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Research interest is growing for theoretical models of highly deflected structures in aeroelastic settings. Presented

here is a model of a cantilevered plate subjected to axial supersonic flow to determine the flutter boundary and

postflutter characteristics of a system such as a trailing edge control surface. The structural model is a nonlinear

inextensible beammodelwith inertia and stiffness geometric nonlinearities, while the aerodynamicmodel used is both

first-order linear and third-order nonlinear Piston Theory with a new geometric modification to account for large

deflections of the cantilevered configuration. Comparisons are made between linear and nonlinear structural models

as well as linear and nonlinear Piston Theory, with and without this new geometric modification. It is shown that the

model is highly sensitive to the inclusion of each nonlinear aerodynamic or structural component and that the new

geometric modification to Piston Theory leads to stable limit cycles which otherwise may be unstable. Finally, the use

of Piston Theory for these unconventionally large deflections is validated by comparing pressures on the structure to

those computed by the Euler equations acting on the structure’s prescribed motion.

Nomenclature

b = width of plate
EI = flexural rigidity of plate
h = thickness of plate
L = length of plate
M∞ = freestream Mach number
m = mass per unit length of plate
P∞ = freestream pressure
U∞ = freestream velocity
u = longitudinal deflection
w = transverse deflection
_x = time derivative
x 0 = spatial derivative
β = angle of deflected plate to freestream
γ = ratio of specific heats
Δp = pressure across plate

δWNCaero = virtual work due to aerodynamics

δβ = delta function set to 0 or 1 indicating without or with
β effect

Λ = compliance ratio
λ = constraint force
μ = mass ratio
Ψ = mode shape

I. Introduction

A EROELASTICITYof thin plates in supersonic flow is currently
generating much research interest. Recently, Spottswood et al.

[1] have conducted experimental tests of a thin plate clamped on all
four sides subjected to supersonic flow and have demonstrated non-
linear limit cycle oscillations (LCO) as well as buckling behavior.
Freydin et al. [2] modeled a similar system of a clamped plate with
thermal stresses. In addition, Currao et al. [3] have measured exper-
imental pressures on and deflections of a cantilevered plate in super-
sonic flow well below the flutter boundary and with a shock
impinging on the plate. This configuration is of interest for modeling
engineering structures such as trailing edge control surfaces on
supersonic and hypersonic aircraft. Although the geometry in this
case is simplified significantly from a genuine control surface, the
investigation of clamped-free boundary conditions of a thin, flat plate
offers valuable insights into the fluid–structure interaction, stability,
and effectiveness of these more complex systems.
It is therefore our aim to provide theory and modeling to coincide

with this recent advancement of experimental work and to push ahead
into the postflutter regime for a cantilevered plate subjected to axial
flow. Presented here is a compact, nonlinear computational model for
cantilevered plates in axial supersonic flow using the inextensible
beam structural theory alongwith Piston Theory aerodynamic theory.
The inextensible beam model has been chosen as it is a good
approximation for largely deflected structures which have fixed-free
boundary conditions and may be easily coupled with Piston Theory
to develop a highly efficient computational aeroelastic model.
The equations of motion for nonlinear inextensible beams have

been studied in the literature in various contexts, and Lacarbonara
[4] provides a clear overview of several methods of enforcing inex-
tensibility. Notably, several studies have used Lagrange’s equations
to model the beam [5–8]. Crespo da Silva and Glynn [7,8] used a
Lagrange multiplier to enforce the inextensibility constraint, a
method similar to what is presented herein. These approaches, how-
ever, are tailored toward analytical solutions to stability problems and
use perturbation methods or harmonic balance to solve for stability
criteria. Here, we use amodal analysis andRunge–Kutta time-march-
ing scheme to evaluate the dynamics of the system in the time domain.
Recent advances by us and our colleagues in nonlinear

beam and plate theory and accompanying computations demonstrate
a capability to model the responses of these structures with high
computational efficiency [9–15]. Tang et al. [9] derived new, non-
linear equations of motion for largely deflected, inextensible beams
and extended this formulation to plates. Dowell and McHugh [11]
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derived similar equations for the inextensible beam using Hamilton’s
principle, but used a Lagrange multiplier to enforce the inextensi-
bility constraint. Using the Rayleigh–Ritz approach to expand
these equations modally, they demonstrated the method’s abilities
tomodel both cantilever and free–free beamdynamics [13]. Recently,
McHugh and Dowell [14] validated their model’s ability to capture
flutter points by adding a static follower point-force load to the tip of a
cantilevered beam and solving for the flutter and limit cycle behavior
of this configuration, well known as Beck’s beam problem [16].
In the present Paper, the same inextensible beam theory has been

used as in the study of the dynamics and stability of the systemunder a
follower load [14], but now the follower force is replaced by an
aerodynamic theory appropriate to high-speed flows. The classic text
on Hypersonic Flow Theory by Hayes and Probstein [17] has an
insightful discussionof how, in inviscid flowat sufficiently highMach
number, each plane section normal to the freestream can be modeled
independently of one another. This law of plane sections was
exploited by Lighthill [18] in his well-known paper and later formal-
ized as an aeroelastic tool by Ashley and Zartarian [19] to develop
what is known as Piston Theory.
Piston Theory is used throughout the literature for high-speed

potential flow [9–22] and is relevant to contemporary studies in
supersonic configurations [3,22]. Notably, Currao et al. [3] recently
showed that Piston Theory effectively captures the dynamics of a
cantilevered beam in hypersonic flow below the onset of flutter, and
Nydick et al. [20] performed an admirable study in which first- and
third-order Piston Theory were used to compute the aeroelastic LCO
response of a pinned–pinned panel in hypersonic flow. Although
these results indicate that third-order Piston Theory matches well
with Euler results, they also suggest that viscous effects have a large
damping effect on the results “because the surface motion occurs
mainly within the boundary layer.” The cantilevered boundary con-
ditions in the present Paper allow for the surface motion to be much
greater than a typical boundary layer thickness, so it is assumed that
an inviscid flow treatment will be adequate.
Work is ongoing in the field to increase the accuracy of the Piston

Theory method. It is natural to use either experimental or computa-
tional [computational fluid dynamics (CFD)] information for steady
flow over awing or body to determine the local flow properties at any
given streamwise section and replace the freestreamparameters in the
Piston Theory with these local values. This has been done by Scott
and Pototzky [23], and Zhang et al. [24] demonstrated that this Local
Piston Theory matches results from an Euler CFD solver better than
Classical Piston Theory. Meijer and Dala [25] make the point that the
usual nonlinear version of Piston Theory as given by Lighthill [18]
can be used in the same fashion. Brouwer and McNamara [26] note
that changes in the mean flow ahead and behind a shock can also be
taken into account as long as the Mach numbers ahead of and behind
the shock are sufficiently greater than 1. Brouwer and McNamara
have also used Piston Theory as the starting point for obtaining a
system identification model using CFD data to account for flow
separation. Recently Shi et al. [27] and Meng et al. [28] have
discussed how a fully nonlinear Piston Theory might be constructed
by using the full wave expansion or shock expansion models as
discussed in the classic text by Liepmann and Roshko [29]. Finally,
it is noted that Dowell and Bliss [30,31] have considered how Piston
Theory may be generalized by starting from linear potential flow
theory and expanding that solution in powers of inverseMach number
squared or inverse frequency squared. Starting from potential flow
theory, Piston Theory is the correct limit at high Mach for all
frequencies or at high frequencies for all Mach numbers, although
the latter limit is not as well known. Expansion in inverse powers of
Mach allow Piston Theory to be used at lower (supersonic) Mach
number, which may be useful in practice.
In the present Paper, Piston Theory is advanced by the use of a new

addition to Classical Piston Theory [both linear (first order) and
nonlinear (third order)] to account for the fact that at large deflections
the aerodynamic pressure must act normal to the instantaneously
deformed surface of the structure. In the prior literature, the pressure
defined by Piston Theory is applied perpendicular to the freestream
flow regardless of the angle the airfoil takes to the undisturbed flow.

