
IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 5, NOVEMBER 2021 1579

Data-Driven Linear Parameter-Varying Model
Identification Using Transfer Learning

Yajie Bao , Graduate Student Member, IEEE , and Javad Mohammadpour Velni , Member, IEEE

Abstract—This letter proposes transfer learning
methods to address a challenge in state-space linear
parameter-varying (LPV-SS) model identification/learning
using kernelized machine learning, when the distributions
of the training and testing sets are different. Kernel mean
matching is first employed to correct sample bias by
resampling the data in the training set before the states
in state-space model are estimated. Moreover, transfer
component analysis is adopted to find a state-space basis
transformation such that the transformed states follow sim-
ilar distributions. The proposed methods are validated by
testing on an ideal continuous stirred tank reactor (CSTR)
model. Simulation results show that the proposed learning
methods can enhance the accuracy of model identification
and reduce the efforts involved in hyperparameters tuning.

Index Terms—Nonparametric identification, linear
parameter-varying models, kernels, transfer learning.

I. INTRODUCTION

DATA-DRIVEN methods have been shown to pro-
vide accurate and low-complexity state-space linear

parameter-varying (LPV-SS) models of nonlinear systems for
observer and controller design purposes [1]. Experimental
results show that these methods work well but under the
assumption that training and future data share the same feature
space and distribution [1], [2]. However, this assumption can
be violated when applying the identified models for control,
due to the differences between the training and application
environments. Since it is time consuming and cost intensive
to collect necessary training data and rebuild models for each
application environment, transfer learning has proven effective
to provide a feasible approach to employ previously learned
models to facilitate the model identification of a similar but
different (not-identical) environment.

For global identification of LPV-SS models using
input/output data, existing methods can be categorized into
parametric and non-parametric methods. Parametric methods
assume that scheduling dependencies of the model coefficients
are known a priori [3] while non-parametric methods provide
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a reconstruction of the scheduling dependencies without an
explicit declaration of these often unknown dependencies [4].
Moreover, parametric methods require an appropriate selection
of basis functions [4] while non-parametric methods require
the selection of nonlinear kernel functions and the tuning of
the associated hyperparameters [5]. Furthermore, most existing
parametric methods assume an affine scheduling dependency
with predefined basis functions, which restricts the complexity
of a representation [1]. Examples of parametric LPV-SS iden-
tification include direct prediction-error minimization (PEM)
methods and global subspace and realization-based techniques
(SID) (see [6] and references therein). In particular, the non-
linear optimization of the PEM methods depends heavily on a
proper initial seeding while SID methods suffer from the curse
of dimensionality [1]. For non-parametric methods, authors
in [5] used kernelized canonical correlation analysis (CCA)
to estimate state sequence and a least-squares support vec-
tor machine (LS-SVM) to capture the dependency structure,
which presents an attractive bias–variance trade-off. In this let-
ter, we build on the kernelized methods in [5] using transfer
learning for LPV-SS model identification.

Transfer learning is a machine learning technique that aims
at applying knowledge learned from previous tasks (a.k.a.
source tasks) to new tasks (a.k.a. target tasks), and has been
extensively studied in machine learning community (see [7]
for a comprehensive survey). The previous knowledge can
be represented by reusable instances, feature representations,
parameters and relational knowledge [2]. One approach for
transfer learning using kernelized methods is to use predefined
kernel functions and find a latent subspace where the distribu-
tion discrepancy between source and target domains is small,
the property of target domain is maintained, and the accuracy
on labeled data is maximized. Authors in [8] proposed transfer
component analysis (TCA) which matches the distribution of
source and target domains by minimizing the maximum mean
discrepancy (MMD) and preserves the locality by the manifold
regularizer.

