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Abstract

We introduce a new text-mining methodology that extracts information from news articles to
predict asset returns. Unlike more common sentiment scores used for stock return prediction (e.g.,
those sold by commercial vendors or built with dictionary-based methods), our supervised learning
framework constructs a score that is specifically adapted to the problem of return prediction. Our
method proceeds in three steps: 1) isolating a list of terms via predictive screening, 2) assigning
prediction weights to these words via topic modeling, and 3) aggregating terms into an article-
level predictive score via penalized likelihood. We derive theoretical guarantees on the accuracy
of estimates from our model with minimal assumptions. In our empirical analysis, we study one
of the most actively monitored streams of news articles in the financial system—the Dow Jones
Newswires—and show that our supervised text model excels at extracting return-predictive signals
in this context. Information in newswires is assimilated into prices with an inefficient delay that is
broadly consistent with limits-to-arbitrage (i.e., more severe for smaller and more volatile firms)
yet can be exploited in a real-time trading strategy with reasonable turnover and net of transaction

costs.
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1 Introduction

Advances in computing power have made it practical to exploit large and often unstructured data
sources such as text, audio, and video for scientific analysis. In the social sciences, textual data is
the fastest growing data form in academic research. The numerical representation of text as data for
statistical analysis is, in principle, ultra-high dimensional. Empirical research seeking to exploit its
potential richness must also confront its dimensionality challenge. Machine learning offers a toolkit
for tackling the high-dimensional statistical problem of extracting meaning from text for explanatory
and predictive analysis.

While the natural language processing and machine learning literature is growing increasingly
sophisticated in its ability to model the subtle and complex nature of verbal communication, usage
of textual analysis in empirical finance is in its infancy. Text is most commonly used in finance

7 of a given document, and this sentiment is most frequently measured by
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weighting terms based on a pre-specified sentiment dictionary (e.g., the Harvard-IV psychosocial
dictionary) and summing these weights into document-level sentiment scores. Document sentiment
scores are then used in a secondary statistical model for investigating phenomena such as information
transmission in financial markets (Tetlock, 2014).

In this paper we present a novel model-based approach to understanding the sentimental structure
of a text corpus without relying on pre-existing dictionaries. Our model is motivated by the view
that return-predictive content of a given event is reflected both in the news article text and in the
returns of related assets. We propose a model that describes the joint generation of text and returns,
where the document-level sentiment is represented by a latent variable. Our model is characterized
by as few as two simple equations, which makes it a very flexible natural language processing (NLP)
module that can be incorporated into more complex problems of a similar nature. In our model, the
sentiment dictionary and term weights are parameters, and they can be estimated using the training
data from a past study. Therefore, our approach allows for the construction of a sentiment dictionary
that is customized for the context of interest and the data at hand. An important distinction of our
approach with the literature is that our method will extract general return predictive content of news.
The method does not differentiate between non-sentiment (i.e., objective information) and sentiment
content of news per se. This limitation is primarily due to the lack of objective sentiment labels from
our data source, as our method is adaptive to different contexts. Nonetheless, in alignment with
preceding literature, we continue to use the term “sentiment” to refer to the predictive signal that
we extract from news.

We abbreviate our method as SESTM (Sentiment Extraction via Screening and Topic Modeling),
and it consists of three parts. The first step isolates the most relevant terms from a very large vocab-
ulary of terms via predictive correlation screening. The second step assigns term-specific sentiment
weights using a supervised topic model. The third step uses the estimated topic model to assign
article-level sentiment scores via penalized maximum likelihood.

The method we introduce has three main virtues. The first is simplicity—it requires only stan-
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commercial platforms or deep learning approaches which amount to black boxes for their users, the
supervised learning approach we propose is entirely “white box.” Second, our method requires mini-
mal computing power—it can be run with a laptop computer in a matter of minutes for text corpora
with millions of documents. Third, and most importantly, it allows the researcher to construct a
sentiment scoring model that is specifically adapted to the context of the data set at hand. This
frees the researcher from relying on a pre-existing sentiment dictionary that was originally designed
for different purposes. A central hurdle to testing theories of information economics is the difficulty
of quantifying information. Our estimator is a sophisticated yet easy-to-use tool for measuring the
information content of text documents that opens new lines of research into empirical information
economics.

Our empirical analysis revisits perhaps the most commonly studied text-based research question
in finance, the extent to which business news explains and predicts observed asset price variation.
We analyze the machine text feed and archive database of the Dow Jones Newswires. Ours is the first
paper (to our knowledge) to analyze this data set, which is a central information source for broad
swathes of market participants and is widely subscribed and closely monitored by sophisticated
investors. It is available for more than 30 years. Its articles are time-stamped and tagged with
identifiers of firms to which an article pertains. Using these identifiers, we match articles with stock
data from CRSP in order to model return behavior as a function of a Newswire content. The key
feature of our approach is that we learn the sentiment scoring model from the joint behavior of article
text and stock returns, rather than taking sentiment scores off the shelf.

To translate the statistical gains of our model into economic terms, we demonstrate the predic-
tive capacity of our model through a simple trading strategy that buys assets with positive recent
news sentiment and sells assets with negative sentiment. The portfolio based on our model delivers
excellent risk-adjusted out-of-sample returns, and outperforms a similar strategy based on scores
from RavenPack (the industry-leading commercial vendor of financial news sentiment scores). It
does so by isolating an interpretable and intuitive ranking of positive and negative sentiment values
for words in our corpus.

We compare the price impact of “fresh” versus “stale” news by devising a measure of article
novelty. Stale articles are defined as those bearing close similarity to articles about the same stock
over the preceding week. While the sentiment of stale news has a weakly significant positive asso-
ciation with future price changes, the effect is 70% larger for fresh news. And while the effects of
stale news are fully reflected in prices within two days of arrival, it takes four days for fresh news
to be completely assimilated. Likewise, we study how differences in news assimilation associate with
a variety of stock attributes. We find that price responses to news are roughly four times as large
for smaller stocks (below NYSE median) and more volatile stocks (above median), and that it takes
roughly twice as long for news about small and volatile stocks to be fully reflected in prices.

We establish a number of theoretical results to accompany our model. First is our theoretical
guarantee of exactly recovering the sentiment dictionary from training data via a correlation screening
step. It is reminiscent of the theory for marginal screening in regression models (Fan and Lv, 2008),

but our model is very different as it tackles with count data. Second, we derive sharp error bounds



for parameter estimation. The error bounds depend on the scale of the corpus (e.g., size of the
vocabulary, total number of text documents, average number of words per document, etc.) and the
strength of sentiment signals (e.g., sensitivity of returns to sentiment, sensitivity of text generation
to sentiment, etc.). Third, we derive and quantify the error of predicting sentiment scores of newly
arriving articles. Our theory thus characterizes clearly the statistical limit of sentiment extraction
in terms of accuracy and precision.

Our paper contributes to a growing literature on methods for integrating textual analysis into
empirical economics research (surveyed in Das et al., 2014; Loughran and McDonald, 2016; Gentzkow
et al., 2019). Most prior work using text as data for finance and accounting research does little direct
statistical analysis of text, and instead relies on pre-defined sentiment dictionaries. Early examples
are Tetlock (2007), Engelberg (2008), Loughran and McDonald (2011), Gurun and Butler (2012),
Garcia (2013), Cohen et al. (2013), and Chen et al. (2014).

Some papers adopt off-the-shelf machine learning techniques, e.g., naive Bayesian classifiers or
support vector machines, to battle the curse of dimensionality such as Antweiler and Frank (2005),
Das and Chen (2007), Li (2010), Boudoukh et al. (2019), Heston and Sinha (2017), and Manela
and Moreira (2017). Jegadeesh and Wu (2013) is our closest predecessor and the first asset pricing
paper to promote supervised estimation of sentiment word weights using stock returns. While more
flexible than basic dictionary methods, these papers implement algorithms whose properties in the
return prediction context are not well understood. In contrast, we propose a text-based model
and estimator that is specifically designed for the return prediction context. We rigorously prove the
consistency of our estimator based precisely on how it is implemented (without ad hoc modifications).
In comparison with the “word-power” approach by Jegadeesh and Wu (2013), our method delivers
an equal-weighted portfolio with a 44% higher Sharpe ratio. The improvement is more stark (57%)
with a value-weighted portfolio. By showing how a financial objective can be integrated with rigorous
analysis of sophisticated text models, we outline for a new research agenda for leveraging text data
in both empirical finance and financial econometrics.

Furthermore, our empirical analysis is much more far-ranging than previous text-based analyses
of stock returns. Most previous analysis focuses on text of either SEC filings or limited news such
as the front page The Wall Street Journal. In contrast, we study all articles disseminated by the
Dow Jones Newswires service since 1989, a data set whose breadth is unprecedented in text-based
financial research. This includes all articles in The Wall Street Journal (not to mention press release
wires, Barron’s, MarketWatch, and the full range of Dow Jones realtime news services), covers a
significantly longer sample than that available from the SEC (whose digital text is available only
since 1993), and includes news content that arrives far more frequently (several thousand times per
year for some firms) and with less severe scrubbing and self-reporting biases than SEC disclosures.

The closest benchmark for our analysis lies not in the academic literature, but comes from a
commercial vendor of financial news sentiment scores. This firm, RavenPack (see Appendix D for
details), is the natural benchmark for our study for two reasons. First, according to its market-
ing materials, it uses sophisticated (though proprietary and undisclosed) NLP methods to extract

sentiment scores from financial news text. Thus RavenPack is closer to our work from a method-



ological standpoint than previous finance literature. Second, sentiment scores sold by RavenPack
are derived from the exact same Dow Jones Newswires data set we study. Thus RavenPack is also
the most appropriate empirical benchmark. Fortunately, through our subscription to RavenPack,
we are able to make direct comparisons of our model versus its. We show in a head-to-head trading
strategy analysis that our SESTM method translates into an equal-weighted portfolio Sharpe ratio
30% higher than that of RavenPack (70% higher for a value-weighted portfolio). And SESTM does
so with complete model transparency, in contrast to the propriety black box of RavenPack.

The rest of the paper is organized as follows. In Section 2, we introduce a probabilistic model
for sentiment analysis. In Section 3, we propose our SESTM method. Section 4 reports an empirical
analysis of stock-level news and returns using SESTM. In Section 5, we describe the estimator’s
statistical properties, and we provide supporting mathematical proofs and Monte Carlo simulations

in the appendix.

2 A Probabilistic Model for Sentiment Analysis

To establish notation, consider a collection of n news articles and a dictionary of m words. We record
the word (or phrase) counts of the it" article in a vector d; € R, so that d;; is the number of times
word j occurs in article ¢. In matrix form, this is an m x n document-term matrix, D = [dy, ..., d},].
We occasionally work with a subset of rows from D, where the indices of columns included in the
subset are listed in the set S. We denote the corresponding submatrix as Dig) .. We then use d[g);
to denote the column vector corresponding to the i*" column of Dygy...

Articles are tagged with the identifiers of stocks mentioned in the articles. For simplicity, we
study articles that correspond to a single stock,! and we label article 4 with the associated stock
return (or its idiosyncratic component), y;, on the publication date of the article.

We assume each article possesses a sentiment score p; € [0, 1]; when p; = 1, the article sentiment
is maximally positive, when p; = 0, it is maximally negative, and when p; = 0.5, it is neutral. The
sentiment score p; links the realized returns y; with the word vector d;, so we need at least these two
components to fully specify the data generating process. One governs the distribution of the stock
return y; given p;, and the other governs the article word count vector d; given p;. Given that our
sole agenda is on sentiment, this is perhaps the simplest abstraction that suits our purpose.

To begin with, we wish to model the distribution of y; given p; as flexibly as possible in order
to accommodate a wide range of potential associations between returns and sentiment. For the

conditional return distribution, we assume
P(sgn(y;) = 1) = g(p;), for a monotone increasing function g(-), (1)

where sgn(x) is the sign function that returns 1 if x > 0 and —1 otherwise. Intuitively, this assumption

While this assumption is a limitation of our approach, the large majority of articles in our sample are tagged to a
single firm. In general, however, it would be an advantage to handle articles about multiple firms. For instance, Apple
and Samsung are competitors in the cellphone market, and there are news articles that draw a comparison between
them. In this case, the sentiment model requires more complexity, and we leave such extensions for future work.



states that the higher the sentiment score, the higher the probability of realizing a positive return.
This is a weak assumption, and has the advantage that we need not specify the full distribution of
y; or the particular form of g(-) to establish our theoretical guarantees.

