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Abstract

We study kinetic theories for isotropic, two-dimensional grain bound-
ary networks which evolve by curvature flow. The number densities
fs(x, t) for s-sided grains, s = 1, 2, . . ., of area x at time t, are mod-
eled by kinetic equations of the form ∂tfs + vs∂xfs = js. The velocity vs

is given by the Mullins-von Neumann rule and the flux js is determined
by the topological transitions caused by the vanishing of grains and their
edges. The foundations of such kinetic models are examined through
simpler particle models for the evolution of grain size, as well as purely
topological models for the evolution of trivalent maps. These models are
used to characterize the parameter space for the flux js. Several kinetic
models in the literature, as well as a new kinetic model, are simulated
and compared with direct numerical simulations of mean curvature flow
on a network. Existence and uniqueness of mild solutions to the kinetic
equations with continuous initial data is established.

1 Introduction

1.1 Two dimensional grain boundary networks

We propose a new class of kinetic and stochastic models to describe the statistics
of an evolving cellular network. We focus on the evolution of an isotropic, two
dimensional grain boundary network consisting of smooth arcs such that: (i) the
normal velocity of each arc is proportional to its curvature (curvature flow ); (ii)
edges (typically) meet at trivalent junctions at an angle of 2π/3 (the Herring
boundary condition) [13]. Such a network of arcs decomposes the plane into
a disjoint collection of grains, each of which have the topology of polygons.
Condition (ii) expresses the equilibrium of line tensions at a junction.

An important aspect of grain boundary evolution is the celebrated von
Neumann-Mullins relation [21, 19]: the area a(t) of a grain with s sides (a
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topological s-gon) changes linearly in time

da

dt
= c(s− 6), (1)

where c is a material constant depending on surface tension and grain mobility.
Thus, the geometry of each grain does not affect its growth, all that matters is
the topology. In this setting, the statistics of a network with many grains are
naturally described by a set of number densities fs(t, a) that count the number
of s-sided cells per unit area that have area a at time t.

We derive kinetic equations that describe the evolution of fs(t, a) from a
simpler stochastic particle system that includes a deterministic drift (as in equa-
tion (1)) along with stochastic ‘switching’ rules between populations based on
the geometry of grain boundary networks. This particle system is an instance
of a Piecewise Deterministic Markov Process (PDMP). Several similar kinetic
theories have been proposed in the literature (as discussed in Section 5) on
the basis of ad hoc rules, or comparison with experiments. However, there ap-
pears to have been no prior attempt to characterize the set of all possible kinetic
models that may be derived from similar foundations (the von Neumann-Mullins
rule and assumptions on the topological changes that arise when grains or grain
boundaries vanish); nor does there appear to have been a prior attempt to com-
pare the predictions of kinetic models with direct numerical simulations of grain
boundary evolution.

1.2 Outline

This article is organized into three inter-related, but loosely dependent parts:

1. A general framework and well-posedness analysis for formal kinetic limits
of a class of piecewise deterministic Markov processes related to grain
boundary coarsening (Section 2, Appendices A and B).

2. Derivation of new stochastic and kinetic models for grain boundary coars-
ening from topological rules (Sections 3-6).

3. Simulation of stochastic particle models that correspond to both new and
existing kinetic models, with comparison to direct numerical simulations
of a level set method (Section 7).

In technical terms, the first part of this paper is most closely tied to fluid-limits
in queuing theory and the theory of piecewise-deterministic Markov processes.
It can be viewed as a demonstration of the utility of these methods for cellular
networks. The stochastic process studied here, an M -species PDMP model, is
a general model for particles that drift on the positive real line and mutate be-
tween several species. An interesting feature of this model is the set of mutation
times, which are caused by particles reaching the origin. From the perspective
of maps on surfaces, this corresponds to a face or edge collapsing to a point, and
immediately changing its topology to satisfy the Herring conditions. Each mu-
tation, from predetermined model parameters, induces randomness on particle
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positions, and thus makes mutation times random. Understanding the behavior
of the system as a whole largely depends on describing the cumulative number
of mutations, a ‘natural clock’ for the system. The interplay between mutation
and empirical particle densities was rigorously studied in [15] with a minimal
example, where authors JK and GM viewed the problem as an instance of a
diminishing urn, and provided exponential concentration inequalities for the
convergence of the particle model to its hydrodynamic limit.

While the first part focuses on the evolution of area statistics, with topolog-
ical restrictions arising only in the description of boundary fluxes, the second
part of this paper is devoted to a study of the ‘topological skeleton’ of grain
boundary evolution. The analysis of annihilation and creation of grains is ex-
amined using the theory of maps on compact surfaces. These ideas are used to
define a Markov chain on the space of trivalent maps (trivalent map evolution).
We do not explore such Markov chains in detail. Instead, we use trivalent map
evolution to systematically derive parameters for the stochastic particle system
model.

In the third part, we provide a numerical comparison between stochastic
particle simulations and direct numerical simulations of grain boundary net-
works using a level set method [7]. The stochastic particle models described
in Section 2 are general enough to include assumptions from previous kinetic
models [10, 9, 8, 17]. We also consider a new assumption which takes the rate
of topological changes due to edge deletion events to be proportional to the
total grain number. Our models also allow us to incorporate information about
first-neighbor correlations in networks.

2 The stochastic particle system and kinetic equa-
tions

In Section 2.1, we will describe a class of particle processes which are amenable
for modelling the coarsening, growth, and mutation found in cellular coarsen-
ing. These processes are examples of piecewise deterministic Markov processes
(PDMPs). Roughly, the theory of PDMPs augments the structure of jump
Markov processes to include random jumps triggered by deterministic drift. It
is shown in Appendix A that the particle system defined informally below gen-
erates a well-defined evolution which is a strong Markov process. In Section 2.2,
we present kinetic limits for PDMP models and state a well-posedness theorem
for this limit, whose proof is provided in Appendix B.

2.1 The finite particle model

We consider a system of N(t) particles at time t distributed amongst M species.
Each particle is of the form (s, x) where s ∈ {1, . . . ,M} indexes the species and
x ∈ R+ denotes the size of the particle. The total number of particles in each
species is denoted Ns(t), thus N(t) =

∑M
s=1Ns(t). The letter N (without the
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argument t) is always used to mean N(0), and is a measure of the size of the
system. The state of the system is denoted

(s,x) = (s1, . . . , sN(t);x1, . . . , xN(t)). (2)

The evolution of the system consists of a deterministic flow interspersed with
stochastic jumps. We describe these in turn.

The deterministic flow is motivated by the von Neumann-Mullins rule. We
divide the species into three distinct groups S−, S0 and S+ of size M−,M0 and
M+ respectively, with M = M− + M0 + M+. It is convenient to label these
species in order:

S− = {1, . . . ,M−}, (3)

S0 = {M− + 1, . . . ,M− +M0}, (4)

S+ = {M− +M0 + 1, . . . ,M}. (5)

For each species s ∈ S−, we assume given a constant velocity vs < 0, so that a
particle of size x at t = 0 has size x + vst at time t > 0. The exit time for the
particle (s, x) is the time at which the size of the particle vanishes, namely

Ts(x) = −
x

vs
, s ∈ S−. (6)

We assume that the species s ∈ S0 do not drift. That is, vs = 0 for s ∈ S0.
Finally, we assume vs > 0 for s ∈ S+. The exit time for all particles of species
S0 and S+ is +∞.

Randomness is introduced into the system in the following way. As t in-
creases, each particle (s, x) in the system drifts deterministically (s, x) 7→ (s, ϕs(x, t))
where ϕs is the flow map defined by x 7→ ϕs(x, t) = x + vst for s = 1, . . . ,M .
Particles evolve until one of the following critical events occur:

(B) Boundary event: A particle hits the origin, i.e. ϕs(x, t) = 0 for some (s, x)
with s ∈ S− and t = Ts(x).

(I) Interior event: An independent Poisson clock with rate β(t) > 0 attached
to each particle rings.

To fix ideas, we illustrate these definitions in the context of grain boundary
networks. Here the state of the system is a collection of N(t) grains, each
belonging to one of M topological classes; s denotes the number of sides of
a grain and x denotes its area. The velocity field vs governing the evolution
of an s-gon is given by the von Neumann-Mullins rule (1). The critical events
correspond respectively to: (B) the removal of a grain from the network when its
size shrinks to zero; and (I) a random interchange of grains of different topology
when an edge vanishes.

Though the size of each particle evolves deterministically, each boundary and
interior event gives rise to a random mutation of particles of different species.
We model each mutation with a mutation matrix . There are M− + 1 such
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matrices: M− matrices corresponding to the M− possible boundary events at
each species l ∈ S−, and one matrix for interior events. We find it necessary
to include mutations in such generality to account for the topology of cellular
networks – the topological changes arising from the vanishing of 3, 4 and 5
sided grains in grain boundary networks is not the same. Aside from some
notational complexity, such generality does not affect the analysis. In Section
3, we explain how to choose the mutation rules based on the geometry of planar
grain boundary networks.

Consider the boundary event when a single particle of species l hits the
origin. The corresponding mutation is determined by a positive integer K(l),
an M × K(l) mutation matrix R(l) taking values in 1, . . . ,M , and a fixed M -
vector w(l) with positive entries. We choose K(l) particles and mutate them as
follows. First, K(l) iid integers S1, . . . , SK(l) that index species are chosen with
probability proportional to the weights w(l) and the total population of each
species:

P (S = σ) =
w

(l)
σ Nσ(t)

∑M
n=1 w

(l)
n Nn(t)

, σ = 1, . . . ,M. (7)

Second, for each random species Sj , a random size Xj is chosen with equal
probability 1/NSj (t) amongst the sizes of all the particles of species Sj . Finally,
these random particles are mutated as follows:

(Sj , Xj) 7−→
(
R

(l)
Sj ,j

, Xj

)
, j = 1, . . . ,K(l). (8)

Thus, a particle of species Sj with size Xj is lost, and a particle of species R(l)
Sj ,j

with the size Xj is created in the mutation. A particle of species l with size 0 is
also lost, so that the total number of the system decrements by one. Note that
selection probabilities and mutations may vary for each of the K(l) mutating
particles. See Figure 1 for an example with four species. In the degenerate
event that the sizes of p species, p > 1, hit the origin simultaneously, we repeat
the process above p times, ordering the boundary events at species l1, . . . , lp in
the sequence l1 ≤ l2 ≤ . . . ≤ lp to be definite. Such ‘collisions’ occur with zero
probability in the kinetic limit.

The process of mutation at an interior event is similar. No particle vanishes,
but particles are mutated according to a fixed positive integer K(0), a mutation
matrix R(0) and weight w(0)

s as above. The integers S1, . . . , SK(0) are chosen
with probability

P (S = σ) =
w

(0)
σ Nσ(t)

∑M
n=1 w

(0)
n Nn(t)

, σ = 1, . . . ,M, (9)

and the particles mutated as follows

(Sj , Xj) 7−→
(
R

(0)
Sj ,j

, Xj

)
, j = 1, . . . ,K(0). (10)

In the context of grain boundary coarsening, the necessity of introducing
randomness for selecting grains results from a mean field assumption. Specifi-
cally, our models will track individual grain areas and number of sides, but not
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Figure 1: A PDMP with four species. Particles travel on four separate copies
of R+. Velocity directions are represented by horizontal arrows, with species
3 having zero velocity. A boundary event occurs when a particle (labelled by
“A”) hits the origin. Three particles are then randomly selected (K(2) = 3),
and reassigned to different species by predetermined reassignments (given by
vertical arrows). In this example, R(2)

41 = 1, R(2)
32 = 2, and R(2)

23 = 3.

information about which grains neighbor each other. To determine mutated
grains at a critical event, we select randomly according to equations (7)-(10),
which impose that grains with identical topologies have equal chances of being
selected to mutate, regardless of their areas.

