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Abstract For classic Lotka-Volterra systems governing many interacting species, we
establish an exclusion principle that rules out the existence of linearly asymptotically
stable steady states in subcommunities of communities that admit a stable state which
is internally D-stable. This type of stability is known to be ensured, e.g., by diagonal
dominance or Volterra-Lyapunov stability conditions. By consequence, the number
of stable steady states of this type is bounded by Sperner’s lemma on anti-chains in
a poset. The number of stable steady states can nevertheless be very large if there
are many groups of species that strongly inhibit outsiders but have weak interactions
among themselves.

By examples we also show that in general it is possible for a stable community to
contain a stable subcommunity consisting of a single species. Thus a recent empirical
finding to the contrary, in a study of random competitive systems by Lischke and
Löffler (Theo. Pop. Biol. 115 (2017) 24–34), does not hold without qualification.
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1 Introduction

Lotka-Volterra systems comprise a family of classic and prototypical models in pop-
ulation ecology. They incorporate nonlinear feedback and regulation mechanisms
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of clear biological importance in a structurally simple way that renders them fairly
amenable to mathematical analysis. Partly for this reason they retain value and inter-
est alongside models of greater complexity and realism (Chesson 2000).

Based on such a model, Volterra (1928) demonstrated that two species exploit-
ing a common resource cannot stably coexist. Volterra’s findings strongly influenced
the development of competitive exclusion principles and ecological niche theory by
Gause et al. (1934), Hutchinson (1957) and many others. The notion of competi-
tive exclusion in general Lotka-Volterra competition models was later investigated
mathematically rather thoroughly and was found to be subject to a number of limita-
tions (Armstrong and McGehee 1980; McGehee and Armstrong 1977). Moreover it
was discovered that, in principle, dynamics in such models can be arbitrarily compli-
cated, admitting time-periodic and even chaotic behavior in systems with only a few
species (May and Leonard 1975; Gilpin 1975; Smale 1976). Nevertheless, the con-
cept of competitive exclusion remains valuable and influential in ecology, as recently
noted by Pocheville (2015).

The present work is motivated by investigations regarding the number of alter-
native stable steady states that a given (or typical) Lotka-Volterra competition model
may admit. Such investigations relate to a variety of significant issues in ecology, such
as whether a given local community of species might be susceptible to invasion by a
species that is not yet present, how a particular assembly of species may have come
to co-exist, or whether different outcomes may have been possible based on differ-
ent histories of invasion. See Gilpin and Case (1976); May (1977); Case and Casten
(1979); Ings et al. (2009); Svirezhev (2008); Law and Morton (1993); Kokkoris et al.
(1999) for a small selection of papers that address such issues.

Recently, Lischke and Löffler (2017) developed numerical methods for efficiently
finding all the possible stable steady states in a given Lotka-Volterra model. They car-
ried out extensive numerical experiments to analyze a class of random competitive
systems for up to 60 species, examining the effect of relative sizes of competition co-
efficients on the number and type of stable equilibria. In a small percentage of cases
they find more than 30 alternative stable steady states. In addition they mention an
empirical finding related to an exclusion principle. Loosely paraphrasing, they found
that no species which forms by itself a single-species stable community was ever ob-
served to be a member of any alternative stable community. If this were always true,
then one could often greatly simplify the search for stable communities by studying
the stability of the simple single-species steady states.

Exclusion. Below, we establish several community exclusion principles related to
these findings. We prove that a generalization of the empirical Lischke-Löffler exclu-
sion principle is valid in certain circumstances. In the special case of symmetric (or
diagonally symmetrizable) interspecific interaction coefficients, it is universally the
case for all Lotka-Volterra systems, whether competitive or not, that any stable com-
munity can neither contain nor be contained in any other such. (See Corollary 3.2.)

In the general case without symmetry, we show (Theorem 3.3) that no two stable
communities can differ by exactly one species. Furthermore, any community that is
“internally D-stable” does not admit any stable subcommunity (Theorem 3.4). The
general concept of D-stability has been much studied for constant-coefficient linear
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systems of differential equations in general and linearized Lotka-Volterra systems in
particular; see Cross (1978); Logofet (2005); Kushel (2019) and Hofbauer and Sig-
mund (1998, Sec. 15.6). Practical criteria that precisely characterize D-stability are
not known in general, but sufficient criteria include stability due to diagonal dom-
inance, and Volterra-Lyapunov stability, meaning sign-definiteness of an associated
quadratic form after diagonal scaling Cross (1978, Prop. 1).

A still-open conjecture of Hofbauer and Sigmund states that an equilibrium state
involving all species of a Lotka-Volterra system is globally attracting if the interspe-
cific interaction matrix is D-stable. Theorem 3.4 supports this conjecture insofar as it
implies that no other equilibrium involving fewer species can be locally attracting.

The empirical Lischke-Löffler exclusion principle for Lotka-Volterra competitive
systems turns out not to be valid without some qualification, however. By example,
we show in Section 3.5 that a single species forming a stable equilibrium by itself can
be contained in a larger stable community. It is plausible that such systems may be
rare in typical random ensembles. If that is the case, an exclusion property for stable
subcommunities may be expected, though not guaranteed.

Multiplicity. The maximum number of stable steady states that can co-exist in Lotka-
Volterra systems is an interesting quantity to consider, and can be limited by commu-
nity exclusion principles such as we study here. If all interspecific interactions are
symmetric, or all stable states are internally D-stable, then the maximum number of
stable equilibria is bounded via Sperner’s lemma for anti-chains in posets; see Sec-
tion 4 below. For N species with N large, this bound is approximately 2N

√
2/πN,

which is a number somewhat smaller than 2N , the number of all subsets of the N
species, but one that still grows exponentially fast in N. We do not know whether the
bound from Sperner’s lemma is sharp.

It is true that exponentially many alternative stable subcommunities are possi-
ble in principle, however. Particular highly symmetric examples can be constructed
similar to how cliques in graphs have been used to form stable states in game the-
ory (Vickers and Cannings 1988) and continuous-time models of allele selection in
population genetics (replicator equations with symmetric payoff matrix, see Hofbauer
and Sigmund (1998, p. 255)).

In Section 5 we describe and generalize this construction and establish quantita-
tive criteria capable of ensuring that large numbers of alternative stable subcommu-
nities are possible in certain Lotka-Volterra systems for N species. This can happen
when many different communities can be formed consisting of species that com-
pete weakly with each other while strongly inhibiting outsiders. Our criteria may
have relevance for some biological systems. E.g., certain recent works (Coyte et al.
2015; Goldford et al. 2018) suggest that there may be common patterns of interaction
among the many alternative species in naturally occurring microbiomes. In particu-
lar, weak interactions may be predominant in the microbiome of the human gut—a
community comprising hundreds of species of bacteria—but the presence of some
strongly competitive interactions can have a stabilizing effect (Coyte et al. 2015).

Relation to evolutionary game theory. It is well known that there is an equivalence
between the dynamics of a given Lotka-Volterra system and those of a corresponding
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family of replicator equations in evolutionary game theory. A rather extensive body
of work exists concerning exclusion principles and multiplicity for stable states in
replicator equations. Some of the findings in this opus carry back readily to Lotka-
Volterra systems. For others, their game-theoretic meaning has no evident signifi-
cance in the Lotka-Volterra context. The degenerate nature of the correspondence
can also get in the way.

We will make a detailed comparison of our findings with corresponding results on
replicator equations in Section 6. Of special significance is the game-theoretic notion
of an evolutionarily stable state (ESS), which has been extensively explored following
its introduction by Maynard Smith and Price (1973) in an analysis of animal conflict.
Each ESS is a locally attracting steady state for replicator dynamics, but the reverse
is not generally true for non-symmetric payoff matrices. The supports of ESSs are
known to satisfy the same type of exclusion principle, a non-containment property
known as the Bishop-Cannings theorem (Bishop and Cannings 1976), as we establish
here for internally D-stable equilibria in Lotka-Volterra systems.