We now turn to the conditional distribution of word counts in an article. We model d; by adapting
the popular probabilistic topic model (Hofmann, 1999) to accommodate sentiment information. First,

we assume the vocabulary has a partition:
{1,2,...,m} =SUN, (2)

where S is the index set of sentiment-charged words, N is the index set of sentiment-neutral words,
and {1,...,m} is the set of indices for all words in the vocabulary (S and N have dimensions |S|
and m — |S|, respectively). Likewise, d|s); and d|y); are the corresponding subvectors of d; and
contain counts of sentiment-charged and sentiment-neutral words, respectively. The distribution of
sentiment-neutral counts, d[yj;, is essentially a nuisance, so we leave it unmodeled and assume it is
independent of the vector of interest, d(g ;.

We assume that sentiment-charged word counts, d[g];, are generated by a mixture multinomial

distribution of the form
d[S],i ~ Multinomial(si, PO + (1 — p¢)07>, (3)

where s; is the total count of sentiment-charged words in article ¢ and therefore determines the scale of
the multinomial. Next, we model the probabilities of individual word counts with a two-topic mixture
model. O is a probability distribution over words—it is an |S|-vector of non-negative entries with
unit ¢'-norm. O, is a “positive sentiment topic,” and describes expected word frequencies in a

“negative sentiment

maximally positive sentiment article (one for which p; = 1). Likewise, O_ is a
topic” that describes the distribution of word frequencies in maximally negative articles (those for
which p; = 0). At intermediate values of sentiment 0 < p; < 1, word frequencies are a convex
combination of those from the positive and negative sentiment topics.

O4 captures information on both the frequency of words as well as their sentiment. It is helpful,

in fact, to reorganize the topic vectors into a vector of frequency, F, and a vector of tone, T"
1 1

If a word has a larger value in F', it appears more frequently overall. But term-level sentiment is
captured by the vector of tone. A word j has positive tone if it has a larger weight in the positive
sentiment topic than in the negative sentiment topic; i.e., the j'* entry of T is positive (and likewise
for negative tone). The absolute value of an entry in T' captures the strength of its corresponding
word’s tone.

Figure 1 provides a visualization of the model’s structure. The data available to infer sentiment
are in the box at the top of the diagram, and include not only the realized document text, but

also the realized event return. The important feature of this model is that, for a given event i, the



Figure 1: Model Diagram
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distribution of sentiment-charged word counts and the distribution of returns are linked through the
common parameter, p;. Returns supervise the estimation and help identify which words are assigned
to the positive versus negative topic. A higher p; maps monotonically into a higher likelihood of
positive returns, and thus words that co-occur with positive returns are assigned high values in O

and low values in O_.

3 SESTM: A Supervised Sentiment Extraction Algorithm

We now present our Sentiment Extraction via Screening and Topic Modeling (SESTM) estimation
procedure, which consists of three steps. First, we screen for the set of sentiment-charged words.
Second, we estimate the positive and negative sentiment topics O4 and O_. Third, we use penalized
maximum likelihood to estimate sentiment scores of new articles. Sections 3.1 through 3.3 describe

each step in detail.

3.1 Screening for Sentiment-Charged Words

Sentiment-neutral words act as noise in our model, yet they are likely to dominate the data both
in number of terms and in total counts. Estimating a topic model for the entire vocabulary that
accounts for the full joint distribution of sentiment-charged versus sentiment-neutral terms is at best
a very challenging statistical problem, and at worst may suffer from severe inefficiency and high

computational costs. Instead, our strategy is to isolate the subset of sentiment-charged words, and



then estimate a topic model to this subset alone (leaving the neutral words unmodeled).

To accomplish this, we need an effective feature selection procedure to tease out words that
carry sentiment information. We take a supervised approach that leverages the information in
realized stock returns to screen for sentiment-charged words. Intuitively, if a word frequently co-
occurs in articles that are accompanied by positive returns, that word is likely to convey positive
sentiment. Using returns as labels for sentiment analysis has been suggested by Jegadeesh and Wu
(2013). The advantage of exploiting this information stems from the fact that both text mining
and return prediction exercises feature low signal-to-noise ratios, so that it would facilitate learning
if high-quality labels are available. Returns are objective and conveniently obtainable, but in the
mean-time it reflects both fundamental and non-fundamental (i.e, sentiment) news. Due to the data
limitation, we do not distinguish the cause of returns when using them as labels.

Our screening procedure first calculates the frequency with which word j co-occurs with a positive

return. This is measured as

count of word j in articles with sgn(y) = +1

fi= : (5)

count of word j in all articles

for each j = 1,...,m. If we view sgn(y) as the response variable and the count of each word j as
a predictor, then f; can be viewed as a form of marginal screening statistics (Fan and Lv, 2008).
We use the sign of returns instead of returns because the former conforms with our assumption in
(1) in spite of the potential information loss. Modeling returns requires onerous effort and stronger
assumptions that we attempt to avoid here. In comparison with the more complicated multivariate
regression with sparse regularization, marginal screening is not only simple to use but also has a
theoretical advantage when the signal to noise ratio is weak (Genovese et al., 2012; Ji and Jin, 2012).

Next, we compare f; with proper thresholds. Let 7 denote the fraction of articles tagged with
a positive return in our training sample. In practice 7 is typically around 1/2. For a sentiment
neutral word, since its occurrence is uncorrelated with the sign of returns, we expect to see f; ~ 7.
Hence, we set an upper threshold, a4, and define all words having f; > 7 + . as positive sentiment
terms. Likewise, any word satisfying f; < 7 — a_ for some lower threshold a_ is deemed a negative
sentiment term. Finally, we impose a third threshold, , on the count of word j in all articles (i.e.,
the denominator of fj, which we denote as k;). Some sentiment words may appear infrequently in
the data sample, in which case we have very noisy information about their relevance to sentiment.
By restricting our analysis to words for which k; > x, we ensure minimal statistical accuracy of the

frequency estimate, f;. Our estimate of the set S is defined by
S={j:fj>F+ay, o fj<m—a_Yn{j:k>x}. (6)
The thresholds (a4, a_, k) are hyper-parameters that can be tuned via cross-validation.
We introduce a variant of the screening statistic that is particularly useful in empirical analysis:

o count of articles including word j AND having sgn(y) =1 )
r = :

count of articles including word j




It modifies f; by truncating the count of word j in any individual article at the value 1. While f;
may be sensitive to extreme values in article-specific word counts, e.g., a specific term mentioned
many times in one article, f7 will not, and we find in empirical analyses that replacing f; by f;
improves predictive performance. This procedure has similar theoretical properties as the screening
procedure based on f, but the conditions based on f are more elegant and transparent, so we choose

to present theory in Section 5 using f.

3.2 Learning Sentiment Topics

Once we have identified the relevant wordlist S, we arrive at the (now simplified) problem of fitting
a two-topic model to the sentiment-charged counts. We can gather the two topic vectors in a matrix
O = [O4,O_], which determines the expected counts of sentiment-charged words in each article.

Classical topic models (Hofmann, 1999; Blei et al., 2003) amount to unsupervised reductions of
the text, as these models do not assume availability of training labels for documents. In our setting,
each Newswire is associated with a stock return, and the return contains information about article
sentiment. Hence, returns serve as training labels and, in a low signal-to-noise ratio environment,
there are efficiency gains from exploiting such labels via supervised learning. We therefore take a
supervised learning approach to estimate O (or, equivalently, to estimate F' and T') in the spirit of
Mcauliffe and Blei (2008).

In our model, the parameter p; is the article’s sentiment score, as it describes how heavily the
article tilts in favor of the positive word topic. Suppose, for now, that we observe these sentiment
scores for all articles in our sample. Let h; = d|g);/s; denote the |S| x 1 vector of word frequencies.
Model (3) implies that

djs),i
Eh; = E — = PO+ + (1 —p;)O_,

Sq

or, in matrix form,

p1 Pn

EH = OW, where W =
L=pi o 1-py

], and H:[hl,hg,...,hn].
Based on this fact, we propose a simple approach to estimate O via a regression of H on W. Note
that we do not directly observe H (because S is unobserved) or W. We estimate H by plugging in

§ from the screening step:
/f;i = d[g}’z/é\z, where :9\1 = Zdj’i' (8)
jes

To estimate W, we use the standardized ranks of returns as sentiment scores for all articles in the

training sample. More precisely, for each article 7 in the training sample i = 1,...,n, we set

_ rank of y; in {y};L;

i =

9)

n



Intuitively, this estimator leverages the fact that the return y; is a noisy signal for the sentiment of
news in article 7. This estimator, while obviously coarse, has several attractive features. First, it is
simple to use. Second, it is sufficient to achieve statistical guarantees for our algorithm under weak
assumptions. Third, it is robust to outliers that riddle the return data.
Given p1,D2, .. ., Pn, We construct
= p1 P2 bn

O = [hi,hay ... ha] W (WW)™!,  where W = R R R (10)
[A ] I1=p1r 1=p2 -+ 1—Dy

9] may have negative entries. We set all negative entries of this matrix to zero and re-normalize each
column to have a unit /'-norm. To simplify notation, we reuse O for the resulting matrix. We also

use Oz to denote the two columns of O = [0, O_].

3.3 Scoring New Articles

The preceding steps construct estimators S and O. We now discuss how to estimate the sentiment
p for a new article that is not included from the training sample. Let d be the the article’s count

vector and let s be the total count of sentiment-charged words. According to our model (3),
dis) ~ Multinomial(s, pO4 + (1 — p)0_>.

Given estimates S and 6, we can estimate p using maximum likelihood estimation (MLE). While
alternative estimators, such as linear regression, are also consistent, we use MLE for its statistical
efficiency.

Moreover, we add a penalty term, Alog(p(1—p)), in the likelihood function, and solve the following

optimization:

o= o1 ) 0. . 0O _ - —
p = arg max {3 %dglog(pm,ﬁ(l p)O-;) + Mog (p(1 - p)) }, (11)
JE

where 3 is the total count of words from S in the new article, (dj, 5+7j, 6_,]-) are the jth entries
of the corresponding vectors, and A > 0 is a tuning parameter. The role of the penalty is to help
cope with the limited number of observations and the low signal-to-noise ratio inherent to sentiment
learning. Imposing the penalty shrinks the estimate toward a neutral sentiment score of 1/2, where
the amount of shrinkage depends on the magnitude of A\.? This penalized likelihood approach is
equivalent to imposing a Beta distribution prior on the sentiment score. Most articles have neutral
sentiment, and the beta prior ensures that this is reflected in the model estimates.

To summarize: Step 1 estimates the sentiment-charged dictionary S from (5) and (6), Step 2
estimates the vectors of positive and negative sentiment scores, O4 and O_, from (9) and (10), and

Step 3 predicts the sentiment score of a new article via (11).

2The single penalty parameter A is common across articles. This implies that the relative ranks of article sentiment
are not influenced by penalization, which is the key information input into the trading strategy in our empirical analysis.
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4 Empirical Analysis

In this section, we apply our text-mining framework to the problem of return prediction for investment
portfolio construction. First, our sentiment model uncovers strong predictive associations between
news text and subsequent returns. Second, it translates the extent of predictability from statistical
terms such as predictive R? into more meaningful economic terms, such as the growth rate in an
investor’s savings attributable to harnessing text-based information.

Our null hypothesis of market efficiency predicts that the expected return is dominated by un-
forecastable news, as this news is rapidly (in its starkest form, immediately) incorporated in prices.
The maintained alternative hypothesis of our research is that information in news text is not fully ab-
sorbed by market prices instantaneously, for reasons such as limits-to-arbitrage and rationally limited
attention. As a result, information contained in news text is predictive of future asset price paths.
While this alternative hypothesis is by now uncontroversial, it is hard to overstate its importance,
as we have much to learn about the mechanisms through which information enters prices and the
frictions that impede these mechanisms. Our prediction analysis adds new evidence to the empirical
literature investigating the alternative hypothesis. In particular, we bring to bear information from
a rich news text data set. Our methodological contribution is a new toolkit that makes it feasible to

conduct a coherent statistical analysis of such complex and unstructured data.