In order to keep track of the flux in and out of a species we define the
(constant) matrices with integer entries

J (l)
s,σ =

K(l)
∑

j=1

1
{R(l)

sj =σ}
, J (0)

s,σ =
K(0)
∑

j=1

1
{R(0)

sj =σ}
. (11)

Here s and σ index species in {1, . . . ,M}, l indexes a species in S−, and the
entry J

(l)
s,σ counts the total number of mutations from species s to species σ

when a particle of species l hits the origin. Similarly, J (0)
s,σ enumerates the total

number of mutations from species s to species σ at an interior event. We assume
that there are no trivial mutations from a species to itself, i.e.,

J (l)
σσ = 0, J (0)

σσ = 0. (12)

Summing over all species we obtain the identities

M∑

σ=1

J (l)
s,σ =

K(l)
∑

j=1

M∑

σ=1

1
R

(l)
sj =σ

=
K(l)
∑

j=1

1 = K(l),

M∑

σ=1

J (0)
s,σ = K(0). (13)

However, we do not assume detailed balance of mutations between species. That
is, in general,

M∑

s=1

J (l)
s,σ 6= K(l),

M∑

s=1

J (0)
s,σ 6= K(0). (14)

2.2 Kinetic limits of finite particle model

Several kinetic equations arise as N → ∞ limits of Markovian particle models.
We now apply this approach to the particle models of Section 2.1
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For each state (s(t),x(t)) and species σ ∈ {1, . . . ,M} we define an empirical
measure

μNσ (t) =
1
N

N(t)∑

i=1

1{si=σ}δxi . (15)

The empirical measures are normalized by the fixed initial number N = N(0),
not N(t). Thus,

∑N
σ=1 μ

N
σ (t) is in general not a probability measure for t > 0.

In what follows, we will not be interested in a rigorous demonstration of the
convergence of empirical measures to solutions of kinetic equations (see [14] for
a compactness argument for the convergence of empirical measures to kinetic
equations). Rather, we begin with the assumption that for each species σ the
weak limit μσ(t) = limN→∞ μNσ (t) is deterministic and has a number density

μσ(t)(dx) = fσ(x, t) dx. (16)

With these densities, we give a formal argument for kinetic equations. In Ap-
pendix B, we show well-posedness for these kinetic models, along with some
expected conservation properties for special instances related to grain-boundary
coarsening.

In the continuum limit, we can define the total numbers of particles in μσ,

Fσ(t) =
∫ ∞

0

fσ(x, t) dx, F (t) =
M∑

σ=1

Fσ(t), (17)

and the weighted fractions

W (l)
σ (t) =

w
(l)
σ

∑M
n=1 w

(l)
n Fn(t)

, γ(t) =
F (t)

∑M
n=1 w

(0)
n Fn(t)

. (18)

Then for each species σ ∈ {1, . . . ,M}, the formal kinetic equations for the
number density fσ are

∂tfσ(x, t) + vσ∂xfσ(x, t) = jσ := j+σ (x, t) − j−σ (x, t), (19)

j+σ (x, t) =
M∑

s=1




M−∑

l=1

L̇lJ
(l)
s,σW

(l)
s (t) + β(t)γ(t)J (0)

s,σw
(0)
s



 fs(x, t), (20)

j−σ (x, t) =




M−∑

l=1

L̇lK
(l)W (l)

σ (t) + β(t)γ(t)K(0)w(0)
σ



 fσ(x, t), (21)

L̇l = −fl(0, t)vl, l = 1, . . . ,M−. (22)

While perhaps cumbersome at first sight, equation (19) is easily understood as
a formal hydrodynamic limit of the N particle PDMP described in the previous
section. The index σ denotes a fixed species under consideration. The left-hand
side of (19) describes the advection of the number density fσ under the constant
velocity vσ. The right-hand side describes the growth and loss of species σ due
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to fluxes j±σ into and out of species σ. The fluxes in equations (20) and (21) arise
from interior and boundary events. In these equations, the index l enumerates
all possible boundary events, and the index s enumerates all the species that
could mutate to species σ. A boundary event for species l ∈ S− gives rise to
both birth and death terms in proportion to the rate L̇l = −fl(0, t)vl(0) and the
weights W (l)

s (t)fs(x, t). The weights J (l)
s,σ and J (0)

s,σ defined in equation (11) arise
as we sum over all mutations that lead to the creation of particles of species σ
of size x when a particle of species l hits the origin. Similarly, such particles
may be lost when they are mutated. This occurs in proportion to the weight
W

(l)
σ (t). The terms multiplied by the rate β(t)γ(t) account for interior events.
The boundary values fl(0, t), for the outgoing species l ∈ S− play a subtle

role in the kinetic equation since they determine the rate of boundary events.
In order to obtain well-posedness of the kinetic equations, we will assume that
the number densities are continuous on [0,∞) so that there is no ambiguity in
defining their boundary values. In contrast, the boundary value of the species
l ∈ S0, S+ do not affect the flux and we impose the boundary conditions

fl(0, t) = 0, l = M− + 1, . . . ,M. (23)

2.3 Well-posedness

The kinetic equations (19) admit mild solutions on a maximal interval of exis-
tence. In order to define mild solutions, we integrate (19) along characteristics
for each species σ to obtain

fσ(x, t) = fσ(x− vσt, 0) +
∫ t

0

jσ (x− vσ(t− τ), τ ) dτ. (24)

Here we assume that x ≥ 0, t > 0. Thus, formula (24) is well defined for all
species with vσ ≤ 0, i.e. for σ ∈ S−, S0. For the species with vσ > 0 we must
use the boundary condition (23) and a priori the integral in time is defined only
over the time domain τ ∈ [x/vσ, t]. However, for convenience, we extend the
formula (24) to include the domain τ ∈ [0, t] by setting fσ(x, τ ) = jσ(x, τ ) = 0
when x ≤ 0. It is then clear that (24) agrees with the solution obtained from
the method of characteristics and the boundary condition (23).

LetX denote the space of continuous and integrable functions f = (f1, . . . , fM ) :
[0,∞) → RM equipped with the norm

‖f‖ := ‖f‖L1 + ‖f‖L∞ , ‖f‖L1 :=
M∑

σ=1

‖fσ‖L1 , ‖f‖L∞ :=
M∑

σ=1

‖fσ‖L∞ . (25)

It is easy to check that X is a Banach space. We also denote

Fσ =
∫ ∞

0

fσ(x) dx, F =
M∑

σ=1

Fσ. (26)

We say that f ∈ X is positive if fσ(x) ≥ 0 for each σ and each x ≥ 0. When f
is positive, F = ‖f‖L1 .
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Definition 1. Assume T > 0 is given. A map f ∈ C([0, T ];X) is a mild
solution to (19) if (24) holds for x ∈ [0,∞) and t ≥ 0. We say that f is a
positive mild solution if f(t) is positive for each t ∈ [0, T ].

Theorem 1. Assume given positive f0 ∈ X, and
∑M
n=1 w

(l)
n Fn > 0 for l =

0, . . . ,M−. Also assume β(t) ≡ β is constant. There exists a (possibly infinite)
time T∗ > 0 and a unique map f ∈ C([0, T∗);X) with f(0) = f0 such that f is a
positive, mild solution to (19) on each interval [0, T ] with 0 < T < T∗. Further,
limt→T∗

∑M
n=1 w

(l)
n Fn(t) = 0 if T∗ <∞.

The proof of Theorem 1 is presented in Appendix B. Also shown for kinetic
equations related to grain coarsening is a proof of global existence and conser-
vation of total area and zero polyhedral defect. Note that the time T∗ may be
finite as shown in Figure 20.

3 Topological evolution of trivalent maps

In this section we characterize the admissible topological changes during grain
boundary evolution on a compact surface S. In Section 4, these changes will be
incorporated into our PDMP model of grain boundary coarsening through the
mutation matrix R(l).

Recall that a map is a graph drawn on a surface. More precisely, a map is a
graph embedded in a surface in such a manner that (i) all vertices are distinct;
(ii) none of the edges intersect except at vertices; (iii) each face obtained by
cutting the surface along its edges is homeomorphic to an open disk [16, Ch.1.3].
The topology of a grain boundary network on S is that of a trivalent map on
S. We denote the set of maps by M(S) and the set of trivalent maps by T(S).

The topology of a grain boundary network stays constant when the evolution
is smooth, but jumps when a grain or grain boundary vanishes. Thus, the
topology of the network is a map M : [0,∞) → T(S) that is piecewise constant.
We adopt the convention that M is right continuous. At a jump at time t, M(t)
is obtained from M(t−) by a surgery consisting of the contraction of a face or
edge of M(t−) to a vertex v∗ followed by the attachment of a new graph T at v∗.
The topology of T must be consistent with the face or edge of M(t−) that was
contracted, as well as the irreversibility condition that energy cannot increase.
We show below that these restrictions imply that T must be a planar rooted
tree.

The remainder of this section is organized as follows. We first establish the
topological restrictions on attachment in Theorem 2 below. This is followed by
the definition of a Markov chain on T(S) that may be used to model the ‘topo-
logical skeleton’ of grain boundary evolution. Finally, we apply these topological
restrictions to obtain the mutation matrices for grain boundary evolution, thus
connecting the size-based kinetic theory of Section 2 to topological changes.
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3.1 The topology of attachment

We will restrict our analysis of detachment and attachment to the situation
where at most one face shrinks to zero size or at most one edge shrinks to zero
length. When a k-sided face, k ≤ 5, of a trivalent map M ∈ T(S) vanishes we
obtain a map with a k-valent vertex. In a similar manner, if a single edge in a
trivalent map shrinks to zero length, we obtain a 4-vertex.

It is convenient to introduce some notation for this process. Given M ∈
T(S), let O(M) denote the set of maps that are obtained from M by contracting
a k-sided face (k ≤ 5) or an edge to a single vertex. Thus, every vertex in
N ∈ O(M) is trivalent, except for possibly one distinguished vertex, denoted
v∗, which is k-valent, 1 ≤ k ≤ 5. Let e1, . . . , ek denote the edges in N that are
incident to v∗.

The process of attachment is a mapping from O(M) to T(S) that involves
‘blowing-up’ the vertex v∗ into a map T and attaching T to N by the edges
e1, . . . , ek. The possible choices for T are constrained by the following criterion:

(i) T is a map into the closed unit disk B with k vertices on the boundary
∂B. We denote these vertices {p1, . . . , pk} in cyclic order on ∂B.

(ii) All vertices of T in the interior of B are trivalent.

(iii) All interior faces of T (i.e. faces whose edges lie in the interior of B) have
at least seven sides.

