Proceedings of Machine Learning Research 140:1-7, 2021 AAAT Workshop on Meta-Learning and MetaDL Challenge

Is Algorithm Selection Worth It?
Comparing Selecting Single Algorithms and Parallel
Execution

Haniye Kashgarani
Lars Kotthoff
University of Wyoming

HKASHGARQUWYO.EDU
LARSKOQUWYO.EDU

Editors: Isabelle Guyon, Jan N. van Rijn, Sébastien Treguer, Joaquin Vanschoren

Abstract

For many practical problems, there is
more than one algorithm or approach to
solve them. Such algorithms often have
complementary performance — where one
fails, another performs well, and vice
versa. Per-instance algorithm selection
leverages this by employing portfolios of
complementary algorithms to solve sets
of difficult problems, choosing the most
appropriate algorithm for each problem
instance. However, this requires com-
plex models to effect this selection and
introduces overhead to compute the data
needed for those models. On the other
hand, even basic hardware is more than
capable of running several algorithms in
parallel. We investigate the tradeoff be-
tween selecting a single algorithm and
running multiple in parallel and incur-
ring a slowdown because of contention
for shared resources. Our results indi-
cate that algorithm selection is worth it,
especially for large portfolios.

1. Introduction

The performance of algorithms can vary sig-
nificantly on different problem instances and
there is no single algorithm that performs
well in all cases. We can take advantage of
such performance differences and create algo-
rithm portfolios to combine the complemen-
tary strengths of different algorithms (Gomes

© 2021 H. Kashgarani & L. Kotthoff.

and Selman (2001)). From this portfolio, we
can choose the algorithm with the best per-
formance for each problem instance — this
is known as the algorithm selection problem
(Rice (1976)). This is usually done by using
machine learning methods and features ex-
tracted from the instances (Kotthoff (2014)).
Like all machine learning models, such ap-
proaches to algorithm selection make mis-
takes and in some cases choose an algorithm
that does not have optimal performance. We
can avoid this by exploiting modern multi-
core architectures and simply running all al-
gorithms in the portfolio in parallel, see e.g.
Amadini et al. (2015). While in theory op-
timal in terms of achieved performance, in
practice contention for shared resources such
as memory and caches reduces overall per-
formance.

We present, to the best of our knowledge,
the first investigation into the practical im-
plications of running a large number of al-
gorithms in parallel. We show the trade-off
between algorithm selection that chooses a
single algorithm and exploiting parallel re-
sources and demonstrate that simply running
all algorithms in a portfolio in parallel is not
a panacea.

Is ALGORITHM SELECTION WORTH IT? COMPARING SELECTING SINGLE ALGORITHMS AND PARALLEL EXECUTION

2. Background

Algorithm selection and other portfolio-based
approaches have been applied in many areas
of AI to improve performance. The first pa-
per to introduce portfolios for solving hard
Al problem considered a relatively simple par-
allel approach that executes all algorithms
in the portfolio at the same time and stops
them all as soon as the solution has been
found by one (Huberman et al. (1997)). Gomes
and Selman (2001); Hamadi et al. (2009) eval-
uate this strategy for stochastic algorithms
and demonstrate that the variance of the time
required to solve a problem decreases as the
number of parallel runs increases.

This led to further approaches that take
advantage of parallel processing by having
several algorithms work independently or in
cooperation on a given problem instance. Yun
and Epstein (2012) construct algorithm port-
folios for constraint satisfaction problems that
are executed in parallel and show performance
improvements for up to 16 processors, and
Amadini et al. (2015) propose parallel port-
folios with a dynamic schedule for up to 8
cores. Similarly, Bordeaux et al. (2009) show
that by splitting the search space into sub-
spaces, constraint solving portfolio approaches
can take advantage of as many as 128 proces-
sors to achieve performance improvements.