4.1 Data and Pre-processing

Our text data set is the Dow Jones Newswires Machine Text Feed and Archive database. It contains
real-time news feeds from January 1, 1989 to April 30, 2020, amounting to 25,743,474 unique articles
(after combining “chained” articles). Approximately 62.3% news articles are assigned one or more
firm tags describing the primary firms to which the article pertains. To most closely align the data
with our model structure, we remove articles with more than one firm tag, or 15.7% articles, arriving
at a sample of 11,988,392 articles. We track the date, exact timestamp, tagged firm ticker, headline,
and body text of each article.

Using ticker tags, we match each article with tagged firm’s market capitalization and adjusted
daily close-to-close returns from CRSP. We do not know, a priori, the timing by which potential
new information in a Newswire article gets impounded in prices. If prices adjust slowly, then it
makes sense to align articles not only with contemporaneous returns but also with future returns.
Newswires are a highly visible information source for market participants, so presumably any delay
in price response would be short-lived. Or, it could be the case that Newswires are a restatement of
recently revealed information, in which case news is best aligned with prior returns.

To establish a strong link between text and returns, we train the model by matching articles
published on day ¢ (more specifically, between 4pm of day ¢t — 1 and 4pm of day ¢) with the tagged
firm’s three-day return from ¢t — 1 to ¢t + 1 (more specifically, from market close on day ¢t — 2 to

close on day t + 1).® Note that this timing is for sentiment training purposes only so as to achieve

3For news that occur on holidays or weekends, we use the next available trading day as the current day ¢ and the
last trading day before the news as day ¢t — 1.
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Table 1: Summary Statistics

Filter Remaining Sample Size Observations Removed
Total Number of Dow Jones Newswire Articles 36, 283, 597

Combine chained articles 25,743,474 10, 540, 123
Remove articles with no stocks tagged 16,023,999 9,719,475
Remove articles with more than one stocks tagged 11,988, 392 4,035,607

Number of articles whose tagged stocks have
three consecutive daily returns from CRSP 7,419,308
between Jan 1989 and Dec 2015

Number of articles whose tagged stocks have 6,624,140
open-to-open returns from CRSP since Feb 2004

Number of articles whose tagged stocks have 6,301,532
high-frequency returns from TAQ since Feb 2004

Note: In this table, we report the impact of each filter we apply on the number of articles in our sample. The sample
period ranges from January 1, 1989 to April 30, 2020. The CRSP three-day returns are only used in training and
validation steps, so we apply the CRSP filter only for articles dated from January 1, 1989 to December 31, 2015. The
open-to-open returns and intraday returns are used in out-of-sample periods from February 1, 2004 to April 30, 2020.

accurate parameter estimates that best associate returns with text. In order to devise a feasible
trading strategy, for example, it is critical to align sentiment estimates for an article only with future
realized returns (we discuss this further below).

For some of our analyses we study the association between news text and intradaily returns. For
this purpose, we merge articles with transaction prices from the NYSE Trade and Quote (TAQ)
database. Open-to-open and intraday returns are only used in our out-of-sample analysis from
February 2004 to April 2020. We start the out-of-sample testing period from February 2004 because,
starting in January 17, 2004, the Newswire data is streamlined and comes exclusively from one data
source. Prior to that, Newswires data are derived from multiple news sources, which among other
things can lead to redundant coverage of the same event. Although it does not affect in-sample
training and validation, whose sole purpose is to associate words with positive or negative news, this
could have an adverse impact on our out-of-sample analysis that is best suited for “fresh” news. In
summary, Table 1 lists step-by-step details for our sample filters.

The top panel of Figure 2 plots the average number of articles in each half-hour interval through-
out the day. News articles arrive more frequently prior to the market open and close. The bottom
panel plots the average number of articles per day over a year. It shows holiday effects, as well
as quarterly earnings season effects corresponding to a rise in article counts around February, May,
August, and November. Figure 3 plots the total number of news articles per year in our sample.
There is a steady increase in the number of articles until around 2007. Some news volume patterns
reflect structural changes in news data sources and some reflect variation in the number of listed

stocks. According to the Dow Jones Newswires user guide, there were three historical merges of news
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Figure 2: Average Article Counts
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Note: The top figure plots the average numbers of articles per half an hour (24 hour EST time) from January 1, 1989
to April 30, 2020. The bottom figure plots the average numbers of articles per calendar day. Averages are taken over
the full sample from January 1, 1989 to April 30, 2020.

sources which occurred on October 31, 1996, November 5, 2001, and January 16, 2004, respectively.

The first step is to remove proper nouns.” Next, we follow common steps from the natural
language processing literature to clean and structure news articles.” The first step is normalization,
including 1) changing all words in the article to lower case letters; 2) expanding contractions such as

“haven’t” to “have not”; and 3) deleting numbers, punctuations, special symbols, and non-English

4We thank Timothy Loughran for this suggestion.
5We use the natural language toolkit (NLTK) in Python to preprocess the data.
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Figure 3: Annual Time Series of the Total Number of Articles
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Note: This figure plots the annual time series of the total number of articles from January 1987 to April 2020. We
only provide an estimate for 2020 (highlighted in red), by annualizing the total number of articles of the four months
we observe, since we do not have a whole year’s data for this year.

words.® The second step uses stemming and lemmatizing to group together different forms of a word
to analyze them as a single root word, e.g., “disappointment” to “disappoint,” “likes” to “like,” and
so forth.” The third step is tokenization, which splits each article into a list of words. The fourth
step removes common stop words such as “and”, “the”, “is”, and “are.”® Finally, we translate each
article into a vector of word counts, which constitutes its so-called “bag of words” representation.
The resulting number of words in our dictionary is 39,673.

We also obtain a list of 2,337 negative words (Fin-Neg) and 353 positive words (Fin-Pos) from
the Loughran-McDonald (LM) Sentiment Word Lists for comparison purposes.” LM show that the
Harvard-IV dictionary misclassifies words when gauging tone in financial applications, and propose

their own dictionary for use in business and financial contexts.

4.2 Return Predictions

We train the model using rolling window estimation. The rolling window consists of a fifteen year

interval, the first ten years of which are used for training and the last five years are used for valida-

5The list of English words is available from item 61 on http://www.nltk.org/nltk_data/.

"The lemmatization procedure uses WordNet as a reference database: https://wordnet.princeton.edu/. The
stemming procedure uses the package “porter2stemmer” on https://pypi.org/project/porter2stemmer/. Fre-
quently, the stem of an English word is not itself an English word; for example, the stem of “accretive” and “ac-
cretion” is “accret.” In such cases, we replace the root with the most frequent variant of that stem in our sample (e.g.,
“accretion”) among all words sharing the same stem, which aids interpretability of estimation output.

8We use the list of stopwords available from item 70 on http://www.nltk.org/nltk_data/.

9The Loughran and McDonald (2011) word lists also include 285 words in Fin-Unc, 731 words in Fin-Lit, 19 strong
modal words and 27 weak words. We only present results based on Fin-Neg and Fin-Pos. Other dictionaries are less
relevant to sentiment.
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Figure 4: News Timeline
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Note: This figure describes the news timeline and our trading activities. We exclude news from 9:00 am to 9:30 am EST
from trading (our testing exercise), although these news are still used for training and validation purposes. For news
that occur on day 0, we build positions at the market opening on day 1, and rebalance at the next market opening,
holding the positions of the portfolio within the day. We call this portfolio day+1 portfolio. Similarly, we can define
day 0 and day—1, day=+2, ..., day£10 portfolios.

tion/tuning. We then use the subsequent one-year window for out-of-sample testing. At the end of
the testing year, we roll the entire analysis forward by a year and re-train. We iterate this procedure
until we exhaust the full sample, which amounts to estimating and validating the model 17 times.
Concretely, the training sample starts in January 1989 and ends in December 2015, the validation
sample starts in January 1999 and ends in December 2019, and the testing sample starts in February
2004 and ends in April 2020.

In each training sample, we estimate a collection of SESTM models corresponding to a grid

10" We use all estimated models to score each news article in the validation

of tuning parameters.
sample, and select the constellation of tuning parameter values that minimizes a loss function in
the validation sample. Our loss function is the ¢'-norm of the differences between estimated article
sentiment scores and the corresponding standardized return ranks for all events in the validation

sample.!!

4.3 Daily Predictions

Figure 5 reports the cumulative one-day trading strategy returns (calculated from open-to-open)
based on out-of-sample SESTM sentiment forecasts. We report the long (denoted “L”) and short
(“S”) sides separately, as well as the overall long-short (“L-S”) strategy performance. We also
contrast performance of equal-weighted (“EW”) and value-weighted (“VW?”) versions of the strategy.
Table 2 reports the corresponding performance statistics of these portfolios in detail.

In the out-of-sample test period, we estimate the sentiment scores of articles using the optimally

tuned model determined from the validation sample. In the case a stock is mentioned in multiple

0There are four tuning parameters in our model, including (a+,a—, s, ). We consider three choices for oy and
a—, which are always set such that the number of words in each group (positive and negative) is either 25, 50, or 100.
We consider five choices of x (86%, 88%, 90%, 92%, and 94% quantiles of the count distribution each year), and three
choices of A (1, 5, and 10).

¢! norm is a more robust loss function than ¢?-norm, though we barely find any difference they make empirically.
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Figure 5: One-day-ahead Performance Comparison of SESTM
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Note: This figure compares the out-of-sample cumulative log returns of portfolios sorted on sentiment scores. The
black, blue, and red colors represent the long-short (L-S), long (L), and short (S) portfolios, respectively. The solid
and dashed lines represent equal-weighted (EW) and value-weighted (VW) portfolios, respectively. The yellow solid
line is the S&P 500 return (SPY).

news articles on the same day, we forecast the next-day return using the average sentiment score
over the coincident articles.

To evaluate out-of-sample predictive performance in economic terms, we design a trading strategy
that leverages sentiment estimates for prediction. Our trading strategy is very simple. It is a zero-
net-investment portfolio that each day buys 50 stocks with the most positive sentiment scores and
shorts 50 stocks with the most negative sentiment scores. Trading only 100 stocks per day is a
reasonable choice in light of the summary statistics of the data, despite it being unfortunately small.
On average, we only have 936.5 firms with at least one piece of news on each trading day, among which
181.7 contain sentiment-charged words, for which our algorithm can output non-neutral sentiment
scores. In the early part of the sample, there are a handful of days for which fewer than 50 firms have
non-neutral scores, in which case we have to trade fewer than 100 stocks but otherwise maintain the
zero-cost nature of the portfolio. That said, we also provide results for portfolios with (up to) 200
stocks for robustness check.

We consider both equal-weighted and value-weighted schemes when forming the long and short
sides of the strategy. Equal weighting is a simple and robust means of assessing predictive power of
sentiment throughout the firm size spectrum, and is anecdotally closer to the way that hedge funds
use news text for portfolio construction. Value weighting heavily overweights large stocks, which
may be justifiable for economic reasons (assigning more weight to more productive firms) and for
practical trade implementation reasons (such as limiting transaction costs).

