows us to write kLDk2 =
P

|S|D(EY ⇠P[�S(Y )])2
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(see e.g., Hopkins and Steurer (2017); Hopkins (2018)). We will use S to denote a subset of [N ]
and use ↵ to denote an ordered multi-set of [N ], with �↵(Y ) :=

Q
i2↵ Yi. Now compute

kLDk2 =
X

|S|D

( E
Y ⇠P

�S(Y ))2

=
X

|S|D

(E
X
�S(X))2

(⇤)


DX

d=0

X

|↵|=d

1

d!
(E
X
�↵(X))2 (see below)

=
DX

d=0

X

|↵|=d

1

d!
E

X,X0
�↵(X)�↵(X

0)

=
DX

d=0

1

d!
E

X,X0
hX,X 0id.

To see that inequality (⇤) holds, note that it would be an equality if restricted to ordered multi-sets
↵ that contain distinct elements.

G.2. Stochastic Block Model

We now specialize to the case of the stochastic block model (Definition 22), and use Proposition 66
to reduce to a certain spiked Wigner model.
Proof [Proof of Theorem 23] It will be convenient to consider a modification of the SBM that allows
self-loops. Specifically, the edge (i, i) occurs with probability d

n under Q and with probability
(1 + ⌘p

2
(k � 1)) dn under P. It is clear from the variational formula (13) for kLDk that revealing

this extra information can only increase kLDk.
In order to place the SBM in the setting of Proposition 66, takeN = n(n+1)/2 with a variable

Yi,j for every i  j. Let p = d/n. In order to ensure EQ[Yi,j ] = 0 and EQ[Y 2
i,j ] = 1, take

Yi,j = b :=
p
(1� p)/p if edge (i, j) is present, and Yi,j = a := �

p
p/(1� p) otherwise.

We now define X appropriately. Conditioned on the community structure, edge (i, j) occurs
with probability (1 + �i,j)p where �i,i = ⌘(k � 1)/

p
2 and �i,j (for i < j) is either ⌘(k � 1)

or �⌘ depending on whether i and j belong to the same community or not, respectively. Using the
fact pb+ (1� p)a = 0 (twice), this means we should take

Xi,j = E[Yi,j |Xi,j ] = (1+�i,j)pb+[1�(1+�i,j)p]a = �i,jp(b�a) = ��i,ja = �i,j

r
p

1� p
.

LetU be the n⇥k matrix whose ith row is
p
keki� /

p
k where ki 2 [k] is the community assign-

ment of vertex i. One can check that (UU>)i,j = k1 [ki = kj ]�1 and soXi,j = ⌘
q

p
1�p(UU>)ij

for i < j, and Xi,i =
⌘p
2

q
p

1�p(UU>)i,i. Therefore hX,X 0i = ⌘2

2
p

1�phUU>,U 0(U 0)>i. By
Proposition 66,

kLDk2 
DX

d=0

1

d!
E
✓
⌘2

2

p

1� p
hUU>,U 0(U 0)>i

◆d

.
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Comparing this to (55) reveals that this is precisely the expression for kLDk2 in the general spiked
Wigner model with spike prior Xk (see Definition 24), except in place of �2 we have ⌘2d

1�p =

(1 + o(1))⌘2d. Therefore, appealing to the Wigner result (Theorem 19), we have kLDk = O(1)
provided d⌘2 < 1.
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