We show that the ESS notion does not correspond to internal D-stability under
the replicator–Lotka-Volterra equivalence, however. Nor are ESSs invariant under
diagonal scalings natural to Lotka-Volterra systems. An interesting and extensive un-
derstanding of the multiplicity and patterns of possible ESSs for large numbers of
strategies has been achieved; the recent paper of Bomze and Schachinger (2020) has
pointers to much relevant literature. Yet it remains unclear whether corresponding
results hold which are meaningful for Lotka-Volterra systems.

2 Lotka-Volterra systems and notions of stability

2.1 Governing equations

Lotka-Volterra systems model the time evolution of the populations pi of a finite set
of N species indexed by i ∈ N := {1,2, . . . ,N}. With ′ denoting the time derivative,
the governing differential equations take the form

p′i = pi(ai− ∑
j∈N

Bi j p j) , i ∈ N. (2.1)

Here ai represents an intrinsic growth rate for species i in the limit when all popu-
lations are small, and Bi j is a coefficient which, if positive, induces a competitive or
inhibiting effect of the presence of species j on the growth of species i. Throughout
this paper we take the coefficients ai and Bi j to be constant in time.

Almost exclusively, our interest is in solutions of (2.1) belonging to the state
space RN

+ = {p ∈ RN : pi ≥ 0 ∀i}, since negative species populations are normally
not meaningful. It is convenient that this space is invariant for solutions of system
(2.1).

Given a state p ∈ RN
+, the community supporting p will refer to the set of species

i for which pi > 0. Mathematically this is the support, denoted supp p = {i ∈ N : pi >
0}. The community supporting a solution t 7→ p(t) is time-invariant, since pi(t) is
either always positive or always zero.
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In order to write this system in a convenient matrix-vector form, we define

\p\= diag(p1, . . . , pN)

to denote the diagonal matrix with successive diagonal entries p1, . . . , pN . With this
notation, equation (2.1) takes the form

p′ = \p\(a−Bp) . (2.2)

2.2 Equilibria, linearization, scaling

A vector p̃ ∈ RN
+ is a steady state (or equilibrium) for the system (2.1) if and only if

ai− (Bp̃)i = 0 for each i ∈ supp p̃. (2.3)

We will analyze the system in block form with respect to the support community
I = supp p̃ and its complement J = N \ I, via the notation

p =

(
pI
pJ

)
, a =

(
aI
aJ

)
, B =

(
BII BIJ
BJI BJJ

)
.

Then p̃J = 0, and (2.3) means that aI = BII p̃I . Thus for any community I ⊆ N, if BII

is invertible then the community I supports at most one steady state in RN
+.

The linearized equation of evolution for small perturbations q around the steady
state p̃ takes the form

q′ = Aq, (2.4)

where the constant matrix A is explicitly given by

Ai j =


−p̃iBi j for i ∈ I and any j ∈ N,

ai− (Bp̃)i for i /∈ I and j = i,
0 for i /∈ I and j 6= i.

In block form using the diagonal-matrix notation \p\ above, we can write

A = \a−Bp̃\−\ p̃\B =

(
−\ p̃I\BII −\ p̃I\BIJ

0 \aJ−BJI p̃I\

)
. (2.5)

Diagonal scaling will sometimes be used for our analysis. If D = (di j) is a di-
agonal matrix with positive diagonal entries dii > 0, the change of variables p = Dp̂
maps (2.2) to the system

p̂′ = \p̂\(a− B̂p̂), B̂ = BD, (2.6)

having scaled columns, with B̂i j = Bi jd j j. If dii = p̃i for i ∈ I = supp p̃, the scaled
equilibrium is uniform over I, with p̂i = 1 if and only if i ∈ I, which we write as
p̂ = 1I .
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2.3 Notions of stability

2.3.1 Matrix conditions

We recall a few standard definitions for matrices that relate to the stability properties
of the linear system (2.4) (Cross 1978; Logofet 2005; Hofbauer and Sigmund 1998).

Definition 2.1 Let A be a real N×N matrix.

1. A is stable if every eigenvalue of A has negative real part.
2. A is D-stable if DA is stable for all diagonal D > 0.
3. A is Volterra-Lyapunov stable (VL-stable) if there exists some diagonal D > 0 for

which DA+AT D < 0, or equivalently 〈x,DAx〉< 0 for all x ∈ RN \{0}.

Here the notation S > 0 (resp. S≥ 0 or S < 0) for a real symmetric matrix S means S
is positive definite (resp. positive semidefinite or negative definite), and 〈·, ·〉 denotes
the standard inner product in RN .

It is known that VL-stability implies D-stability (Cross 1978, Prop. 1). Of course,
D-stability implies stability. In case A is symmetric, the three notions are equivalent,
since stability is equivalent to negative definiteness.

The three notions are equivalent also in case A is D-symmetrizable, meaning
D1AD2 is symmetric for some positive diagonal D1, D2. For if A is stable and D =

D−1/2
2 D1/2

1 , then the symmetric matrix S =DAD−1 < 0, so 2DSD=D2A+AT D2 < 0,
thus A is VL-stable.

2.3.2 Linear stability

For Lotka-Volterra systems in general, it is arguably natural to study stability re-
stricted to the invariant state space RN

+. In linearly degenerate cases this leads to
some subtleties. E.g., in the simple example of the system{

x′ = βx2,

y′ =−y.

the origin is clearly not stable in R2 whenever β 6= 0, but if β < 0 it is asymptotically
stable with respect to dynamics restricted to the quadrant R2

+.
Our main results concern equilibria p̃ which are stable in the nondegenerate sense

of being linearly asymptotically stable in RN . This means that q(t)→ 0 as t→ ∞ for
every solution of (2.4) in RN . Arguably, we should compare this to the putatively
weaker property that q(t)→ 0 as t → ∞ for just those solutions of (2.4) for which
p̃+ εq ∈ RN

+ for sufficiently small ε > 0. We say p̃ is linearly asymptotically stable
in RN

+ provided this is the case, which simply means

qi ≥ 0 whenever p̃i = 0. (2.7)

These two notions of linear asymptotic stability turn out to be equivalent, however,
so we will not need to refer to the second notion in what follows.



Exclusion and multiplicity in Lotka-Volterra systems 7

Proposition 2.2 Let p̃ ∈ RN
+ be an equilibrium for the Lotka-Volterra system (2.1).

Then the following are equivalent:

(i) p̃ is linearly asymptotically stable in RN .
(ii) p̃ is linearly asymptotically stable in RN

+.
(iii) A is stable.

Proof The equivalence of conditions (i) and (iii) is well known, and (i) implies (ii).
If (i) fails to hold, then the matrix A in (2.4) has some eigenvalue with non-negative
real part. By consequence, each solution satisfying q(t)→ 0 as t → ∞ must lie in a
strict subspace of RN , which cannot contain an open set in RN . Since (2.7) allows an
open set of perturbations, we can conclude that (ii) implies (i).

For brevity, we say p̃ is strictly stable if p̃ is linearly asymptotically stable. We
call I a stable community if it supports a strictly stable equilibrium p̃.

2.4 Nonlinear stability

There is a substantial body of literature regarding the nonlinear stability of Lotka-
Volterra equilibria, especially with respect to solutions with positive population pi for
every species considered, so that p(t) ∈ RN

+ = {p ∈ RN : pi > 0 ∀i} for all t. For ex-
ample, the books of Goh (1980), Takeuchi (1996) and Hofbauer and Sigmund (1998)
contain much information. We will mainly leave aside issues concerning degenerate
cases that involve eigenvalues with zero real part.

As is well known, condition (i) above ensures that the equilibrium p̃ is locally
asymptotically stable, i.e., it attracts all solutions of (2.1) in a small enough neigh-
borhood in RN . Also well known is the fact that p̃ globally attracts all solutions in
RN
+ if −B is Volterra-Lyapunov stable; see Goh (1977) and Hofbauer and Sigmund

(1998, p. 191).
Hofbauer and Sigmund (1998, p. 200) have conjectured that p̃ globally attracts

all solutions in RN
+ if A is D-stable. To our knowledge, this conjecture remains open.