Condition (i) is the boundary condition necessary so that T can be attached
to N to obtain a trivalent map on S. The vertices {pj}kj=1 are temporary
placeholders that are deleted when we attach T to N ; their role is to ensure
that T can be connected to N by the edges e1, . . . , ek. The other two conditions
are consequences of irreversibility. Condition (ii) says that vertices that are
not trivalent cannot persist in grain boundary evolution. Condition (iii) says
that it is impossible to nucleate grains with six or fewer sides since this would
contradict the Mullins-von Neumann relation. These criterion sharply limit the
possible choices of T .

Theorem 2. Suppose k ≤ 5 and T ∈M(B) satisfies the conditions listed above.
Then T is a tree.

Corollary 1. When k = 2, 3, 4 or 5 respectively, there are 1, 1, 2 or 5 topo-
logically distinct choices for T as shown in Figure 2.

Proof of Theorem 2. We may trivially extend T to a map into S2. Suppose that
T has V vertices, E edges, and F faces. The number F ≥ 1 since T always has
an exterior face in S2. Let Vint = V − k denoted the vertices of T which lie in
the interior of D. Similarly, let Eint = E − k denote the number of edges of T
that are not adjacent to the k vertices on the boundary of D. Finally, let Fint

denote the faces of T in the interior of D. By condition (iii) all faces f ∈ Fint
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Figure 2: Continuation through a k-degree vertex. All trivalent trees
embedded in the unit disk with k labeled vertices on the boundary for k = 2, 3, 4,
and 5. This set is in bijective correspondence with planar rooted trivalent trees
with k leaves.

must contain have than six sides. We will show that no such faces can exist.
This relies on an identity relating the number of edges and vertices in T .

All vertices v ∈ Vint are trivalent and all k boundary vertices have degree
one. We sum over the degrees of vertices in T to obtain

2E =
∑

v∈V

d(v) = 3Vint + k ⇒ Vint =
2E − k

3
. (27)

We can also compare E and F . Since each interior face f ∈ Fint has at least
7 edges and there are F − 1 interior faces, we obtain

7(F − 1) ≤
∑

f∈Fint

#{edges(f)} (28)

In order to bound the right hand side of (28) we rewrite
∑

f∈Fint

#{edges(f)} =
∑

e∈Eint

#{f ∈ Fint|e ∈ ∂f}, (29)

where e ∈ ∂f means that e is an edge of the face f . For each edge e ∈ Eint the
corresponding term in the sum is either 0, 1 or 2. Let E1

int denote the number
of edges that are adjacent to a face f ∈ Fint as well as the exterior face of T .
Equivalently, this is the number of terms in the sum which are 1. Then

∑

e∈Eint

#{f ∈ Fint|e ∈ ∂f} ≤ 1 ∙ E1
int + 2 ∙ (E − k − E1

int) = 2E − 2k − E1
int

(30)

We show that E1
int ≥ k, which means

∑

f∈Fint

#{edges(f)} ≤ 2E − 3k. (31)
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To this end, recall that the vertices p1, . . . , pk are ordered cyclically. Therefore,
between any two vertices pj and pj+1 there exists a path of edges ej1, . . . , e

j
lj

that
connect pk and pk+1, and are also edges of the exterior face of T . The sequence
of edges

e11, . . . , e
1
l1 , . . . , e

k
1 , . . . , e

k
lk

(32)

forms a nonintersecting circuit of length at least k, with each edge in the circuit
bordering exactly one face in Fint. This shows E1

int ≥ k and proves (31).
The graph T has an Euler characteristic of 2 = V −E+F . We use this fact,

along with (27) and (31), to obtain

F = 2 − k + E − Vint

= 2 +
E

3
−

2k
3

≥ 2 +
7(F − 1) + 3k

6
−

2k
3

⇒ F ≤ k − 5. (33)

By the hypothesis of the theorem, k ≤ 5, and thus F ≤ 0. This is a contradiction
since T always contains an exterior face. Therefore, T contains no interior faces,
which means that it must be a tree.

Proof of Corollary 1. We have established that the graph T is a tree embedded
in the disk D, with k labeled vertices {pj}kj=1 on the boundary, and trivalent
vertices in the interior of D. For k = 2, 3, 4, 5, let Sk denote this set and
Ck = |Sk| denote its size. By splitting the tree into descendants of a degree one
vertex, a direct recursive calculation shows that

Ck =
∑

i+j=k−1

Ci+1Cj+1. (34)

The trees of relevance to us are shown in Figure 2.

The description of trees above is closely related the Catalan numbers (see [20]
for a variety of examples). Specifically, using the recurrence (34) for k ≥ 2, Ck
is the k − 2nd Catalan number.

3.2 Trivalent map evolution

Theorem 2 allows us to formulate a Markov chain model for the topological
evolution during grain boundary coarsening on a compact surface S. In order
to completely describe a Markov chain, we need a countable state space and a
matrix of transition probabilites for jumps between states. Our state space is
T(S) ∩ {∂}, where ∂ denotes a special, cemetery state. The neighbors of each
state M ∈ T(S) are characterized as follows:

1. Annihilation : As in Section 3.1, O(M) ⊂M(S), denotes the maps that
may be obtained by contracting an edge of M or a k-sided face of M ,
k ≤ 5, to obtain a map N ∈M(S) with a distinguished vertex v∗.

12



Figure 3: Trivalent map evolution. Left: A network before trivalent map
evolution is applied to a five sided face, labeled F . Center: The annihilation
step, in which F is contracted to a point. Right: The creation step, in which a
tree is glued at the degree five vertex, recovering the graph’s trivalency.

2. Creation: A tree T is glued to N at v∗ to obtain a trivalent map M ′ ∈
T(S). The set of all such maps M ′ is denoted J (M).

Any assignment of transition probabilities pM,M ′ for each M ∈ T(M), M ′ ∈
J (M)∩{∂} determines a Markov chain. The cemetery state is included to deal
with the possibility that J (M) is empty. In this case, pM,∂ = 1 and p∂,∂ = 1.
We call any Markov chain of this form trivalent map evolution (TME).

A trivalent map M ∈ T(S) must always have faces with fewer than six sides
when S = S2 or S = T2. We use Euler’s formula V −E + F = χ(S) along with
the identities 3V = 2E and

Eav ∙ F :=
∑

f∈F

#edges(f) = 2E (35)

to see that the average number of edges in a face is given by

Eav =
6

χ(S)
2E + 1

. (36)

When S = S2, χ(S) = 2 and Eav < 6, so that there is always a face with
fewer than six sides. When S = T2, χ(S) = 0 and we may always find a face
with fewer than six sides unless M is a hexagonal tiling. For all other compact
surfaces, the genus g ≥ 2, χ(S) = 2 − 2g ≤ −2, so that Eav > 6.

3.3 Topological restrictions on kinetic models

Kinetic models for grain boundary coarsening typically assume the following
grain coarsening rules at topological transitions (see Figure 4):

• If k = 2, two neighboring grains will both lose two sides.

• If k = 3, three neighboring grains will each lose one side.

• If k = 4, two neighboring grains each lose one side, and two neighboring
grains retain their topology.

13



Figure 4: Changes of topology before and after TME. A number in a
grain refers to the number of its sides. When four and five sided grains vanish,
the tree that can be attached is not unique. However, the net topological change
is always the same.

• If k = 5, two neighbors each lose one sides, one neighboring grain gains
one side and two neighboring grains retain their topologies.

• If an edge connecting vertices p and q vanishes, with p and q adjacent to
four distinct grains, then two of these grains each lose one side and the
other two grains each gain one side.

However, trivalent map evolution may not follow these rules (see Fig. 5).
An extra condition on the maps must be imposed so that TME is consistent
with kinetic theory. An additional hypothesis is required, which is that all faces
with k sides have k distinct neighboring grains, and that an edge and its two
vertices are adjacent to four distinct faces. Denote this space as N(S). For these
embeddings1, the following holds.

Corollary 2. Suppose M ∈ N(S). For a face or edge selected in the annihilation
step of TME, the topological change from M to M ′ follows the grain coarsening
rules.

Proof. If M ∈ N(S), then the distinguished vertex v∗ arising from the annihi-
lation step of TME will be of degree k, and will furthermore border k distinct
faces. From Corollary 1, we can directly verify that the grain coarsening rules
hold for all of the possible trees that we may glue in the creation step of TME.
Note that the creation step for TME with four and five sided grains can result
in different possible topologies, but in all cases either two grains lose one side
for a vanishing four-sided grain, or two grains lose a side and one grain gains a
side for a vanishing five-sided grain.

1The space N(S) is a proper subspace of closed 2-cell embeddings, in which the closure of
each face is homeomorphic to a closed disc.
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Figure 5: Failure of grain coarsening rules in the sphere S2. In all three
networks shown, the face B wraps around the back of the sphere. Left: A
network of five grains in N(S2). Center: The network after face D has been
removed through TME. This network is in M(S2), but no longer in N(S2), as
the face C has four edges, but only three neighbors. Right: The network after
face C has been removed through TME. The grain coarsening rules in this case
do not hold (here, A,B, and E each lose one edge).

4 Topological kinetic equations

The major motivation for the PDMP model is to create a particle system rep-
resentation for mean field models in grain boundary coarsening. In this section
and Section 6, we will assign values to each of the parameters defined in Sec-
tion 2 to correspond with key coarsening properties. In this section we will
assign weights and mutation matrices related to the topological requirements
of the grain coarsening rules enumerated in Section 3. This allows us to write
topological kinetic equations, which should be considered as the most general set
of kinetic equations for describing topological networks which evolve by TME
and respect the grain coarsening rules. In Section 6, we will consider other
parameters associated with edge deletion and first neighbor correlations. The
free parameter space is sufficiently flexible to incorporate the correlation and
edge-deletion assumptions of several of the models described in Section 5.

We now assign parameters for the PDMP model that we will consider fixed
for all of the simulations carried out in Section 7. As mentioned in Section 2,
particles correspond to individual cells of a two-dimensional grain network. A
particle’s species s corresponds its number of sides, and its position x > 0
corresponds to its area. The most immediate of these is setting species velocity
of vs = π

3 (s−6), which is exactly the von Neumann-Mullins relation in which we
set material constant in (1) to c = π/3. Since grains with more than 10 sides are
quite rare, we also cap the maximum number of sides at M = 15. Our models
do not consider one-sided grains, as they are relatively rare in actual metal
networks (around .1%, see [11]). To keep the system closed, we forbid two-sided
grains to lose edges, three-sided grains to lose two edges, and M−sided grains
to gain an edge at a critical events.

We also assign values for parameters related to topological transitions in
networks which remain in N(T2) during their evolution. This includes K(l), the
number of grains affected by deletion events, and the mutation matrices R(l)

kj ,
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which specify transitions for each such grain. Values for K(l) are

K(2) = 2, K(3) = 3, K(4) = 2, K(5) = 3, K(0) = 4, (37)

and the mutation matrices are defined as

R
(2)
kj =

{
k − 2, k ∈ {4, . . . ,M}, j ∈ {1, 2},

0, k ∈ {2, 3},
(38)

R
(3)
kj =

{
k − 1, k ∈ {3, . . . ,M}, j ∈ {1, 2, 3},

0, k = 2,
(39)

R
(4)
kj =

{
k − 1, k ∈ {3, . . . ,M}, j ∈ {1, 2},

0, k = 2,
(40)

R
(5)
kj =






k − 1, k ∈ {3, . . . ,M − 1}, j ∈ {1, 2},

k + 1, k ∈ {3, . . . ,M − 1}, j = 3,

0, k ∈ {2,M},

(41)

R
(0)
kj =






k − 1, k ∈ {3, . . . ,M − 1}, j ∈ {1, 2},

k + 1, k ∈ {3, . . . ,M − 1}, j ∈ {3, 4},

0, k ∈ {2,M}.