Contribution of this letter is to develop two transfer learning
approaches for LPV-SS model identification: sample bias cor-
rection and latent space learning. Sample bias arises when the
environment for collecting data changes. For example, oper-
ating conditions of a system change such that the scheduling
variables (of underlying LPV model) run into a range with
a distribution that is different from the data used to build the
model. This difference can affect the model accuracy since the
optimization problems in the underlying learning algorithms
are typically solved over training data. To tackle this problem,
we propose to resample the training data before estimating
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the state sequence and use the kernel mean matching (KMM)
approach in [9] to estimate the resampling weights directly
from data without density estimation. However, when the test-
ing set is collected from a similar but not-identical system,
the difference between training and testing sets cannot be
explained away by sample bias. We assume there is a latent
space where the transformed states from training and testing
sets follow similar distributions and adopt transfer component
analysis (TCA) in [8] to learn a transformation from the orig-
inal state space to the latent space. To the best of the authors’
knowledge, this letter presents the first attempt to explore
transfer learning methods for model identification of nonlinear
systems (in LPV-SS setting) using kernelized machine learning
methods.

The rest of this letter is organized as follows. Section II
gives the problem statement and introduces the state and
matrix function estimation using kernelized machine learning
methods. Transfer learning approaches, including kernel mean
matching and transfer component analysis, are introduced in
Section III. Section IV presents our experiments on two “sim-
ilar but not-identical” continuous stirred tank reactor (CSTR)
models to evaluate the performance of the proposed methods.
Concluding remarks are finally provided in Section V.

II. PROBLEM STATEMENT AND RELATED PRELIMINARIES

In machine learning, domain D = {X , PX(x)}1 is used to
describe the input space X and the associated distribution PX
on the dataset; task T = {Y, h} consists of the output space
Y and the mathematical model h : X −→ Y to approximate an
oracle that knows the correct answers to all questions. Model
h can be a deterministic function h : y = h(x) or a distribution
PXY(x, y). In this letter, we use environment to refer to the ora-
cle. Environment changes when one system changes operating
conditions or switches to another system.

Assuming that we have an identified model (in this letter,
an LPV-SS model) M1 of a dynamic system P1 using a large
dataset D1 collected from P1, the main goal of this letter is
to adapt the model M1 to obtain a good model M2 for a
similar but different environment P2 using a small dataset
D2 collected from P2. It is assumed that D2 is not suffi-
cient to train a good model for P2. Additionally, we assume
that the new system P2 and P1 are similar but have different
parameters. Due to the differences in the parameters of these
two environments, the distributions of D1 and D2 are differ-
ent, which can cause performance degradation of the previous
model M1 on the data D2 of the new environment P2. In the
machine learning literature, this problem is known as trans-
ductive learning or domain adaptation where the domain of
source task DS and that of target task DT are different but
related while YS = YT [2].

A. Formulation of the LPV-SS Model Identification
Problem

A discrete-time LPV-SS model with innovation-type noise
can be expressed as

xk+1 = A(pk)xk + B(pk)uk + K(pk)ek,

yk = C(pk)xk + D(pk)uk + ek, (1)

1We use X , X, x and PX(x) to respectively denote the space, the variable,
the sample and the distribution, and hence x ∈ X ⊆ X .

where pk ∈ P ⊂ Rnp , uk ∈ Rnu , xk ∈ Rnx , ek ∈ Rny , and yk ∈
Rny denote the scheduling variables, inputs, states, stochastic
white noise process, and output measurements of the system
at time instant k ∈ Z,2 respectively, and A, B, C, D, and K are
smooth matrix functions of pk. The LPV-SS representation (1)
can be transformed into

xk+1 = Ã(pk)xk + B̃(pk)uk + K(pk)yk,

yk = C(pk)xk + D(pk)uk + ek, (2)

where Ã(pk) = A(pk) − K(pk)C(pk) and B̃(pk) = B(pk) −
K(pk)D(pk). We note that (2) must be asymptotically stable in
the deterministic sense for identification of (1) [5]. The LPV-
SS model identification problem is to estimate states xk, as
well as the matrix functions Ã(pk), B̃(pk), C(pk), D(pk) and
K(pk) given the measurements D = {uk, yk, pk}N

k=1.