For the Boolean satisfiability problem (S-
AT), simple static hand-crafted parallel port-
folios have been studied by Roussel (2012)
and Wotzlaw et al. (2012) combined with a
computed resource allocation for each solver.
They employ a fixed selection of SAT solvers
with good performance independently in par-
allel for a given number of cores. Gagliolo
and Schmidhuber (2006) introduce the dy-
namic algorithm portfolios that run a portfo-
lio of algorithms with different shares of par-
allel processors along with an online time al-
location learning approach. This includes a
lifelong-learning approach in which the prior-

ity of algorithms is continually updated based
on new runtime information. Petrik and Zil-

berstein (2006) also propose a method for en-

hancing the performance of deterministic al-

gorithms by running multiple algorithms in

parallel for the same problem instance. Ka-

dioglu et al. (2011); Malitsky et al. (2012)

propose a more sophisticated approach. They
select algorithms through an improved k-near-
est neighbor approach and use both dynamic

and static scheduling for multiple algorithms

from the portfolio to improve the chance that

a particular problem instance will be solved

within a time limit.

Similarly, Lindauer et al. (2015) inves-
tigate parallel portfolio selection, and Hoos
et al. (2015) propose an approach to opti-
mally schedule algorithms from a portfolio
using answer set programming, while Gonard
et al. (2019) take the simpler approach of
running a small portfolio of algorithms in
parallel for a short amount of time and using
algorithm selection to tackle any problem in-
stances that remain unsolved after that. To
the best of our knowledge, all previous re-
search has only simulated parallel execution
without measuring the actual performance.
We investigate the practical ramifications of
running more than one algorithm in parallel.

3. Experimental Setup

We run algorithms sequentially and with vary-
ing degrees of parallelism. We build and eval-
uate algorithm selection models for sequen-
tial execution to be able to compare selecting
a single algorithm to run multiple in parallel.
We measure performance in terms of penal-
ized average runtime with factor 10 (PAR10)
and misclassification penalty (MCP). The PA-
R10 score is the observed performance unless
an algorithm timed out on a particular in-
stance, when the timeout multiplied by the
penalization factor is assumed as the run-
time. The misclassification penalty is the

Is ALGORITHM SELECTION WORTH IT? COMPARING SELECTING SINGLE ALGORITHMS AND PARALLEL EXECUTION

difference between the performance of the al-
gorithm that was run and the optimal algo-
rithm on the same instance, i.e. it is always
zero for the optimal algorithm.

We compare to the virtual best solver
(VBS), which is the optimal algorithm from
the portfolio for each problem instance to
solve (cumulative misclassification penalty ze-
ro), and the single best solver (SBS), which
is the algorithm from the portfolio with the
best average performance across the entire
set of problem instances to solve. The perfor-
mance of the overhead-free parallel portfolio
corresponds to the VBS.

We consider algorithms and problem in-
stances from SAT, a popular application area
for algorithm selection. We selected all 400
instances from the main track of the SAT
Competition 2018 (Heule et al. (2019)) and
computed their features using the SATzilla
feature computation code (Xu et al. (2008)).
We exclude 19 instances for which we were
unable to extract features within two hours
of computational time, for a total of 381 prob-
lem instances.

Our solvers also come from the main track
of the 2018 SAT competition; we consider all
39 submitted solvers for a total of 14,859 al-
gorithm runs. We use the same time limit
as in the SAT competition; 5000 CPU sec-
onds for solving a single instance. However,
we allowed 128 GB of RAM; more than five
times what was allowed in the competition.
During the parallel runs, the total amount
of memory is shared among all running algo-
rithms. We run the algorithms sequentially,
10 in parallel, 20 in parallel, 30 in parallel,
and 32 in parallel to fully saturate a machine
with 32 cores.

We leverage the algorithm selection bench-
mark library ASlib (Bischl et al. (2016)) and
the LLAMA algorithm selection toolkit (Kot-
thoff (2013)) for our algorithm selection ex-
periments. We build regression models that
predict the performance of each algorithm in

the portfolio individually and select the algo-
rithm with the best-predicted performance,
and pairwise regression models that predict
the performance difference for each pair of
algorithms and select the algorithm with the
aggregated best performance difference. We
removed constant-valued (and therefore ir-
relevant) instance features and imputed miss-
ing feature values as the mean over all non-
missing values of the feature.

For both regression and pairwise regres-
sion approaches, we use random forests as
the base machine learning models. We tune
their hyperparameters following Bischl et al.
(2016); we consider values of 10 to 200 for the
ntree hyperparameter and 1 to 30 for mtry.
We optimize the hyperparameters using ran-
dom search with 250 iterations and perform a
nested cross-validation with 10 external and
three internal folds to ensure unbiased per-
formance measurements. All other hyperpa-
rameters were left at their default values.