Because the cantilevered conditions allow for large deflections of the
structure, a new geometric modification to Piston Theory is intro-
duced here. With use of the parameter β�x� (the angle of the beam
with respect to its undeformed horizontal datum), the pressure is
always applied normal to the instantaneous shape of the beam.
Moreover, the accuracy of the new Piston Theory is assessed by
comparing the results of Piston Theory with those of Euler based
CFD simulations. Thus, the emphasis in this Paper is on the aerody-
namic model per se and the consequences of this model (in combi-
nation with inextensible beam theory) for determining the flutter and
limit cycle oscillations of the system.
The present model then includes four nonlinearities: two structural

and two aerodynamic.Although the effects of the structural geometric
nonlinearities alone have been reported previously by us [13,14], the
aerodynamic nonlinearities are novel, and certainly the interplay
among the four nonlinearities proves to be interesting and important.
It is found that the geometric modification to Piston Theory introdu-
ces a further aerodynamic nonlinearity and increases the stability of
the model. It is also found that third-order nonlinear Piston Theory
predicts a higher limit cycle amplitude than the first-order linear
theory.
Also note that when modeling any physical system and certainly

a fluid–structural (aeroelastic) system it is important to study the
sensitivity of the results to different model attributes. Here, we
identify three types of sensitivities which are significant to this Paper.
Type 1 is the sensitivity to the mathematical model of the physical
system. How do the results change when new mathematics are
introduced to the system? Type 2 is the sensitivity to the parameters
that appear in the mathematical model or which are considered in the
design of an experimentalmodel. Howdo the results change based on
varying geometric or material properties of the structure or the free-
stream flow properties? Type 3 is the accuracy of the numerical
methods employed to extract solutions from themathematical model.
This is typically measured by performing a convergence study. Each
of these is considered in the present Paper.
Finally, a word about the nomenclature of beam or plate may be

useful. Formally, the configuration is a plate with no spanwise bend-
ing. Because the structure is assumed to be clamped along its entire
leading edge, and the panel width is on the order of the panel chord,
the structure bends principally in the streamwise direction, and thus
the bending in the spanwise direction is negligible. Reference [10]
considers a similar structural configuration in low-speed, subsonic
flow in a combined experimental/theoretical study. As shown in
Ref. [10], spanwise bending can be neglected in both the experimen-
tal and the theoretical model.
With regard to Piston Theory, whether first order or higher order, the

effective aerodynamic aspect ratio is the product of
���������������
M2 − 1

p
� �b∕L�,

where b is the plate span and L is the plate chord. Thus, even for a
square plate with b∕L � 1, the aerodynamic aspect ratio will be large
for theMach number range of interest to the present Paper.On the other
hand, ifb∕L is sufficiently small for a givenM, then three-dimensional
aerodynamic effects might be included. Yet, one might still invoke the
essential Piston Theory assumption of the transverse plane of fluid
at each chordwise position being independent of each other. But now
the piston would have finite width.
Thus, the structure considered here has a finitewidthb, but because

the factor b appears in both the structural model and aerodynamic
model in proportion, it cancels and does not appear in the final results.
If in futurework spanwise bending is included in the structural model
or finite aspect ratio effects are included in the aerodynamic model,
thenb and its nondimensional counterpartb∕Lwill appear as another
parameter to be considered.

II. Development of Governing Equations

A. Unforced Equations of Motion

A schematic of the cantilevered beam model in flow is shown in
Fig. 1. The beam can deflect in the longitudinal u component as well
as the transverse w component. The equations of motion for the
unforced beam are derived in our recent work [13,14] from
Lagrange’s equations using the Rayleigh–Ritz method. That is, each
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component of deflection, u andw, as well as the constraint force λ are
modally expanded as shown in the Appendix.
The equations of motion are reproduced here in dimensionless

form:

�u −Aλ � 0 (1)

�w� 2ζω _w� ω2w −Bwλ� Pw3 � 0 (2)

u� 1

2
A−1Bww � 0 (3)

A short nondimensionalization from the equations derived in
Ref. [14] is shown in the Appendix, while a brief explanation of the
equations terms is given here. Equation (1) is the equation for longi-
tudinal deflection u, where λ is the internal constraint force to enforce
inextensibility. Equation (2) is the equation for transverse deflection
w, where ζ is the damping parameter and the final two terms are the
nonlinear inertia and stiffness terms, respectively. Equation (3) is the
constraint equation which couples the slope of the longitudinal
deflection u to that of the transverse deflection w to enforce inexten-
sibility. Note that u, w, and λ are all expressed in a modal series.
Each of the variables appear as boldface italic text, indicating that

they are written in matrix form. The definition of each term and the
transcriptions from index notation tomatrix notation are shown in the
following:

ui≡
ui
L
⇒u; wj≡

wj

L
⇒w

λk≡
L2

EI
λk⇒λ; ωj≡

�
mL4

EI

�
1∕2

ωj⇒ω

Mu
ii≡

Mu
ii

L
≡
Z

1

0

Ψu
i Ψu

i dξ⇒Mu; Mw
jj≡

Mw
jj

L
≡
Z

1

0

Ψw
j Ψw

j dξ⇒Mw

Aik≡
Z

1

0

Ψu 0
i Ψλ

kdξ⇒A; Bkj1j≡LBkj1j≡
Z

1

0

Ψλ
kΨw0

j1
Ψw0

j dξ⇒B

Pj1j2j3j≡L5Pj1j2j3j≡
Z

1

0

�Ψw0 0
j1
Ψw 0 0

j2
Ψw 0

j3
Ψw0

j �Ψw0 0
j1
Ψw0

j2
Ψw 0

j3
Ψw 0 0

j �dξ⇒P

Note that the prime 0 symbol represents ∂∕∂x. Therefore,
when nondimensionalizing length, the following relationships are
important:

x � Lξ
∂
∂x

� 1

L

∂
∂ξ

∂2

∂x2
� 1

L2

∂2

∂ξ2
(4)

We can nondimensionalize time and its derivatives as follows,
where the overlined terms are dimensionless:

t �
�
mL4

EI

�
1∕2

t
∂
∂t

�
�

EI

mL4

�
1∕2 ∂

∂t
∂2

∂t2
� EI

mL4

∂2

∂t2
(5)

A discussion of vector/matrix size and characteristics may be
appropriate. Vectors u, w, and λ are length I, J, and K, respectively,
where I, J, and K are the number of modes included in each

component. Matrices Mu and Mw are diagonal matrices of size I2

and J2, respectively. Matrix A is of size I × K. Tensor B is three

dimensional of size K × J × J, and P is four dimensional of size J4.
Matrixω2 is a diagonal matrix with each nonzero entry as the square
of the corresponding modal natural frequency.