B. State Estimation in LPV-SS Identification Using KCCA
Considering that states are the interface between the past

and future behavior of a system, the authors in [5] show
that a state sequence that is compatible with the system
can be estimated by determining the maximum correlation
(using canonical correlation analysis (CCA)) between ϕp(p̄d

k )z̄
d
k

and ϕf(p̄d
k+d)z̄

d
k+d, where ϕp and ϕf represent the past and

future state maps, p̄d
k :=

[
pT

k−d · · · pT
k−1

]T and p̄d
k+d :=[

pT
k · · · pT

k+d−1

]T denote past and future scheduling vari-

ables, and z̄d
k :=

[
ūdT

k ȳdT
k

]T and z̄d
k+d :=

[
ūdT

k+d ȳdT
k+d

]T

concatenate past and future inputs and outputs which are
denoted similarly to p̄d

k and p̄d
k+d. Since ϕp and ϕf are unknown

nonlinear dynamic functions of pk, [5] used kernelized CCA
to estimate states by solving

max
v,w

J (v, w, s, r) = γ

N∑

k=1

(
skrk − vf

1
2

s2
k − vp

1
2

r2
k

)

− 1
2

vTv − 1
2

wTw

s.t. sk = vTϕf(p̄d
k+d)z̄

d
k+d, k = 1, . . . , N,

rk = wTϕp(p̄d
k )z̄

d
k , k = 1, . . . , N,

where γ , vp, and vf are hyperparameters. This problem can be
simplified to a regularized generalized eigenvalue problem and
solved via the following economical singular value decompo-
sition (SVD):

[
vfKff + I 0

0 vpKpp + I

]−1[ 0 Kpp
Kff 0

]

= W#
[

V1
V2

]T

. (3)

We note that η = [V1]1 and κ = [V2]1 are Lagrange
multipliers of the dual problem with [·]j denoting the j-th
column. In (3), [Kpp]l,m = z̄dT

l k̄(p̄d
l , p̄d

m)z̄d
m, [Kff]l,m =

z̄dT
l+dk̄(p̄d

l+d, p̄d
m+d)z̄

d
m+d where k̄ is a kernel function, and I is

the identity matrix. Then, we can obtain the state estimate as
x̂k = KT[

k̄(p̄d
k , p̄d

1)z̄
d
1 · · · k̄(p̄d

k , p̄d
N)z̄d

N

]Tz̄d
k where K = [V2]1:nx

consists of the first nx columns of V2.

2Z denotes the set of integers.
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C. Matrix Function Estimation Using LS-SVM
With the estimated state sequence {x̂k}N

k=1 and using the
extended dataset D̆ = {uk, yk, x̂k, pk}N

k=1, the matrix func-
tions can be estimated by solving the following LS-SVM
problem3 [5]:

min
Wx,Wy,ε,ζ

I(Wx, Wy, ε, ζ ) = 1
2

(
‖Wx‖2

F + ‖Wy‖2
F

+
N∑

k=1

εT
k (εk + ζT

k )ζk

)

s.t. εk = x̂k − Wxϕ
T
x (pk),

ζk = ŷk − Wyϕ
T
y (pk),

where ϕx(pk)
T :=

[
(*Ã(pk)x̂k)

T (*B̃(pk)uk)
T (*K(pk)yk)

T]T

and ϕy(pk)
T :=

[
(*C(pk)x̂k)

T (*D(pk)uk)
T
]T with

*i(·), i = Ã, B̃, K, C, D, being implicit feature maps
induced by the kernel functions k̄i, which represent the matrix
functions. Polynomial kernels and radial basis functions
(RBF) are the commonly used ones. Assuming that αj and βj
are the Lagrange multipliers associated with the Lagrangian
function of the LS-SVM problem at time j, KKT conditions
are then used to compute the optimal α∗

j and β∗
j . Finally,

the estimation of the matrix functions can be calculated by
Ãe(·) = ∑N

j=1 α
∗
j x̂T

j k̄Ã(pj, ·), B̃e(·) = ∑N
j=1 α

∗
j uT

j k̄B̃(pj, ·),
Ke(·) = ∑N

j=1 α
∗
j yT

j k̄K(pj, ·), Ce(·) = ∑N
j=1 β

∗
j x̂T

j k̄C(pj, ·), and
De(·) = ∑N

j=1 β
∗
j uT

j k̄D(pj, ·).

III. TRANSFER LEARNING FOR LPV-SS
MODEL IDENTIFICATION

In this section, we introduce two approaches of transfer
learning for system identification from the perspectives of
instances and features. In particular, we consider the impact of
the difference between source and target tasks on state estima-
tion and use sample bias correction and common latent space
learning to minimize such a difference for transfer.