2.5 Internal stability

Given an equilibrium p̃ with support community I, it is often natural to consider its
stability with respect to solutions supported by the same community.

Definition 2.3 Let p̃ be an equilibrium state for the Lotka-Volterra system (2.1), and
let I = supp p̃ be its support community. We say:

– p̃ is internally stable if −\ p̃I\BII is stable.
– p̃ is internally D-stable if −BII is D-stable.
– p̃ is internally VL-stable if −BII is Volterra-Lyapunov stable.

We will also call the community I internally stable (resp. D- or VL-stable) if it sup-
ports some equilibrium p̃ which is internally stable (resp. D- or VL-stable). Note that
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if p̃ is internally stable, then BII is nonsingular and thus p̃ is the unique equilibrium
state supported by I, determined by p̃I = B−1

II aI .
If p̃ is internally VL-stable, then it attracts all solutions of (2.1) having the same

support community I. If p̃ is internally (D-)stable, it attracts all nearby solutions of
(2.1) having the same support community.

These notions of internal stability say nothing about the behavior of solutions un-
der perturbations which introduce species external to the community I supporting p̃.
Due to the block structure of the linearized system in (2.4), this behavior is evidently
determined by the sign of (a−Bp̃)i for i /∈ I. It will be convenient to consider this
concept for species belonging to some given community Q⊆ N.

Definition 2.4 Let Q ⊆ N, and let p̃ be an equilibrium for (2.1) with support com-
munity I contained in Q. We say p̃ is Q-stable if p̃ is internally stable and

ai− (Bp̃)i < 0 for all i ∈ Q\ I. (2.8)

Informally, this notion ensures that the (internally stable) community I that supports
p̃ is stable against (infinitesimal) invasions by other species in Q. In particular, if we
take Q = N, it is straightforward to see that we have the following.

Lemma 2.5 Let p̃ be an equilibrium state for system (2.1). Then p̃ is strictly stable
(i.e., linearly asymptotically stable) if and only if it is Q-stable with Q = N.

3 Exclusion principles for stable communities

3.1 Statements of main results

Recall that a fundamental result from the book of Hofbauer and Sigmund (1998,
Sec. 15.3) states that if the full matrix−B is Volterra-Lyapunov stable, then the Lotka-
Volterra system (2.1) admits a unique globally stable equilibrium state in RN

+. (Also
see Liu et al. (2015) in case B is positive definite.) With weaker conditions on B, it
becomes possible that the system admits many more stable equilibria, and this can
have interesting consequences for explaining the diversity and historical development
of ecological communities (Gilpin and Case 1976; Case and Casten 1979; Kokkoris
et al. 1999; Goldford et al. 2018). Thus it is interesting to identify any restriction
on the composition of stable communities, such as a competitive exclusion principle,
which may follow from the nature of interspecific interactions.

For example, one result that follows directly from the global stabilty theorem for
Volterra-Lyapunov stable matrices −B in the book of Hofbauer and Sigmund (1998,
Sec. 15.3) is the following:

Theorem 3.1 For any community Q ⊆ N, if the principal submatrix −BQQ is VL-
stable, then there is a unique equilibrium q̃ ∈ RN

+ with support contained in Q that
is Q-stable. This equilibrium q̃ attracts all solutions of (2.1) with support community
Q.
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This follows by simply restricting the equations in (2.1) to species i ∈ Q and setting
p j = 0 for j /∈Q. In case the equilibrium q̃ is given and q̃i > 0 for all i ∈Q, the global
stability follows from an argument going back to Volterra (1928, §10.2) using the
strict monotonicity of F(p(t)) for the relative entropy functional given by

F(p) = ∑
i∈Q

di(q̃i log
q̃i

pi
+ pi− q̃i), (3.1)

with coefficients di > 0 determined by VL-stability. See also Goh (1977); Liu et al.
(2015).

The empirical finding of Lischke and Löffler (2017), if valid, would provide an-
other powerful example of an exclusion principle. In their extensive computational
experiments, they found (in the present terminology) that no stable single-species
community was ever a subcommunity of any other stable community. As it is easy
to check the stability of equilibria supported by a single species, Lischke and Löffler
could use this principle to greatly simplify the search for all stable communities in
large systems.

A quite general exclusion principle for stable communities of the Lischke-Löffler
type is in fact valid, provided that the interaction matrix is D-symmetrizable.

Corollary 3.2 Suppose B is D-symmetrizable, and I is a community supporting a
strictly stable equilibrium p̃ for (2.1). Then no other community contained in or con-
taining I can support a strictly stable equilibrium q̃.

Proof Suppose p̃ and q̃ are both strictly stable and I ⊆ Q = supp q̃. Then each is
internally stable, and since B is D-symmetrizable, each is internally VL-stable. In
particular,−BQQ is VL-stable, so by the Theorem, q̃ attracts all solutions with support
community Q. But if q̃ 6= p̃, this contradicts the strict stability of p̃, which makes p̃
locally asymptotically stable in RN . ut

In the terminology introduced at the end of the last section, Corollary 3.2 states
that if B is D-symmetrizable, different stable communities cannot completely overlap.
This strong subcommunity exclusion principle does not hold in general in the absence
of symmetrizability or any special stability properties. However, we find that it does
always hold for communities that differ by only one species.

Theorem 3.3 No two stable communities can differ by exactly one species. I.e., if
I ⊂ N and x ∈ N \ I, then two equilibrium states with supporting communities I and
I∪{x} cannot both be strictly stable.

Finally, we are able to exclude complete overlap for stable communities under a
weaker assumption than in Theorem 3.1. In particular, the assumption that the larger
community is internally D-stable suffices.

Theorem 3.4 Suppose Q is a community supporting an internally D-stable equilib-
rium q̃. Then no subcommunity of Q can support any different equilibrium state which
is Q-stable.
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The proofs of Theorems 3.3 and 3.4 will be provided in subsections 3.3 and 3.4
below. The notion of internal D-stabilty seems to arise naturally from (2.4)–(2.5),
since the stability of the block −BII is unaffected by any positive diagonal scaling.
Despite a long history of investigation, however, computationally effective criteria
that completely characterize D-stability are presently known only for N ≤ 4 (Cross
1978; Logofet 2005). One simple criterion that is sufficient to ensure the matrix−BII
is D-stable, though, which follows from Gershgorin’s circle theorem, is the diagonal
dominance condition

Bii > ∑
j∈I\{i}

|Bi j| for all i ∈ I. (3.2)

This condition ensures −BII is VL-stable also — see Remark 5.7 below, and Logofet
(2005, p. 87) for a more general result.

Theorem 3.4 excludes the complete overlap of a stable community by any larger
internally D-stable community, stable or not. This would appear to support the con-
jecture of Hofbauer and Sigmund (1998, p. 200) regarding the global stability of an
equilibrium with full support I = N when −B is D-stable. For if such an equilibrium
is not a global attractor in RN

+, then there cannot be any other strictly stable equilib-
rium in the system. Our present results leave open the possibility, however, that there
could be some other equilibrium that is degenerately (semi-)stable, or there could be
an open set in RN

+ with non-convergent dynamics.
In the most general case without symmetry, we find that an exclusion principle

for stable sub- or super-communities does not always hold. Here is a basic counterex-
ample.

Example 3.5 (Failure of subcommunity exclusion) One can check that if

B =

1 1 1
2 1 3
3 1 4

 , a =

4
7
9

 , (3.3)

then the two different equilibrium states of (2.1) given by

p̃ =

4
0
0

 , q̃ =

1
2
1

 ,

with completely overlapping supports, are both strictly stable.

A key property of the matrix B in this example is that −\q̃\B is stable but not D-
stable. (In particular it is not a P0 matrix, see subsection 3.4 below.) Here the single-
species equilibrium p̃ is linearly stable in a strong sense: the matrix A in (2.4)–(2.5)
is upper triangular with negative diagonal. The existence of a stable supercommunity
is only possible because B is not D-stable. In subsection 3.5 below we will examine
this more carefully and show that such examples can be produced for any number of
species N ≥ 3.
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3.2 Exclusion for internally VL-stable states

For the convenience of the reader, we prove Theorem 3.4 first in the special case when
the equilibrium q̃ is internally VL-stable, i.e., when the principal submatrix −BQQ is
VL-stable. Of course, in this case the more general result of Theorem 3.1 holds, but
the following proof, related to the dissipation rate of the Lyapunov function F(p) in
(3.1), is simple and self-contained.