We are careful to form portfolios only at the market open each day for two reasons. First,

overnight news can be challenging to act on prior to the morning open as this is the earliest time
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Table 2: Performance of Daily News Sentiment Portfolios

Sharpe Average Max FF3 FF5 FF5+MOM
Formation Ratio Turnover Return Drawdown « R? « R? « R?
EW L-S 4.21 94.37% 32 26.30% 32 1.71 31 2.36 31 3.78
EW L 1.76 95.54% 17 44.28% 15 36.36 15 37.03 15 37.60
EW S 1.33 93.21% 15 71.05% 17 32.24 16 33.64 16 35.73
VW L-S 1.24 90.92% 9 22.07% 9 9.08 8 10.04 8 10.42
VW L 1.02 93.38% 9 35.74% 7 25.71 7 25.97 7 26.24
VW S -0.07 88.47% 0 82.52% 2 28.06 1 29.16 1 29.84

Note: The table reports the performance of equal-weighted (EW) and value-weighted (VW) long-short (L-S) port-
folios and their long (L) and short (S) legs. The performance measures include (annualized) annual Sharpe ra-
tio, annualized expected returns, risk-adjusted alphas, and R?s (in percentage) with respect to the Fama-French
three-factor model (“FF3”), the Fama-French five-factor model (“FF5’), and the Fama-French five-factor model aug-
mented to include the momentum factor (“FF5+MOM”). We also report the strategy’s daily turnover, defined as
o= Zthl (Zl "I,Ui,t-‘rl - 17fztj<lw+]ytlyfy+tl+)l

drawdown, defined as the peak-to-trough decline relative to the value at peak.

) , where w; ¢ is the weight of stock 7 in the portfolio at time ¢, as well as max

most traders can access the market. Second, with the exception of funds that specialize in high-
frequency trading, funds are unlikely to change their positions continuously in response to intraday
news because of their investment styles and investment process constraints. Finally, following a
similar choice of Tetlock et al. (2008), we exclude articles published between 9:00am and 9:30am
EST. By imposing that trade occurs at the market open and with at least a half-hour delay, we
hope to better match realistic considerations like allowing funds time to calculate their positions in
response to news and allowing them to trade when liquidity tends to be highest. Figure 4 summarizes
the news and trading timing of our approach.

Three basic facts emerge from the one-day forecast results in Figure 5 and Table 2. First,
equal-weighted portfolios substantially outperform their value-weighted counterparts. The long-short
strategy with equal weights earns an annualized Sharpe ratio of 4.21, versus 1.24 in the value-weighted
case. This indicates that news article sentiment is a stronger predictor of future returns to small
stocks, all else equal. There are a number of potential economic explanations for this, including
the facts that i) small stocks receive less investor attention and thus respond more slowly to news,
ii) the underlying fundamentals of small stocks are more uncertain and opaque and thus it requires
more effort to process news into actionable price assessments, and iii) small stocks are less liquid and
thereby require a longer time for trading to occur to incorporate information into prices.

Second, both the long and short side are significantly profitable. The long side of the trade
slightly outperforms the short side, with a Sharpe ratio of 1.76 versus 1.33 (in the equal-weighted
case). This is due in part to the fact that the long side naturally earns the market equity risk
premium while the short side pays it. A further potential explanation is that investors face short
sales constraints so that the negative news cannot be fully expressed in prices over short horizons.

Third, SESTM sentiment trading strategies have little exposure to standard aggregate risk factors.
The individual long and short legs of the trade have at most a 38% daily R? when regressed on Fama-

French factors, while the long-short spread portfolio R? is at most 10%. In all cases, the average
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Table 3: Performance of Alternative Daily News Sentiment Portfolios

Benchmark Trading 200 Stocks w/o. Earning Days w/ Phrases

Sharpe Average Sharpe Average Sharpe Average Sharpe Average

Formation Ratio Return Ratio Return Ratio Return Ratio Return
EW L-S 4.21 32 3.68 22 3.59 27 4.07 32
EW L 1.76 17 1.40 13 1.56 15 1.85 17
EW S 1.33 15 0.83 9 1.10 13 1.30 15
VW L-S 1.24 9 1.09 5 1.20 8 1.46 10
VW L 1.02 9 0.65 6 1.04 9 1.10 10
VW S -0.07 0 -0.09 0 -0.15 -1 -0.04 0

CAPM Resid. FF3 Resid. CAPM+ Ind. Resid.

Sharpe Average Sharpe Average Sharpe Average

Formation Ratio Return Ratio Return Ratio Return
EW L-S 4.21 31 4.27 32 4.42 34
EW L 1.84 17 1.93 18 1.89 18
EW S 1.25 14 1.25 14 1.40 16
VW L-S 1.37 10 1.51 11 1.47 10
VW L 1.12 10 1.15 10 1.14 10
VW S 0.00 1 0.05 1 -0.01 0

Note: The table reports the performance of equal-weighted (EW) and value-weighted (VW) long-short (L-S) portfolios
and their long (L) and short (S) legs. The performance measures include (annualized) annual Sharpe ratio and
annualized expected returns. We have presented results of the benchmark portfolio in Table 2. Additionally, we report
results for alternative portfolios constructed similarly: trading up to 200 stocks per day, excluding firms near their
earnings announcement days, using phrases (bigrams) in addition to words (unigrams), using residuals from time series
regressions of raw returns (with respect to the CAPM model, the Fama-French three-factor model, or the CAPM model
augmented with 17 industry portfolios as factors) as y in model (1).

return of the strategy is almost entirely alpha. Note that, by construction, the daily turnover of the
portfolio is large. If we completely liquidated the portfolio at the end of each day, we would have a
turnover of 100% per day. Actual turnover is slightly lower, on the order of 94% for equal-weighted
implementation and 90% for value-weighted, indicating a small amount of persistence in positions.
In the value-weighted case, for example, roughly one in ten stock trades is kept on for two days—
these are instances in which news of the same sentiment for the same firm arrives in successive days.
Figure 5 shows that the long-short strategy avoids major drawdowns, and indeed appreciates during
the financial crisis while SPY sells off.

Finally, we provide a battery of results in Table 3 that investigate the sensitivity of our results
to varying some of the implementation choices we make in the portfolio formation step. To begin
with, we expand the number of stocks for trading each day from 100 to 200. This slightly lowers
Sharpe ratios: 3.68 (EW) and 1.09 (VW). Next, we exclude all news that occurs around earning
announcement days since these news are more likely associated with fundamental information. Con-
cretely, we select again 100 stocks on each day ¢, but avoid those whose earning announcements are
scheduled on day t — 1, day ¢, and day t + 1. The resulting Sharpe ratios are 3.59 (EW) and

12Earnings announcement dates are from Compustat.

18



1.20 (VW), suggesting that a large amount of information in our sentiment scores does not directly
stem from earnings reports. Additionally, we experiment with using residual returns rather than
raw returns as our supervising y variable in model (1). Residuals are obtained from time-series re-
gressions of raw returns over a two-year rolling window with respect to either the CAPM model, or
the Fama-French three-factor model, or the CAPM model augmented with 17 industry portfolios.'?
The resulting Sharpe ratios are a bit higher than those of the benchmark model: 4.21, 4.27, and
4.42 for equal-weight L-S portfolios, and 1.37, 1.51, 1.47 for value-weight portfolios. This result
suggests that the out-of-sample portfolio performance is fairly robust with respect to labels used in
the training sample. Last but not least, we consider a version of our model built on phrases and
words together, and again find very similar quantitative results. We discuss our experiments with
phrases further below. Like Sharpe ratios and average returns, the turnover and regression results
throughout all variations are almost identical to the benchmark case, hence they are omitted from
Table 3. Overall, our portfolio formation strategy delivers robust out-of-sample performance for all

of the implementation choices we examine.

4.4 Most Impactful Words

Figure 6 reports the list of sentiment-charged words estimated from our model. These are the words
that most strongly correlate with realized price fluctuations and thus surpass the correlation screening
threshold. Because we re-estimate the model in each of our 17 training samples, the sentiment word
lists can change throughout our analysis. The font size of a word in the cloud is proportional to the
word’s average sentiment tone (O — O_) over all 17 training samples. Table A.2 in Appendix F
provides additional detail on selected words, reporting the top 50 positive and negative sentiment
words throughout our training samples. It also shows if these words overlap with LM and Harvard-1V
dictionaries.

The estimated wordlists are remarkably stable over time. Of the top 50 positive sentiment words
over all periods, 25 are selected into the positively charged set in at least 8 of the 17 training
samples. For the 50 most negative sentiment words, 26 are selected in at least 12 out of 17 samples.

The following eight negative words are selected in every training sample:
shortfall, disappointing, downgrade, tumble, blame, hurt, plunge, slowdown,

and the following words are selected into the positive list in twelve or more training samples:
undervalue, repurchase, surge, beat, surpass, jump, benign, upward, climb.

There are interesting distinctions vis-a-vis extant sentiment dictionaries. For example, in comparison
to our estimated list of the nine most impactful positive words listed above, only one (surpass) appears
in the LM positive dictionary, and only four (surpass, benign, surge, upward) appear in Harvard-IV.
Likewise, three of our eight most impactful negative terms (tumble, blame, plunge) do not appear

in the LM negative dictionary and five are absent from Harvard-IV. Thus, in addition to the fact

BThese 17 industry portfolios (equal-weighted) are obtained from Kenneth French’s website.
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Figure 6: Sentiment-charged Words
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Note: This figure reports the list of words in the sentiment-charged set S. Font size of a word is proportional to its
average sentiment tone over all 17 training samples.

that our word lists are accompanied by term specific sentiment weights (contrasting with the implicit
equal weights in extant dictionaries), many of the words that we estimate to be most important for
understanding realized returns are entirely omitted from pre-existing dictionaries.

Our baseline bag-of-words approach with single words ignores the context in which a word ap-
pears. To investigate the benefit of semantic information in word dependencies, we augment our
bag-of-words by including two-word phrases (bigrams) in addition to single words (unigrams). Specif-
ically, we start with all possible bigrams appearing in the original articles, remove infrequent phrases
whose component words are not common (i.e., below 90% quantile of word counts) and, among re-
maining phrases, only keep those whose mutual information scores rank in the top 1%."* Including
phrases dramatically increases the dimensionality of the problem: The dictionary includes 39,673
words plus 56,812 phrases.

Nevertheless, our methodology scales very well with respect to the expanded dictionary. Following
the same aforementioned steps,'” we find that several phrases are selected in the set of sentiment-

charged terms (see Table A.3 in Appendix F). On the positive side we have repurchase program,

MMutual information score represents the extent to which words co-occur relative to the frequencies they appear
separately. Accordingly, we calculate this score as the ratio of the frequency of a phrase (bigram) over the frequencies of
its two component words. Mutual information score is potentially problematic if a component word is rather infrequent.
As described in the text, we only consider mutual information scores for the universe of phrases whose component words
are very common (above 90% quantile of word counts).

15Because the phrase counts are typically lower than individual word counts, when selecting x using quantiles we
compare words and phrases separately.
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Figure 7: Price Response On Days —1, 0, and +1
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Note: This figure compares the out-of-sample cumulative log returns of long-short portfolios sorted on sentiment scores.
The Day —1 strategy (dashed black line) shows the association between news and returns one day prior to the news;
the Day 0 strategy (dashed red line) shows the association between news and returns on the same day; and the Day
+1 strategy (solid black line) shows the association between news and returns one day later. The Day —1 and Day
0 strategy performance is out-of-sample in that the model is trained on a sample that entirely precedes portfolio
formation, but these are not implementable strategies because the timing of the news article would not necessarily
allow a trader to take such positions in real time. They are instead interpreted as out-of-sample correlations between
article sentiment and realized returns in economic return units. The Day +1 strategy corresponds to the implementable
trading strategy shown in Figure 5. All strategies are equal-weighted.

stock repurchase, privately negotiate, initiate coverage among the most common phrases that appear
at least 8 times out of 17 models; whereas on the negative side, phrases such as take longer and fall
short appear 12 and 11 times, respectively. Interestingly, as shown in Table 3, we find that including

phrases does not meaningfully impact the performance of our out-of-sample one-day portfolios.

4.5 Speed of Information Assimilation

The analysis in Figure 5 and Table 2 studies how sentiment on day ¢ relates to returns on day ¢ + 1.
In the next two subsections, we investigate the timing of price responses to news sentiment with finer

resolution and with an event calendar.