A. Sample Bias Correction
First, we consider the scenario where the distributions of

the scheduling variable are different, i.e., PPT )= PPS . PP
affects state estimation through Kpp and Kff in Eq. (3). To
avoid the negative impact of the distribution discrepancy (gen-
erally called sample bias), one approach is to resample DS
such that the empirical distributions follow P̂DS ≈ P̂DT . The
ideal resampling weights are β = PDT

PDS
. However, estimating

both distributions to compute β is overkill. Instead, kernel
mean matching (KMM) [9] directly estimates β from data by
solving the following quadratic problem:

min
β

1
2
βTKS,Sβ − KT

S β (4)

s.t.

∣∣∣∣∣
1
nS

nS∑

i=1

βi − 1

∣∣∣∣∣ ≤ ε, (5)

βi ∈ [0, B], i = 1, . . . , nS (6)

3Here, the scheduling dependency is restricted to be static as in (2) for the
sake of simplicity.

where βi denotes the i-th entry of vector β, KS,S is a kernel
matrix, the (i, j)-th entry of which is [KS,S]i,j = k̄(x(i)

S , x(j)
S )

and [KS]i = nS
nT

∑nT
j=1 k̄(x(i)

S , x(j)
T ). Furthermore, x(i)

S represents

the i-th sample in the source domain while x(j)
T denotes the

j-th sample in the target domain. Constraint (6) is to limit
the scope of the distribution discrepancy and the influence
of individual observations and (5) to ensure that βiP̂DS(x

(i)
S )

is close to a valid probability distribution. Furthermore, the
optimal solution β∗ matches the average value of the feature
vectors of DS with the average feature vectors of DT and
thus can be used to reweight x(i)

S , as the kernel embedding is
one-to-one when using a universal kernel [10]. In particular,
a kernel k is universal if it induces a strictly positive definite
kernel matrix for any set of distinct points [11]. One typical
universal kernel is Gaussian kernel on compact subsets of Rd.
Additionally, ε in (5) should be chosen as O( B√

nS
) such that

normalizing
∑nS

i=1 βi only induces a slight change of (4).
Different from [9] that assumes PS(Y|X) = PT(Y|X)

and estimates β = PXT
PXS

, we collect all the related vari-

ables into x(k) =
[
p̄dT

k+d z̄dT
k+d p̄dT

k z̄dT
k

]T ∈ R2d(np+nu+ny)

and employ KMM to minimize the distribution discrepancy
between XS and XT for three reasons. Firstly, as shown
in Section II-B, state estimation is affected by p̄d

k+d, z̄d
k+d,

p̄d
k and z̄d

k . Secondly, KCCA finds the optimal linear com-
bination w and v to maximize the correlation of wTX and
vTY rather than predicting Y using X. Therefore, assum-
ing PS(Y|X) = PT(Y|X) is not proper for state estimation
using KCCA. Lastly, the generalization bounds based on
the kernel embedding for KMM still hold. Additionally, the
increase of data dimensions will not result in the curse of
dimensionality that befalls high-dimensional density estima-
tion, as we estimate β directly from data. Resampling xS by
x(i)

S ∼ β∗
i P̂DS(x

(i)
S ) such that sample bias is corrected, we

apply KCCA to the combined xT and the resampled xS to esti-
mate the state sequence and then LS-SVM to estimate matrix
functions.

B. Latent Space Learning
When the differences between source and target domains

are beyond sample bias, there exists a latent space where
PS(φ(xS)) ≈ PT(ψ(xT)) and (φ,ψ) are functions that map
data to the features in that space, due to the similarity of source
and target tasks. However, PS(φ(xS)) ≈ PT(ψ(xT)) is not a
sufficient condition for effective transfer learning. For exam-
ple, let φ(x) = ψ(x) = 1, then the extracted feature is useless
for system identification. Therefore, the information contained
in DS and DT should be preserved.

Definition 1: The LPV-SS representation (2) with state
dimension nx is said to be structurally observable if there
exists a scheduling trajectory p ∈ PZ such that the n-step
observability matrix is full (column) rank for all k ∈ Z.

For a structurally observable LPV-SS representation of a
system, z̄d

k forms a non-minimal state representation of the
system, which is illuminated by Lemma 1.