B. Piston Theory Aerodynamic Forcing

Piston theory [18,19,21,22] provides a simple relation between
pressure perturbation and motion of a structure, one side of which is
under a freestream flow with properties ρ∞; U∞;M∞. Because our
plate model has fluid acting on both sides, we calculate a change in
pressure across the upper and lower surfaces:

pupper �
ρ∞U∞

M∞

��
_w�U∞

∂w
∂x

�
� γ � 1

4a∞

�
_w�U∞

∂w
∂x

�
2

� γ � 1

12a2∞

�
_w�U∞

∂w
∂x

�
3
�

plower �
ρ∞U∞

M∞

��
− _w −U∞

∂w
∂x

�
� γ � 1

4a∞

�
− _w −U∞

∂w
∂x

�
2

� γ � 1

12a2∞

�
− _w −U∞

∂w
∂x

�
3
�

Note that x is positive in the flow direction. Now, we subtract
the upper surface from the lower [21], and note the second-order
terms cancel one another due to symmetry. However, this would not
be the case for a plate with a nonzero initial angle of attack or initial
curvature.

Δp � plower − pupper

� −2
ρ∞U∞

M∞

��
_w�U∞

∂w
∂x

�
� γ � 1

12a2∞

�
_w�U∞

∂w
∂x

�
3
�

(6)

The virtual work acting on the plate is given by

δWNCaero �
Z

L

0

bΔpn ⋅ δr dx (7)

where n is the unit normal to the deflected plate and δr is the virtual
displacement of the plate. Piston Theory is classically used to predict
pressures only in the direction normal to the undeformed plate, which
intrinsically assumes that the slopes are small. The virtual work
would then be expressed as Eq. (8):

δWNCaero �
Z

L

0

bΔpδw dx (8)

For fully pinned or clamped plates, this assumption is valid.
However, the small deflection assumption no longer holds for the
case of a cantilevered plate, and therefore a large deflection expres-
sion must be derived.

1. Large Deflection Correction

Because of the large displacement of the beam, we understand that
pressure must be everywhere normal to the deflected beam. There-
fore, the pressure contributes to both the δu and δw components of the
virtual work. To derive the correct form of the virtual work for this
case, consider the beam with longitudinal deflection w in the i
direction and transverse deflection u in j. The virtual displacement
is δr � δui� δwj, and the local tangent vector to the deformed
beam is τ � cos βi� sin βj, where β is the angle of the beam relative
to the undeformed horizontal. Now, the local normal to the deformed
beam is n ≡ k × τ � − sin βi� cos βj, and by incorporating this
into Eq. (7), the expression for virtual work is given by Eq. (9):

δWNCaero �
Z

L

0

�−bΔp sin�β�δu� bΔp cos�β�δw� dx (9)

Fig. 1 Schematic of cantilevered beam with uniform flow over top and
bottom surfaces.
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Note that sin β and cos β are defined from geometric relationships
as follows:

tan β � �∂w∕∂x�
1� �∂u∕∂x� �

w 0

1� u 0 �
w 0

1 − 1∕2w 02 ≡ f (10)

tan β � sin β

cos β
� f (11)

sin2β� cos2β � 1 (12)

f2 � sin2β

cos2β
(13)

So, then,

�f2 � 1�cos2β � 1 (14)

cos β � 1

�f2 � 1�1∕2 (15)

From this, we can find sin β as well:

sin β � f

�f2 � 1�1∕2 (16)

Now, substituting Eq. (10) into Eqs. (15) and (16), we canwrite the

definitions of sin β and cos β in terms of w:

cos β � �1 − w 02�1∕2 ≈ �1 − 1∕2w 02� (17)

sin β � w 0 (18)

So, the expression for virtual work acting on the plate [Eq. (9)] can
be written as follows:

δWNCaero �
Z

L

0

bΔp�−w 0δu� �1 − 1∕2w 02�δw� dx (19)

2. First-Order Piston Theory

For first-order Piston Theory, we neglect the third-order term in
Eq. (6), so the change in pressure across the beam is the classical result

Δp � −2
ρ∞U∞

M∞

�
_w�U∞

∂w
∂x

�
(20)

Substituting Eq. (20) into Eq. (19), scaling length and time with
Eqs. (4) and (5), and multiplying both sides by L∕EI to nondimen-

sionalize, the expression for nondimensional virtual work is as fol-
lows:

L

EI
δWNCaero � −

Z
1

0

2b
ρ∞L

M∞m

�
U∞

�
mL2

EI

�
1∕2 ∂w

∂t
�mL2U2

∞

EI

∂w
∂ξ

�

×
�
−
∂w
∂ξ

δu� �1 − 1∕2
�
∂w
∂ξ

�
2
�
δw

�
dξ (21)

Now, we can use the following nondimensional parameters to
simplify the equation. Note that μ is the aerodynamic to structural
mass ratio andΛ is the aerodynamic to structural compliance ratio and

both incorporate the Mach number in their definition:

μ ≡
ρ∞bL

mM∞
(22)

Λ ≡
ρ∞U

2
∞bL

3

EIM∞
(23)

�Λμ�1∕2 � ρ∞U∞bL
2

M∞�EIm�1∕2 (24)

L

EI
δWNCaero � 2

Z
1

0

��
�Λμ�1∕2 ∂w

∂t
∂w
∂ξ

� Λ
�
∂w
∂ξ

�
2
�
δu

�
�
−�Λμ�1∕2 ∂w

∂t
− Λ

∂w
∂ξ

� 1

2
�Λμ�1∕2 ∂w

∂t

�
∂w
∂ξ

�
2

� 1

2
Λ
�
∂w
∂ξ

�
3
�
δw

�
dξ (25)

Now, we can show that several of these terms are orders of

magnitude smaller than others, and therefore negligible. To show

this, we can scale ∂w∕∂t by ωw:

L

EI
δWNCaero � 2

Z
1

0

��
�Λμ�1∕2ωw ∂w

∂ξ
� Λ

�
∂w
∂ξ

�
2
�
δu

�
�
−�Λμ�1∕2ωw − Λ

∂w
∂ξ

� 1

2
�Λμ�1∕2ωw

�
∂w
∂ξ

�
2

� 1

2
Λ
�
∂w
∂ξ

�
3
�
δw

�
dξ (26)

Lastly, we note the order of each term, using the physical geom-

etries and properties given in the Appendix:

μ � O�10−4�
Λ � O�102�
ω � O�101�
w � O�10−1�
∂w
∂ξ

� O�10−1�

This approximation then leads to the following orders of

magnitude§:

L

EI
δWNCaero � 2

Z
1

0

��O�10−2� �O�100��δu� �−O�10−1�

−O�101� �O�10−3� �O�10−1��δw� dξ (27)

It should be no surprise that the largest term comes from

the classical linear Piston Theory, which corresponds to having no

β effect, i.e. when β � 0. However, it is notable that the second term
in the u coordinate is so large. For now, we will neglect the terms of

order O�10−2�; or higher. Therefore, the final form of the nonlinear

follower-style first-order Piston Theory virtual work becomes the

following.