Proof (of Theorem 3.4 for internally VL-stable communities) Let Q ⊆ N be a com-
munity supporting an internally VL-stable equilibrium q̃, and suppose p̃ is a Q-stable
equilibrium with supporting community P = supp p̃⊆ Q. Note that

ai− (Bp̃)i

{
= 0 for all i ∈ P,
< 0 for all i ∈ Q\P,

while ai− (Bq̃)i = 0 for all i ∈ Q. Let D be a positive diagonal matrix making the
quadratic form of DBQQ positive definite, and let di = Dii. Then

κ := ∑
i∈Q

q̃idi(ai− (Bp̃)i)+ ∑
i∈Q

p̃idi(ai− (Bq̃)i)≤ 0,

while on the other hand, since 0 = q̃i(a−Bq̃)i = p̃i(a−Bp̃)i for all i,

κ = ∑
i∈Q

q̃idi((Bq̃)i− (Bp̃)i)+ ∑
i∈Q

p̃idi((Bp̃)i− (Bq̃)i)

= ( p̃− q̃)Q ·DBQQ( p̃− q̃)Q ≥ 0.

Thus p̃ = q̃. ut

Remark 3.6 The same proof also proves that if −BQQ is any VL-stable principal
submatrix of B, then there is at most one equilibrium with supporting community
contained in Q that satisfies the (degenerate) condition ai− (Bq̃)i ≤ 0 for all i ∈ Q.
This statement follows from stronger results proved in the book of Hofbauer and
Sigmund (1998, Sec. 15.4).

3.3 Exclusion for strictly stable states

The proofs of Theorems 3.3 and 3.4 make use of Schur complements. If B is a square
matrix with block representation

B =

(
BII BIJ
BJI BJJ

)
,

and BII is invertible, the Schur complement of BII in B is defined by

B/BII := BJJ−BJIB−1
II BIJ .
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Denoting the identity matrix by I, block row operations yield(
I 0

−BJIB−1
II I

)(
BII BIJ
BJI BJJ

)
=

(
BII BIJ
0 B/BII

)
,

so evidently the Schur determinant formula holds:

detB = detBII det(B/BII).

Proof (of Theorem 3.3) Let p̃ and q̃ be strictly stable equilibria for the Lotka-Volterra
system (2.1) with respective support communities I and Q= I∪{x}, where x /∈ I. Note
that aI = BII p̃I , and due to the external stability condition (2.8),

0 > ax− (Bp̃)x = ax−BxIB−1
II aI .

Since aQ = BQQq̃Q, this is equal to

(BxI q̃I +Bxxq̃x)−BxIB−1
II (BII q̃I +BIxq̃x) = (BQQ/BII)q̃x.

Thus 0 > (BQQ/BII) = (detBQQ)/(detBII). The internal stability of p̃ and q̃ imply
that all the eigenvalues of the matrices \ p̃I\BII and \q̃Q\BQQ have positive real part,
hence both detBII and detBQQ are positive. This yields a contradiction. ut

3.4 Proof for internally D-stable states

A key ingredient in our proof of Theorem 3.4 is that D-stable matrices enjoy a prop-
erty which behaves nicely under restriction to principal submatrices and their Schur
complements. Firstly, it is known (Cross 1978, p. 256) that for any D-stable matrix
A, −A has the following P0 property.

Definition 3.7 A ∈RN×N is a P0 matrix if every principal minor of A is nonnegative.

Lemma 3.8 Schur complements in any nonsingular P0 matrix are also P0.

Proof Let B be an N×N nonsingular P0 matrix with block representation as above.
To consider principal submatrices of B/BII , choose K ⊆ J and let I′ = I∪K. Then

(B/BII)KK = (BJJ−BJIB−1
II BIJ)KK

= BKK−BKIB−1
II BIK = BI′I′/BII .

Thus any principal matrix of a Schur complement can be represented as a Schur
complement. Then, by the determinant formula,

det(B/BII)KK = det(BI′I′/BII) = detBI′I′/detBII ≥ 0.

ut

In the proof of Theorem 3.4 we will also make use of the following characteriza-
tion of P0 matrices, observed by Fiedler and Pták (1966/67).
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Theorem 3.9 (Fiedler & Pták, 1966) A ∈ RN×N is a P0 matrix if and only if for any
nonzero x ∈ RN , there exists an index i such that xi 6= 0 and xi(Ax)i ≥ 0.

Proof (of Theorem 3.4) Without loss of generality, we assume that q̃ is an internally
D-stable equilibrium with full support Q = N, meaning−B is D-stable. Suppose also
that p̃ is a strictly stable equilibrium with smaller support I. Now we can analyze
the external stability condition (2.8) for p̃ using B and q̃ as follows. For notational
simplicity we let J = Ic = N \ I. We have

a−Bp̃ =

(
aI
aJ

)
−
(

BII BIJ
BJI BJJ

)(
p̃I
0

)
=

(
0

aJ−BJI p̃I

)
, (3.4)

hence aJ−BJI p̃I = aJ−BJIB−1
II aI . Since a = Bq̃, however, we can write

aJ = BJI q̃I +BJJ q̃J , aI = BII q̃I +BIJ q̃J ,

and deduce from the external stability condition (2.8) that, componentwise,

0 > aJ−BJI p̃I = (BJJ−BJIB−1
II BIJ)q̃J = (B/BII)q̃J , (3.5)

where B/BII is the Schur complement of BII in B. But since the matrix A = B/BII
inherits the P0 property from B by Lemma 3.8, (3.5) contradicts Theorem 3.9. ut

This argument yields a result that differs in a rather subtle way from conclusions
implied by Theorem 15.4.5 in the book of Hofbauer and Sigmund (1998). This the-
orem states that B is a P matrix (meaning all its principal minors are positive) if and
only if for every a ∈ RN , the system (2.1) has a unique equilibrium p̃ ∈ RN

+ which
is “saturated,” meaning ai − (Bp̃)i ≤ 0 for all i. Any strictly stable equilibrium is
strictly saturated, so it follows a result in the book of (Hofbauer and Sigmund 1998,
Thm. 15.4.5) that if Q ⊆ N and BQQ is a P-matrix, then at most one subcommunity
of Q can be Q-stable.

The same proof as that of Theorem 3.4 above establishes the following related
exclusion principle, which relaxes the assumption on strict positivity of minors while
strengthening the saturation (exterior stability) condition. If I ⊆ Q ⊆ N, let us call
an equilibrium p̃ with support I strictly Q-saturated if BII is nonsingular and ai−
(Bp̃)i < 0 for all i ∈ Q\ I.

Corollary 3.10 If a community Q ⊆ N supports an equilibrium q̃ ∈ RN
+ and BQQ is

a P0 matrix, then no different equilibrium p̃ supported inside Q can be strictly Q-
saturated. In particular, no p̃ 6= q̃ can be Q-stable.

The internal D-stability condition in Theorem 3.4 is in principle weaker than the
VL-stability condition in Theorem 3.1. As we have indicated, it is not known how
to verify D-stability computationally in every case where it is true, when N > 4. In
contrast, the assumptions in both Corollary 3.10 and Theorem 15.4.5 in the book of
Hofbauer and Sigmund (1998) can in principle be checked by computing sufficiently
many principal minors. In practice, though, the number of minors involved may be-
come prohibitively large if many species are considered.
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3.5 Counterexamples to exclusion in competitive systems

Equations (2.1) model purely competitive interactions if all entries of the matrix B
are positive. Lischke and Löffler (2017) state that in their extensive simulations of
random competitive Lotka-Volterra systems, they never encountered a case where a
single species formed a stable subcommunity of a larger one. Example 3.5 shows that
this is not a universal property that holds for all competitive systems, but the results
of Lischke and Löffler (2017) suggest that encountering counterexamples may be a
rare event. In this subsection we show that one can invent such counterexamples in
systems of any size N ≥ 3.