4.5.1 Lead-lag Relationship Among News and Prices

In our training sample, we estimate SESTM from the three-day return beginning the day before an
article is published and ending the day after. In Figure 7, we separately investigate the subsequent
out-of-sample association between news sentiment on day t and returns on day ¢ —1 (from open ¢ — 1
to open t), day t, and day t+ 1. We report this association in the economic terms of trading strategy
performance. The association between sentiment and the ¢ + 1 return is identical to that in Figure

5, and is rightly interpreted as performance of an implementable (out-of-sample) trading strategy.
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Table 4: Price Response On Days —1, 0, and +1

Sharpe Average FF3 FF5 FF5+MOM

Formation Ratio Turnover Return « R? « R? « R?
Day —1

L-S 5.98 94.34% 50 50 0.07 50 0.34 50 0.67

L 2.48 95.56% 24 24 0.67 24 0.85 24 1.02

S 2.18 93.13% 26 26 0.34 26 0.78 26 0.79
Day 0

L-S 11.08 94.44% 108 108 0.31 108 0.50 108 0.64

L 5.63 95.74% 59 58 5.22 59 5.52 59 5.69

S 3.87 93.13% 49 50 5.35 49 5.95 49 6.34
Day +1

L-S 4.21 94.37% 32 32 1.71 31 2.36 31 3.78

L 1.76 95.54% 17 15 36.36 15 37.03 15 37.60

S 1.33 93.21% 15 17 32.24 16 33.64 16 35.73

Day —1 to +1

L-S 12.68 94.50% 190 190 1.11 189 1.96 189 2.25

L 5.59 95.96% 98 95 17.96 96 18.71 96 19.49

S 4.34 93.04% 92 95 16.65 93 18.41 93 19.64

Note: The table repeats the analysis of Table 2 for the equal-weighted long-short (L-S) portfolios plotted in Figure 7,
as well as their long (L) and short (S) legs. Sharpe ratios are annualized, while returns and alphas are in basis points
per day.

For the association with returns on days ¢ — 1 and ¢, the interpretation is different. These are not
implementable strategies because the timing of the news article would not generally allow a trader
to take a position and exploit the return at time ¢ (and certainly not at ¢ — 1). They are instead
interpreted as out-of-sample correlations between article sentiment and realized returns, converted
into economic return units. They are out-of-sample because the fitted article sentiment score, p;, is
based on a model estimated from an entirely distinct data set (that pre-dates the arrival of article 4
and returns y; ;—1, ¥it, and y; 1+1). Table 4 reports summary statistics for these portfolios, including
their annualized Sharpe ratios, average returns, alphas, and turnover. For this analysis, we specialize
to equally weighted portfolios.

The Day —1 strategy (dashed black line) shows the association between news article sentiment
and the stock return one day prior to the news. This strategy thus quantifies the extent to which
our sentiment score picks up on stale news. On average, prices move ahead of news in our sample,
as indicated by the infeasible annualized Sharpe ratio of 5.98. Thus we see that much of the daily
news flow in prompted by or repeats information already known to market participants.

The Day 0 strategy (dashed red line) shows the association between news and returns on the
same day. This strategy assesses the extent to which our sentiment score captures fresh news that has
not previously been incorporated into prices. The Day 0 strategy provides the clearest out-of-sample
validation that our sentiment score accurately summarizes fresh, value-relevant information in news
text. In particular, price responses are most concentrated on the same day that the news arrives, as

reflected by the same-day infeasible annualized Sharpe ratio of 11.08.
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Figure 8: Speed of News Assimilation
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Note: This figure compares average one-day holding period returns to the news sentiment trading strategy as a
function of when the trade is initiated. We consider daily open-to-open returns initiated from one to 10 days following
the announcement. We report equal-weighted portfolio average returns (in basis points per day) in excess of an equal-
weighted version of the S&P 500 index, with 95% confidence intervals given by the shaded regions. The confidence
intervals around the average excess returns are constructed using Newey-West standard errors. We consider the long-
short (L-S) portfolio as well as the long (L) and short (S) legs separately.

The Day +1 strategy (solid black line) shows the association between news on day t and returns
on the subsequent day. It thus quantifies the extent to which information in our sentiment score is
impounded into prices with a delay. This corresponds exactly to the implementable trading strategy
shown in Figure 5. The excess performance of this strategy, summarized in terms of an annualized
Sharpe ratio of 4.21 (and shown to be all alpha in Table 2), supports the maintained alternative
hypothesis.

We next analyze trading strategies that trade in response to news sentiment with various time
delays. We focus on one-day open-to-open returns initiated anywhere from one to 10 days following
the announcement. Figure 8 reports average returns in basis points per day with shaded 95%
confidence intervals (constructed via Newey-West standard errors). It shows the long-short portfolio
as well as the long and short legs separately. For the long-short strategy, sentiment information is
essentially fully incorporated into prices by the start of Day 4+3. For the individual sides of the trade,
the long leg appears to achieve full price incorporation within two days, while the short leg takes one

extra day.

4.5.2 High Frequency Trading

We also consider very rapid price responses via intra-day high frequency trading that takes a position
every 30 minutes after the article’s time stamp, and holds positions for only 30 minutes. For intra-

day news, trading starts the moment news arrive. For overnight news, trading occurs at the next
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Figure 9: Speed of News Assimilation (Intraday Trading)
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Note: This figure compares average 15-minute holding period returns to the news sentiment trading strategy as a
function of when the trade is initiated. We consider 30-minute returns initiated from the earliest time point feasible
to trade (+0 MIN) to 5 hours (+ 300 MIN) following the announcement. We report equal-weighted portfolio average
returns (in basis points per 30 minutes), with 95% confidence intervals given by the shaded regions. The confidence
intervals around the average returns are constructed using Newey-West standard errors. We consider the long-short
(L-S) portfolio as well as the long (L) and short (S) legs separately.

market open following the news announcements, as this is, generally speaking, the earliest time these
news can be traded. Figure 9 demonstrates a steady decay in average returns for both long and
short positions reflecting the decreasing reward to incorporating news in prices as time lapses. These
returns are in terms of basis points per 30 minutes, so an 18 basis point return for the long-short

portfolio within the first 30 minutes is exorbitant in daily or annual terms.

4.5.3 Fresh News and Stale News

The evidence in Section 4.5.1 indicates that a substantial fraction of news is “old news” and already
impounded in prices by the time an article is published. The assimilation analysis of Figure 8 thus
pools together both fresh and stale news. In order to investigate the difference in price response to
fresh versus stale news, we conduct separate analyses for articles grouped by the novelty of their
content.

We construct a measure of article novelty as follows. For each article for firm ¢ on day t, we
calculate its cosine similarity with all articles about firm i on the five trading days prior to ¢ (denoted
by the set x;:). Novelty of recent news is judged based on its most similar preceding article, thus

we define article novelty as

dig - d; )
Novelty; , = 1 — max | —=———2_ | .
Vi JEXi.t (Hdi,t ;]
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Figure 10: Speed of News Assimilation (Fresh Versus Stale News)
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Note: See Figure 8. This figure divides stock-level news events based on maximum cosine similarity with the stock’s
prior news.

Figure 10 splits out our news assimilation analysis by article novelty. We partition news into
two groups. The “fresh” news group contains articles novelty score of 0.75 or more, while “stale”
news has novelty below 0.75.'° It shows that the one-day price response (from market open after
news arrival to the open the following day) of the long-short portfolio formed on fresh news (solid
blue line) is 36 basis points, about 64% higher than the 22 basis point response to stale news (solid
red line). Furthermore, it takes four days for fresh news to be fully incorporated in prices (i.e., the
day five average return is statistically indistinguishable from zero), or twice as long as the two days
it takes for prices to complete their response to stale news. This result extends the evidence from

Tetlock (2011) that market responses to stale news are muted but nonetheless significant.

4.5.4 Stock Heterogeneity Analysis: Size and Volatility

Figure 10 investigates differential price responses to different types of news. In this section, we
investigate differences in price assimilation with respect to heterogeneity among stocks.

The first dimension of stock heterogeneity that we analyze is market capitalization. Larger
stocks represent a larger share of the representative investor’s wealth and command a larger fraction
of investors’ attention or information acquisition effort (e.g., Wilson, 1975; Veldkamp, 2006). In
Figure 11, we analyze the differences in price adjustment based on firm size by sorting stocks into
big and small groups (based on NYSE median market capitalization each period). Prices of large
stocks respond by 11 basis points on the first day after news arrival, and their price response is

complete after one day (the day two effect is insignificantly different from zero). The price response

16The average article novelty in our sample is approximately 0.75. The conclusions from Figure 10 are insensitive
to the choice of cutoff.
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Figure 11: Speed of News Assimilation (Big Versus Small Stocks)
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Note: See Figure 8. This figure divides stock-level news events based on stocks’ market capitalization. The big/small
breakpoint is defined as the NYSE median market capitalization each period.

of small stocks is 46 basis points on the first day after news arrival, more than four times larger, and
it take three days for their news to be fully incorporated into prices.

The second dimension of heterogeneity that we investigate is stock volatility. Volatility embodies
a limit-to-arbitrage, as higher volatility dissuades traders from taking a position based on their
information, all else equal. At the same time, higher stock volatility represents more uncertainty
about asset outcomes. With more uncertainty, there are potentially larger profits to be earned by
investors with superior information, which incentivizes informed investors to allocate more attention
to volatile stocks all else equal. But higher uncertainty may also reflect that news about the stock
is more difficult to interpret, manifesting in slower incorporation into prices. The direction of this
effect on price assimilation is ambiguous.

Figure 12 shows the comparative price response of high versus low volatility firms.'” The price
response to SESTM sentiment on the first day following news arrival is 17 basis points for low
volatility firms, but 47 basis points for high volatility firms. And while news about low volatility
firms is fully impounded in prices after one day of trading, it takes three days for news to be fully
reflected in the price of a high volatility stock. Lastly, it is worth noting that in both Figure 11 and
Figure 12 the largest differences in price response appear on the short side, consistent with short

sales frictions being particularly pertinent among small and risky firms.

"Specifically, we calculate idiosyncratic volatility from residuals of a market model using the preceding 250 daily
return observations. We then estimate the conditional idiosyncratic volatility via exponential smoothing according to
the formula o, = 3 (1 — 8§)6"uf_,_; where u is the market model residual and ¢ is chosen so that the exponentially-
weighted moving average has a center of mass (§/(1 — §)) of 60 days .
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Figure 12: Speed of News Assimilation (High Versus Low Volatility Stocks)
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Note: See Figure 8. This figure divides stock-level news events based on stocks’ idiosyncratic volatility. The high/low
volatility breakpoint is defined as the cross-sectional median volatility each period.

4.6 Comparison Versus Dictionary Methods and RavenPack

Our last set of analyses compare SESTM to alternative sentiment scoring methods in terms of return
prediction accuracy.

The first alternative for comparison is dictionary-based sentiment scoring. We construct the
LM sentiment score of an article by aggregating counts of words listed in their positive sentiment
dictionary (weighted by tf-idf, as recommended by Loughran and McDonald, 2011) and subtracting
off weighted counts of words in their negative dictionary. As with SESTM, we average scores from
multiple articles for the same firm in the same day. This produces a stock-day signal, @LM , which
we use to construct trading strategies in the same manner as the SESTM-based signal, @SESTM , in
preceding analyses.

The second alternative for comparison are news sentiment scores from RavenPack News Analytics
4 (RPNA4). As stated on its website,'®

RavenPack is the leading big data analytics provider for financial services. Financial professionals
rely on RavenPack for its speed and accuracy in analyzing large amounts of unstructured content.
The company’s products allow clients to enhance returns, reduce risk and increase efficiency
by systematically incorporating the effects of public information in their models or workflows.
RavenPack’s clients include the most successful hedge funds, banks, and asset managers in the

world.

We use data from the RPNA4 DJ Edition Equities, which constructs news sentiment scores from

company-level news content sourced from the same Dow Jones sources that we use to build SESTM

®https://www.ravenpack.com/about/.
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Figure 13: SESTM Versus LM and RavenPack
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Note: For top panel notes, see Figure 8. In addition to SESTM, the top panel reports trading strategy performance
for sentiment measures based on RavenPack and LM. The bottom panel compares the daily cumulative returns of
long-short portfolios constructed from SESTM, RavenPack, and LM sentiment scores, separated into equal-weighted
(EW, solid lines) and value-weighted (VW, dashed lines) portfolios, respectively. The yellow solid line is the S&P 500
return (SPY).