L

EI
δWNCaero � 2

Z
1

0

�
Λ
�
∂w
∂ξ

�
2

δu�
�
−�Λμ�1∕2 ∂w

∂t

− Λ
∂w
∂ξ

� Λ
2

�
∂w
∂ξ

�
3
�
δw

�
dξ (28)

Now, substitute the following modal expansions of w and u
[Eqs. (A4) and (A5) in the Appendix] into Eq. (28):

§Note that a formal ordering scheme can be developed by expanding the
solution in terms of the fluid to structural mass ratio, which is a small
parameter, typically 0.01 or smaller. The result to first order is the same as
in thePaper.As shown inFig. 9, the results arevery insensitive to themass ratio
for small mass ratios.
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L

EI
δWNCaero � 2

Z
1

0

�
Λ
X
j1

X
j2

Ψw 0
j1Ψw 0

j2wj1wj2δ

�X
i

Ψu
i ui

�

�
�
−�Λμ�1∕2

X
j1

Ψw
j1 _wj1−Λ

X
j1

Ψw 0
j1wj1

�Λ
2

X
j1

X
j2

X
j3

Ψw 0
j1Ψw 0

j2Ψw 0
j3wj1wj2wj3

�
δ

�X
j

Ψw
j wj

��
dξ (29)

L

EI
δWNCaero � 2

X
i

�
Λ
X
j1

X
j2

Z
1

0

Ψu
i Ψw 0

j1Ψw 0
j2 dξwj1wj2

�
δui

�2
X
j

�
−�Λμ�1∕2

X
j1

Z
1

0

Ψw
j Ψw

j1 dξ _wj1 − Λ
X
j1

Z
1

0

Ψw
j Ψw 0

j1 dξwj1

� Λ
2

X
j1

X
j2

X
j3

Z
1

0

Ψw
j Ψw 0

j1Ψw 0
j2Ψw 0

j3 dξwj1wj2wj3

�
δwj (30)

Now, we can concisely write the integrals in our matrix form:

Dijj1 �
Z

1

0

Ψu
i Ψw 0

j Ψw 0
j1 dξ ⇒ D (31)

Gj1j2j3j �
1

2

Z
1

0

Ψw
j Ψw 0

j1Ψw 0
j2Ψw 0

j3 dξ ⇒ G (32)

Hjj1 �
Z

1

0

Ψw
j Ψw 0

j1 dξ ⇒ H (33)

And finally, the virtual work can be concisely written as follows:

L

EI
δWNCaero �2

X
i

�ΛDww�δui

�2
X
j

�−�Λμ�1∕2M _w−ΛHw�ΛGwww�δwj (34)

Now, using Eq. (A3) to extract the nonconservative force in each

coordinate and using Eq. (A1) to apply the forces to Eqs. (1) and (2),

we get the following set of equations including the aerodynamic

forces. Note that the terms which originated from our new β modi-

fication are noted by multiplying by a scalar δβ, which can be set to 1
for calculations which include the β effect or zero for calculations

which omit the β effect:

�u −Aλ � 2δβΛDw2 (35)

�w� 2ζω _w� ω2w − Bwλ� Pw3

� − 2�Λμ�1∕2 _w − 2ΛHw� 2δβΛGw3 (36)

u� 1

2
A−1Bww� 0 (37)

3. Third-Order Piston Theory

The next step is to continue the expansion of Piston Theory to the

third-order form. We can rearrange Eq. (6) as follows:

Δp�−2
ρ∞U∞

M∞

�
_w�U∞

∂w
∂x

��
1�γ�1

12

�
_w

a∞
�M∞

∂w
∂x

�
2
�

(38)

By assuming that �� _w∕a∞� �M∞�∂w∕∂x��2 is small compared to

1, we arrive at Eq. (20). However, if this term is not sufficiently small,

it should be included in our formulations.
To demonstrate the scale of this term, we first simplify and

rearrange the terms in brackets:

Δp � −2
ρ∞U∞

M∞

�
_w� U∞

∂w
∂x

��
1�M2

∞�γ � 1�
12

�
_w

U∞
� ∂w

∂x

�
2
�

(39)

Nondimensionalizing the terms in brackets allows their compari-

son with respect to 1:

�
1�M2

∞�γ � 1�
12

��
μ

Λ

�
1∕2

_�w� ∂w
∂ξ

�
2
�

Finally, if _�w scales with characteristic frequency, we are left with

the following:

�
1�M2

∞�γ � 1�
12

��
μ

Λ

�
ω2w2 � 2

�
μ

Λ

�
1∕2

ωw
∂w
∂x

�
�
∂w
∂x

�
2
��

Again, we note the order of each term:

M∞ � O�1�
μ � O�10−4�
Λ � O�100�
ω � O�10�
w � O�10−1�
∂w
∂ξ

� O�10−1�

This approximation then leads to the following orders of

magnitude:

�1�O�10−6� �O�10−4� �O�10−2��

Note that in our original derivation we keep the �∂w∕∂x�2 term, so

we will keep it here, but disregard the higher-order terms. So, the

third-order Piston Theorymay be appropriately simplified as follows:

Δp � −2
ρ∞U∞

M∞

�
_w�U∞

∂w
∂x

��
1�M2

∞�γ � 1�
12

�
∂w
∂x

�
2
�

(40)

Note that the third-order Piston Theory pressure is always larger

than that given by first-order theory and this leads to larger amplitude

limit cycle oscillations. We can include the third-order Piston Theory

terms in the equation of motion by beginning again with Eq. (9) and

substitute Eq. (40) into Δp:

δWNCaero �
Z

L

0

−bΔpsin�β�δu�bΔpcos�β�δwdx

�−
Z

L

0

�
2b

ρ∞U∞

M∞

�
∂w
∂t

�U∞
∂w
∂x

��
1�M2

∞�γ�1�
12

�
∂w
∂x

�
2
�

×�−sin�β�δu�cos�β�δw�
�
dx (41)

To reduce the complexity of the full equations, we can use the steps

already taken in the first-order Piston Theory scaling analysis to

truncate any higher-order terms. By similar analysis, the following

can be shown:

L

EI
δWNCaero � −

Z
1

0

�
2μ

��
Λ
μ

�
1∕2 ∂w

∂t
� Λ

μ

∂w
∂ξ

�

×
�
1�M2

∞�γ � 1�
12

�
∂w
∂ξ

�
2
�

×
�
−
∂w
∂ξ

δu�
�
1 − 1∕2

�
∂w
∂ξ

�
2
�
δw

��
dξ (42)
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L

EI
δWNCaero � 2

Z
1

0

��
�Λμ�1∕2 ∂w

∂t
∂w
∂ξ

�Λ
�
∂w
∂ξ

�
2

��Λμ�1∕2M
2
∞�γ�1�
12

∂w
∂t

�
∂w
∂ξ

�
3

�Λ
M2

∞�γ�1�
12

�
∂w
∂ξ

�
4
�
δu

�
�
−�Λμ�1∕2 ∂w

∂t
−Λ

∂w
∂ξ

� 1

2
�Λμ�1∕2 ∂w

∂t

�
∂w
∂ξ

�
2

� 1

2
Λ
�
∂w
∂ξ

�
3

− �Λμ�1∕2M
2
∞�γ�1�
12

∂w
∂t

�
∂w
∂ξ

�
2

��Λμ�1∕2M
2
∞�γ�1�
24

∂w
∂t

�
∂w
∂ξ

�
4

−Λ
M2

∞�γ�1�
12

�
∂w
∂ξ

�
3

�Λ
M2

∞�γ�1�
24

�
∂w
∂ξ

�
5
�
δw

�
dξ (43)