Lemma 1 [5]: Let (2) be structurally observable and
d ≥ nx. Then, there exists a function f : Rnf −→ Rny with
nf = (d + 1)(nu + np + nx)+ dny such that for any trajectories
p ∈ PZ, u ∈ (Rnu)Z and e ∈ (Rny)Z

yk = f (uk, pk, ek, z̄d
k , p̄d

k , ēd
k ). (7)
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The states should summarize the historical information that
is useful for predicting the future behavior of a system. Instead
of using z̄d

k , the method in Section II-B estimates the states
up to a similarity transformation T0 which can have dynamic
scheduling dependency. Furthermore, T0 is injective when
nx̂ ≥ nx and nx̂ is determined by the rank-revealing property
of the SVD in (3). To learn a common latent space to facil-
itate transfer learning, the objective is to find a state-space
basis transformation (T / p)4 such that PS((T / p) · xS) ≈
PT((T /p) · xT) while preserving the state property. Therefore,
we propose to respectively estimate state sequences xS and
xT

5 for xS and xT using KCCA and then find the basis trans-
formation (T / p) using transfer component analysis (TCA)
proposed by [8].

To measure the distribution discrepancy between PxS and
PxT , we use the maximum mean discrepancy (MMD) proposed
by [12]. Given samples xS : {x(i)

S }nS
i=1 ∼ p and xT : {x(j)

T }nT
j=1 ∼ q,

the empirical estimate of MMD is

M̂MD = ‖ 1
nS

nS∑

i=1

φ(x(i)
S ) − 1

nT

nT∑

j=1

φ(x(j)
T )‖2

H (8)

= 1

n2
S

nS∑

i=1

nS∑

j=1

k̄(x(i)
S , x(j)

S ) + 1

n2
T

nT∑

i=1

nT∑

j=1

k̄(x(i)
T , x(j)

T )

− 2
nSnT

nS∑

i=1

nT∑

j=1

k̄(x(i)
S , x(j)

T ) (9)

= tr(KL) (10)

where H denotes a reproducing kernel Hilbert space
(RKHS) with kernel k̄ and tr denotes matrix trace,
φ : X −→ H is the induced feature function by k̄, K =[

KxS,xS KxS,xT

KxT ,xS KxT ,xT

]
is the augmented kernel matrix, L =




1
n2

S
1nS 1T

nS
− 1

nSnT
1nS 1T

nT

− 1
nT nS

1nT 1T
nS

1
n2

T
1nT 1T

nT



 is the weight matrix where

1nS is the column vectors with all ones and length nS, and
K, L ∈ R(nS+nT )×(nS+nT ). To learn (T / p), inspired by [8],
we introduce a transformation matrix W̃ into the empirical
kernel map [13] and derive the following parameterized kernel
matrix:

K̃ = (KK− 1
2 W̃)(W̃TK− 1

2 K) = KWWTK, (11)

where W = K− 1
2 W̃. Using (10) and (11), the parameterized

MMD between the states xS and xT can be expressed as

M̂MD = tr((KWWTK)L) = tr(WTKLKW). (12)

Then, the transformation matrix can be learned by solving the
following optimization problem:

min
W

tr(WTW) + µtr(WTKLKW)) (13)

s.t. WTKHKW = I, (14)

where tr(WTW) is a regularization term with a trade-off
parameter µ determined by cross-validation [14] to control the
complexity of W. Constraint (14) is to avoid trivial solution

4The notation (T /p) is used as a shorthand to express dynamic dependence
of the state transformation T on pk, . . . , pk−d+1.

5xS and xT have the same dimension.

TABLE I
CSTR MODEL SPECIFICATIONS

(W = 0) and H = InS+nT − 1
nS+nT

11T is the centering matrix.
As shown in [8], this problem can be solved by the SVD of
(I+µKLK)−1KHK and W∗ consists of the eigenvectors corre-
sponding to the n̂TCA leading eigenvalues. Therefore, the final
dimension of x̂T = [KW]nS+1:,1:n̂TCA is n̂TCA after state estima-
tion via KCCA and transfer learning by TCA. Moreover, both
CCA and TCA can be employed as dimensionality reduction
methods, which makes it possible to use a large d to bet-
ter model the dynamics but a small order n̂ to describe the
system. Since TCA only requires an eigenvalue decomposi-
tion, the computational complexity for this transfer learning
approach is O(n̂TCA(nS + nT)2), according to [15]. It is noted
that since x̂S = [KW]1:nS,1:n̂TCA and x̂T have similar distribu-
tions, we use only x̂S to estimate matrix functions via LS-SVM
and evaluate the model accuracy on x̂T .

