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ABSTRACT: All-solid-state lithium batteries promise significant
improvements in energy density and safety over traditional liquid
electrolyte batteries. The Al-doped Li7La3Zr2O12 (LLZO) solid-
state electrolyte shows excellent potential given its high ionic
conductivity and good thermal, chemical, and electrochemical
stability. Nevertheless, further improvements on electrochemical
and mechanical properties of LLZO call for an in-depth
understanding of its local microstructure. Here, we employ Bragg
coherent diffractive imaging to investigate the atomic displace-
ments inside single grains of LLZO with various Al-doping concentrations, resulting in cubic, tetragonal, and cubic−tetragonal mixed
structures. We observe coexisting domains of different crystallographic orientations in the tetragonal structure. We further show that
Al doping leads to crystal defects such as dislocations and phase boundaries in the mixed- and cubic-phase grain. This study
addresses the effect of Al doping on the nanoscale structure within individual grains of LLZO, which is informative for the future
development of solid-state batteries.
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The ever-increasing demand for safer, higher-density, and
temperature-insensitive energy storage systems has fueled

the development of all-solid-state Li batteries, which allow the
use of the lithium metal anode without the notorious dendrite
formation.1−4 At present, most efforts focus on designing solid-
state electrolytes with high ionic conductivity (>10−4 S cm−1).
Additional considerations include chemical, electrochemical,
and structural stability against lithiummetal and various cathode
materials.5 There are several potential options for solid inorganic
electrolytes, including garnet Li7La3Zr2O12 (LLZO), LiZ-
r2(PO4)3 (NASCION), LiPON, perovskite Li0.5La0.5TiO3,
antiperovskite Li3OCl, and sulfide Li10GeP2S12. Recent research
has shown that specific crystal structures, such as the body-
centered cubic structure, can allow facile ionic conduction,1

presumably due to the lithium’s direct hops between adjacent
tetrahedral sites with low activation energy.6 Among these
structures, the garnet-type electrolytes have received significant
attention because of their accessible synthesis, high-temperature
stability, and high ionic conductivity.3,4,7−9

The garnet-type LLZO has shown exceptionally high ionic
conductivity (10−3 to 10−4 S/cm) and good chemical stability
against Li metal, making it suitable for all-solid-state battery
applications.8,10 While the cubic LLZO (c-LLZO) is reported to
have high ionic conductivity, the tetragonal structure (t-LLZO)
is stable at room temperature with a conductivity 2 orders of
magnitude lower (both structures are shown in Figure 1a).9,11,12

One reason for the conductivity difference between the cubic

and tetragonal structures is the sparsity of lithium dynamical
excitations in t-LLZO due to its strong Li ordering, which limits
the ionic pathway in the tetragonal structure.11,13,14 Recent
experiments have demonstrated that aliovalent doping can
stabilize the metastable pure c-LLZO and increase its ionic
conductivity by introducing lithium vacancies from the
substitution of high valence metal ions.7,15,16 Among the doping
species, Al and Ga have received the most attention due to their
high ionic conductivity and good sinter ability.17,18 Recent
studies suggest that Al and Ga exhibit a similar preference of
occupying the Li sites, and thus, the difference in the measured
ionic conductivity is most likely due to the variation in the LLZO
microstructure.19 For example, Ga facilitates the growth of much
larger grains of LLZOwhereas Al has a finer microstructure with
extensive grain boundaries.20

While Al-doping’s impact on ionic diffusion received
considerable attention, the effect of doping on the micro-
structure of LLZOwarrants a more thorough investigation since
it is inherently related to the material’s mechanical and
electrochemical properties.22 For example, local strain can
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dominate the overall ion transport at the device scale: theoretical
studies have predicted that a 5% local strain in LLZO can
decrease its conductivity by an order of magnitude.23,24 Defects
such as dislocations and grain boundaries can also contribute to
the mechanical failure of LLZO, which includes cracking and
dendrite formation.25 However, the lack of effective tools to
probe the microstructure of individual LLZO grains hampered
the understanding of the correlation between the material’s
nanoscale structural properties and its ensemble-averaged
functionality, which impedes the advancement of more
sophisticated solid-state electrolyte design routes.1,7,8