This approximation then leads to the following orders of

magnitude:

L

EI
δWNCaero � 2

Z
1

0

��O�10−2��O�100��O�10−4��O�10−2��δu

��−O�10−1�−O�101��O�10−3��O�10−1�
−O�10−3��O�10−5�−O�10−1��O�10−3��δu�dξ (44)

We can neglect any terms of order O�10−2� or higher. So, the
nonconservative work becomes the following:

L

EI
δWNCaero � 2

Z
1

0

�
Λ
�
∂w
∂ξ

�
2

δu

�
�
−�Λμ�1∕2 ∂w

∂t
− Λ

∂w
∂ξ

� 1

2
Λ
�
∂w
∂ξ

�
3

− Λ
M2

∞�γ � 1�
12

�
∂w
∂ξ

�
3
�
δw

�
dξ (45)

Again, substituting themodal expansions fromEqs. (A4) and (A5)

yields the following:

L

EI
δWNCaero � 2

X
i

�
Λ
X
j1

X
j2

Z
1

0

Ψu
iΨw 0

j1Ψw 0
j2 dξwj1wj2

�
δui

�2
X
j

�
−�Λμ�1∕2

X
j1

Z
1

0

Ψw
j Ψw

j1 dξ _wj1

− Λ
X
j1

Z
1

0

Ψw
j Ψw 0

j1 dξwj1

� Λ
�
1 −

M2
∞�γ � 1�

6

�
1

2

X
j1

X
j2

X
j3

×
Z

1

0

Ψw
j Ψw 0

j1Ψw 0
j2Ψw 0

j3 dξwj1wj2wj3

�
δwj (46)

Now, after transcribing the summation notation to our matrix

notation, we have the following system of equations. Note that

third-order Piston Theory only adds one term, a function of M∞,

whichwas not already accounted for by first-order Piston Theory.We

will show that this term increases the pressure on the plate for a given

Λ and M∞:

�u −Aλ � 2δβΛDw2 (47)

�w� 2ζω _w�ω2w −Bwλ� Pw3

� −2�Λμ�1∕2 _w − 2ΛHw� 2Λ
�
δβ −

M2
∞�γ � 1�

6

�
Gw3 (48)

u� 1

2
A−1Bww � 0 (49)

III. Computational Methods

A. Modal Solution Method

Equations (47–49) are manipulated to form one equation for w,
and this equation is solved with a fourth-order Runge–Kutta time-
marching integration scheme. The three independent parameters Λ,
μ, andM∞ are set by physical properties of a proposed experimental
setup, as discussed in the Appendix. Except for the cases whereM∞
and μ are varied, they are set to M∞ � 4 and μ � 1 × 10−4.

B. Euler Equation Validation Method

The geometrically modified Piston Theory aerodynamic model is
validated for this configuration by comparison to the Euler equations
computedwith commercial CFD software. The fully nonlinearmodel
coupledwith third-order PistonTheorywas used to generate unsteady
beam response during limit cycle oscillation, in other words, past the
flutter onset condition. The results were then used to prescribe wall
motion in the computational domain. Five cases of freestream flow
conditions are considered with static pressure parameter in the range
of 67.75 ≤ Λ ≤ 71.75,M∞ � 4, and μ � 1 × 10−4.
The cantilevered beam configuration was replicated in ANSYS

FLUENT 19.2, where the beam was modeled as a one-dimensional
zero-thickness line. A structured computational mesh was created in
ANSYS ICEM CFD with a rectangular domain with dimensions as
shown in Fig. 2 (themeshwas used in an unstructured solver). A total
of 200 nodes along the beam were stationed with each node treated
simultaneously as upper and lower surfaces using the ANSYS zero-
thickness wall boundary condition. A user-defined function (UDF)
was coded to prescribe the individual motion of each node according
to its location on the beam and point in time. The UDF was activated
by the Dynamic Mesh functionality of FLUENT with diffusive
smoothing parameter set to 2. This resulted in a balanced motion of
the mesh near and far from the beam and allowed for large deforma-
tions as shown inFig. 2. The setting included amesh of 215,000nodes
and a time step of t � 6.1581 × 10−5 s. Unsteady transients decayed
after two structural limit cycles, where the first cycle was introduced
to the mesh gradually using a linear (time-dependent) scaling factor.
Mesh density and time step convergence studies were conducted

with second-order accurate implicit time integration and spatial dis-
cretization. The coupled pressure-based solver was used, and the
Courant number, which in the Fluent coupled solver stabilizes the
convergence behavior for each time step, was set to 5. Three mesh
densities were considered with node count along the beam of 150,
200, and 300with the rest of the mesh scaled accordingly. Three time
steps were considered: t1 � 1.2316 × 10−4 s, t2 � 6.1581 × 10−5 s,

and t3 � 3.0791 × 10−5 s. Dual time stepping was employed, with a
maximum of 200 subiterations per time step. Two domain sizes were
considered: the smaller is shown in Fig. 2, while the larger had double
the height and distance from beam trailing edge to the outlet. The
edges of the domain were modeled as pressure-far-field, which sets a
characteristic boundary condition using far-field temperature, pres-
sure, and Mach number. Convergence was quantified by calculating
the rms of pressure differential along the panel at several locations.
The difference in pressure differential rms at 80% chord length
between the finest case and that used for computations was less than
2% of the finest case value.

IV. Results and Their Sensitivity to Key Model
Parameters

The results are presented in several sections to address several
forms of sensitivites. First, we demonstrate the sensitivities to the
number of modes and the time step for integration. Next, we present
results which show sensitivities to the four key nonlinear modeling
components: structural nonlinearities stiffness and inertia and aero-
dynamic nonlinearites due to higher (third-)order Piston Theory and
the nonlinear geometric modification β. Finally, we present a sensi-
tivity study of the key nondimensional parametersM∞,Λ, and μ. We
show that the model is highly sensitive to Λ, moderately sensitive to
M∞, but relatively insensitive to μ. However, recall that M∞ also
appears implicitly in the definitions of Λ and μ.
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A. Sensitivity to Number of Modes and Time Step of Integration

After investigating several cases, it was determined that modal
convergencewas reachedwith 4w,6u, and6λmodes.Using anymore
than these modes, the results are not significantly changed (rms
values differ less than 0.5%). It may be noted, however, that the time
to complete a simulation grows with the number of w modes to the
third power.
In addition, the time step was chosen as a constant in order to

be more consistent across different cases when defining rms values.
To determine the necessary time step, MATLAB®’s ode45 solver
was employed to use its adaptive time stepping ability, and then an
appropriately small time step was chosen based upon these results.
Again, a smaller time step was shown not to improve accuracy of the
scheme. For each computation, the time stepwas t � 0.0018 (dimen-
sionless time units).