(42)

Recall the upper index l = 2, . . .M− in R(l)
kj refers to the number of sides for

the deleted grain, k = 2, . . . ,M refers to the number of sides of a neighboring
grain before undergoing topology reassignment, and j = 1 . . . ,K(l) is the index
of the jth reassignment. Refer to Fig. 4 for a pictorial description of the
distribution of sides before and after grain and edge deletions. Note that to
keep the particle system closed, we disallow mutations that create 1 and M + 1
sided grains.

With these defined parameters, we now give a more explicit form of the
limiting kinetic equations of (19) for models of grain boundary coarsening. As-
suming a continuous area density fn(a, t) for n-sided grains at time t, we can
write a system of topological kinetic equations for grains with n = 2, . . . ,M
sides as

∂tfn(a, t)+ (n− 6)∂afn(a, t) = hn+
grain(f, t)−hn−grain(f, t)+hn+

edge(f, t)−h
n−
edge(f, t)

(43)
for a, t ≥ 0.

The four source terms of the right hand side of (43) describe, in order,
addition and deletion of n-sided grains due to grain deletions, and addition and
deletion of n-sided grains due to edge deletions. By directly substituting values
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of vs and R(l)
kj into (19), we may write, for n = 2, . . . ,M ,

hn,+grain(f, t) = 8f2(0, t)W
(2)
n+2(t)fn+2(a, t) + 9f3(0, t)W

(3)
n+1(t)fn+1(a, t) (44)

+ 4f4(0, t)W
(4)
n+1(t)fn+1(a, t) + 2f5(0, t)W

(5)
n+1(t)fn+1(a, t)

+ f5(0, t)W
(5)
n−1(t)fn−1(a, t),

hn,−grain(f, t) = fn(a, t)[8f2(0, t)W
(2)
n (t) + 9f3(0, t)W

(3)
n (t) (45)

+ 4f4(0, t)W
(4)
n (t) + 3f5(0, t)W

(5)
n (t)],

hn,+edge(f, t) = 2β(t)γ(t)[w(0)
n−1fn−1(a, t) + w

(0)
n+1fn+1(a, t)], (46)

hn,−edge(f, t) = 4β(t)γ(t)w(0)
n fn(a, t), (47)

for tier weights w(l)
n , w0

n and species selection weight fractions W (l)
n (t), γ(t) de-

fined in (18).

5 Previous kinetic models

In this section, we review several previous kinetic models which describe area
densities fn(a, t) of n-sided grains at time t. All of the models assume that a
neighbors are uncorrelated. Specifically, if we consider a single edge for some
k-sided grain, the probability that another grain with n sides is its neighbor
is n/(S − k), where S is the total number of sides for all grains in the system.
Three of the models mentioned here, those of Beenakker, Marder, and Flyvbjerg,
assume no edge deletion.

5.0.1 The model of Beenakker

The model posed by Beenakker [3] begins by assuming grains are shaped like
regular polygons, except having edges of circular arcs meeting at 120◦. This
assumption gives the relation P =

√
a/φ(n) for an n−sided grain with area a

and perimeter P, where φ(n) has an explicit (albeit lengthy) form. For distri-
butions fn(a) for n-sided grains, an isotropic network in which thermal effects
are neglected has a free energy given by the total perimeter

F =
∫ ∞

0

∞∑

n=2

√
a/φ(n)fn(a). (48)

To obtain an equilibrium state, Beenakker minimizes F over possible densi-
ties {fn(a)}n≥2 having with a fixed area A and zero polyhedral defect, meaning

∫ ∞

0

∞∑

n=2

(n− 6)fn(a)da = 0. (49)

It can be shown that the minimizer for this variational problem gives a unique,
explicit assignment nc(a) of sides for all grains with area a. Thus, densities take
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the form
fn(a) = f(a)1n=nc(a), (50)

From here, Beenakker invokes the n− 6 rule to arrive at a simple evolution
of area densities f(a, t) for time t ≥ 0, given by

∂tf(a, t) + c∂a(f(a, t)(nc(a) − 6)) = 0. (51)

In a numerical integration of (51), Beenakker considers initial conditions of
mostly hexagonal cells with a small fraction of pentagon-heptagon pairs. As
expected, defects initially propagate in the system. However, a “collapse” even-
tually occurs in which the system rapidly returns to having near zero defect.
The network then repeats this pattern indefinitely, oscillating between ordered
and highly disordered states.

5.0.2 The model of Marder

Marder’s model [17] is unique in that it sets a rule for which neighbors lose
an edge when a four-sided grain vanishes, choosing the two smallest grains.
Similarly, when a five-sided grain vanishes, its two smallest neighbors lose an
edge, and the largest neighbor gains an edge. The kinetic equations have the
form

∂tfn(a, t) + c(n− 6)∂afn(a, t) = un−1(a, t)
n− 1
S(t)

fn−1(a, t) (52)

− (un(a, t) + dn(a, t))
n

S(t)
fn(a, t) + dn+1(a, t)

n+ 1
S(t)

fn+1(a, t). (53)

Here un(a, t) and dn(a, t) are the rates that n-sided grains of area a gain or
lose a edge, respectively, and S(t) is the sum of all sides over all grains at time t.
Expressions for un and dn are complicated, and involve probabilities p(a, t) that
a grain selected at time t has area greater than a. A scaling analysis correctly
shows that coarsening should be linear, and numerical approximations for (53)
give statistics for topological frequency and coarsening that were comparable to
experimental results on soap bubble networks.

5.0.3 The model of Flyvbjerg

Kinetic equations for Flyvbjerg’s model [8] are of the form

∂tfn(a, t) + c(n− 6)∂afn(a, t) =
n+1∑

m=n−1

Tn,m(f)fm(a, t), n = 0, 1, . . . ., (54)
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where tridiagonal coupling is given by

Tn,m =






c+(n− 1) m = n− 1,

Ā− (c+ − c−)n m = n,

c−(n+ 1) m = n+ 1,

0 otherwise,

(55)

c+ =
π

18
(n− 6)f5(0, t), c− =

π

18

5∑

k=0

(k − 6)2fk(0, t) + c+, (56)

Ā =
π

3

5∑

k=0

(6 − k)fk(0, t). (57)

The transition rates Tn,m for grains evolving from m to n sides contain boundary
terms fk(0, t) which make (54) nonlinear. An assumption for determining Tn,m
is that networks have zero first-neighbor correlations. This means that for any
grain with l sides, the probability that a neighboring grain has j sides is inde-
pendent of l, and proportional to j. To keep Tn,m in a simplified form, Flyvbjerg
assumptions required his model to allow for 1 and 0 sided grains. Simulations
later showed these topologies were essentially negligible. In general, the compar-
ison between Flyvbjerg’s model and experimental data is surprisingly accurate,
with frequencies of topologies differing by only a few percentage points.

5.0.4 The model of Fradkov

The Fradkov model, posed in 1988 as a ‘gas approximation’ to grain coarsening
[10, 9], has kinetic equations of the form

∂tfn(x, t) + c(n− 6)∂afn(a, t) = Γ(f(t))(Jf)n(a, t). (58)

The collision operators (Jf)n, n ≥ 2, account for topological transitions, taking
the form

(Jf)2 = 3(βRD + 1)f3 − 2βRDf2 (59)

(Jf)n = (βRD + 1)(n+ 1)fn+1 − (2βRD + 1)nfn + βRD(n− 1)fn−1, n > 2.
(60)

Like the model of Flyvbjerg, topological transitions assume networks have zero
correlation for first neighbors. Furthermore, collision operators also include a
removal driven deletion assumption in which the ratio between edge deletion
and grain deletion is a fixed constant βRD. Thus, if SF (t) denotes the total
number of edge deletions under the Fradkov model, then

SF (t) = βRD(N(0) −N(t)). (61)

The quantity Γ(f(t)) is then chosen to conserve total area, and invokes non-
linearity in the system. To keep the J tridiagonal, topological effects from
two-sided grains were ignored. The addition of an edge resulting from a five
sided grain is also ignored. Derivations for both (59)-(60) and Γ(f(t)) can be
found in [12].
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5.0.5 The BKLT model

The model of Barmak, Kinderlehrer, Livshits, and Ta’asan [2], or BKLT model,
has topological coupling with the same general form as the right hand side
of (54). In the absence of edge deletion, the coupling terms TBKLT

n,m (f) are
determined through the conservation of polyhedral defect (49) to be

TBKLT
n,m =

{
ψ(t)
Fm(t)am m = n, n+ 1,

0 otherwise.
(62)

Here, ψ(t) is the rate of boundary deletion given by

ψ(t) =
5∑

n=3

(n− 6)2fn(0, t), (63)

and ai are free constants which satisfy
∑
i≥3 ai = 1. These constants are free,

and can be fit through comparisons with experiments.
In [4], Cohen gives a stochastic description of the governing equations for

the BKLT model in which a solution has an interpretation of a conditional
backwards expectations of a sample tagged grain. We mention that in [4],
Cohen considers the one-dimensional minimal model

∂tf(x, t) − ∂xf(x, t) = −
f(0, t)f(x, t)
∫
R+
f(x, t)

, x, t > 0 (64)

as an explanatory example. In [15], two of this paper’s authors (JK and GM)
considered (64) as a hydrodynamic limit of a one-species stochastic particle
system on the positive real line, and proved exponential convergence of empirical
densities to this limit.