For a single-species community I to be stable and contained in a larger one Q,
necessarily −BII < 0, and −BQQ must be stable but not D-stable. For definiteness we
set I = {1}, Q = N and J = Q\ I.

A matrix B = BQQ, with Schur complement C = B/BII , might have these prop-
erties if B11 > 0 and C has some negative diagonal element (implying C is not a P0
matrix). We can seek B in the block form

B =

(
b rT

c C+ crT/b

)
, (3.6)

where b > 0 and c,r ∈ RN−1 have positive entries. (Note C = B/BII here.)
In order for a state q̃ = (q̃1, q̃J)

T > 0 to be a strictly stable equilibrium, we require
a = Bq̃ and all eigenvalues of \q̃\B to have positive real parts. Then in order for
p̃ = ( p̃1,0)T to be strictly stable, it suffices by (3.5) that

bp̃1 = a1 = bq̃1 + rT q̃J and aJ−BJI p̃I =Cq̃J < 0. (3.7)

In Example 3.5 these conditions all hold — e.g.,

Cq̃J =

(
−1 1
−2 1

)(
2
1

)
< 0.

To construct examples for any N ≥ 3, it is convenient to choose C to make B a rank-2
perturbation of εI for small ε > 0, where I is the identity matrix. That is, we seek to
make

B = εI+ vwT + v̂ŵT , (3.8)

where the vectors v,w, v̂, ŵ ∈ RN have the block form

v =
(

1
c

)
, w =

(
1
r

)
, v̂ =

(
0
−ĉ

)
, ŵ =

(
0
r̂

)
.

In this case b = 1+ ε and the Schur complement

C =−ĉr̂T + ε(I+ crT/b).

The matrix B has the eigenvalue ε > 0 with multiplicity N − 2, since any vector
orthogonal to both w and ŵ is an eigenvector. It is straightforward to show that the
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two remaining eigenvalues must take the form ε +λ where λ is an eigenvalue of the
2×2 matrix

M =

(
wT v wT v̂
ŵT v ŵT v̂

)
. (3.9)

With the specific choices

r = (1,1, . . . ,1)T , c = 3r, r̂ = (1,0, . . . ,0)T , ĉ = 2r− r̂,

we find

M =

(
1+3m 1−2m

3 −1

)
, m = N−1.

The eigenvalues of M have positive real part for all N ≥ 3, since then M has positive
trace 3m and determinant 3m−4.

Thus the matrix−B is stable. With the choices q̃= (1,1, . . . ,1)T , a= Bq̃, the state
q̃ becomes a strictly stable equilibrium. With p̃1 = a1/(1+ ε), the state p̃ = ( p̃1,0)T

then satisfies (3.7) for sufficiently small ε > 0, since

Cq̃J =−ĉ+O(ε) = (−1,−2, . . . ,−2)T +O(ε)< 0.

Thus the single-species equilibrium p̃ is also strictly stable for small ε > 0.

4 Bounds from Sperner’s lemma

The exclusion principles of the previous section imply bounds on the number of stable
communities of certain types, by a well-known result from the combinatorial theory
of posets (partially ordered sets). A poset is a set P with a binary relation≤ satisfying
reflexivity (a≤ a), antisymmetry (if a≤ b and b≤ a, then a = b) and transitivity (if
a ≤ b and b ≤ c, then a ≤ c). Two elements a and b in P are comparable if a ≤ b or
b≤ a. A chain in P is a subset C ⊆P such that any two elements in C are comparable.

Definition 4.1 An anti-chain in a poset P is a subset A ⊆ P such that no two ele-
ments in A are comparable.

For any set S, the collection of all subsets of S ordered by inclusion is a poset,
denoted by (P(S),⊆). For S = {1,2,3}, e.g., the collection

{
/0,{1},{1,2},{1,2,3}

}
is a chain and

{
{1,2},{2,3},{1,3}

}
is an anti-chain. The maximal size of any anti-

chain in a finite poset is bounded by the following well-known result of Sperner. See
Lubell (1966) for a short proof.

Lemma 4.2 (Sperner’s lemma) Let A be an anti-chain in a poset P having N ele-
ments. Then the number of elements of A is at most

( N
bN/2c

)
.

From Theorem 3.4 we directly infer the following.

Corollary 4.3 For any Lotka-Volterra system (2.1), no two stable subcommunities of
N = {1,2, . . . ,N} that are internally D-stable are comparable with respect to inclu-
sion. The number of strictly stable equilibria that are internally D-stable is therefore
at most

( N
bN/2c

)
.
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Remark 4.4 Note that if B is D-symmetrizable, any strictly stable state is internally
D-stable. In this case the number of strictly stable equilibria is bounded above by( N
bN/2c

)
.

We remark that when N is large, this bound is exponentially large in N and not so
very much smaller than 2N , the number of all subsets of N. For Stirling’s approxima-
tion says n!∼

√
2πn( n

e )
n, thus(

N
bN/2c

)
∼ 2N

√
2

πN
. (4.1)

Remark 4.5 The same type of anti-chain property as described for Lotka-Volterra
systems in Corollary 4.3 is well-known to hold for the supports of evolutionarily sta-
ble states (ESSs) in evolutionary game theory. The Bishop-Cannings theorem (Bishop
and Cannings 1976, Thm. 2) implies that the support of any ESS can neither contain
nor be contained in the support of any other. This theorem about ESSs actually pro-
vides a different collection of Lotka-Volterra communities that enjoy the anti-chain
property. We discuss this in detail below in Section 6.

5 Multiplicity of stable steady states

We do not know whether the bound in Corollary 4.3 that comes from Sperner’s lemma
is sharp. For certain systems whose interactions have a bimodal competition struc-
ture, though, the number of stable communities can be exponentially large in N, and
greater than 2N/2 in particular. This number is a bit larger than the square root of the
bound in (4.1).

Systems with such great numbers of stable communities may be quite rare. In
the course of extensive numerical explorations of a random class of Lotka-Volterra
systems, (Lischke and Löffler 2017, Table 2) found that multiple stable equilibria
occur in about half of their simulations involving between 2 and 60 species, with
about 2 percent having more than 25 stable equilibria. It appears that no more than
about 40 stable equilibria in one system were ever encountered by Lischke and Löffler
(2017). With N = 60, though, more than 2N/2 > 109 stable equilibria are possible
in theory. Thus we are interested to investigate whether robust conditions can be
described which ensure that large numbers of stable equilibria exist.

5.1 Indistinguishable species

One property that can allow many stable communities to exist is that stability per-
sists if some species in a community is exchanged for a different species. If such
a stability-preserving exchange is possible for m different pairs of species indepen-
dently, then the number of stable communities is at least as large as 2m.

The simplest type of exchange of this kind occurs for two species x and y with
identical growth rates and interaction coefficients, satisfying

ax = ay, Bix = Biy, Bx j = By j, (5.1)
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for all i, j ∈ N. We call x and y indistinguishable in this case.
For two such species, permuting index labels in the Lotka-Volterra system (2.1)

by swapping x and y leaves the system invariant. Thus if I is a stable community that
contains x but not y, then the community Î obtained by replacing x by y is also stable.

We shall describe two examples involving groups of indistinguishable species,
that permit large numbers of stable communities.

Example 5.1 (Complete indistinguishability and competitive exclusion) In the sim-
plest case, all species are pairwise indistinguishable, with interspecific competition
coefficients all the same, and intraspecies competition coefficients also all the same:

Bi j =

{
α if j 6= i,
β if j = i,

ai = β . (5.2)

When α > β > 0 this system has exactly N strictly stable steady states p̃ with p̃ = 1I
for any singleton set I = {i}, i = 1, . . . ,N. Because B is symmetric, Corollary 3.2
applies. Thus, when the interspecific competitions are stronger than the intraspecific
competition, the competitive exclusion principle is valid. (When 0 < α < β on the
other hand, B is positive definite and the system has a unique strictly stable equilib-
rium having equal population densities for all species.)