(Dow Jones Newswires, Wall Street Journal, Barron’s and Market Watch), thus the collection of news
articles that we have access to is presumably identical to that underlying RavenPack. However, the
observation count that we see in RavenPack is somewhat larger than the number of observations we
can construct from the underlying Dow Jones news. We discuss this point, along with additional

details of the RavenPack data, in Appendix D. Following the same procedure used for ﬁfESTM and

pFM | we construct RavenPack daily stock-level sentiment scores (pFf) by averaging all reported

article sentiment scores pertaining to a given firm in a given day.'”

19We use RavenPack’s flagship measure, the composite sentiment score, or CSS.
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Table 5: SESTM Versus LM, RavenPack, and WP

Sharpe Average FF6+SESTM FF6+LM FF6+-RP FF6+WP
Ratio  Turnover Return o  t(a) R* o tla) R? a  ta) R? a  tla) R?
SESTM
EW 4.21 94.37% 32 28 15.75 561 28 1569 440 27 15.15 6.15
VW 1.24 90.92% 9 8 4.59 11.51 8 4.62 11.70 8 4.68  10.98
RavenPack
EW 3.26 94.66% 19 15 1149 438 17 1242 4.33 15 11.62  5.37
\AY 0.73 93.23% 5 4 233 530 5 2.82 4.01 ) 2.90 3.94
LM
EW 2.32 96.05% 15 10  6.69 5.18 12 805 390 9 631 9.86
VW 0.86 95.38% 5 4 2.85 1.73 4 3.30 0.60 4 2.87 3.14
WP
EW 2.92 96.29% 21 14 875 305 16 945 730 16 9.78  2.26
VW 0.79 95.87% 5 4 3.01 1.37 4 2.89 3.37 5 3.39 0.75

Note: The table repeats the analysis of Table 2 for the equal-weighted long-short (L-S) portfolios plotted in Figure 7,
as well as their long (L) and short (S) legs. Sharpe ratios are annualized, while returns and alphas are reported in basis
points per day.

The third alternative we consider is the word-power (WP) method of Jegadeesh and Wu (2013).
Although their original analysis was based on 10-Ks, we implement their approach on a daily basis
using news articles. This assigns sentiment weights to words based via regression supervised returns
to tagged stocks. From the estimated weights, we construct out-of-sample article-level sentiment

scores designed to forecast next day returns. We denote these word-power scores as ﬁfv P

We build trading strategies using each of the four sentiment scores, @-S ESTM, @LM , @RP , and ﬁfV P
Our portfolio formation procedure is identical to that in previous sections, buying the 50 stocks with
the most positive sentiment each day and shorting the 50 with the most negative sentiment. We
consider equal-weighted and value-weighted strategies.

The top panel of Figure 13 assesses the extent and timing of price responses for each sentiment
measure. It reports the average daily equally weighted trading strategy return to buying stocks
with positive news sentiment and selling those with negative news sentiment. The first and most
important conclusion from this figure is that SESTM is significantly more effective than alternatives
in identifying price-relevant content of news articles. Beginning from the market open after news
arrival, the one-day long-short return based on SESTM is on average 32 basis points, versus 20 basis
points for WP, 18 for RavenPack, and 15 for LM. The plot also shows differences in the horizons over
which prices respond to each measure. The WP, RavenPack, and LM signals are fully incorporated
into prices within two or three days. The SESTM signal, on the other hand, requires at least four
days to be fully incorporated in prices. This suggests that SESTM is able to identify more complex
information content in news articles that investors cannot fully act on within the first day or two of
trading.

The bottom panel of Figure 13 focuses on the one-day trading strategy and separately analyzes
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equal and value weight strategies. It reports out-of-sample cumulative daily returns to compare
average strategy slopes and drawdowns. This figure illustrates an interesting differentiating feature
of SESTM versus RavenPack. Following 2008, and especially in mid 2014, the slope of the RavenPack
strategy noticeably flattens. While we do not have data on their subscriber base, anecdotes from the
asset management industry suggest that subscriptions to RavenPack by financial institutions grew
rapidly over this time period. In contrast, the slope of SESTM is generally stable during our test
sample.

Another conclusion from our comparative analysis is that all sentiment strategies show significant
positive out-of-sample performance after controlling for other strategies. Table 5 reports a variety
of additional statistics for each sentiment trading strategy including annualized Sharpe ratios of the
daily strategies shown in Figure 13, as well as their daily turnover. The SESTM strategy dominates
not only in terms of average returns, but also in terms of Sharpe ratio, and with slightly less turnover
than the alternatives. In equal-weighted terms, SESTM earns an annualized Sharpe ratio of 4.21,
versus 3.26, 2.92, and 2.32 for RavenPack, WP, and LM, respectively. The outperformance of SESTM
is also evident when comparing value-weighted Sharpe ratios. In this case, SESTM achieves a Sharpe
ratio of 1.24 versus 0.73 for RavenPack, 0.79 for WP, and 0.86 for LM.

To more carefully assess the differences in performance across methods, Table 5 reports a series
of portfolio spanning tests. For each sentiment-based trading strategy, we regress its returns on
the returns of each of the competing strategies, while also controlling for daily returns to the five
Fama-French factors plus the UMD momentum factor (denoted FF6 in the table). We evaluate both
the R? and the regression intercept (o). If a trading strategy has a significant « after controlling
for an alternative, it indicates that the underlying sentiment measure isolates predictive information
that is not fully subsumed by the alternative. Likewise, the R? measures the extent to which trading
strategies duplicate each other.

An interesting result of the spanning tests is the overall low correlation among strategies as well
as with the Fama-French factors. The highest R? we find is 15.6% for SESTM regressed on FF6 and
the RavenPack strategy. The SESTM a’s are in each case almost as large as its raw return. At most,
12.5% of the SESTM strategy performance is explained by the controls (i.e., an equal-weighted « of 27
basis points versus the raw average return of 32 basis points). We also see significant positive alphas
for the alternative strategies after controlling for SESTM, indicating not only that they achieve
significant positive returns, but also that a component of those excess returns are uncorrelated
with SESTM and FF6. In short, SESTM, RavenPack, WP, and LM capture different varieties of
information content in news articles, which suggests potential mean-variance gains from combining
the three strategies. Indeed, a portfolio that places one-fourth weight on each of the equal-weight
sentiment strategies earns an annualized out-of-sample Sharpe ratio of 5.28, significantly exceeding
the 4.21 Sharpe ratio of SESTM on its own.
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Table 6: Performance of SESTM Long-Short Portfolios Net of Transaction Costs

Gross Net
¥ Turnover Return Sharpe Ratio Return Sharpe Ratio
0.1 0.08 4.03 1.21 1.80 0.54
0.2 0.17 8.03 1.77 3.24 0.71
0.3 0.26 11.70 2.23 4.26 0.81
0.4 0.36 15.16 2.73 5.04 0.91
0.5 0.46 18.42 3.27 5.61 1.00
0.6 0.55 21.51 3.77 6.00 1.05
0.7 0.65 24.43 4.13 6.20 1.05
0.8 0.75 27.17 4.31 6.23 0.99
0.9 0.84 29.71 4.34 6.06 0.89

Note: The table reports the performance of equally-weighted long-short EWCT portfolios based on SESTM scores.
The EWCT parameter is . Average returns are reported in basis points per day and Sharpe ratios are annualized.

wi ¢ (14yi,e41) )

. . . 1 T . _
Portfolio average daily turnover is calculated as = >, , (ZZ ’wz,t+1 T3, w5, 005,001

4.7 Transaction Costs

Our trading strategy performance analysis thus far ignores transaction costs. This is because the
portfolios above are used primarily to give economic context and a sense of economic magnitude to
the strength of the predictive content of each sentiment measure. The profitability of the trading
strategy net of costs is neither here nor there for assessing sentiment predictability. Furthermore,
the comparative analysis of SESTM, LM, WP, and RavenPack is apples-to-apples in the sense that
all four strategies face the same trading cost environment and have similar turnover.

That said, evaluating the usefulness of news article sentiment for practical portfolio choice is a
separate question and is interesting in its own right. But the practical viability of our sentiment
strategies is difficult to ascertain from preceding tables due to their large turnover. In this section, to
better understand the relevance of SESTM’s predictability gains for practical asset management, we
investigate the performance of sentiment-based trading strategies while taking into account trading
costs.

To approximate the net performance of a strategy, we assume that each asset incurs a daily
transaction cost, that is 10bps for large stocks, and 20bps for smaller ones (bellow NYSE 20%
breakpoints). The choice approximates the average trading cost experienced by large asset managers,
as reported in Frazzini et al. (2018), while also accounting for differential costs of large and small
stocks.

We propose a novel trading strategy that directly reduces portfolio turnover and hence trading
costs. Specifically, we design a strategy that i) turns over (at most) a fixed proportion of the existing
portfolio every period and ii) assigns weights to stocks that decay exponentially with the time since
the stock was in the news. These augmentations effectively extend the stock holding period from one
day to multiple days. We refer to this approach as an exponentially-weighted calendar time (EWCT)
portfolio.

On the first day of trading, we form an equal-weighted portfolio that is long the top IV stocks in
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terms of news sentiment on a given day and short N stocks with the most negative news sentiment.
A single parameter () determines the extent of the turnover constraint. Each subsequent day t,
we liquidate a fixed proportion v of all existing positions, and reallocate that v proportion to an
equal-weighted long-short portfolio based on day t news. For a stock ¢ experiencing large positive
sentiment news on day t, its weight changes according to w;; = 3 + (1 — y)w;—1. For a stock 4 in
the long-side of the portfolio at day t — 1 but with no news on date ¢, its portfolio weight decays to
wit = (1 — y)w;s—1. The analogous weight transitions apply to the short leg of the strategy.

To see this more clearly, consider an example with three stocks, A, B, and C, in a broader cross
section of stocks. Suppose at time ¢ that A has a weight of zero (wa; = 0) while B and C had their
first and only positive news five and ten days prior, respectively (that is, wg; = (1 —v)*y/N and
weye = (1 —7)%y/N). Now suppose that, at time ¢ + 1, positive news articles about stocks A and C
propel them into the long side of the sentiment strategy, and neither A, B, nor C' experiences news

coverage thereafter. The weight progression of A, B, and C' is the following;:

¢ t+1 t+2 t+3
wa 0 ¥ F(1=7) F(1—9)?
wp FA—y)?* FA—7)° FA—y)° FA =)
we FA-y)? FOA+A-T) FA-7(1+1-7"7) FA-9)O1+1-7")

The portfolio weights for A and C' spike upon news arrival and gradually revert to zero. The
turnover parameter simultaneously governs both the size of the weight spike at news arrival (the
amount of portfolio reallocation) as well as the exponential decay rate for existing weights. For
high values of v, new information is immediately assigned a large weight in the portfolio and old
information is quickly discarded, generating large portfolio turnover. In contrast, low values of ~
reduce turnover both by limiting the amount of wealth reallocated to the most recent news and by
holding onto past positions for longer, which in turn increases the effective holding period of the
strategy. Finally, note that the EWCT strategy guarantees daily turnover is never larger than ~.
When a stock is already in a portfolio and a new article arrives with the same sign as recent past
news (as in the example of stock C') the actual turnover will be less than ~.

Table 6 reports the performance of EWCT portfolios as we vary turnover limits from mild (v =
0.9) to heavily restricted (y = 0.1). Moving down the rows we see that a more severe turnover
restriction drags down the gross Sharpe ratio of the trading strategy, indicating a loss in predictive
information due to signal smoothing. This drag is offset by a reduction in trading costs. The net
Sharpe ratio peaks at 1.05 when v = 0.6 or 0.7. That is, with a moderate amount of turnover control
(and concomitant signal smoothing), the gain from reducing transaction costs outweighs the loss in
predictive power. In sum, Table 6 demonstrates an attractive risk-return tradeoff to investing based

on news sentiment even after accounting for transactions costs.

5 Statistical Theory

We study the statistical properties of SESTM in an asymptotic framework. We recall that n is the

number of training articles, m is the size of full vocabulary, |S| is the size of sentiment dictionary, and
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$1,82,...,S, are the counts of all sentiment-charged words in individual training articles. We let n
be the driving asymptotic parameter and allow (m, |S|, s1, ..., s,) to depend on n. The probabilistic
model of Section 2, summarized in equations (1) and (3), describes the distribution of training data

given sentiment scores pi,pa,...,pn. We treat these scores as (non-random) parameters.