6 Parameter fitting with direct numerical sim-
ulations

In order to complete the specification of our stochastic particle model, it remains
to provide expressions for the weights w

(l)
k , which will represent topological

frequencies of a grain’s neighbors, and the interior event intensity β, which will
represent the rate of edge deletion. For parameter fitting, the particle models
will be compared with direct simulations of network flow, with data obtained
from a level set method of Elsey, Esedoglu, and Smereka [6]. The numerical
simulation is performed with 667,438 initial grains, determined from a Voronoi
tesselation of the unit square with periodic boundary conditions. Grains evolve
for a total time of 2.384 × 10−5, with updates given over two hundred uniform
time steps (Δt = 1.192 × 10−7). The dataset from this simulation consists of
each grain’s area and topology (included whether the grain vanished) over each
time step.
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6.1 First-neighbor correlations

From the species selection probabilities (7) and (9), the parameters w(l)
k allow us

to weight the frequency of grains with k sides which border grains with l sides.
Similar to the models of Flyvbjerg and Fradkov, we may assume frequencies are
independent of the topology of the vanishing grain, and are only proportional
to k, meaning w(l)

k ∝ k. In this case, imposing again that grains have between
2 and M sides, we obtain uncorrelated weights

w
(2)
k =

{
k, k ∈ {4, . . . ,M},

0, k ∈ {2, 3},
w

(3)
k =

{
k, k ∈ {3, . . . ,M},

0, k = 2,
(65)

w
(4)
k =

{
k, k ∈ {3, . . . ,M},

0, k = 2,
w

(5)
k =

{
k, k ∈ {3, . . . ,M − 1},

0, k ∈ {2,M},
(66)

w
(0)
k =

{
k, k ∈ {3, . . . ,M − 1},

0, k ∈ {2,M}.
(67)

Experiments on grain networks have shown that nontrivial nearest neighbor
correlations do in fact exist, with grains having fewer sides tending to neighbor
higher sided grains, and vice versa. The most popular relation is Aboav’s law [1],
an empirical observation relating the average number of neighbors mn for an
n-sided cell as

nmn = (6 − a)n+ b, (68)

where a and b are numerical constants. For our purposes, we are actually able
to incorporate more information, and consider distributions {c(l)k }Mk=1 which
give the probability of a l-sided cell to have a neighbor with k sides, assuming
the network to be stabilized. This distribution is not provided in the dataset
provided from the level set used, so we instead use results in [18] which simulated
grain boundary coarsening through a Monte Carlo-Potts model. With these
distributions, we may estimate correlated weights w̃

(l)
k from the level set

simulation. This is done by using using topological frequencies pk simulated
from the level set model which give the frequency of grains with k sides. This
is done at time t = 5.364× 10−6, when about 80% of grains have vanished, and
frequencies are essentially stable for the remainder of the simulation. Neighbor
distributions for a l-sided grain in the PDMP model may then be written in
terms of pk and w̃(l)

k , and then compared with species selection probabilities to

c
(l)
k to obtain the linear system of equations in w̃

(l)
k , given by

pkw̃
(l)
k

∑M
n=1 pnw̃

(l)
n

= c
(l)
k , k = 1, . . . ,M, (69)

M∑

n=1

w̃(l)
n = 1. (70)

Comparison between the weights w(l)
k and w̃(l)

k are given in Figure 6.
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Figure 6: Correlated and uncorrelated weights. For each graph, the inde-
pendent variable denotes the number of sides k for neighboring grains, and the
dependent variable is either the correlated weight w̃(l)

k or normalized uncorre-

lated weight w(l)
k . Since instances for two and three sided grains in [18] were

rare, frequencies for four-sided grains were used to determine w̃(l)
k for l = 2, 3, 4.

6.2 Edge deletion

6.2.1 Population-driven vs. removal-driven edge deletion

We now describe how to fit the rate function β(t) for several varieties of edge
deletion models. The most simplified model, of course, is to assume no edge
deletion at all. We may incorporate the no deletion assumption into the topo-
logical kinetic equations easily by setting β(t) ≡ 0, which we call the no edge
deletion (ND) model.

Edge deletion for the topological kinetic equations at any fixed time t is
governed by a Poisson process with rate β(t)N(t), where N(t) is the total num-
ber of grains at time t. If we assume that β(t) ≡ βPD is constant, then we
call the resulting particle system a population-driven edge deletion (PD)
model. We can fit βPD by comparing βPDN(t) against edge deletion rates in
experimental data.

We may also consider a removal-driven edge deletion (RD) model
motivated by Fradkov’s model [10, 9], which imposes that the total number of
edge deletions is proportional to the total number of grain deletions. To derive
such an expression of β(t), we begin with an an explicit estimate for the total
number N(t). This estimate assumes a linear coarsening rate α > 0 so that for
a system with total area A, the average grain size 〈At〉 at time t takes the form

〈At〉 =
A

N(0)
+ αt. (71)

This assumption, although not rigorously shown, is quite accurate in practice.
Indeed, a linear regression on the coarsening rate for the level set data gives
a Pearson correlation coefficient R > .999. With this assumption, the total
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number is

N(t) = A/〈At〉 =
AN(0)

A+N(0)αt
. (72)

If SRD(t) denotes the total number of edge deletions under the RD model
up to time t, then

SRD(t) = βRD(N(0) −N(t)). (73)

The quantity βRD may be found by fitting against level set data. On the other
hand, for the PD model, the total amount of edge deletion is

SPD(t) =
∫ t

0

N(s)β(s)ds. (74)

We equate SRD(t) with SPD(t) in (73) and (74), so that

∫ t

0

N(s)β(s)ds = βRD(N(0) −N(t)). (75)

Using (72), we may easily solve for β(t) in (75) to obtain the autonomous form

β(t) = αβRDN(t). (76)

To summarize, in implementing the M -species model, we obtain edge deletion
similar to RD model assumptions by setting the rate of the Poisson clock to
β(t)N(t) = αβRDN(t)2.

Fitted values for α, β, and βRD are given in Table 1. The coarsening rate
α was found through linear regression. The constant edge deletion rate βPD

was obtained by minimizing the L1 distance over time between the rate of edge
deletion and βPDF (t). Similarly, the Fradkov parameter βRD was obtained by
minimizing L1 distance over time of the fraction of grains removed over edge
deletions. See Figure 7 for graphs illustrating edge deletion behavior over time.
Note that there appears to be a larger number edge deletions at the beginning
of the simulation, possibly due to a burn-in period which adjusts to initial
conditions of a Voronoi tessellation.

6.2.2 Estimating total edge deletion

We note here that tracking systems for grain networks in most level set methods,
including the one used in this study, only track individual faces, and not edges.
While we do not have precise data on edge deletion, we will present a method for
estimating independent edge deletion using the level set dataset. This uses the
available data of topologies and areas for each grain at each time step tk = kΔt.
The calculations for estimating total edge deletions are approximate for two
reasons. First, we assume that each grain changes its number of sides at most
once during a time step. Second, we ignore possible edge deletions occurring
immediately before grain deletion, and thus assume that a grain changes its
number of sides from either a vanishing neighboring grain, or an edge deletion
from a neighboring grain of typical size.
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Model ND PD RD
Switching β(t) = 0 β(t) = βPD β(t) = αβRDN(t)

Fitted value N/A βPD = 75072.74 α = 1.27, βRD = 2.02

Table 1: Parameter fitting for edge deletion models. For the RD model,
the parameter α corresponds to the coarsening rate, given the linear coarsening
assumption in (71).

To estimate total edge deletion, we record grains (ak1 , s
k
1), . . . , (akg , s

k
g) which

vanish in the time interval [tk, tk+1). Under our assumptions, the total number
of remaining grains which change their number of sides as a result of grain
deletion is then

ΔEfk =
g∑

i=1

(3 ∙ 1sk
i =3 + 2 ∙ 1sk

i =4 + 3 ∙ 1sk
i =5). (77)

Let ΔEk denote the total number of grains affected by both grain deletion and
edge deletion. Since each edge deletion affects four neighboring grains, the total
number of topological changes not due to grain deletions is then estimated as

ΔSk =
ΔEk − ΔEfk

4
. (78)

7 Numerical results

In this section, we will simulate six varieties of PDMP models for coarsening,
using either correlated or uncorrelated weights, and edge deletion rates assump-
tions that follow either the RD, PD, and ND models shown in Table 1. Each
of these models are also compared with a level set method. For each model,
200,000 grains are sampled for initial conditions. Initial areas and topologies
for the particle system model were selected through sampling with replacement
from the initial empirical distribution of the level set model. After this selec-
tion, a small number of grains were then modified to produce a distribution
with exactly 0 polyhedral defect, and like the level set simulation, evolve for a
total time of t = 2.384 × 10−5.

Comparisons of grain statistics between the level set method and the three
particle models are given in Figures 8-18 and Table 2. In Table 2, we use the
total variation metric, which for two discrete probability vectors p = (p1, . . . , pn)
and q = (q1, . . . , qn) is given by the distance

dTV (p, q) =
1
2

n∑

i=1

|pi − qi|. (79)

Distances between area distributions for grains with 5, 6, and 7 sides are mea-
sured with the Kolmogorov-Smirnov metric, which for two cumulative distribu-
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(a) Fitted curve for the rate of edge

deletion βPDN(t).

(b) Fitted constant of the fraction
of edge deletions over grain deletions
βRD.

Figure 7: Parameter fitting for PD and RD models.

tion functions F,G : [0,∞) → [0, 1] is given by the distance

dKS(F,G) = sup
x∈R+

|F (x) −G(x)|. (80)

7.1 Topological frequencies of grains

Figures 8 and 9 show topological frequencies of grains with snapshots occurring
at times 10k ∙ Δtk for k = 1, . . . , 20. Figure 10 shows topologies at t = 5.364 ×
10−6, which corresponds to the time when approximately 20% of grains remain
from the level set method, and also at all simulations’ end time of t = 2.384 ×
10−5 at which 31,887 grains remain from the level set method (∼ 4.8% of initial
grains).

For the level set model, topological frequencies stabilize quickly, with a minor
trend for six sided grains to become less frequent, and five sided grains more
frequent. Both the ND and RD models stabilize quickly, regardless of whether
correlated weights are considered. Topological frequencies under the PD model
with uncorrelated weights tend to become more uniform with time. Adding
correlated weights, however, appears to reduce variance.

It has already been observed that higher rates of edge deletion are associ-
ated with more uniform distributions of grain topologies [10, 9]. Thus, it is
not surprising that the deletion-free ND model tends to concentrate near its
mean of six sides more than the other models. For uncorrelated weights at
t = 5.364 × 10−6, the ND and PD models differ from the level set method by
a few percentage points, whereas the RD model is substantially more uniform.
However, as frequencies under the PD model become more diffuse in time, as
opposed to other models, by t = 2.384 × 10−5 differences between the PD and
level set models are magnified.
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The addition of correlated weights appears to have two effects on topological
frequencies. First, as noted before, diffusion is slowed under the PD model.
Second, adding correlation for weights reduces variance. For the RD model,
this reduces accuracy (see Table 2) against the level set model compared to the
uncorrelated model, which already a smaller variance than the level set model.
Adding correlation to the PD and RD model, however, increases accuracy, with
the most drastic improvement occurring at t = 2.384 × 10−5.

7.2 Coarsening

In Figure 7, average grain area versus time is plotted for the level set and
particle system model. For all models, coarsening rates appear to be linear,
with almost no transition period from adjusting to initial conditions. The PD
and RD models have similar coarsening weights, while the ND model coarsens
significantly at a slower rate. Adding correlated weights has the effect of slowing
coarsening, with all particle models having slower rates than the level set model.

7.3 Relative area distributions

Figures 11-18 provide snapshots of relative area densities for remaining grains at
time t = 5.364×10−6. Relative area distributions were also considered in [2], but
we also include relative areas of grains with 5, 6, and 7 sides. The Kolmogorov-
Smirnov (KS) distances comparing particle models against the level set model
are given in Table 2. For the level set method, area densities for 5, 6, and
7-sided grains have modes at positive values and tend to zero as areas approach
zero. In contrast, densities for 5-sided grains for all particle models appear to
be strictly decreasing. Positive modes appear for 6-sided grains, but densities
for particle systems do not tend to zero as grain area approaches zero. Despite
the similar shape of the level set and the ND model under both correlated and
uncorrelated weights, the KS distance for 7-sided grains is larger than those of
5 and 6-sided grains. This is likely due to the sensitivity of the KS distance for
distributions which are concentrated at a single value. We also note that expect
for 5-sided grains under the PD and RD models, adding correlations increases
the KS distance.