4. Results

We first evaluate the effect the number of
parallel runs has on what fraction of all al-
gorithm runs is successful. Table 1 shows the
number and percentage of unsuccessful runs
at each level of parallelism. With only one
algorithm running at a time, 47% of runs fail
with a timeout. This increases as more and
more algorithms are run in parallel. Simi-
larly, the number of runs that fail because
they run out of memory increases, as more
and more runs share the same amount of
physical memory. This does not significantly
affect the results though, as even in the worst-
case much less than 1% of the total number
of runs is affected. Parallel runs have a much
more significant effect on the number of time-
outs though — from 47% runs that exceeded
the available time when only a single algo-
rithm is running at a time, we see an increase
to 85.57% of total runs when 32 algorithms

Is ALGORITHM SELECTION WORTH IT? COMPARING SELECTING SINGLE ALGORITHMS AND PARALLEL EXECUTION

parallel runs

timeouts

out of memory errors

1 6982 (47%) 0 (0%)

10 10281 (69.19%) 6 (0.04%)
20 11853 (79.77%) 20 (0.13%)
30 12590 (84.73%) 27 (0.18%)
32 12715 (85.57%) 5 (0.03%)

Table 1: Unsuccessful runs for each level of parallel execution. The numbers in parentheses
show the percentage of total runs that the number of unsuccessful runs corresponds
to and are rounded to two decimal digits.

metric # parallel runs VBS SBS regression pairwise regression

PAR10 1 9256.089 17585.66 13004.31 12588.44
10 13062.16 27251.34 19888.25 20410.18
20 17099.23 33630.54 25233.38 24970.07
30 19970.29 36498.11 28628.15 27317.29
32 21674.1 37285.5 29937.23 28888.24

MCP 1 0 1006.738 441.0526 379.5133
10 0 1433.268 684.2932 733.7837
20 0 1649.426 811.264 784.1721
30 0 1645.936 862.5388 732.7824
32 0 1556.284 822.1427 718.0386

Table 2: Performance in terms of PAR10 score and misclassification penalty for different
numbers of algorithms run in parallel. The VBS is the performance of the parallel
portfolio; SBS is shown for comparison. The “regression” and “pairwise regression”
columns show the performance of the respective algorithm selection models.

are run in parallel. Altogether, 85.6% of runs
either time out or run out of memory when
32 algorithms are running in parallel; a sig-
nificant increase over running only a single
algorithm.

Table 2 and Figure 1 show the perfor-
mance we observed for all parallelism levels
and approaches we consider. The PARI0
score for the VBS increases significantly as
we increase the number of algorithms run in
parallel; ~41% from one to 10 parallel runs.
Similarly, the score for the single best solver
increases by ~55% for the same interval. The

PARI10 score is more than twice as high for
32 parallel runs compared to a single run for
both VBS and SBS — contention for shared
resources has a significant impact on the time
it takes to solve a set of instances. A large
contributor to the increase in PAR10 score
is the increased number of unsuccessful runs
because of timeouts or memory outs.

We observe a similar decrease in perfor-
mance as for the VBS and SBS for the al-
gorithm selection approaches as the level of
parallelism increases — in fact, we observe
even steeper performance losses in the begin-

Is ALGORITHM SELECTION WORTH IT? COMPARING SELECTING SINGLE ALGORITHMS AND PARALLEL EXECUTION

@ 40,000
= 35,000
& 30,000
@ 25,000
& 20,000
= 15,000

m 10,000

5,000
110203032

Pairwise Regression Regression

110203032

110203032 1 10203032

Number of Processors

Pairwise Regression

1,800

1400/
1200/
1000/
800
600

1 10 20 30 32

MCP Score
W B ”””;
[=1 (=
OOO O

1 10 20 30 32

Regression

1 10 20 30 32

Number of Processors

Figure 1: Performance in terms of PAR10 score and misclassification penalty for different
numbers of algorithms run in parallel. The VBS is the performance of the parallel
portfolio; SBS is shown for comparison. The regression and pairwise regression
bars show the performance of the respective algorithm selection models. We omit
the plot for VBS performance in terms of MCP score as it is always zero by

definition.

ning, with ~53% performance decrease from
one algorithm to 10 for regression models and
~62% for pairwise regression models in terms
of PAR10. However, we observe a perfor-
mance increase for both approaches (lower
MCP scores) when going from 30 algorithms
run in parallel to 32, and a performance in-
crease for pairwise regression model when go-
ing from 20 algorithms run in parallel to 30.
It is unclear what exactly causes this per-
formance increase; it is likely that the ma-
chine learning task that underlies the selec-
tion process becomes easier as more algo-
rithms lose competitiveness because of time-
outs and memory limits.