A much larger number of stable communities can be obtained. Suppose the set
of N species can be partitioned into m disjoint subsets, each of which consists of
pairwise indistinguishable species, and suppose further that a stable community I
exists that contains exactly one member from each subset. Then each member of I
can be exchanged with any member indistinguishable from itself. If k1,k2, . . . ,km
denote the number of species in the m different subsets, then the number of stable
communities in this case is at least as large as the number

m

∏
j=1

k j = k1k2 · · ·km. (5.3)

We will show that this is indeed possible for any partition of N, as a special case of
the main result in the next subsection. See Example 5.5 below.

5.2 Weak vs strong competition

As mentioned in the Introduction, some recent biological studies suggest that weak
interactions may predominate in certain naturally occurring microbiomes, but sta-
bility is enhanced by the presence of some strongly competitive interactions. In this
section we describe examples with this nature, having many stable communities.

Our construction is motivated by a known result in evolutionary game theory for
symmetric payoff matrices related to the incidence matrix of a general graph. For
such matrices, Vickers and Cannings (1988, II) state that the ESSs are characterized
in terms of the cliques of the graph (maximal complete subgraphs). In the context of
continuous-time models of allele selection in population genetics, with a symmetric
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fitness matrix of this type, (Hofbauer and Sigmund 1998, Sec. 19.3) state that all
stable rest points are characterized in terms of the cliques. Below we prove that a
result of this type holds for Lotka-Volterra systems.

Example 5.2 (Friends vs rivals) We suppose that any two different species i and j are
either relatively friendly or are strong rivals. The interspecific interaction coefficients
Bi j will take only three values: α (modeling friendly competition), β (self-inhibition),
and γ (strong rivalry), and we assume

α < β < γ. (5.4)

We set a = 1 (ai = 1 for all i) and

Bi j =


α if i and j are friendly,
β if i = j,
γ if i and j are rivals.

(5.5)

Evidently B is symmetric. If α =−1 and β = γ = 0, the matrix −B is the incidence
matrix for the graph whose edges connect friendly species.

In this context, a clique is a maximal set of mutually friendly species. That is, a
set I ⊂ N is a clique if every two different species i, j ∈ I are friendly, and no species
k /∈ I is friendly with all the species in I (so every k /∈ I has some rival in I).

Under the assumptions above, in this example we have the following.

Proposition 5.3 Let I ⊂ N be a set with m members. Then I is a stable community if
and only if I is a clique and

cm := β +(m−1)α > 0. (5.6)

As a corollary, the stable communities in this example coincide exactly with the
cliques, provided we know cm > 0 for every clique. This holds in particular if α ≥ 0,
meaning all interactions in the system are competitive. If α < 0, it holds if β >
(M−1)|α|, where M is the size of the largest clique.

Proof First, suppose I is a clique and (5.6) holds. Then the state

p =
1I

β +(m−1)α
, with pi =

{
1/cm if i ∈ I,
0 otherwise,

(5.7)

is an equilibrium, and the matrix A in the linearized equation (2.4) has the following
structure: Whenever i /∈ I we have Ai j = 0 for all j 6= i, and moreover, because i has
at least one rival j ∈ I and Aii = ai− (Bp)i,

cmAii = cm−∑
j∈I

Bi j ≤ cm− γ− (m−1)α = β − γ < 0. (5.8)

This is the external stability condition. On the other hand, because the block AII =
−\pI\BII and cm\pI\= I, we find that

−cmAII = BII = (β −α)I+α11T . (5.9)



Exclusion and multiplicity in Lotka-Volterra systems 19

The eigenvalues of this symmetric matrix are cm (with eigenvector 1) and β−α (with
eigenspace orthogonal to 1). Since both are positive, AII is negative definite. Hence
p is strictly stable, so I is a stable community.

Conversely, suppose I is a stable community, supporting a strictly stable equilib-
rium p. Necessarily AII =−\pI\BII is stable, and so also is the similar (and symmet-
ric) matrix −\q\BII\q\ where qi =

√
pi for all i. By Sylvester’s law of inertia, BII

is necessarily positive definite. Then it follows that I contains no pair of rivals, for
otherwise the indefinite matrix (

β γ

γ β

)
would be a principal submatrix of BII .

Thus I is a set of mutually friendly species, and necessarily BII has the form in
(5.9). It follows that the eigenvalue cm > 0 and that p takes the form in (5.7). If I
is not itself a clique, then some i /∈ I is friendly with all j ∈ I, and as in (5.8) we
calculate that cmAii = β −α > 0. This contradicts the strict stability of p. Hence I is
a clique. ut

Remark 5.4 In the example above, the stability of a given community I of mutually
friendly species persists under a slight loosening of the constraints on the interspecific
interaction coefficients. Namely, one need not assume the symmetry Bi j = B ji for
species i /∈ I. It is only necessary that each such species i be strongly inhibited by
some member j ∈ I, having Bi j > β (for this ensures Aii < 0 in (5.8)). No condition
regarding the inhibition B ji of species j by i is needed.

In general it does not seem quite easy to count all the cliques in a graph, so we
describe a class of special cases which shows that the number of stable communities
in (5.3) can be achieved (cf. Hofbauer and Sigmund (1998, Exercise 19.3.3)).

Example 5.5 (Partitioning by rivals) Suppose that in the preceding example, the N
species can be partitioned into m disjoint and nonempty sets of mutual rivals, re-
spectively having k1,k2, . . . ,km members, and any two species from different sets are
friendly. Then clearly each clique (maximal set of mutually friendly species) has m
members and is composed of one member from each set of rivals. Moreover, the
number of cliques is given by (5.3). Provided (5.6) holds for this value of m, these
cliques comprise all the possible stable communities.

The maximum number of cliques in a graph of N nodes is (Moon and Moser
1965)

n ·3m−1, if N = 3(m−1)+n with n = 2,3 or 4. (5.10)

This is therefore the maximum number of ESSs occurring in the main example con-
sidered by Vickers and Cannings (1988, II). In Example 5.5 we achieve this number
with m−1 sets of 3 rivals each and one set of n. For N = 60 we have m = 20 and find
320 ≈ 3.49×109 strictly stable equilibria can occur in such a system.



20 Won Eui Hong, Robert L. Pego

5.3 Robust criteria for stability of cliques

The property of being a stable community naturally persists under sufficiently small
changes in the growth rates ai and interaction coefficients Bi j. But the mathematical
notion of “sufficiently small” leaves it unclear just how small a change is allowed.
Here we aim to describe a simple and explicit set of quantitative bounds which ensure
that a community I is stable, focusing on cases qualitatively similar to Example 5.2,
in which I essentially consists of a maximal set of mutually friendly species.

Recall that, for given a and B, a community I is stable if it supports a strictly stable
equilibrium p. This means exactly that, in the notation of section 2.2, the following
conditions hold:

(i) For all i ∈ I, ai = ∑ j∈I Bi j p j and pi > 0.
(ii) For all i /∈ I, ai < ∑ j∈I Bi j p j and pi = 0.

(iii) BII is nonsingular and AII =−\pI\BII is stable.

For any specific case, general perturbation results for linear systems (Golub and
Van Loan 1996, Sec. 2.7) and matrix stability (Hewer and Kenney 1988, Thm. 2.4)
can be invoked to provide quantitative bounds for changes in a and B which ensure
that these properties persist for a perturbed equilibrium with the same support.

We do not develop such results here, but instead pursue the limited aim of de-
scribing a set of systems in which interspecific competition is bimodal—either weak
or strong—and that are qualitatively similar to Example 5.2, having multiple stable
communities formed by cliques.

For simplicity, we will consider only competitive systems for which

ai > 0 and Bi j ≥ 0 for all i, j ∈ N. (5.11)

For notational convenience we also suppose that a diagonal scaling as in (2.6) has
been performed with d j j = a j/B j j, corresponding to

B̂i j =
Bi ja j

B j j
, p̂i =

Bii pi

ai
for all i, j ∈ N, (5.12)

whence ai = B̂ii for all i.