8 Conclusions

In this paper, we have developed a framework to study the coarsening of two di-
mensional isotropic grain boundary networks. The framework combines PDMP
based particle systems, their kinetic limits, and a set of mutation rules based
on topological restrictions. We show in Appendix B that the limiting kinetic
equations for particle densities are well-posed in an appropriate Banach space.
The parameters of the particle system can be varied to produce several mod-
els that describe grain boundary coarsening. All such models rely on mutation
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matrices R(l)
kj which respect the topological changes during a grain or edge dele-

tion. The remaining parameters, the selection weights w(l)
j and rates β(t) of

interior events, may be chosen to satisfy other modeling assumptions related to
first-neighbor correlations and edge deletion frequencies.

The results obtained from considering six separate particle models reveal
that several types of qualitative behavior are dependent on the rate of edge
deletion and first-neighbor correlations. As expected, increased edge deletion
rates appear to increase the variance of the empirical distributions of one-point
statistics of grain topologies. For the PD model, this smoothing is continuous
in time, whereas in the RD and ND models, stabilization occurs almost imme-
diately. With uncorrelated weights, the PD model remains similar to the level
set model for some time, but eventually diverges as topological frequencies con-
tinue to smooth out. The addition of correlated weights appears to retard the
variance of topologies for all models, and as a result, topological frequencies for
the PD model perform substantially better when compared against the level set
model. However, the improvement in statistics is not uniform across all of the
metrics we consider. The uncorrelated PD and RD models, for instance, coarsen
at a rate that is slower than the level set model. The addition of weights causes
coarsening to slow, which in effect further decreases the accuracy of coarsening
rates for the PD and RD models. Thus, it would be precipitate at this time to
claim a specific particle model is superior.

To conclude, we find that the set of particle models offered in this paper are
useful in several ways. Perhaps most importantly, they contain advantages of
both the kinetic models developed in the past three decades and the accurate but
computationally expensive direct simulation of grain networks. In particular,
our model allows for rigorous examination of limiting densities. On the other
hand, simulation of our model is relatively easy to implement compared to level-
set methods. Implementation requires no discretization of differential equations,
since advection of species occurs at constant rates, and mutation times are
effectively handled with Poisson processes.
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(a) Level set (b) ND

(c) PD (d) RD

Figure 8: The probability that a grain has s sides. In each figure, graphs
correspond to topological frequencies of grains at times 10k ∙ Δt, with Δt =
1.192 × 10−7, and k = 1, . . . , 20. Connecting lines between sides serve as a
visual aid.
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(a) Level set (b) ND

(c) PD (d) RD

Figure 9: The probability that a grain has s sides when the weights
are correlated. In each figure, graphs correspond to topological frequencies of
grains at times 10k ∙Δt, with Δt = 1.192× 10−7, and k = 1, . . . , 20. Connecting
lines between sides serve as a visual aid.
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(a) t = 0

(b) t = 5.364 × 10−6 (c) t = 2.384 × 10−5

(d) t = 5.364 × 10−6 (e) t = 2.384 × 10−5

Figure 10: Snapshots of grain topologies. Empirical distributions as in
Figures 8 and 9. Connecting lines are for visual aid. (a): Initial conditions for
all models. (b),(c): Snapshots for models with uncorrelated weights. (d),(e):
Snapshots for models with correlated weights.
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(a) Level set (b) ND

(c) PD (d) RD

Figure 11: Relative area densities for models with uncorrelated weights
of grains at t = 5.364 × 10−6.
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(a) Level set (b) ND

(c) PD (d) RD

Figure 12: Relative area densities for models with correlated weights
of grains at t = 5.364 × 10−6.
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(a) Level set (b) ND

(c) PD (d) RD

Figure 13: Relative area densities for models with uncorrelated weights
of 5-sided grains at t = 5.364 × 10−6.
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(a) Level set (b) ND

(c) PD (d) RD

Figure 14: Relative area densities for models with correlated weights
of 5-sided grains at t = 5.364 × 10−6.
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(a) Level set (b) ND

(c) PD (d) RD

Figure 15: Relative area densities for models with uncorrelated weights
of 6-sided grains at t = 5.364 × 10−6.
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(a) Level set (b) ND

(c) PD (d) RD

Figure 16: Relative area densities for models with correlated weights
of 6-sided grains at t = 5.364 × 10−6.
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(a) Level set (b) ND

(c) PD (d) RD

Figure 17: Relative area densities for models with uncorrelated weights
of 7-sided grains at t = 5.364 × 10−6.
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(a) Level set (b) ND

(c) PD (d) RD

Figure 18: Relative area densities for models with correlated weights
of 7-sided grains at t = 5.364 × 10−6.

(a) Uncorrelated weights (b) Correlated weights

Figure 19: Growth of average grain area.
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Uncorrelated Weights
ND PD RD

KS distance: 5 sides .113 .120 .170
KS distance: 6 sides .262 .247 .322
KS distance: 7 sides .159 .327 .388

KS distance: all grains .064 .147 .156
Total Variation (t = 5.364 × 10−6) .068 .072 .154
Total Variation (t = 2.384 × 10−5) .069 .232 .177

Correlated Weights
ND PD RD

KS distance: 5 sides .141 .100 .104
KS distance: 6 sides .304 .301 .369
KS distance: 7 sides .316 .430 .571

KS distance: all grains .235 .262 .226
Total Variation (t = 5.364 × 10−6) .111 .032 .062
Total Variation (t = 2.384 × 10−5) .114 .124 .072

Table 2: Comparison of particle models to level set model. Rows with
the Kolmogorov-Smirnov metric measure distances between 5, 6, and 7 sided
grain area distributions of particles systems and the direct numerical simula-
tion. Rows with the total variation metric measure distances between statistical
topologies of particle systems and the direct numerical simulation.

A Description of the M-species system as a PDMP

We briefly review the basics of PDMPs, following Davis [5], and then explain how
the M -species stochastic particle process of Section 2.1 fits into this framework.

A.1 Background: General theory of PDMPs

We consider a countable set S with elements denoted s, a map d : S → N, and
open sets for each s of the form Ms ⊂ Rd(s). The state space is the disjoint
union

E =
∐

s∈S

Ms = {(s,x) : s ∈ S,x ∈Ms} . (81)

The space E has a natural topology. Let ιs : Ms → E be the canonical injection
defined by ιs(x) = (s,x). A set A ⊂ E is open if for every s, ι−1

s (A) is open
in Ms. The collection of all open sets may be used to define the set E of Borel
subsets of E. This makes (E, E) a Borel space.

A PDMP is an E-valued generalized jump process X(t) = (s(t),x(t)), t ≥ 0,
that is prescribed by:

1. Sufficiently smooth vector fields vs : Ms → Rd(s), s ∈ S.

2. A measurable function λ : E → R+.
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3. A transition measure Q : E × (E ∪ Γ∗) → [0, 1]. Here Γ∗ denotes the exit
boundary defined in equations (84)–(83) below.

Points in Ms travel according to flows defined by the vector fields vs until
either a Poisson clock with intensity λ(s,x) rings or the point x(t) hits the exit
boundary Γ∗. When such a critical event occurs the point X(t) jumps to a
random new position whose law is given by Q.

Each vector field vs may be viewed as a first-order differential operator on
Ms. We assume they define a flow ϕs(t,x) such that

∂

∂t
h (s, ϕs(t,x)) = vs (h (ϕs(t,x))) , ϕs(0,x) = x, (82)

for all sufficiently smooth test functions h and for t in a maximal interval of
existence. The flow terminates only when x(t) hits

∂∗Ms =
{
y ∈ ∂Ms : ϕs(t

−,x) = y for some (t,x) ∈ R+ ×Ms

}
. (83)

The exit boundary is the disjoint collection

Γ∗ =
∐

s∈S

∂∗Ms = {(s,x) : s ∈ S,x ∈ ∂∗Ms} , (84)

At a given state (s,x) ∈ E we define the first exit time

t∗s(x) = sup{t > 0 : ϕs(t,x) ∈Ms}, (85)

and the survivor function

F(s,x)(t) =

{
exp

(
−
∫ t
0
λ (s, ϕs (τ,x)) dτ

)
, t < t∗s(x),

0, t ≥ t∗(x).
(86)

The stochastic process (X(t))t≥0 with initial condition X(0) = (s0,x0) is
defined as follows. Choose a random time T0 such that P[T0 > t] = F(s0,x0)(t)
and an E-valued random variable (s1,x1) with law Q(∙ ;ϕs0(T0,x0)) that is
independent of T0. The trajectory of X(t) for t ≤ T0 is then

X(t) =

{
(s0, ϕs0(t,x0)) , t < T0,

(s1,x1), t = T0.
(87)

At t = T0, we repeat this process, replacing the jump time T0 in the algorithm
above with T1 − T0 and the state (s0,x0) with (s1,x1). Iterating this process,
jump by jump, yields a cadlag process X(t), t ∈ [0,∞).

Under modest assumptions, it can be shown that X(t)t≥0 is a strong Markov
process [5, §3]. We only require that Q (A; (s,x)) is a measurable function of
(s,x) for each Borel set A ∈ E and a probability measure on (E, E) for each
(s,x) ∈ E ∪Γ∗. The rate function λ : E → R+ must be measurable with a little
integrability: specifically, for each state (s,x) ∈ E we require the existence of
ε > 0 such that the function τ → λ(s, ϕs(τ,x)) is summable for τ ∈ [0, ε). These
conditions are easily verified in our model.
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A.2 The M-species model as a PDMP

We now show the M -species model defined in Section 2.1 is a PDMP. Define
the countable set of species indices

S =
⋃

m∈N

{1, . . . ,M}m. (88)

It is convenient to introduce notation that makes explicit the distinction between
the number of particles in a state (s,x) and the fixed parameter N that is the
normalizing factor in the empirical measure (15). We denote the number of
particles in the state (s,x) by |s| and write

(s,x) =
(
s1, . . . , s|s|;x1, . . . , x|s|)

)
, (89)

and the associated empirical measures is

μNσ (s,x) =
1
N

|s|∑

i=1

δxi1si=σ, σ = 1, . . . ,M. (90)

For the M -species process, N(t) = |s|(t), and equations (2),(15) and equations
(89)–(90)are consistent.

Similarly, each open set Ms = R|s|
+ and

E =
∐

s∈S

R|s|
+ =

{
(s,x) : s ∈ S, x ∈ R|s|

+

}
. (91)

The velocity fields vs on E are obtained from the velocity fields vs, s =
1, . . . ,M of the M -species model,

vs =
|s|∑

i=1

vsi(xi)
∂

∂xi
, (92)

and the exit boundary is

Γ∗ = {(s,x) ∈ E| there exists (si, xi) such that xi = 0, si ∈ S−}. (93)

In order to define the transition kernel Q, we first describe the finite set
of ‘neighbors’ E∂s,x for each state (s,x) ∈ Γ∗. Each point (s,x) has a finite
number, p, of particles with size zero. Let us label these particles with indices
i = k1,k2,. . ., kp, ordered such that the species sk1 ≤ sk2 ≤ . . . skp

. Let us
begin by discussing the case when p = 1 (this is the most important case, since
boundary events happen at distinct times with probability 1). When p = 1,
the set E∂s,x may be decomposed into M− subsets, corresponding to boundary
events at M− species. More precisely, a boundary event occurs at species l,
if the size xj1 = 0 and the associated species sj1 = l. According to the rules
of Section 2.1, at such a boundary event, K(l) random variables (Sj , Xj) are
chosen, and mutated as in equation (8). Each such mutation gives rise to a
neighbor (r,y) of (s,x). Since the Xj are a random collection of K(l) points of
x, we may write Xj = xij , for indices i1, . . . , iK(l) . Then (r,y) is obtained from
(s,x) in two ‘sub-steps’:

41



(i) Pure mutation: x is unchanged. The coordinates of s are changed as
follows: sij 7→ R

(l)
j , j = 1, . . . ,K(l). Call this intermediate state ŝ.