Here, we combine single grain X-ray diffraction and Bragg
coherent diffractive imaging (BCDI) to study the extended
crystalline defects of LLZO grains embedded in sintered pellets
(see Figure 1b for the experimental setup). Single grain
diffraction provides a unique perspective on the microstructure,
while BCDI delivers a three-dimensional (3D) displacement
field inside a nanocrystal that allows us to study strain, phase
distribution, and dislocations within the submicron grains.26−28

We report the existence of twin domain boundaries within single
LLZO grains deduced from the split diffraction peak of an
individual grain in the tetragonal structure. Combined with the
3D imaging of the displacement field inside individual grains,
our study shows the development of high-strain regions from
insufficient Al doping in the mixed structure. Imaging also
reveals the presence of edge dislocations in both the mixed and
cubic structural phases. We expect the observed structural
defects to have profound implications on the mechanical and
electrical performance of LLZO: while defect sites at the surface
are prone to dendrite formation, dislocations in bulk can
accelerate the ionic conduction.
T h e t e t r a g o n a l , L i 7 A l x = 0 L a 3 Z r 2O 1 2 , m i x e d ,

Li6.61Alx=0.13La3Zr2O12, and cubic, Li6.28Alx=0.24La3Zr2O12, sam-
ples are prepared identically through the solid-state synthesis
using the precursors of Li2CO3, Al2O3, La(OH)3, and ZrO2 with
10% excess of Li2CO3 (molar ratios of 3.5:0:3:2 for x = 0,
3.3:0.065:3:2 for x = 0.13, and, 3.1:0.12:3:2 for x = 0.24). The
precursors are thoroughly ball milled at 450 rpm in a ZrO2 jar

with isopropyl alcohol (IPA) for 8 h. After being sufficiently
dried, the mixed precursors are pressed into pellets using
uniaxial pressing in a 10 mm stainless die at a pressure of 10
MPa. The pellets are then transferred into a box furnace
preheated at 1000 °C for 10 h. Heating over 1000 °C results in
the loss of lithium and the formation of La2Zr2O7 impurities,
while below 1000 °C, the conductive cubic structure is not
stable.29,30 Finally, the preheated precursors are ground,
repressed, and reheated at 1000 °C for 10 h. Past works have
reported the ionic conductivity of the c-LLZO around 2 × 10−4

S/cm and of the m-LLZO and t-LLZO at least 2 orders of
magnitude lower.31,32

We perform a conventional X-ray powder diffraction (XRD)
measurement to characterize the structures of the three
separately synthesized samples (see Figure 2). Consistent with

the literature,15,33 the XRD analysis confirms the presence of t-
LLZO at x = 0, characterized by the split diffraction peaks (see
the inset in Figure 2a). At the largest aluminum content (x =
0.24), the split peak merges into a single peak identified as the
cubic structure (see Figure 2c). At the intermediate level of
doping, the double peaks merge into broad single peaks, which
we identify as the mixed-phase (m-LLZO) (see Figure 2b). The
split (211) peak in the tetragonal phase stems from the slight
difference of the interplanar spacing between the (211) and
(112) planes, which in the cubic structure becomes one single
peak due to the identical lattice spacings (insets of Figure 2).
The LLZO pellets contain crystalline grains of about 1 μm in

size (see Figure S1). To get an insight into the microstructure of
the single grains, we perform synchrotron-based single grain
diffraction that leverages the high X-ray flux. We also exploit the
high transverse coherence length of a third-generation
synchrotron radiation source34 to successfully perform BCDI
on the LLZO grains embedded in the sintered pellet (see Figure
1b for a schematic experimental setup). The randomly oriented
LLZO grains in a ∼100 μm thick pellet are illuminated by the
incident coherent X-ray beam at a photon energy of 10 keV. The
diffraction pattern around the (211) Bragg peak is recorded by a
2D detector positioned 2m downstream from the sample at a 2θ
angle of 13.7° around q = 1.2 Å−1 (q = 4π sin(θ)/λ, where λ is the
wavelength). The random orientation of the grains inside the
pellet and the high angular sensitivity of Bragg diffraction allows
us to isolate the coherent X-ray diffraction pattern from a single

Figure 1. (a) Coordination polyhedron (blue) around the transition
metals La and Zr and the Li sites (green) of the tetragonal (left) and
cubic (right) LLZO structure using VESTA.21 The Al doping (red) is
also shown in the cubic structure. The white portion of the Li sites in
cubic LLZO indicates a low occupation number compared to the
tetragonal LLZO in which all Li sites have an occupation number of 1.
The occupational disorder in the cubic structure contributes to its high
ionic conductivity. (b) The experimental setup and a typical recorded
diffraction pattern for Bragg coherent diffractive imaging.