B. Nonlinear Modeling Sensitivities

A fully linear fluid–structural model harmonically decays when
perturbed from rest in a subcritical flow where flow parameters are
below a stability boundary, and exponentially oscillates to (	) infin-
ity in a supercritical flow. However, from our nonlinear theory,
insights are gained from analyzing bounded limit cycle oscillations.
Originally, it was expected that the nonlinearities in the structural

model would be strong enough to yield a bounded LCO due to First-
Order Piston Theory. However, it can be seen in Fig. 3 that the LCO
deflection response when normalized to beam length is much larger
than 1, indicating that the model predicts behavior well beyond the
physical system’s realistic behavior. The results do, however, show
an interesting phenomenon: that the initial conditions directly impact
the flutter point. That is, for a small initial displacement of the beam
[w�0� � 0.0001], the flutter point is larger than for a higher initial
condition [w�0� � 0.01]. This indicates a subcritical nonlinear

bifurcation would occur at the flutter point of Λ � 67.6 and curve

backward toward the first nonzero point on the open-circled curve

at Λ � 65.8.
Introducing the geometric modification to Piston Theory (the β

effect) ensures that the pressure acts always normal to the plate

surface. By including the nonlinear aerodynamic terms which are

functions of β for First-Order Piston Theory, the limit cycle oscil-

lation ismuch smaller and physically credible. Indeed, even the linear

structural model response is bounded when coupled with this new

aerodynamic model. These results can be seen in Fig. 4, which plots

the bifurcation diagram for several conditions and nonlinearities.

Figure 4 includes the responses for the plate excited by First-Order

Piston Theory and Third-Order Piston Theory with this new β effect
included, and each aerodynamic model is considered with a fully

nonlinear structural model and a linear structural model. Because of

the large deflection of the plate, it can be seen that the Third-Order

Piston Theory term is significant and increases the limit cycle ampli-

tude. Also note that the nonlinear structural model increases the

amplitude as well. This is due to the nonlinear inertia term dominat-

ing the nonlinear stiffness term. Finally, note the absence of any

subcritical bifurcation.

To gain understanding of the sensitivities of the model to each of

these different nonlinearities (aerodynamic and structural), cases were

run with the several aerodynamic and structural terms either included

or omitted. Table 1 concisely describes the limit cycle response of each

case. The classification of nonphysicalmeans that the response is not

physically plausible because of excessive displacement, for example,

w∕L > 1. Unbounded signifies that the model’s solution grows to

infinity. Supercritical indicates that the LCO is stable for all Λ con-

sidered and the bifurcation is supercritical in nature, while subcritical

indicates a stable LCO after a subcritical bifurcation, as seen in

Fig. 3 LCO amplitudes vs aerodynamic forcing levels for first-order
Piston Theory, δβ � 0, and fully nonlinear structure.

Fig. 2 Computational mesh domain with beam at maximum deflection and mesh distribution around tip of beam.

Fig. 4 LCOamplitudes vs aerodynamic forcing levels for third-order vs
first-order nonlinear Piston Theory and linear or fully nonlinear struc-
tural models, δβ � 1.
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Figs. 3, 5, and 6. Supercritical* designates that the limit cycle is

bounded for a limited range ofΛ and then grows to infinity for largerΛ.
It is of interest to understand physically why including the β effect

(defining pressure to act normal to the instantaneous deformed shape

of the plate) has a stabilizing effect on the LCO.Given the complexity

of this nonlinear system, a simple explanation risks oversimplifying.

However, it is noted that when the β effect is included the aerody-

namic pressure components in the horizontal u direction are always

positive. Thus, one may hypothesize that this leads to a tensile force

in the x direction, which provides a stiffening effect to the beam. In

addition, because thew component of pressure is multiplied by cos β,
the pressure levels in this component are lower at higher deflections

than they would otherwise be without the β effect. It is some combi-

nation of the tensile effect in u and the diminished pressure in w
which results in the stabilized LCO.

The effects of thevarious structural nonlinearities are demonstrated

in Fig. 7, which depicts the bifurcation diagram for Third-Order

Nonlinear Piston Theory and δβ � 1. It can be seen that for themodel

with the inertia nonlinearity only (labeled Inertia) the amplitude is

greatest. Opposing the inertia is the stiffness nonlinearity only case

(labeled Stiffness), which when combined with the inertia only case

becomes the fully nonlinear (Full NL) case. Note that the nonlinear

stiffness only case is similar to the linear structural case, and the

stiffness nonlinearity only seems to influence the system when the

amplitudes become large. Also note that the fully nonlinear and

inertia nonlinearity plots do not continue across the entire range of

Λ values. The plots are stopped when the rms value is no longer

bounded but instead extends to infinity. The point at which this occurs

can be related to the point at which Piston Theory is no longer

applicable more broadly, which will be discussed later.

C. Nondimensional Physical Parameter Sensitivity

We now consider how the physical system behaves with respect to

key nondimensional parameters, μ, Λ, and M∞. Each of these cases

are run with Third-Order nonlinear Piston Theory with the β effect

included (δβ � 1) and the fully nonlinear structural model. This is

the most complete and physically realistic model considered in the

present Paper.
The nondimensionalization of the equations results in the most

compact and efficient way of determining sensitivity of the results

to the various physical parameters. Note that a good choice of non-

dimensional parameters will reveal the order of importance of the

nondimensional parameters. In our present Paper, the order is Λ (a

ratio of aerodynamic to structural stiffness or compliance), M∞
(Mach number), and μ (a ratio of fluid to structural mass).
Figure 8 illustrates themodel’s sensitivity toΛ andM∞. Each curve

pictures the limit cycle oscillation amplitude of a different Mach

number flow as the fluid forcing Λ is increased. Note here the

termination points of the plots for all flows. (Figure 8a is a zoomed-

in plot of Fig. 8b to show the termination of responses for Mach 4, 5,

and 6 flow.) Beyond the values of Λ for which no solution is plotted,

the solutions diverge toward infinity. This is at a different value

for each Mach number; however, it is calculated that each curve’s

Table 1 Limit cycle classifications for different Piston Theory nonlinearities vs structural nonlinearities

Aerodynamics

Structure O1, δβ � 0 O1, δβ � 1 O3, δβ � 0 O3, δβ � 1

Full nonlinear Nonphysical Supercritical Unbounded Supercritical*
Nonlinear inertia Nonphysical Supercritical Unbounded Supercritical*
Nonlinear stiffness Supercritical Supercritical Subcritical Supercritical
Linear —— Supercritical Subcritical Supercritical

Fig. 5 LCO amplitudes vs aerodynamic forcing levels for third-order
Piston Theory, δβ � 0, and nonlinear stiffness as the only structural
nonlinearity.

Fig. 6 LCO amplitudes vs aerodynamic forcing levels for third-order
Piston Theory, δβ � 0, and a linear structural model.