Our results show that algorithm selec-
tion for choosing a single algorithm to run
can beat parallel execution in practice for
a large number of solvers. Figure 2 shows
that the performance of both the regression

and pairwise regression algorithm selection
approaches are better than the VBS for any
level of parallelism beyond running a single
algorithm. Both in terms of PAR10 and MCP,
algorithm selection is always better than the
single best solver. When using all 32 cores we
have available, the VBS becomes more than
66% worse than the regression algorithm se-
lection approach and more than 72% worse
than the pairwise regression algorithm selec-
tion approach. Even when running only 10
algorithms at the same time (and assuming
that we know which 10 of the 39 total al-
gorithms to run to maximize performance),
the VBS is more than 0.4% and 3% worse
than regression and pairwise regression ap-
proaches, respectively.

While the overhead-free parallel portfolio
promises optimal performance, in theory, we
clearly see that in practice this is not the case

Is ALGORITHM SELECTION WORTH IT? COMPARING SELECTING SINGLE ALGORITHMS AND PARALLEL EXECUTION

Number of parallel solvers

10 20

=N W A U N ©

Percentage increase %

(=]

30 32

Algorithm selectors
Regression
= Pairwise Regression

Figure 2: Percentage increase in terms of PARI0 score for running different numbers of
algorithms in parallel compared to algorithm selector performance for choosing
a single algorithm. For example, an increase of 100% means that running the
algorithms in parallel doubles the PAR10 score over selecting a single algorithm.

— contention for shared resources and physi-
cal limits of the machine that is used to run
the algorithms has a significant detrimental
effect on performance. Even though algo-
rithm selection models are not perfect, they
outperform actual parallel portfolios in terms
of observed performance even for a relatively
small number of algorithms run in parallel.

5. Conclusions and Future Work

We investigated the actual observed perfor-
mance of parallel portfolios, in contrast to
their theoretical performance that is usually
used in the literature. We found that run-
ning even a relatively small number of algo-
rithms in parallel on the same machine can
have a significant negative impact on over-
all performance. Algorithm selection on the
other hand chooses only a single algorithm
and is able to achieve better overall perfor-
mance, even though its predictions are not
perfect and it does not always choose the al-
gorithm with the best performance for solv-
ing a given problem instance.

An obvious avenue for future work is a
hybrid approach to what we present here,
where instead of a single algorithm several
are chosen to run in parallel. Existing lit-

erature proposes a multitude of methods for
doing so; however, none of these approaches
have been evaluated as in the investigation
we present here — by actually running more
than one algorithm in parallel and observ-
ing the performance rather than simulating
this based on the performance observed when
only a single algorithm is run at a time. In
addition, there is scope for developing new
approaches for dynamic resource allocation
for algorithm selection.

Acknowledgments

We thank the National Science Foundation for
support under grant 1813537.

References

Roberto Amadini, Maurizio Gabbrielli, and Ja-
copo Mauro. A multicore tool for constraint
solving. IJCAI International Joint Conference
on Artificial Intelligence, 2015-Janua:232-238,
2015. ISSN 10450823.

Bernd Bischl, Pascal Kerschke, Lars Kotthoff,
Marius Lindauer, Yuri Malitsky, Alexandre
Fréchette, Holger Hoos, Frank Hutter, Kevin
Leyton-Brown, Kevin Tierney, and Joaquin
Vanschoren. Aslib: A benchmark library
for algorithm selection. Artificial Intelligence,
237:41 — 58, 2016.

Is ALGORITHM SELECTION WORTH IT? COMPARING SELECTING SINGLE ALGORITHMS AND PARALLEL EXECUTION

Lucas Bordeaux, Youssef Hamadi, and Horst
Samulowitz. Experiments with massively par-
allel constraint solving. In Proceedings of the
21st International Jont Conference on Artifi-
cal Intelligence, IJCAT’09, page 443—-448, San
Francisco, CA, USA, 2009. Morgan Kaufmann
Publishers Inc.