Proposition 5.6 Assume (5.11) and let α ∈ (0, 1
2 ). Suppose C is some collection of

communities I ⊂ N for which the following hold:

∑
j∈I, j 6=i

B̂i j ≤ α ai for each i ∈ I, (5.13)

∑
j∈I

B̂i j >
ai

1−α
for each i /∈ I. (5.14)

Then each I ∈ C is a community that supports a strictly stable equilibrium which
globally attracts all solutions having the same support.

Evidently, condition (5.13) requires that for species within I, the (total) interspecific
competition is weak compared to self-inhibition, and (5.14) requires that each species
not in I is strongly competed against (in total) by the species inside I.
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Proof Let I ∈ C have m members. A state p̂ ∈ RN
+ supported by I is an equilibrium

for (2.6) if and only if

p̂i = F(p̂)i := 1− 1
ai

∑
j∈I, j 6=i

B̂i j p̂ j for all i ∈ I. (5.15)

Under the given hypotheses, the function F is a strict contraction in the max norm on
Rm given by ‖v‖∞ = maxi∈I |vi|, since

‖F(v)−F(w)‖∞ ≤ α‖v−w‖∞.

The set S = [1−α,1]m ⊂ Rm is mapped into itself by F , hence F has a unique fixed
point in S given by p̂I , where p̂ is an equilibrium of (2.6) supported by I satisfying
1−α ≤ p̂i ≤ 1 for each i ∈ I. Condition (5.14) ensures that for each i /∈ I,

ai−∑
j∈I

B̂i j p̂ j ≤ ai− (1−α)∑
j∈I

B̂i j < 0.

Hence conditions (i) and (ii) above for a strictly stable equilibrium hold. Condition
(iii) holds also because the matrix C = \ p̂I\B̂II (similar to −AII) is diagonally domi-
nant: Indeed, for all i ∈ I we have

Cii = p̂iB̂ii = ai− ∑
j∈I, j 6=i

B̂i j p̂ j ≥ ai(1−α)

since (5.12) and (5.15) hold and p̂ j ≤ 1, while

∑
j∈I, j 6=i

|Ci j|= p̂i ∑
j∈I, j 6=i

B̂i j ≤ aiα < ai(1−α).

By Gershgorin’s theorem, every eigenvalue of C has positive real part. Moreover, the
diagonal dominance of C also implies AII is VL-stable (by Moylan (1977, Thm. 3),
or see the remark below). Hence the community I is internally VL-stable, and the
equilibrium p that it supports globally attracts all solutions with the same support. ut

Remark 5.7 We sketch a proof that −C is VL-stable for the reader’s convenience
(cf. Tartar (1971)). Let Gi j = |Ci j|/Cii for i 6= j, and Gii = 0. Then I−G is a diagonally
dominant M-matrix, with inverse ∑k≥0 Gk whose entries are all nonnegative. Hence
q = (I−G)−T1 ∈ RN

+, and it follows that CT\q\ is diagonally dominant, for Ciiqi−
∑ j 6=i |C jiq j| = Cii > 0. Because \q\C is diagonally dominant too, DC +CT D > 0
where D = \q\.

6 Relation to evolutionary game theory

In evolutionary game theory, there is a substantial body of research on multiplicity
and patterns of evolutionarily stable states (ESSs) and the dynamics of replicator
equations, which bears a close comparison with the results we have developed in this
paper for Lotka-Volterra systems. For various known facts about these things that we
mention below, we refer to the books of Hofbauer and Sigmund (1998) and Hadeler
(2017, Sec. 3.4).
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Correspondence. The dynamics of the Lotka-Volterra system (2.1) in RN
+ is well-

known to correspond to those of replicator equations of the form

x′i = xi((Ax)i− xT Ax), i = 0,1, . . . ,N, (6.1)

with x in the N-simplex ∆N consisting of all x = (x0,x1, . . . ,xN) such that xi ≥ 0 for
all i and ∑

N
i=0 x1 = 1, via the mapping p 7→ x given by

x0 = 1/(1+
N

∑
j=1

p j), xi = pi/(1+
N

∑
j=1

p j), i = 1, · · · ,N. (6.2)

This works for the payoff matrix

A =

(
0 0
a −B

)
, (6.3)

and after a solution-dependent nonlinear change of time variable.

Notion of ESS. An important notion in evolutionary game theory is the following:

Definition 6.1 A state y ∈ ∆N is an evolutionarily stable state (ESS) when the fol-
lowing conditions are satisfied:

(a) yT Ay≥ xT Ay, for all x ∈ ∆N
(b) if x 6= y and yT Ay = xT Ay then yT Ax > xT Ax, for all x ∈ ∆N

An equivalent characterization is that y is an ESS if and only if

yT Ax > xT Ax for all x 6= y near enough to y in ∆N . (6.4)

The condition (a) alone makes y a Nash equilibrium. It is known that any ESS is a
steady state that is locally attracting (nonlinearly asymptotically stable) for replicator
dynamics. If A is symmetric, any steady state is locally attracting if and only if it is
an ESS. If A is not symmetric, however, a locally attracting steady state of (6.1) need
not be an ESS.

In what follows, we will describe conditions that characterize Lotka-Volterra
equilibria that correspond to ESSs in the way above. Our goal is to describe what
stability properties such ESS-derived equilibria must or may not have, and compare
known exclusion principles for ESSs to those we have developed in this paper.

Symmetries. A few relevant facts are the following: The correspondence holds and
the mapping p 7→ x can be reversed under the proviso that x0 6= 0. Replicator dynamics
are known to be invariant under two kinds of transformations, one that modifies all
entries in any column of A by adding a constant bi, and one that scales by a positive
diagonal matrix D:

(i) A 7→ A+1bT and x 7→ x with the same time scale,
(ii) A 7→ AD and x 7→ D−1x/(1T D−1x) with a nonlinear time change.
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Using a transformation of type (i), one can map any replicator equation in ∆N with
x0 6= 0 to an N-component Lotka-Volterra system. We note, however, that these cor-
respondences do not generally allow symmetric A to correspond with symmetric B in
(2.1) or vice versa.

Meanwhile, recall from (2.6) that Lotka-Volterra systems are invariant under a
positive diagonal scaling on B:

B 7→ BD and p 7→ D−1 p with the same time scale. (6.5)

One can expect that internal stability (see Def. 2.3) of equilibria of Lotka-Volterra
systems will be conserved through the transformation, and it is true indeed. In repli-
cator equations, however, a transformation of type (ii) can disrupt an ESS. In other
words, when y is an ESS, an image ŷ = D−1y/(1T D−1y), under a transformation of
type (ii), is a Nash equilibrium but might not be an ESS. We provide an example
regarding this issue below.

Relation to Lotka-Volterra. If y = (y0,y1, . . . ,yN) is an ESS with y0 > 0, it corre-
sponds to a locally attracting steady state

q = y−1
0 (y1, . . . ,yN) (6.6)

for the Lotka-Volterra system (2.1) obtained by reducing A to the form (6.3) by a
transformation of type (i) above. One can readily check that the Nash equilibrium
condition (a) corresponds to the condition that, for all i = 1, . . . ,N,

(a−Bq)i = 0 if qi > 0, (a−Bq)i ≤ 0 if qi = 0. (6.7)

A state q satisfying these conditions is called a saturated fixed point by Hofbauer and
Sigmund (1998).

The ESS condition (6.4) translates to mean that(
1+1T p
1+1T q

q− p
)T

(a−Bp)> 0 for all p 6= q near q in RN
+.

Substituting p = q+ r, this is equivalent to saying that for all small enough r with
q+ r ∈ RN

+,

0 <

((
I− q1T

1+1T q

)
r
)T

(Br+Bq−a). (6.8)

Substituting r = (I+q1T )v, one then finds the following characterization.

Lemma 6.2 A state y ∈ ∆N with y0 > 0 is an ESS for A in the form (6.3) if and only
if for all nonzero v ∈ RN small enough we have

0 < vT B(I+q1T )v+ vT (Bq−a) if vi ≥ 0 whenever qi = 0. (6.9)
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From this characterization we can infer the following. If qi > 0 for all i, then
Bq = a and it is necessary and sufficient for y to be an ESS that the symmetric part
of B+ a1T is positive definite. (Or equivalently, the symmetric part of B+1aT is
positive definite.)