5.1 Model Assumptions

First, we formally characterize the difference between sentiment charged words and sentiment neutral
ones. For sentiment charged words, their corresponding entries in O+ should be different. Otherwise,
these words would not represent any sentiment and should be left in set N. At the same time, the
sentiment neutral words are analogous to useless predictors in a linear model, for which the regression

coefficients are zero. We introduce a similar quantity here:

n

8 = E[n—l Z(sgn(yi) —sgn,,) dj,i], for 1 <j<m,
i=1

where sgn,, = n~t >y sgn(y;). This quantity measures the strength of association between the count
of a word and the sign of tagged return. As we will show in the proof of Theorem 1, O4 ; —O_ ; # 0
implies §; # 0 for any j € S. For j € N, there is no O+ ; defined. We directly impose the assumption

0; = 0 to differentiate a word in N from words in S.
Assumption 1 (Word Classification). For any j € S, Oy ; —O_ ; #0; for any j € N, §; = 0.

Next, we discuss model identification. As we mentioned earlier, part of this model, (3), is a
two-topic topic model. Topic models are not identifiable without additional restrictions.?’ To see

this, it follows by direct calculations that for all 1 < i < n, we have
piOs + (1 —p)O_ =504 + (1 — )0,

where 5+ =(1-a)0++a0_, O_ = (14 a)O- — a0y, and p; = p; + «, for any « such that all p;s
are within [0, 1], all entries of O are non-negative, and 54“3- — 5_7j = 0 for any j.
In light of this, we impose the following restriction on p;s to remove this extra degree of freedom,

which is amount to a requirement that the average tone for all news is neutral:
Assumption 2 (Score Normalization). n=t Y1  p; =1/2.2

The methodology in Section 2 only needs the marginal distributions of y; and d[g) ;, so we leave the
full distribution of data unmodeled. To provide theoretical justification, we need mild assumptions

on the joint distribution of {(y:, d[s), dni) 1<i<n-

20Such restrictions in the literature include a parametric Dirichlet model for topic weights (Blei et al., 2003) and
the existence of anchor words (Arora et al., 2012).

21'We note that this assumption has no conflict with unequal numbers of positive and negative returns in the training
data. Recall that g is as in (1). If g(1/2) > 1/2, then the average tone is neutral yet there are more than half of
training articles with positive returns.
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We first discuss the assumption on the dependence among {yi,¥2,...,yn}. The collection of
returns in the training sample contain many stocks across different time periods. Because of the
potential cross-sectional dependence and time dependence, it is inappropriate to use conventional as-
sumptions such as strong mixing. We adopt the notion of dependency graph (Janson, 2004) to describe
the dependence among y;s. Given the joint distribution of {y;}i<i<n, an undirected graph I' with
nodes {1,2,...,n} is called a dependency graph if, forany i € {1,2,...,n}and V C {1,2,...,n}\{i},
there is no edge between ¢ and nodes in V' implies that y; is independent of {y;};cv. We shall assume
there exists a non-trivial dependency graph whose maximum degree is properly small. In the special
case where y;s follow a multivariate normal distribution, the support of the covariance matrix natu-
rally defines a valid dependency graph, so the above assumption translates to the row-wise sparsity
assumption on the covariance matrix.

We next consider the conditional distribution of {(d[s]’i, d[N],i)}lgign given {y;}1<i<n. Let s; and
n; denote the total count of words from S and NV in article ¢, respectively. We adopt the conventional
bag-of-words model by assuming the s; words (n; words) are i.i.d. drawn from the word list S (word
list N) according to some distribution Q; € RI*! (Q; € RIV). Equivalently,

d[s]7i|{y1, .+ +yYn} ~ Multinomial(s;, Q;), d[N],i‘{yl, .+, Yn} ~ Multinomial(n, £2;).

The dependence on y;s is reflected in the probability vectors Q; = Q;(y1,- .-, yn) and Q; = Qi(y1,. .., Yn)-
We assume Q;(y1,-..,yn) = piO+ + (1 — p;)O_, which is compatible with the marginal distribution
of dig; in (3). Regarding Q;(y1,...,yn), Wwe make a mild assumption that Q;(y1,...,yn) = Qi(y:).

To summarize:
Assumption 3 (Joint Distribution). The following statements hold:
(a) There exists a valid dependency graph for {y; }1<i<n whose mazimum degree K,, = o(n/log?(m)).

(b) Conditioning on {y;}1<i<n, the random vectors {dis) 1, - -, d[s)n,d[s)15 - - d[N),n} are indepen-
dent, dig); ~ Multinomial(si, piO4 + (1 — pi)O_), and diny; ~ Multinomial(ni, Qz(yz))

Finally, we need some regularity conditions. Let s; and n; be the same as in Assumption 3.
Denote by Smax, Smin, and § the maximum, minimum, and average of {s;}i1<i<n, respectively, and
Tmax, Nmin, and 7 are defined accordingly. Let ©;;(y;) denote the 4 entry of the vector €;(y;), for
j E€N.

Assumption 4 (Regularity Conditions). There exist constants ¢y > 0, ¢; > 0, and C > 0 such that
the following statements hold:

(a) Smax < CSmin, and Nmax < Cnpin.

(b) For each j € N, with probability approaching 1, |Q;.:(y;)| < Cqj, where ¢; = n=1 Y1 | E[Q;:(yi)].
(¢) min{nsminjcg(O4 ; + O_;), nAaminjey g;}/log(m) — oo.

(d) 3=y 8ilpiO+j + (1 = pi)O—j] > co D 5i(O4j +O— ), for any j € S.
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(e) | >0 1(9(pi) — g)(si — 3)| < Csy/nKylog(m), where § = n-1 S 9(pi) and Ky, is the same
as in Assumption 3.

Condition (a) requires s;’s to be of the same order; similar for n;’s. This condition ensures the
theoretical result is not driven by some articles with substantially more or less words than others.
Condition (b) prevents the frequency of a sentiment-neutral word j in any particular article to be
much larger than its average frequency in all articles. In Condition (c), the expected counts of a
word in all training articles are of the order n5(O4 ; + O_ ;) for a sentiment-charged word, and nng;
for a sentiment neutral word, which dominate log(m), because n is usually very large in real data.
Condition (d) and Condition (e) are high-level technical conditions. The former is satisfied when all
p;’s are bounded away from 0 and 1, whereas the latter holds with probability approaching one if we

assume s;’s are independently and identically distributed.

5.2 Consistency of Screening

The screening step estimates the sentiment dictionary by S. We establish the consistency of screening
by showing that S = S with an overwhelming probability. This property is analogous to the property
of model selection consistency for linear models (see, e.g. Fan and Lv, 2008).

We define a quantity to capture the sensitivity of stock returns to article sentiment:

> iy si(pi —1/2) [9(pi) — g
D e Si ’

0= (12)
where g(-) is the monotone increasing function in Model (1) and g =n"!>"" | g(p;). 0 captures the

steepness of g and the extremeness of training articles’ tones.

Lemma 1 (Screening Statistics). Consider Models (1)-(3), where Assumptions 1-4 are satisfied. Let
€n be a sequence such that e, = o(1) andlog(e, ) = o(nmin{K,; !, §minjes(O4 ;+0_;), iminjen g;}),
where (Ky,5,7,q;) are the same as in Assumption 4. Asn — oo, with probability 1 —€,, simultane-

ously for all 1 < 7 < m, we have

O0+,;=0_4l _ C/log(m/en)

> 90!
= 0w t0-g Vamin{K, T, 504 ;40 )}

, when j €S,

i =7l
< C+/log(m/en)

hen j € N.
- \/nmin{Kgl, T’qu}7 when j €

In the screening step, S is obtained by thresholding | fj —7|. Theorem 1 justifies that |f; — 7|
is relatively large for sentiment-charged words and relatively small for sentiment-neutral words. For
any choice of €, = 0(1), the statement of this lemma holds with probability approaching 1. In what
follows, we assume m — oo as n — oo and fix ¢, = m~!; item (c) in Assumption 4 ensures that
en = m~! satisfies the requirement of Lemma 1. This choice of €, greatly simplifies the expressions.
When m is finite, we only need to replace log(m) in the statements below by log(m) + log(1/ey,) for

a proper sequence €, = o(1).
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The next theorem establishes the consistency of screening:

Theorem 1 (Consistency of Screening). Consider Models (1)-(3), where Assumptions 1-4 are sat-

isfied. Suppose the following condition holds:

02 min (O4;—0_;)? log?(m)

jes (04 +O0—;)?

> (13)

min{Kn_l, sminjes(O4,; + O— ), nminjen qj} '

log(m) log(log(m))
\/n min{KTfl, sminjeg(O4 ;+0_ ;),Aminjen q;}

Now set k = log(m) and oy =

have P(§ = S) =1 — o(1).

in (6). As n,m — oo, we

To obtain consistency for screening, the desired number of training articles, n, is determined by
|O+,;—0— ;]
O+,;+O—,; ’
the minimum among frequency-adjusted sentiments of all words in S; 3) min{K !, 3 min;es(O4 ; +

three factors: 1) sensitivity of stock return to article sentiment, 6, defined in (12); 2) minjeg

O_ ), nminjen g}, in which the last two terms inside the minimum are related to the per-article
count of individual words. For long articles where the per-article count of each word is bounded
below by K, !, the third factor is equal to K, !. For short articles, the per-article count of a word
may approach zero faster than K, !, in which case more training articles are needed, as shown from

this theorem.

5.3 Accuracy of Learning Sentiment Topics

We quantify the estimation errors on two sentiment vectors: OL. Since they can be re-parametrized
by the vector of frequency, F', and the vector of tone, T, via (4), we consider the estimators

F=2(0,+0.), T=2(04-0_), (14)

and quantify the estimation errors for F' and T. The error bounds we present below can certainly
translate to those for O4.

The estimation step obtains 5+ and O_ by plugging in a “crude” estimate p; for p;; see (9).
The estimation error in this step naturally propagates. Importantly, we quantify the quality of the

approximation of {p;}? ; by {p;}1 ;:

23 6 ) i

Here, p can be viewed as a particular form of “correlation” between the sentiment score and the
normalized rank of return. In view of Model (1), it is reasonable to assume that p > 0.

The next theorem presents our main result about the estimation step:

Theorem 2 (Estimation Errors for Sentiment Vectors). Consider Models (1)-(3), where Assump-

tions 1-4 hold and (13) is satisfied. Suppose 0 < p < 1. Asn,m — oo, with probability approaching
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~ Sllog(m ~ Sllog(m
1F - Pl < oy BB g oy < oy /181080,
ns ns

A few points are worth mentioning. Theorem 2 states that our method in fact estimates (F, pT")
rather than (F,T'). This is the price we pay by not imposing any particular model on the distribution
of returns. Suppose, instead of Model (1), we specify a parametric distribution of y; given p;, then
we could construct more accurate estimates of p; such that n=2 >  (p; — p;)* — 0, which in turn

results in the consistency for the estimation of 7. This is confirmed by the next corollary:?>

Corollary 1. Suppose conditions of Theorem 2 hold. Let p; be an arbitrary estimate of p;, including
but not limited to the p; in (9). We obtain Oy similarly as in (10), except that W is constructed from
the new p;’s. Suppose /\min(n—l/WW/) > ag, for a constant ag > 0. As n,m — oo, with probability
approaching 1,

-~ ~ S|log(m 1 e 1/2
max{|F = Pl |17 - 7} < 0y PB4 o257 - p2)

ns °
=1

Consequently, if n=1 " | (p; — pi)* converges to 0 in probability, then |F = F||; and |T —T||1 also
diminish with probability approaching 1.

We prefer not to make stronger assumptions as in Corollary 1, because our empirical analysis
does not require the consistency for 7. In fact, despite its potential inconsistency, T preserves the
sign, order, and relative strength of tone for words. Mathematically speaking, the sign of T} indicates
whether word j is positive or negative. For two positive words j and k, the ratio T} /T}, describes the

strength of tone of word j relative to word k. Since p > 0, we have
sgn(T) = sgn((pT);),  and  (p1); / (PT)r =T; / Ty,  for all (j, k).