IV. EXPERIMENTAL RESULTS AND VALIDATION

The proposed learning methods of this letter are evaluated
using the model of an ideal continuous stirred tank reactor
(CSTR). A first principles-based model of CSTR is described
by (see Table I for the description of variables)

Ṫ2 = Q1

V
(T1 − T2) − UHE

AHE
(T2 − Tc) + /Hk0

ρcρ
e− EA

RT2 C2,

Ċ2 = Q1

V
(C1 − C2) − k0e− EA

RT2 C2.

A. Validation of Sample Bias Correction Method
1) Experimental Setting: We use the same specifications as

in [5] for the source task (denoted by TS). The temperature
T2 is considered to be the regulated output, Q1 and Tc are
used as manipulable signals, and raw material concentration
C1 is taken as the scheduling variable p while the internal state
C2 is assumed to be not measurable. Pseudo random binary
sequences (PRBS) of the two inputs with ±10% of the nominal
values are used as the exciting signals and Gaussian white
noise is added to the measured output T2 such that SNR=
25 db is maintained. The scheduling signal for C1 is slowly
varying with limits at ±50% of the nominal value, as shown
in Fig. 1(c). Additionally, the sampling time is 60 s and the
total simulation time is 120,000 s. Therefore, 2,000 samples
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Fig. 1. Data comparison between TS and TT for KMM.

Fig. 2. BFR comparison between: (a) TS , (b) TT using the same hyper-
parameters as TS , and (c) TT with sample bias correction. Subplot (d)
compares TS and TT for TCA.

are collected and split in training and validation set with the
ratio of 65%/35%. We reproduced the results in [5] using
the reported hyperparameters6 except for d = 2, which saves
computational time and gives a larger BFR= 84.48% than
reported BFR= 83.23%.

For the target task (denoted by TT ), we decrease the limits
of the scheduling trajectory from ±50% to ±20% and reduce
the number of samples from 2,000 to 1,000 (see Fig. 1 for
comparison). In this way, we construct a scenario where sam-
ple bias exists, i.e., PxT )= PxS . Moreover, the distribution
discrepancy can be indicated by the BFR decreases shown in
Fig. 2.

2) Results and Discussion: We estimated the resampling
weights β using the method described in Section III-A. For
KMM, we used Gaussian kernel with σ = 1 and B = 1. Since
the range of β (0.2923) is large, instead of resampling the
training set of TS, we discarded the samples with βi < 0.98

6d = 2, nx̂ = 2, σc = 470, vf = 1000, vp = 1000, {σs,i}4
i=1 =

{360, 2600, 260, 7000}, {γi}2
i=1 = {500, 500} and ψ = 1.2 × 105.

Fig. 3. BFR comparison for TT with and without latent space learning.

and selected DS1 with 1,187 transferable samples that are sim-
ilar to data in the training set of TT . Then, we estimated a
state sequence for TT by applying KCCA to the combined
dataset of DS1 and the training set of TT . With the estimated
sequence, we used the extended dataset D̆T to estimate the
matrix functions. The KMM increases BFR by over 15%, as
shown in Fig. 2(c).

To further validate the proposed method, we repeated the
experiment 100 times in a Monte Carlo study and the mea-
surement noises were independently generated each time
but SNR= 25 db was maintained. However, similar to the
adversarial noise in deep learning, fixed hyperparameters of
KCCA and LS-SVM cannot provide good performance for
all the datasets with different i.i.d. noises. In this letter,
we focus on the benefits of transfer learning for system
identification. Therefore, only the datasets on which the hyper-
parameters of TS give acceptable BFRs are examined to see
whether the sample bias correction can boost the accuracy
of identification. The maximal BFR without sample bias cor-
rection for the 100 repeats is 74.63%. The BFRs on 35
out of 100 repeats using KMM are greater than 74.63%
with the mean of BFRs µ̂KMM = 75.30% and standard
deviation σ̂KMM = 0.44% while µ̂ = 62.32% and σ̂ =
17.18% is obtained for the same 35 datasets without transfer
learning.