Matteo Gagliolo and Jiirgen Schmidhuber. Dy-
namic algorithm portfolios. Annals of Math-
ematics and Artificial Intelligence, 47:3-4,
2006.

Carla Gomes and Bart Selman. Algorithm port-
folios. Artificial Intelligence, 126:43—62, 02
2001.

Francois Gonard, Marc Schoenauer, and Michele
Sebag. Algorithm selector and prescheduler in
the icon challenge. In Bioinspired Heuristics
for Optimization, pages 203-219, Cham, 2019.
Springer International Publishing.

Youssef Hamadi, Said Jabbour, and Lakhdar
Sais. ManySAT: a Parallel SAT Solver. Jour-
nal on Satisfiability, Boolean Modeling and
Computation, 2009. ISSN 1574-0617. doi:
10.3233/sat190070.

Marijn J. H. Heule, Matti Jarvisalo, and Mar-
tin Suda. SAT Competition 2018. Journal on
Satisfiability, Boolean Modeling and Compu-
tation, 2019. ISSN 1574-0617. doi: 10.3233/
sat190120.

Holger Hoos, Roland Kaminski, Marius Lin-
dauer, and Torsten Schaub. Aspeed: Solver
scheduling via answer set programming. The-
ory and Practice of Logic Programming,
2015. ISSN 14753081. doi: 10.1017/
S51471068414000015.

Bernardo A. Huberman, Rajan M. Lukose, and
Tad Hogg. An economics approach to hard
computational problems. Science, 275(5296):
51-54, 1997. ISSN 00368075. doi: 10.1126/
science.275.5296.51.

Serdar Kadioglu, Yuri Malitsky, Ashish Sabhar-
wal, Horst Samulowitz, and Meinolf Sellmann.
Algorithm selection and scheduling. Lecture
Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 6876
LNCS:454-469, 2011. ISSN 03029743. doi:
10.1007/978-3-642-23786-7_35.

Lars Kotthoff. LLAMA: leveraging learning
to automatically manage algorithms. CoRR,
abs/1306.1031, 2013.

Lars Kotthoff. Algorithm selection for combina-
torial search problems: A survey. Al Maga-
zine, 35(3):48-69, Sep. 2014.

Marius Lindauer, Holger Hoos, and Frank Hut-
ter. From sequential algorithm selection to
parallel portfolio selection. In International
Conference on Learning and Intelligent Opti-
mization, pages 1-16. Springer, 2015.

Yuri Malitsky, Ashish Sabharwal, Horst Samu-
lowitz, and Meinolf Sellmann. Parallel SAT
solver selection and scheduling. Lecture Notes
in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), 7514 LNCS:
512-526, 2012. ISSN 03029743. doi: 10.1007/
978-3-642-33558-7_38.

Marek Petrik and Shlomo Zilberstein. Learn-
ing parallel portfolios of algorithms. Annals
of Mathematics and Artificial Intelligence, 48
(1-2):85-106, 2006.

John R. Rice. The Algorithm Selection Problem.
Advances in Computers, 1976. ISSN 00652458.
doi: 10.1016/S0065-2458(08)60520-3.

Olivier Roussel. Description of ppfolio (2011).
Proc. SAT Challenge, page 46, 2012.

Andreas Wotzlaw, Alexander van der Grinten,
Ewald Speckenmeyer, and Stefan Porschen.
pfoliouzk: Solver description. Balint et
al. (Balint et al., 2012a), page 45, 2012.

Lin Xu, Frank Hutter, Holger Hoos, and Kevin
Leyton-Brown. Satzilla: Portfolio-based algo-
rithm selection for sat. Journal of Artificial
Intelligence Research, 32:565-606, 06 2008.

Xi Yun and Susan Epstein. Learning algorithm
portfolios for parallel execution. volume 7219,
pages 323-338, 01 2012. ISBN 978-3-642-
34412-1. doi: 10.1007/978-3-642-34413-8_23.

	Introduction
	Background
	Experimental Setup
	Results
	Conclusions and Future Work