(ii) Removal of zero size: x is changed to y by deleting the particle xj1 with
size zero.

The probability p∂(∙; s,x) of each transition (s,x) 7→ (r,y) ∈ E∂s,x is given by
the rules of Section 2.1. Finally, observe that these rules extend naturally to
degenerate boundary points, where 0 = xk1 = xk2 = . . . xkp

. In this case,
according to the rules of Section 2.1, we order the points xj1 , . . . , xjp so that the
species sj1 < sj2 < sjp , and mutate and remove particles p times in sequence as
above.

Similarly, given an interior point (s,x) ∈ E we can use the mutation matrix
R(0) and the weights w(0) to define a set of interior points E

(0)
s,x that (s,x)

jumps to along with the corresponding probabilities p(0)(∙; s,x). In this case,
the transition involves only a mutation and no removal of zero sizes.

In summary, the transition kernel is given by

Q(A; s,x) =

{∫
A
p∂(r,y; s,x)1E∂

s,x
(r,y) d(r,y), (s,x) ∈ Γ∗,

∫
A
p(0)(r,y; s,x)1

E
(0)
s,x

(r,y) d(r,y), (s,x) ∈ E.
(94)

Since each particle carries an independent Poisson-β clock β, the first time
T that a clock rings follows the distribution T ∼ min1≤i≤|s| Poisson(β) =
Poisson(|s|β). Thus

λ(s,x) = β|s|. (95)

This completes the description of the M -species model as a PDMP.

A.3 Conservation of total area and zero polyhedral defect

A benefit of using a finite particle system for grain boundary coarsening is the
conservation of area and zero polyhedral defect. Using the notation presented
above, we may write area of polyhedral defect in an N particle system as function
A,P : E → [0,∞) given by

AN [(s,x)] =
|s|∑

i=1

xi PN [(s,x)] =
|s|∑

i=1

(si − 6). (96)

Here, we used the identity function id : x 7→ x. Zero polyhedral defect for a
trivalent planar network means that a grain has, on average, six sides, which
follows from (36) for networks evolving on a torus.

Theorem 3. For the PDMP model with fixed parameters from Sect. 4, suppose
we have initial polyhedral defect PN (0) = 0 and total area AN (0) = A, for all
times t where the process is well-defined (i) PN (t) = 0 and (ii) AN (t) = A.
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Proof. We consider a well-defined path (s(t),x(t)) for t ∈ [0, T ]. In all realiza-
tions, this path will have a finite set of jump times τ1 ≤ ∙ ∙ ∙ ≤ τn.

To show conservation of zero polyhedral defect, suppose for a state (s,x)
that (r,y) ∈ E∂(s,x). We will directly show that defect does not change over
jumps, or that

PN [(s,x)] = PN [(r,y)] (97)

in the case of a three-sided grain vanishing (other critical events have similar
proofs). Under a reindexing, we may write our state as

(s,x) = ((3, s2, . . . , s|s|), (0, x2, . . . , x|s|)). (98)

We may assume, without loss of generality, From (38)-(42) three particles with
indices 2,3, and 4 lose an edge from The mutated state then takes the form

(r,y) = (s2 − 1, s3 − 1, s4 − 1, . . . , s|s|), (x2, . . . , x|s|)), (99)

from which (97) follows immediately. This implies that ΔPN [(s(τi),x(τi))] =
0. Since s does not change between any jumps, if PN (s(0),x(0)) = 0, then
PN (s(t),x(t)) = 0 for all times t in which the PDMP is well defined.

To show conservation of total area, again assume zero initial polyhedral
defect. Then it is immediate that ΔAN [(s(τi),x(τi)] = 0, and for t ∈ (τi, τi+1)
for i = 1, . . . , n − 1,

∂AN

∂t
=

|s|∑

i=1

∂AN

∂xi

∂xi
∂t

=
|s|∑

i=1

(si(t) − 6) = PN [(s(t),x(t))] = 0. (100)

B Proof of well-posedness

Theorem 1 is proved in the following lemmas. The structure of the kinetic
equations is a little more transparent when the flux is rewritten as a matrix
vector product. Let f = (f1, . . . , fM ) and  = (j1, . . . , jM ). We may then write

 =

(
l∑

l=1

A(l)L̇l + βγ(t)A(0)

)

f, (101)

where the matrices A(l) and A(0) have off-diagonal terms given by

A(l)
s,σ = J (l)

s,σW
(l)
s , A(0)

s,σ = J (0)
s,σw

(0)
s , σ 6= s, (102)

and diagonal terms given by

A(l)
σ,σ = −K(l)W (l)

σ , A(0)
σ,σ = −K(0)

σ,σw
(0)
σ . (103)

We first show that the flux , defined in (101), is a locally Lipschitz map.
This allows us to obtain local existence of positive mild solutions by Picard’s
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Figure 20: Limiting equations for a two species example with T ∗ < ∞.
The PDMP is characterized by v1 = −1, v2 = 0,K(1) = 1, R(1)

21 = 1, and weights

w
(1)
2 = 1, w(1)

1 = 0. Left: Initial densities on the two species with disjoint
supports and F1(0) = F2(0) = 1/2. Center: As the initial density of species 1 is
transported to the origin, species 2 mutates to species 1. At some time t1, all of
species 2 have mutated, so that f2(x, t1) = 0. Right: the density is transported
until it reaches the origin at time T ∗, at which point mutation probabilities are
undefined.

method. We then extend the solutions to a maximal interval of existence by
utilizing a more careful estimate of the flux.

Let Br(f0) ⊂ X denote the ball of radius r > 0 centered at f0 ∈ X. As in
(26) we denote

F0 =
M∑

σ=1

∫ ∞

0

f0,σ(x).

We adopt the following convention in the proof. The letter C denotes a
universal, positive, finite constant depending only on the parameters of the
model such as the number of species M , the constant velocities vσ, the number
of mutations K(l) and K(0), the mutation matrices R(l) and R(0), the weights
w(l) and w(0). It does not depend on f0.

Lemma 1 (Uniform bounds). Assume f0 ∈ X is positive and non-zero. There
exists r > 0, depending only on f0, such that for each f ∈ Br(f0).

‖(f)‖ ≤ C

(

β +
‖f0‖
F0

)

‖f‖. (104)

Proof. Recall that the flux (f) is defined by equations (101)–(102). We will
estimate each term in this expression in turn.

We first estimate L̇. We find from (22) that for every l ∈ S−

|L̇l| ≤ |vl||fl(0)| ≤
(
max
σ

|vσ|
)
‖fl‖L∞ ≤ C‖f0‖. (105)

In order to estimate the weights W (l)
k defined by (18), we first establish a

lower bound on the denominator
∑M
n=1 w

(l)
n Fn for each f ∈ Br(f0). Let

w = min
σ,l

{w(l)
σ : F0,σ > 0}, w = max

σ,l
w(l)
σ .
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We then have

M∑

n=1

w(l)
n Fn =

M∑

n=1

w(l)
n (Fn − F0,n + F0,n) ≥ wF0 −

M∑

n=1

w(l)
n |Fn − F0,n|

≥ wF0 −
M∑

n=1

w(l)
n ‖fn − f0,n‖L1 ≥ wF0 − w‖f − f0‖ ≥

1
2
wF0, (106)

provided the radius r satisfies

r <
w

2w
F0. (107)

We assume that r is chosen as above. It then follows from (102) and (103) that
each entry in the matrix A(l) is bounded above by

|Aσk| ≤
C

F0
. (108)

Thus, the operator norm ‖A(l)‖o of the matrix A(l) satisfies the estimate2

‖A(l)‖o ≤
C

F0
. (109)

We combine (109) with (105) to see that the flux due to boundary events is
bounded by ∥

∥
∥
∥
∥
∥




M−∑

l=1

A(l)L̇l



 f

∥
∥
∥
∥
∥
∥
≤ C

‖f0‖‖f‖
F0

. (110)

The estimates for the interior events are simpler. We use the definition of γ
in (18) and the lower bound (106) to obtain the estimate

0 ≤ γ ≤ C
F

F0
≤ C, f ∈ Br(f0). (111)

It follows from the definition of A(0) in (102)–(103) that ‖A(0)‖o ≤ C. Thus,
the flux from interior events is bounded by

‖βγA(0)f‖ ≤ Cβ‖f‖. (112)

We combine estimates (110) and (112) to complete the proof.

Lemma 2 (Lipschitz estimate). Let f0 and r be as in Lemma 1. Then for every
f, g ∈ Br(f0)

‖(f) − (g)‖ ≤ C

(

β +
‖f0‖
F0

)(

1 +
‖f0‖
F0

)

‖f − g‖. (113)

2‖A‖o := sup|v|=1 |Av|, with v ∈ RM , |v|2 =
∑M

n=1 v2
n. Since M is finite any norm may

be chosen.
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Proof. We use the expression (101) to obtain the inequality

‖(f) − (g)‖ (114)

≤
M−∑

l=1

‖A(l)(f)L̇l(f)f −A(l)(g)L̇l(g)g‖ + β‖γ(f)A(0)f − γ(g)A(0)g‖.

Let l be fixed. It is clear that

|L̇l(f) − L̇l(g)| = |vl||f(0) − g(0)| ≤ C‖f − g‖. (115)

For each k, the difference
∣
∣
∣W

(l)
k (f) −W

(l)
k (g)

∣
∣
∣ is estimated as follows. Let Gn =

∫∞
0
gn(x) dx and G =

∑M
n=1Gn. Then

∣
∣
∣
∣
∣

w
(l)
k

∑M
n=1 w

(l)
n Fn

−
w

(l)
k

∑M
n=1 w

(l)
n Gn

∣
∣
∣
∣
∣

=
w

(l)
k

∣
∣
∣
∑M
n=1 w

(l)
n (Fn −Gn)

∣
∣
∣

∣
∣
∣
∑M
n=1 w

(l)
n Fn

∣
∣
∣
∣
∣
∣
∑M
n=1 w

(l)
n Gn

∣
∣
∣

(116)

≤
C

F 2
0

M∑

n=1

‖fn − gn‖L1 ≤
C

F 2
0

‖f − g‖,

using (106). It then follows from (102) and (103) that each term in the matrix
A(l)(f) −A(l)(g) satisfies an estimate as above, so that

‖A(l)(f) −A(l)(g)‖o ≤
C

F 2
0

‖f − g‖. (117)

Finally, we use the estimates (105), (109), (115) and (116) to obtain the Lipschitz
bound:

‖A(l)(f)L̇l(f)f −A(l)(g)L̇l(g)g‖ ≤ ‖A(l)(f) −A(l)(g)‖o|L̇l(f)|‖f‖

+‖A(l)(g)‖0|L̇l(f) − L̇l(g)|‖f‖ + ‖A(l)(g)‖o|Ll(g)|‖f − g‖

≤ C

(
‖f0‖2

F 2
0

+
‖f0‖
F0

)

‖f − g‖.