Figure 2. Powder XRD patterns for (a) tetragonal, Li7La3Zr2O12
(blue), (b) mixed, Li6.61Alx=0.13La3Zr2O12 (magenta), and (c) cubic,
Li6.28Alx=0.24La3Zr2O12 (red), structures. The insets are the enlarged
region of the (211) peak measured for coherent single grain diffraction.
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grain. We acquire the 3D reciprocal space map by rotating the
sample stage in steps by about 1° (Figure S2). We first analyze
the single particle diffraction patterns directly and then
reconstruct the real-space 3D displacement field of the
individual grains through an iterative phase retrieval algorithm.35

We use the 3D images of the interior structure of LLZO to study
crystal defects, particularly dislocations and strain gra-
dients.26−28,36

While the powder XRD patterns in Figure 2 yield statistically
averaged information, the single-grain diffraction provides a
perspective on the microstructure of LLZO single grains. By
measuring single-grain diffraction patterns of a dozen grains in
LLZO pellets of each structural phase, we conduct a statistical
analysis on the microstructure of the individual LLZO grains
(see Figure 3). In the absence of Al doping at x = 0, the LLZO

grains present two distinct types of diffraction data: a split peak
similar to the averaged powder XRD or a single peak (Figure 3a;
also see Figure S3). Most grains in the tetragonal structure show
only one diffraction peak (blue or yellow in Figure 3a), where
the Bragg angle can be associated with either the (211) or the
(112) peaks in the powder XRD (Figure 2a). The single peaks
show that each of these individual grains consists of a single
domain, oriented differently in different grains. The average over
multiple grains yields the double peak structure observed in

powder XRD. The second type of single-grain diffraction peaks,
nevertheless, presents a split peak between q = 1.21 and 1.23
Å−1, similar to the powder XRD but at the single grain level. The
presence of a double peak indicates that a grain consists of two
domains, one with (211) and the other with (112) planes
aligned with the scattering vector and separated by a twin
boundary inside single t-LLZO grains (see the inset of Figure
3a).
To investigate the structural morphology of LLZO due to the

introduction of Al dopants, we analyze the Bragg peak position
and shape. Following Bragg’s law, the peak position in the
reciprocal space is inversely proportional to the interplanar
spacing, and a peak broadens with an increasing strain gradient
in the grain.37,38 Although both the c-LLZO andm-LLZO grains
present only one peak in Figure 3b,c, the peaks of m-LLZO all
center around q = 1.21 Å−1 but are 50% wider. On the contrary,
the sharper peaks in c-LLZO have a distribution with a 75%
higher variation than the mixed structure (see Figure S4). The
X-ray data allows the following interpretation. When the Al
content is small, the limited substitution of Li sites with Al ions
results in a large strain gradient, possibly due to the development
of inhomogeneity of phases within the m-LLZO grains (see the
inset of Figure 3b). As the Al doping increases, a full phase
transformation is activated, and large strain-free crystalline
domains of stable c-LLZO form. Nevertheless, our data show
that the lattice spacing in the grains varies slightly, likely due to
the difference in the chemical composition of Al (see the inset of
Figure 3c).
To further investigate the type of extended defects within

LLZO grains, the diffraction data (see Figure S5) is inverted
through a rigorous phase retrieval algorithm that results in a
three-dimensional complex-valued function.35 The final result is
an average of ten single reconstructions (see Figure S6). The
complex function’s amplitude is the density of the scattering
planes (reflecting the shape of the grain), and the phase is the
displacement field from the ideal lattice measured along the
scattering vector q.39 The strain is then calculated as the spatial
derivative of the displacement field, which is connected to stress
originating from chemical, mechanical, and other forces on the
local environment of the crystal.34 The reconstructed 3D shape
and displacement field for the mixed and cubic structure of the
LLZO grains are shown in Figure 4a,d, where the cross sections
of the 3D phase are shown in the left of Figure 4b,c,e,f. The 2D
maps display singularities in the displacement field (circled in
Figure 4b,c,e,f) associated with dislocations, previously imaged
by BCDI in single grains .27,28,40 Interestingly, the reconstruc-
tion on a single tetragonal grain does not show such features (see
Figure S7).
To evaluate the type of defects, we zoom in on the singularity