Fig. 7 LCO amplitudes vs aerodynamic forcing levels for third-order

Piston Theory, δβ � 1.
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termination point occurs at M∞ � �RMSof tip deflection� ≈ 0.5.
This is significant because classical Piston Theory is said to be valid
for M∞δ < 0.5, where δ is a measure of structural slope or angle of
attack. See the discussion by Lighthill [18]. In addition, it is of
practical significance to note that our model is limited in its predic-
tions for high Mach number postcritical behavior.¶

Note also that, although Fig. 8 shows a strong dependence on
Mach number, this is not the case for a model with only first-order
Piston Theory included. For first-order Piston Theory, all of the effect
of M∞ is included in the definitions of μ and Λ, and there is no
separate dependence onMach number per se. Indeed, the bifurcation
plots lay on top of one another for a first-order Piston Theory model.
Figure 9 shows that there ismodest dependence on themass ratioμ.

The range of 1 × 10−4 < μ < 8 × 10−4 was chosen based on appro-
priate physical values given in Appendix. B. For all other computa-

tions, a value of μ � 1 × 10−4 is chosen.

V. Aerodynamic Model Validation

Because of the significant differences between first-order and
third-order Piston Theory results in Fig. 4, one may question the
accuracy of third-order Piston Theory. To answer this question, the
pressures on the beam as calculated by Piston Theory in the fully
nonlinear aeroelastic computation are compared to those calculated
from the Euler equations using a prescribedmotion on the beam from
the same aeroelastic case at Mach 4. A representative solution from
the Euler calculations is shown in Fig. 10, where Λ � 71.75 and the
deflection is at a maximum. Note that a shock forms on the surface
turned toward the flow. At large deflections, the beam becomes
analogous to a ramp, and a strong shock forms on the deflected
surface. This is characteristic of each of these simulations, but the
following results show that this does not result in greatly different
pressures from third-order Piston Theory, which interestingly is
derived from the assumption that there are no shocks on the surface.
To compare Euler to Piston Theory, Fig. 11 illustrates the change in

pressure calculated from the three theories across the beam’s length at
a given instance in time for various values ofΛ. The time step chosen
is when the deflection is largest in the cycle. Note that the quantity of
interest is the pressure as calculated in the aeroelastic case. Since the
pressure was calculated without the effect of the beam moving in the
u direction, this effect is not included in these plots for the Piston
Theory case. However, to compare to a higher-fidelity model, the u
deflection is considered for the Euler computation. Therefore, these
plots evaluate the Piston Theorymethod and its means of application.
To condense this information into one plot, Fig. 12 shows the

maximum aerodynamic work QF done on the beam’s surface as the
forcing function (and therefore the deflection) increases.Aerodynamic

work is defined as QF ≡ ∫ L
0Δp�x�wF�x� dx for the Piston Theory

cases, where wF�x� is the vertical deflection of the beam at its peak

deflection during a limit cycle oscillation. For the Euler case, aerody-

namic work is defined as QF ≡ ∫ L�u�L�
0 Δp�x� u�ŵF�x� u� dx,

where ŵF�x� u� ≡w�x�. Physically, this accounts for the deflection

a) b)

Fig. 8 LCO amplitudes vs aerodynamic forcing levels across several Mach numbers, all for third-order Piston Theory, δβ � 1, and fully nonlinear
structure. Here, part a is a zoomed in plot of part b.

Fig. 9 LCO amplitudes vs aerodynamic forcing levels across several
values of μ, all for third-order Piston Theory, δβ � 1, and fully nonlinear
structure.

Fig. 10 Pressures calculated from Euler solution at maximum deflec-

tion, Λ � 71.75.

¶It is important to note that this Piston Theory limit occurs before the upper
limit of structural deflection due to the constraints of the structural beam
model itself. The beam model uses an approximation to derive the potential
energy functionwhich assumes that the slope inw is limited to values less than
about 1/2. See Refs. [9,15] for details.
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of the beam including the u deflections in the Euler case. Note that

because u�L� is negative the limits of integration are smaller for the

Euler case than for the Piston Theory cases, which results in slightly

morework doneby third-orderPistonTheory than that ofEuler at large

deflections, despite the pressures being similar.

Figure 13 illustrates a representative plot of the change in pressure
across the beam at a point at 80% of the beam length. Figure 13a
shows one full deflection period in time, and Fig. 13b shows the
Fourier transform of pressure, which illuminates the higher-fre-
quency behavior.
It can be seen from these figures that pressures from all three

theories align at small deflections but differ at larger forcing functions
and deflections. Indeed, in Fig. 12, at a value ofΛ � 67.75 (where the
rms tip deflection is small), the aerodynamic work values all differ by
only about 2.5%. As the forcing function and thus the deflections
increase, first-order Piston Theory begins to differ from Euler, and,
finally, all three differ at the highest forcing levels. Additionally,
Fig. 13b shows that first-order Piston Theory does not capture higher
modal content, but third-order Piston Theory and Euler do.
The good agreement for the aerodynamic pressure loading on the

structure between the Euler model and third-order Piston Theory is
reassuring and perhaps to some a pleasant surprise. However, it can be
shown formally that the flutter point per se is the samewhether one uses a
linear potential flow theory or theEulermodel if themean flow is uniform
as is the case here. Amore interesting and challenging study would be to
include the effect of a fluid boundary layer either using the shear flow
model proposed by Lighthill [18] and adapted to the flutter of plates by
Dowell [32] or to use a viscous CFD model, for example, Reynolds-
averaged Navier–Stokes (RANS) or direct numerical simulation (DNS).
Finally, it is interesting to note a subtle difference between

Figs. 4 and 12. That is, the fully coupled aeroelastic results show that

a) Λ = 67.75 b) Λ = 68.75

c) Λ = 69.75 d) Λ = 70.75

e) Λ = 71.75

Fig. 11 Change in pressure across the beam length calculated by Euler, first-order Piston Theory, and third-order Piston Theory for various levels ofΛ.

Fig. 12 Aerodynamic work done on the beam for various fluid forcing
levels.
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first-order and third-order Piston Theory aerodynamics result in a
relatively large difference in deflections, while the aerodynamic
results of Fig. 12 show that the aerodynamic work is relatively close
between the two theories, especially at small deflections. This indi-
cates that the fully aeroelastic solver is sensitive to changes in the
aerodynamic model.