A calculation similar to (111) yields the estimate

‖γ(f) − γ(g)‖ ≤
C

F0
|F −G| ≤

C

F0
‖f − g‖. (118)

Thus, we find (also using the fact that A(0) is a constant)

β‖γ(f)A(0)f − γ(g)A(0)g‖ ≤ Cβ

(

1 +
‖f0‖
F0

)

‖f − g‖. (119)
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Lemma 3 (Local existence). Assume f0 ∈ X is positive and non-zero. There
exists a time T0 > 0 and a map f ∈ C([0, T ];X) such that f is the unique mild
solution to (19) on the time interval [0, T ] that satisfies the initial condition
f(0) = f0.

Further, f(t) is positive for each t ∈ [0, T ].

Proof. Let r(f0) be chosen as in Lemma 1. It then follows from Lemma 2 that
the flux (f) is locally Lipschitz. The existence of a unique mild solution now
follows by a standard application of the contraction mapping theorem.

The fact that the solution preserves positivity is seen as follows. We note
that the loss term in (21), may be rewritten as j−σ (x, t) = ασ(t)fσ(x, t) where

ασ(t) =
M−∑

l=1

L̇lK
(l)W (l)

σ (t) + βγ(t)K(0)w(0)
σ . (120)

We now rewrite the kinetic equation (19) in the form

∂tfσ + vσ∂xfσ + ασ(t)fσ = j+σ , (121)

and observe that integration along characteristics yields

fσ(x, t) = e−
∫ t
0 α(s) dsfσ(x− vσt, 0) +

∫ t

0

e−
∫ t

τ
α(s) dsj+σ (x− vσ(t− τ), τ ) dτ,

(122)
which clearly preserves positivity.

Lemma 4 (Maximal existence). Let f ∈ C([0, T ];X) be a positive, mild solu-
tion. Then

F (t) +
M−∑

l=1

Ll(t) = F (0), Ll(t) := |vl|
∫ t

0

fl(0, s) ds, t ∈ [0, T ]. (123)

There also exists a universal constant C > 0 such that

‖f(t)‖L∞ ≤ ‖f(0)‖L∞ exp

(

C

∫ t

0

Φ(τ)dτ

)

, t ∈ [0, T ], (124)

where Φ(t) = t+ maxl≤M−

∑
W

(l)
k (t).

Equation (123) expresses conservation of the total number density of the
system. The bound (124) degenerates if and only F (t) → 0, i.e. if and
only if Fp(t) → 0 for each p = 1, . . . ,M , as t approaches a critical time, say
T∗. It is well-known that continuous mild solutions on an interval [0, T ] can
be uniquely continued onto a maximal interval of existence [0, T∗), such that
limt→T∗ ‖f(t)‖X = +∞. Thus, the above estimates suffice to complete the
proof of Theorem 1.
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Proof. 1. The conservation of number for the kinetic equations is a consequence
of the switching rules for the particle system. We use the identity (13), and the
definition of the fluxes in equations (20) and (21) to obtain the identity

M∑

σ=1

jσ = 0. (125)

It follows from (19) and (125) that

M∑

σ=1

∂tfσ + vσ∂xfσ = 0. (126)

We integrate over x ∈ [0,∞) to obtain the identity

dF

dt
=

M∑

σ=1

vσfσ(0, t) = −
M−∑

l=1

L̇l. (127)

The integral form of this identity is (123).
2. In order to prove (124) we combine equations (102) and (103) to obtain

the pointwise estimate

‖A(l)(t)‖o ≤ C

M∑

k=1

W
(l)
k (t), t ∈ [0, T ]. (128)

Consequently, the flux due to boundary events satisfies the L∞ estimate
∥
∥
∥
∥
∥
∥

M−∑

l=1

A(l)L̇lf(t)

∥
∥
∥
∥
∥
∥
∞

≤
M−∑

l=1

‖A(l)(t)‖oL̇l‖f(t)‖∞ (129)

≤ C

(

max
l≤M−

M∑

k=1

W
(l)
k (t)

)

‖f(t)‖∞. (130)

The flux due to interior events is controlled in a similar manner. As in (111)
we find γ(t) ≤ C, t ∈ [0, T ]. Since ‖A(0)‖o ≤ C, we find

‖βγ(t)A(0)f(t)‖∞ ≤ Cβ‖f(t)‖∞. (131)

We combine (129) and (131) to obtain

‖(t)‖∞ ≤ CΦ(t)‖f(t)‖∞. (132)

We now substitute these L∞ estimates in the solution formula (24) to obtain

‖f(t)‖∞ =
M∑

σ=1

‖fσ(∙, t)‖∞ ≤
M∑

σ=1

‖fσ(∙, 0)‖∞ +
∫ t

0

‖jσ(∙, τ )‖∞ dτ

(132)

≤ ‖f(0)‖∞ + C

∫ t

0

Φ(τ)‖f(τ)‖∞ dτ. (133)

An application of Gronwall’s lemma yields (124).
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From here, it is straightforward to obtain several regularity properties for
mild solutions.

Theorem 4. The following hold for mild solutions:

1. Let f(x, t; f0) denote the unique mild solution with initial condition f0 for
t < T∗(f0). Then, the map defined by (f0, t) 7→ f(x, t; f0) is continuous in
both time and space at all points where the map is well-defined.

2. The maximum time of existence T ∗ for mild solutions depends continu-
ously on initial conditions.

3. Let f0 ∈ X ∩C1([0,∞)M ) with f ′0 ∈ X. Then the mild solution f(x, t; f0)
is differentiable in both space and time for t ∈ [0, T ∗), and satisfies (19).

Proof. We have already shown continuity in t from a contraction mapping the-
orem. We now show continuous dependence on initial conditions. To show
continuity in space, let f1

0 , f
2
0 ∈ X with mild solutions f1(x, t) and f2(x, t). For

f2
0 ∈ X sufficiently close to f1

0 , we may use (24) and (113) to show there exists
t∗ > 0 such that for y(t) = ‖f1(t) − f2(t)‖,

y(t) ≤ y(0) + C(f0)
∫ t

0

y(s)ds, t ∈ [0, t∗). (134)

An application of Gronwall’s inequality implies continuous dependence up to
time t∗. By a standard compactness argument, this may be extended to any
[0, T ] with T < T∗(f0). This shows part (1), from which (2) follows immediately.

To prove (3), we show differentiability in space, using the (without loss of
generality) right difference quotients

yh(t) = ‖D+
h (f(x, t))‖∞ =

∥
∥
∥
∥
f(x+ h, t) − f(x)

h

∥
∥
∥
∥
∞

(135)

for h > 0. Similar to Part (1), through (24) and (113) we may show that for
t ∈ [0, T ] with T < T ∗, there exists a finite constant C(T, f0) <∞

yh(t) ≤ C(T, f0)‖Dhf0(x)‖∞. (136)

Since f ′0 ∈ L∞, we may take h→ 0 to obtain ‖∂xf(x, t)‖∞ <∞. The argument
for time derivatives is identical.

For the purposes of demonstrating global existence for PDMPs related to
grain coarsening in Section B.1, we mention that characteristic speeds are
bounded by v̄ = maxs≤M vs.

Theorem 5 (Finite speed of propagation). If f0 has support contained in [0, L],
then for 0 < t < T∗, the support f(x, t) is contained in [0, L+ v̄t].

Proof. The argument is similar to Theorem 4, but now using (24) and Gronwall’s
inequality applied to

gσ(t) = sup
x>L+(t−T )v̄

fσ(x, t), σ = 1, . . . ,M. (137)
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B.1 Properties of kinetic equations for grain coarsening

B.1.1 Conserved quantities

Conservation of area and zero polyhedral defect for kinetic equations, defined
similarly from (96), are conserved for the kinetic equations when considering
initial data which is compactly supported.

Theorem 6. Let f0 ∈ X ∩ Cc([0,∞)). Then for t ∈ [0, T ∗),

P (t) :=
M∑

n=2

(n− 6)Fn(t), A(t) :=
M∑

n=2

∫ ∞

0

a ∙ fn(a, t)da, (138)

if P (0) = 0 and A(0) = A, then P (t) = 0 and A(t) = A for all t > 0.

Proof. Suppose f j0 ∈ X are differentiable with compact support for j ∈ N, and
f j0 → f0 in X as j → ∞. By continuous dependence of parameters, for all t > 0,
solutions f j(a, t) → f(a, t) in X. Thus it is sufficient to show (138) for classical
solutions. To do so, we integrate (43) and sum over all species to obtain

M∑

n=2

(n− 6)Fn(t) = −
M−∑

n=2

(n− 6)2fn(0, t) +
M∑

n=2

(n− 6)
∫ ∞

0

jn(a, t)da. (139)

The left hand side of (139) is the polyhedral defect, and a straightforward com-
putation using (44)-(47) shows that

M∑

n=2

(n− 6)
∫ ∞

0

jn(a, t)da =
M−∑

n=2

(n− 6)2fn(0, t), (140)

which shows the conservation of polyhedral defect.
To show the conservation of area, we find through an integration by parts

of (43) with (125) that

dA(t)
dt

=
M∑

n=2

(n− 6)
∫ ∞

0

a ∙ ∂xfn(a, t)da+
∫ ∞

0

a

M∑

n=2

jn(a, t)da (141)

= P (t). (142)

For initial conditions with zero polyhedral defect, conservation of area then
follows.

The conservation of total area is sufficient to show global existence under a
wide choice of weights.

Theorem 7 (Global existence). Suppose M 6= 10, and w
(l)
k > 0, for (k, l) ∈

{2, . . .M} × {2 × M−}\{∪i∈{0,2,3,4,5}(2, i), (3, 2), (M, 5), (M, 0)}. For nonzero
initial conditions with zero polyhedral defect, the maximum interval of existence
for mild solutions is infinite.
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Remark 1. We require M 6= 10 due to the impossibility of edge deletion in the
pathological case of initial conditions F2(0) = F10(0) = 1/2, and Fσ = 0 for
σ /∈ {2, 10}.

Proof. Suppose for the sake of contradiction, that a finite maximum interval
of existence T∗ < ∞. From Theorem 1,

∑M
σ=2 w

(l)
σ Fσ(T−

∗ ) = 0 for some l =

1, . . . ,M−. We can check directly that from the conditions on w
(l)
k , using zero

polyhedral defect, that the stronger condition of Fσ(T−
∗ ) = 0 must hold for all

σ = 2, . . . ,M . Since f(x, t) ∈ C1
c (R+) from Theorem 5, there exists L > 0 such

that f(x, t) = 0 for x > L and 0 < t < T∗. This implies, however, that

A(T−
∗ ) =

M∑

σ=2

∫ ∞

0

a ∙ fσ(a, T
−
∗ )da ≤ L

M∑

σ=2

Fσ(T
−
∗ ) = 0, (143)

a contradiction to the conservation of total area.
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