in Figure 4b (see Figure 5). Along an arbitrary loop around the
singularity, the displacement field changes from 0 to d (Figure
5b), which equals one lattice spacing, d, between the (211)
planes. The equivalence of the loop with the Burgers circuit
establishes the relationship between the singularity and the
presence of dislocations inside the grains.26−28,36 At a
dislocation site, the Burgers circuit is one extra lattice spacing,
d, longer than the Burgers circuit around a perfect crystal (Figure
5c). Since the experimental BCDI geometry is only sensitive to
the displacement along the scattering vector direction [211] and
the displacement at the singularity is exactly one lattice spacing,
we conclude that the Burgers vector is likely along the [211]
direction. The dislocation lines directly visible in the 3D
displacement field appear perpendicular to the Burgers vector

Figure 3. X-ray diffraction intensity for individual LLZO grains in the
(a) tetragonal, (b) mixed, and (c) cubic structure as a function of
momentum transfer q. The colors of the peak indicate the peak position
in q, and every peak curve has one fixed color. The intensity is
normalized by the integrated intensity of the peak (note the maximum
intensity is higher in the cubic phase due to the sharper diffraction peaks
in (c)). In (a), two types of tetragonal peaks are visible: split peaks (one
example is shown in a dashed black line for clarity) and single peaks at
either low q (blue) or high q (yellow). The insets illustrate the possible
constitution of crystal domains for each type of grain. Tetragonal grains
can either be in the two uniform crystal orientations, (211) as blue and
(112) as yellow rotated by 90° from the other, or contain two coexisting
domains. The mixed-phase grains all display a similar lattice constant,
but the peak broadening indicates a strain gradient. The cubic structure
has a uniform domain, but the lattice constant varies between different
grains.
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(seeMovies S1 to S4); thus, we identify all observed dislocations
to be edge dislocations.41 The dislocation lines are also visible in
the strain maps (right of Figure 4b,c,e,f), where the tensile strain
connects with the compressive strain (in blue and red).
The reconstructed displacement maps and the calculated

strain fields in Figure 4 showmore dislocations in themixed than
in the cubic structure (more 2D slices shown in Figure S8; also
see Movies S1 to S4). In addition, the particle in the cubic
structure is mostly strain-free except around the dislocation
lines, while the mixed-phase grain shows extended regions of
tensile strain (yellow region in Figure S9) adjacent to the
dislocations. The lattice spacing in the extended regions is about
0.2% larger than in the rest of the grain. The difference in the

lattice constant of the mixed structure is much smaller than the
2% difference of the lattice spacing between the (112) and (211)
planes of the tetragonal structure. Thus, the mismatch strain
inside the m-LLZO grain is likely due to the reduction of
tetragonality from Al doping and the intragranular phase
separation from the inhomogeneous Al concentration within
the grain and Al accumulation at the domain boundary.42 Future
studies on elemental mapping of Al with nanoscale resolution
can infer the origin of the phase separation. The observation of
these strained nanodomains revealed by the 3D imaging agrees
with our previous conclusion of a large strain gradient in m-
LLZO from the single-grain diffraction, which can lead to an
extensive phase boundary.

Figure 4. Reconstructed 3D displacement field of the LLZO grains with the (a) mixed and (d) cubic structure. The xz cross-section of the
displacement (left) and the calculated strain (right) maps of the mixed structure at (b) y1 and (c) y2 and of the cubic structure at (e) y3 and (f) y4.
Dislocations are visible as singularities in the displacement field. In the strain maps, the dislocation lines appear as regions of the compressive strain
(blue) connecting with the tensile strain (red). The scattering vector (normal to the (211) lattice planes) points along the z-axis, and the scale bar is
500 nm.