In general, if qi = 0 for some i, let I = suppq, then since (Bq−a)I = 0, necessarily

0 < vT
I (BII +aI1

T
I )vI for all nonzero v ∈ RN , (6.10)

meaning the symmetric part of BII +aI1
T
I is positive definite. This implies the sym-

metric part of BII is positive definite on the block subspaces of dimension |I| orthog-
onal to both 1I and aI .

It is natural to ask how (6.9) is related to internal stability in Lotka-Volterra equa-
tion. Considering that the ESS property brings nonlinear asymptotic stability, we can-
not expect the block −\qI\BII to be exponentially unstable. Combined with the ex-
ternal stability that the Nash condition provides, we have the following implication
for the image of an ESS in the Lotka-Volterra system.

Theorem 6.3 Let y and q be equilibria of the replicator and Lotka-Volterra equa-
tions, respectively, that are equivalent in the sense of (6.6). If y is an ESS, then q is
an internally stable, saturated fixed point.

Proof We already checked the saturated condition in (6.7). Note that in (6.8), suppr⊆
suppq if and only if suppv ⊆ suppq. So without loss of generality, we can assume
that q is of full support. Let’s define C = (I+1qT )−1B and rewrite (6.8) as follows:

0 < rTCr = rT
(
I− 1qT

1+1T q

)
Br, for all nonzero r ∈ RN .

In order to check internal stability of q, let’s examine

\q\B = \q\(I+1qT )C = (\q\+qqT )C.

Since \q\+qqT is (symmetric) positive definite, we can find a positive definite matrix
R such that R2 = \q\+qqT . Then,

\q\B∼ R−1\q\BR = RCR.

Note −RCR is Volterra-Lyapunov stable since rT RCRr = (Rr)TC(Rr) > 0, which
implies that −RCR is stable. Thus by similarity of \q\B and RCR, we can conclude
that −\q\B is stable, i.e., q is internally stable. ut

Relation to strict stability. We would like to point out that Theorem 6.3 is sharp in
the sense that the ESS property neither implies nor is implied by strict stability of the
corresponding equilibrium in the Lotka-Volterra system. The following examples not
only support this but also bring out the problematic lack of an intrinsic dynamical
nature for the ESS property.
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Example 6.4 For N = 2, let 0 < α < 2, β > 1+α and

B =

(
1 −α

β 0

)
, q = 1, a = Bq.

Then −B is D-stable, and strictly stable (but not VL-stable). The definiteness condi-
tion in Lemma 6.2 fails to hold, however, since for vT = (1,−1) we have

vT B(I+q1T )v = 1+α−β < 0.

Therefore the corresponding state y = 1
3 (1,1,1) ∈ ∆2 for the replicator system is not

an ESS for the corresponding matrix A in (6.3).
However, if we consider

B̃ = BD, ã = a, where D =

(
1 0
0 1−α+2β

α

)
,

we can check that (6.9) holds with q̃ = D−1q, i.e., for all nonzero v ∈ RN ,

0 < vT (B̃+a1T )v = vT
(

2−α −2β

2β β

)
v.

This implies ỹ= α

1+α+2β
(1,1, 1−α+2β

α
)∈∆2, which corresponds to q̃, is an ESS. Note

that ỹ is dynamically equivalent to y.
Moreover, since an internal ESS is a global attractor, we can see that the Lotka-

Volterra steady state state q = 1 is a global attractor in R2
+.

We can summarize the implications of this example as follows:

– the converse of Theorem 6.3 is false,
– the image of an ESS under a transformation of type (ii) might not be an ESS,
– Lemma 6.2 can be used to prove global stability of an internal equilibrium in a

Lotka-Volterra system which is not VL-stable.

The next example shows that the conclusions that Theorem 6.3 ensures for the
Lotka-Volterra image of an ESS are sharp in the sense that we cannot expect strict
stability of the corresponding equilibrium in general.

Example 6.5 We describe an example with N = 3 of a non-strictly stable steady state
q that corresponds to an ESS. Take

B =

1 1 1
1 1 2
1 2 1

 , a =

1
1
1

 , q =

1
0
0

 . (6.11)

Then a = Bq and the condition in Lemma 6.2 reduces to saying that for all nonzero
v = (v1,v2,v3) with v2, v3 ≥ 0,

0 < vT (B+11T )v = 2(v1 + v2 + v3)
2 +2v2v3. (6.12)
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This is indeed true, so q does correspond to an ESS y ∈ ∆3 for the payoff matrix in
(6.3). The matrix A coming from (2.4), the linearized Lotka-Volterra system about
p̃ = q, takes the form

A =

−1 −1 −1
0 0 0
0 0 0

 .

This linearization is degenerate and q is not strictly stable (linearly asymptotically
stable). We can note also that the matrix B(I+ q1T ) is symmetric but not positive
definite, despite the validity of (6.12) when v2, v3 ≥ 0.

Relation to stability of cliques. One last comparison we will make is between our
result on the stability of cliques in our graph-based Example 5.2 and the characteriza-
tion of ESSs in terms of cliques by Vickers and Cannings (1988) for payoff matrices
with the same graph-based structure.

When the Lotka-Volterra growth rates ai are all the same, there is a different
map between Lotka-Volterra solutions and the replicator equations (Hofbauer and
Sigmund 1998, Exercise 7.5.2). Namely, this is the projection map p 7→ x ∈ ∆N given
by

xi = pi/
N

∑
j=1

p j, i = 1, · · · ,N, (6.13)

together with a nonlinear time change, taking the payoff matrix A simply as −B.
Theorem 1 of Cannings and Vickers states, in our present terminology, that if

B = −A is as in Example 5.2 above, so (5.4)–(5.5) hold, then there is an ESS with
support T ⊂ N if and only if T is a clique. Moreover, such an ESS must take the form
y = 1T/|T |. These ESSs comprise all the stable equilibria in the replicator equation
in this case.

But as Proposition 5.3 shows, a clique T with m= |T |members supports a strictly
stable state p under Lotka-Volterra dynamics if and only if the additional condition
β +(m− 1)α > 0 from (5.6) holds. The case that is explicitly analyzed by Vickers
and Cannings (1988) is α =−1, β = 0, in which case (5.6) never holds and no strictly
stable states exist. (Any Lotka-Volterra solution with support inside a clique will be
unbounded in time, in fact.) Replicator dynamics remain invariant under adding the
same constant to all entries of A, though. So after a suitable change of α , β , γ the
ESSs and strictly stable Lotka-Volterra states can all correspond.

Remark 6.6 (The Cannings-Vickers characterization of ESSs) Here we address an
issue in the proof of Theorem 1 of Vickers and Cannings (1988) and indicate a clari-
fication.

In the proof that the support T of an ESS must be a clique, Vickers and Cannings
state that “if T is not a clique then there is a clique T ∗ containing T , or contained in
it.” As a general statement about graphs, this is not true—E.g., the set T = {1,2,3}
in the graph in Figure 6.6 has no super- or sub-graph that is a clique.

One can conclude T is a clique by arguing as follows instead. Suppose T sup-
ports an ESS but not a clique. If T is complete, we can find a clique T ∗ that strictly
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1 2

3

4 5

Fig. 6.1 The set T = {1,2,3} neither contains nor is contained in a clique.

contains T , which yields a contradiction with the exclusion principle. If T is not com-
plete, there exists a complete T ∗ that is maximal as a subgraph of T . Let y be an ESS
supported by T and let x = 1

|T ∗|1T ∗ . Since T ∗ ⊂ T , yT Ay = xT Ay so from Defini-
tion 6.1(b), yT Ax > xT Ax must hold. On the other hand, because T ∗ is maximal in
T ,

(Ax)i

{
= 1
|T ∗| (|T

∗|−1) i ∈ T ∗,

≤ 1
|T ∗| (|T

∗|−2) i ∈ T \T ∗.

This implies xT Ax > yT Ax, contradicting the observation we just made.
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