B. Validation of Latent Space Learning Method
1) Experimental Setting: For the target task TT , besides

decreasing the limits of the scheduling trajectory and reduc-
ing the number of samples as in Section IV-A, we change
AHE (which is a typical design parameter for CSTR) from 1
to 2 and thus V = AHE · h from 5 to 10, to have similar but
different systems. Moreover, we decrease SNR from 25 db to
10 db (see Fig. 2(d) for comparison). In this way, we increase
the distribution discrepancy between PxT and PxS , which is
indicated by the significant decrease of BFR in Fig. 3(a).

2) Results and Discussion: The method described in
Section III-B was implemented, where we first estimated state
sequences for TS and TT with nx̂ = 2 and then used TCA to
learn the state-space basis transformation (T / p). Moreover,
we normalized the states with the 22 norm for each dimension
to facilitate computation of TCA. For TCA hyperparameters,
we used Gaussian RBF kernel with σ = 1, set the trade-off
parameter as µ = 1 and determined n̂TCA = 2. After transfor-
mation, the state distributions of TS and TT in the latent space
are more similar, as shown in Fig. 4(a)–(b). Therefore, the
transformed data in DS can facilitate learning TT . We applied
LS-SVM approach in Section II-C to the transformed data
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Fig. 4. State distribution comparison before/after transformation. The
horizontal axis represents the first dimension of the state while the ver-
tical the second. Subplots (a) and (b) show a successful case, while (c)
and (d) show a failed case.

TABLE II
COMPARISON BETWEEN KMM AND TCA

in DS to estimate matrix functions and tested the estimated
matrix functions on the transformed data in DT . Fig. 3 shows
that the learned transformation matrix significantly increases
BFR by more than 30%.

Similar to Section IV-A, we repeated the experiment 100
times. Since TCA is applied after state estimation, and
KCCA with fixed hyperparameters can provide insufficient
state estimation due to extreme noise and low SNR, TCA
can fail to find a proper latent space for transfer learn-
ing. A failed case is shown in Fig. 4(c)–(d). However, by
examining the distribution in the latent space, whether to
continue transfer learning can be determined in advance
of estimating matrix functions. In our experiments, 43 out
of 100 repeats show significant performance improvement
with the mean BFR of µ̂TCA = 87.19% and standard
deviation of σ̂TCA = 2.26% while µ̂ = 50.61% and
σ̂ = 12.90% for the same 43 datasets without transfer
learning.

Additionally, we tested TCA for experimental setting in
Section IV-A, as TCA designed for large distribution discrep-
ancy should be able to handle a simple scenario. In our exper-
iments, 56 out of 100 repeats show significant performance
improvement with the mean BFR of µ̂TCA = 88.12% and
standard deviation of σ̂TCA = 2.28% while µ̂ = 64.60%
and σ̂ = 15.63% for the same 56 datasets without transfer
learning. To compare the performance of TCA and KMM,
24 datasets are selected where both TCA and KMM achieve
BFRs greater than 74.63%. Table II summarizes the statistics
on those 24 datasets. Note that TT refers to identification with-
out transfer learning, and only running time of TCA and KMM
are considered to calculate the average time. When using the

same hyperparameters for KCCA and LS-SVM, TCA achieves
better prediction accuracy than KMM at the expense of higher
computational time.

V. CONCLUDING REMARKS

In this letter, transfer learning-based methods (and in par-
ticular, sample bias correction and latent space learning) were
proposed for LPV-SS model identification using kernelized
machine learning. For sample bias, a kernel mean matching
method was introduced to estimate the resampling weights
directly from data in the source and target domains before
state estimation. For latent space learning, transfer compo-
nent analysis was adopted to learn a state-space transformation
matrix such that the transformed data of the source task
in the latent space can be used for target task learning.
Experiments on two CSTR models with different parameters
showed that the proposed methods can boost the accuracy
of model identification and moderate the efforts of hyperpa-
rameter tuning for LPV-SS model learning using kernelized
methods.
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