VI. Conclusions

Whenmodelinganyphysical systemand certainly a fluid–structural
(aeroelastic) system, it is important to study the sensitivity of
the results. Three types of sensitivities have been identified and are
explored in the present Paper. Type 1 is the sensitivity to the math-
ematical model of the physical system. Type 2 is that to the parameters
that appear in the mathematical model or which are considered in
the design of an experimental model. Type 3 is the accuracy of the
numericalmethods employed to extract solutions from themathemati-
cal model.
The Type 3 sensitivity to the numerical solution method is con-

sidered by performing a convergence study to ensure that a sufficient
number of structural modes are using in the computation and that the
time step in the time-marching scheme is sufficiently small.
The Type 2 sensitivity to the parameters of the mathematical/

physical system is addressed by first identifying the essential non-
dimensional parameters of themodel. For themodel considered here,
there are three such nondimensional parameters. They areΛ, a ratio of
aerodynamic forces to structural stiffness; μ, a ratio of fluid to
structural mass; andM∞, the Mach number. Indeed, if the first-order
Piston Theory aerodynamic model is used, then only two parameters
appear, namely, Λ and μ; in other words, the Mach number does not
appear explicitly as an independent parameter but is included implic-
itly in the definitions ofΛ and μ. On the other hand, if the third-order
Piston Theory is used, thenM∞ appears as an independent parameter.
The current example also illustrates amoregeneral point, namely, that
the number of essential nondimensional parameters depends on the
mathematical/physical model adopted and the choice of these param-
eters (based upon a thorough analysis of themodel andmodel results)
can be such as to reduce the sensitivity of themodel to the parameters.
For example, it is found that the results are much less sensitive to μ
than toΛ and also by incorporatingM∞ intoΛ and μ the sensitivity to
M∞ can also be reduced. On the other hand, it is good to remember
that the basic mathematical/physical model is only valid for a certain
range of parameters. For example, in the present model, the Mach
number must be sufficiently large compared to 1 for Piston Theory to
be valid. How large is to some degree in the judgement of the analyst,
but most investigators would sayM∞ > 2 should suffice. But then, if
M∞ is too large, other physical effects such as chemical reactions of
the flow might be important, or the effects of fluid viscosity might be
important even at lower M∞, and these are neglected in the present
aerodynamic model. Also, it is shown that, even without these addi-
tional physical effects, the (third-order) Piston Theory fails when the
LCO response becomes too large, in other words,M∞w∕L > 1.

Finally, even within the framework of the present mathematical/
physical model, there are various physical effects that have greater

or less impact on the model. That is, there is type 1 sensitivity in
themodel towhether a completely linear theory is used orwhether the
effects of structural stiffness or inertial nonlinearity is included in the
model. Also, whether the effect of aerodynamic pressure acting
normal to the instantaneous position of the mode is included (the β
effect) or whether first- or third-order Piston Theory is included. All
of these effects have been considered and discussed here. Indeed, this
discussion of the Piston Theoretic pressures compared to Euler
pressures shows that the aeroelastic solution is highly dependent on
the aerodynamic model and therefore that third-order Piston Theory
is more appropriate for this configuration than first order.
Looking ahead, one can note several future topics which may be

explored. First, a fully coupled aeroelastic solution using an inviscid
Euler code may validate the current model’s structural motion pre-
diction, because the model has been shown to be sensitive to small
perturbations for certain parameters. Also, because of symmetry of
the flow over the structure, the second-order aerodynamic terms from
Piston Theory are omitted in this Paper but could be important for
other related configurations, for example, flow over only one side of
the structure or a structure with initial curvature or angle of attack. In
addition, this Paper uses formulations for Piston Theory from Light-
hill [18], whereas similar but more accurate descriptions of pressures
on an oscillating piston surface are given by Liepmann and Roshko
[29]. It is of some interest to develop a more complete Piston Theory
using the latter formulations alongside the β effect. In addition, a
study of the viscous and thermal effects may be of interest. Finally, a
study using nonlinear plate theory (developed by the authors and
collaborators [9,11]) for the structural model and this newly devel-
oped Piston Theory with follower effects for the aerodynamic model
would also be valuable.

Appendix: Modal Equations and Typical Modal Physical
Properties

A. Modal Equations

To derive the equations of motion for the beam, Lagrange’s
equations are used,

∂
∂t

∂L
∂ _qn

−
∂L
∂qn

� Qn (A1)

where

L � T − V �
Z

L

0

λf dx (A2)

and Qn is known from

δWNC �
X
n

Qnδqn (A3)

and the modal expansions are

a) b)

Fig. 13 Change in pressure at 80% beam length in a) time space and b) frequency space.
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u�x; t� �
X
i

Ψu
i �x�ui�t� (A4)

w�x; t� �
X
j

Ψw
j �x�wj�t� (A5)

λ�x; t� �
X
k

Ψλ
k�x�λk�t� (A6)

Given dimensionally in Ref. [14], the equations of motion are as
follows:

0 � m

Z
L

0

Ψu
i Ψu

i dx �ui −
X
k

λk

Z
L

0

Ψu 0
i Ψλ

k dx (A7)

0 � m

Z
L

0

Ψw
j Ψw

j dx �wj � 2mζjωj

Z
L

0

Ψw
j Ψw

j dx _wj

� ω2
jm

Z
L

0

Ψw
j Ψw

j dxwj −
X
k

X
j1

Z
L

0

Ψλ
kΨw 0

j1Ψw 0
j dxλkwj1

� EI
X
j1

X
j2

X
j3

Z
L

0

�Ψw 0 0
j1 Ψw 0 0

j2 Ψw 0
j3Ψw 0

j

� Ψw 0 0
j1 Ψw 0

j2Ψw 0
j3Ψw 0 0

j � dxwj1wj2wj3 (A8)

0�
X
i

ui

Z
L

0

Ψλ
kΨu 0

i dx�1

2

X
j1

X
j2

wj1wj2

Z
L

0

Ψλ
kΨw0

j1Ψw0
j2 dx (A9)

The system of equations now can be nondimensionalized as
follows. First, consider Eq. (A7),

0 � mLMu
EI

mL3
�u −A

EI

L2
λ

0 � Mu �u −Aλ

0 � �u −Aλ (A10)

Here, the final simplification is true if we normalize the modes
such that Mu � I.
Next, consider Eq. (A8),

0 � mLMw
EI

mL3
�w� 2mζ

�
EI

mL4

�
1∕2

ωLMw

�
EI

mL4

�
1∕2

L _w

�
�

EI

mL4

�
ω2mLMwLw −

�
EI

L2

�
L−1BLwλ�

�
EI

L5

�
PL3www

0 �Mw
EI

L2
�w� 2ζ

�
EI

L2

�
ωMw _w�

�
EI

L2

�
ω2Mww

−
�
EI

L2

�
Bwλ�

�
EI

L2

�
Pwww

0 �Mw �w� 2ζωMw _w�ω2Mww −Bwλ� Pwww

0 � �w� 2ζω _w�ω2w −Bwλ� Pw3 (A11)

where again the final step is true ifMw � I.
Lastly, consider Eq. (A9),

0 � ALu� 1

2L
BL2ww

0 � Au� 1

2
Bww

0 � u� 1

2
A−1Bww (A12)

Summarizing, we can succinctly write the unforced equations of
motion, rearranging the zeros on the right-hand side to signify the
absence of forcing:

�u −Aλ � 0 (A13)

�w� 2ζω _w� ω2w −Bwλ� Pw3 � 0 (A14)

u� 1

2
A−1Bww � 0 (A15)

B. Typical Model Physical Properties

Structural properties are

b � 0.04 m

h � 0.0001 m;

L � 0.1 m;

ρ � 2770 kg∕m3;

E � 71 × 109 Pa;

I � bh3∕�12�1 − 0.332��;
EI � E � I;

m � ρbh

Air properties are

112 < T∞ < 120 K

R � 287.058 J∕�kg ⋅ K�
γ � 1.4

2 ≤ M∞ ≤ 6

74 ≤ p∞ ≤ 81 N∕m2
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