Figure 5. (a) 2D slice of the 3D reconstructed displacement field. (b) The zoom of the black square in (a). At the singularity (center of the loop
indicated by the black circle), the displacement field is discontinuous: it changes by one lattice spacing d when tracked along the loop. (c) The
schematic of an edge dislocation and the schematic of a Burgers circuit. The displacement along the loop in a dislocation-free crystal (yellow) is
continuous, while the loop around a dislocation (blue) results in an extra spacing along the Burgers vector.
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To substantiate the difference in the microstructure between
the cubic and mixed structures, we calculated the partial strain
e n e r g y a l o n g t h e [ 2 1 1 ] d i r e c t i o n

∫ ε ε= [ − ̅ ]E Y v v( ) mean( ) d211
1
2 211 211

2 , where Y is the Young’s

modulus of thematerial, ε211(v) is the 3Dmeasured strain, ε  211 is
the average strain, and the sum is taken through the volume of
the particle v.28 Using 150 GPa as the modulus for both
structures,43 the reconstructed particle in the mixed structural
phase has a strain energy of 8.5 nJ/μm3, two times higher than
the E211 of the particle in the cubic phase of 4.0 nJ/μm3. The
strain energy corroborates our previous discussion on the basis
of the phase and strain maps: namely, the mixed structural phase
particle shows more singularities and domain structures that
result in higher strains.
Themicrostructure of c-LLZO andm-LLZO characterized by

the BCDI inherently influences the material’s mechanical
properties and likely has implications on its electrochemical
performance as a solid-state electrolyte. Studies have shown that
the microstructural inhomogeneity, dictated by the structural
defects such as the dislocation networks, can affect the
nucleation tendency of Li accumulation.44−46 Thus, we identify
the dislocation sites that we reveal with BCDI as areas prone to
the formation of Li dendrites, a significant challenge of using Li
metal batteries.47 Furthermore, fracture toughness, a quantita-
tive property that reflects the resistance of cycling-induced
fracture, is heavily dependent on the material’s microstructural
defects such as grain size, impurities, and pre-existing cracks.1,48

Studies have modeled that, at a high fracture toughness, the
creation and propagation of cracks can be avoided, which results
in stable battery performance.49

The inhomogeneous residual strain field that arises from the
dislocations in the mixed and cubic structures has implications
on the structural integrity of the grains. If dislocations cannot
propagate at low temperatures due to the high Peierls stress in
the brittle ceramic LLZO, the mixed structure could fail through
inter- or intragranular fracture, and the high and inhomogeneous
residual stresses could accelerate this process.50 The residual
stresses at the unloaded state minimize the range of allowable
applied stresses that the grain can withstand without exceeding
the ultimate strength of the material. In the cubic structure, the
severity of the strain inhomogeneity is not as extensive since it
has fewer dislocations, which could translate positively toward
its structural integrity in extreme loading conditions.
The microstructure also directly relates to the ionic transport

in Al-doped LLZO. Extended crystalline defects such as grain
boundaries have been reported to suppress ionic diffusion inside
LLZO.51,52 Therefore, the twin boundaries we report inside the
t-LLZO grains could also limit the ionic transport and reduce the
overall conductivity. Computational studies show that tensile
strain, which we observe in the reconstructed m-LLZO, would
reduce the ionic conductivity by a factor of 2.53 However, other
studies have also predicted that the tension of lattice parameters
can instead increase the ionic conductivity of Al-LLZO due to
the expansion of the triangle diffusion bottleneck.23,54 Despite
the uncertainty on the exact effect of the strain on Al-LLZO, we
anticipate that the inter- and intraparticle strain heterogeneity
that we observe in the mixed and cubic structure with BCDI has
a sizable impact on its ionic conductivity.
In summary, we used single grain diffraction and BCDI to

study the structural heterogeneity and extended crystal defects
of single LLZO grains at various degrees of Al doping. We
observed twin domains inside undoped single tetragonal-LLZO

grains. We also found that low Al doping results in a large strain
gradient in mixed-LLZO grains, and as the doping increases,
cubic-LLZO grains stabilize with a reduced strain gradient but
slightly different average lattice constants likely as a result of
varying Al concentrations. The reconstructed displacement field
of both the mixed-LLZO and cubic-LLZO single grains reveals
edge dislocations. In proximity to dislocations, the mixed-LLZO
structure also exhibits extended tensile strain regions that
indicate subdomains of another structural phase separated by an
extensive domain boundary, including dislocations. The
presence of crystal defects reported here shows the critical
role that Al doping plays in modifying the microstructure of
single LLZO grains. In the future, a combination of operando
spectroscopy and imaging techniques is required to better
quantify the connection between the structural defects to ionic
transport and the cycling stability of solid-state electrolytes.
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