This property plays a key role in the next step of scoring new articles (see Section 5.4).

Last but not least, we compare our results with those from an unsupervised topic modeling
approach by Ke and Wang (2017). They propose a singular value decomposition approach to recover
topic vectors 5i using D[SY]’. alone without any Asupervision from returns. While this unsupervised
approach can achieve consistency in terms of ||T" — T'||;, this is inconsequential in our context. As
we have seen above and will learn from Section 5.4, an accurate estimate of pT' is good enough for
the purpose of scoring new articles. On the other hand, the unsupervised approach suffers a much
slower rate of convergence. According to Table 5 of Ke and Wang (2017), the best attainable error

rate for any unsupervised estimator is

|S|log(m)

S
= (1 + |_|> , up to some logarithmic factor.
ns S

22This corollary applies to any estimate p;. For the particular p; in (9), due to its special structure, the rate of
convergence for ||F' — F||; is faster without the additional term on the right-hand side; see Theorem 2.
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Recall that | S| is the size of sentiment dictionary and s is the average per-article count of sentiment-
charged words. In most real applications, |S| > 5. For example, in our empirical study of the Dow
Jones Newswire database, |S| is roughly a few hundreds whereas § is typically below 10. Therefore,

the bias-variance trade-off clearly favors the supervised approach we propose here.

5.4 Accuracy of Scoring New Articles

Given the word count vector d € R of a new article, we use (11) to predict its true sentiment score
p. Theorem 3 quantifies the prediction accuracy of a single article’s sentiment, whereas Theorem 4
investigates the accuracy of sentiment “ranks” for multiple articles.

Recall that p, as defined in (15), is related to the bias of T in Theorem 2. As the estimation error
propagates, a similar bias occurs to the estimator of p. We thereby define the rescaled sentiment

score p* as:
0. ifp < (1-7)/2

Pt =11, if p> (1+p)/2, (16)
1/2+4 (p—1/2)/p, otherwise.

*

Apparently, p* is a monotonic increasing transformation of p such that p* > 1/2 (resp. p* < 1/2) if
and only if p > 1/2 (resp. p < 1/2). The next theorem shows that the scoring step yields a consistent

estimator of p*.

Theorem 3 (Sentiment Accuracy of a New Article). Consider Models (1)-(3), where Assumptions 1-
4 hold, (13) is satisfied, and additionally, |T;| > c1F}, for all j € S and a constant ¢; € (0,1). Suppose
po < p <1, for a constant pg € (0,1). Let d € R denote the vector of word counts in a new article
with sentiment p, and let s denote the total count of sentiment-charged words in this article. Suppose
lp— | < pol3 — cal, for a constant ¢y € (0,1/2). Write

L (ST, 1) (O4y— Oy
errp,=—| 4+—4—m+ — |, where © = : R 17
VO ( nso Vs ; Oy +0_ (17)

We assume sO — oo and err, — 0. Let p be the penalized MLE in (11). As n — oo, for each fized
€ (0,1), there exists a constant C' > 0, such that, with probability 1 — ¢,
Ip—p*| < Cmin{

1,%}xerrn—kain{l,%}Mp*—%\. (18)

e
lp*—3|

Furthermore, if we set A = erry, then (18) becomes

Ip—p*| < Cmin{errn, |p* — 1/2|} < Cerry,.

We make a few remarks about Theorem 3. First, the term err, in (17) accounts for the errors
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from the respective training step and the scoring step:

STloglm) 1

Ovns VsO'

Since n is large, it is the latter that will dominate in finite sample. Therefore, to guarantee err, — 0,

we need sO — oo.

Secondly, the choice of the regularization parameter A reflects a bias-variance trade-off. According
to (18), the first term min{l, %} X erry is related to the “variance”, which decreases with \; the
second term min{l, % X |p* — %\ is the “bias”, which increases with \. In practice, it appears that
most articles have a neutral tone, so that the bias is negligible relative to the variance. Besides,
text data are very noisy, so imposing a large penalty in MLE significantly reduces the variance. Our
estimator shares the same spirit as the James-Stein estimator (James and Stein, 1961). With the
optimal choice of A, the prediction error is bounded by the minimum of err, and |p* —1/2|.

Thirdly, the scoring step estimates the rescaled sentiment p* instead of p. Same as what we have
explained before, this is due to that we do not have consistent estimates of {p;}* ;. Since p < 1, the
true sentiment p is actually closer to 1/2 than the rescaled sentiment p*. Therefore, shrinking the
sentiment towards 1/2 helps reduce the bias. This means that although estimating p; in the training
stage creates a bias, it could be alleviated by the shrinkage effect in the scoring step. Moreover, our
empirical analysis in Section 4 does not require consistent estimates of “absolute” sentiment scores.
Instead, we only need “relative” sentiment scores to rank articles. It turns out sufficient to use p for

this purpose. We demonstrate how we achieve the rank consistency in Theorem 4 below.

Theorem 4 (Consistency of Rank Correlation). Under conditions of Theorem 3, suppose we are
given L new articles whose sentiments p1,...,pr, are i.i.d. drawn from a distribution on [% — po(% —
c2), % + po(% — ¢9)| with a continuous probability density. Let s; be the count of sentiment-charged
words in a new article i. We assume C~'s < s; < Cs, for all 1 < i < L, where s satisfies
50/+/log(L) — co. We apply the estimator (11) with X < Oerr, to score all new articles. Let

SR(p,p) be the Spearman’s rank correlation between {p;}- | and {p;},. Asn,m,L — oo,
E[SR(p,p)] — 1.

In Theorem 3 and Theorem 4, we impose an additional condition on O, that is, |Tj| < (1—c1)F)
for all j € S. It guarantees that the objective in (11) is strongly concave in the open set (0,1). This
condition can be replaced by a restriction that p € [3,1 — ] for some constant 5 € (0, c2).

6 Conclusion

We propose and analyze a new text-mining methodology, SESTM, for extraction of sentiment infor-
mation from text documents through supervised learning. In contrast to common sentiment scoring
approach in the finance literature, such as dictionary methods and commercial vendor platforms like

RavenPack, our framework delivers customized sentiment scores for individual research applications.
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This includes isolating a list of application-specific sentiment terms, assigning sentiment weights to
these words via topic modeling, and finally aggregating terms into document-level sentiment scores.
Our methodology has the advantage of being entirely “white box” and thus clearly interpretable,
and we derive theoretical guarantees on the statistical performance of SESTM under minimal as-
sumptions. It is easy to use, requiring only basic statistical tools such as penalized regression, and
its low computational cost makes it ideally suited for analyzing big data.

To demonstrate the usefulness of our method, we analyze the information content of Dow Jones
Newswires in the practical problem of portfolio construction. In this setting, our model selects
intuitive lists of positive and negative words that gauge document sentiment. The resulting news
sentiment scores are powerful predictors of price responses to new information. To quantify the
economic magnitude of their predictive content, we construct simple trading strategies that hand-
ily outperform sentiment metrics from a commercial vendor widely-used in the asset management
industry. We also demonstrate how our approach can be used to investigate the process of price
formation in response to news.

While our empirical application targets information in business news articles for the purpose of
portfolio choice, the method is entirely general. It may be adapted to any setting in which a final
explanatory or forecasting objective supervises the extraction of conditioning information from a

text data set.
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Internet Appendix

A Algorithms
Algorithm 1.
S1. For each word 1 < j < m, let

_ # articles including word j AND having sgn(y) = 1

i

# articles including word j
S2. For a proper threshold ay > 0, a— > 0, and x > 0 to be determined, construct
S={j:f;>12+a.}U{j:f;<1/2—a_}n{j:k; >~}
where k; is the total count of articles in which word j appears.
Algorithm 2.

S1. Sort the returns {y;}!"; in ascending order. For each 1 <1i < n, let

. rank of y; in all returns
i = 4 . (A1)

n

S2. For 1 < i < n, let s; be the total counts of words from S in article 1, and let (Z = é}‘ldi &

[S]
Write D = [dy,ds,...,d,]. Construct

0= ﬁ/W?'(/VVW’)_l, where W = plA pQA o pnA . (A.2)
l—=p1 1=p2 -+ 1—pn

Set negative entries of O to zero and re-normalize each column to have a unit ¢/'-norm. We use

the same notation O for the resulting matrix. We also use 5i to denote the two columns of
O =[04,0_].

Algorithm 3.

S1. Let 3 be the total count of words from S in the new article. Obtain p by

5— 51N a1 O, :i+(1—p)O_;) + Al 1-—
p argprg[gﬁ]{s ;jog@ +j+ (1 =p) ,a)+ og (p( P))}a

where dj, 6+,j, and 6,,]- are the jth entries of the corresponding vectors, and A > 0 is a tuning
parameter.
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B Mathematical Proofs

B.1 Proof of Lemma 1

Proof. For a word j, let L;r denote the total count of this word in all articles with positive returns;
define L} similarly. Write ¢; = sgn(y;) € {£1}, for 1 <7 <n, andlet t = n~tS7"  t;. It is seen that

LF="dj;-(1£t)/2,  and  7=(1+5)/2

By definition, f; = L;’/(Lj +L7)=[1+ (L;L — LJ_)/(L; + L;)]/2. As a result,

+ —
fl_ﬁ:1<Lj _Lj —t> _ Z?:l(ti*f)'d]}i. (B.3)
! 2\LS +L; > di

Below, we study f; for j € S and j € N, separately.
First, consider j € S. Asin (4), welet F = (O4+0_) and T = (04 —O_). We also introduce
the notation 7; = 2p; — 1. Then, p;O4 + (1 — p;)O_ = F +n,T. It follows from Model (3) that

dji ~ Binomial(si, F; + "71TJ)

Let {bj;},-, be a collection of 7id Bernoulli variables with a success probability (F; + ;7). Then,

d d
dji (:) 521 bj,ie, where @ means two variables have the same distribution. It follows that
" —1t)-b
fi—7 @ Liz1 = = Ok st where  b;; ¢ ~ Bernoulli(F; 4 n;Tj). (B.4)
Doic z:1 bjie

Define Alj = Z:L 1 ( 1( a( il Ebjﬂ',g) and Agj = Z?:l Zzi:l(bj7i7f — Ebj,@g). Since Ebi,j,ﬂ =
Fj +n;T};, we can re-write (B.4) as

Zz 131 i BF—F”Z )+A1]
iy si(Fy +niTy) + Aoy

fi—-7=

Note that ¢ it the average of ¢;. It yields that > ;" | s;(t; —t)F; = F; > (si —5)(t; —t). As a result,

Fyd i (si=3)(ti =) + Ty 30 si(ti t_>771+A1]
TLSF +T Zz 1517h+A2]

fi—-m= (B.5)

To proceed the proof, we need two technical lemmas. One is the classical Bernstein’s inequality
(Shorack and Wellner, 2009):

Lemma 2 (Bernstein inequality). Suppose X1, -+, X,, are independent random variables such that
EX; =0, | X;| <b and Var(X;) < o? for all i. Let o*> =Y ", 02. Then, for anyt >0,

- t2/2
IP’(\ ;XZ] > t) < 2exp <_02+bt/3) .
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The other is a Hoeffding-type inequality for dependent variables. In Section 5.1, we have introduced
the notion of dependency graph for describing the dependency structure in the joint distribution of a

set of variables. The following lemma comes from Theorem 2.1 and equation (2.2) in Janson (2004).

Lemma 3 (Hoeffding inequality for weakly dependent variables). Suppose Xi,---, X, are random
variables such that EX; = 0 and a; < X; < b;. Suppose U is a valid dependency graph for the joint
distribution of {X;}?_,. The mazimum degree of I' is denoted by d*(I'). Then, for any t > 0,

n 2
P(I > Xil > t) = Zexp <_ [d*(T) + 1] ;?zl(bi - ai)2) '

=1

When applying Lemmas 2-3, we often use particular choices of ¢. In Lemma 2, for any € € (0,1), we
can let t = 04/2log(2/€) + (2b/3) log(2/€) to make P(| > 7" | X;| > t) bounded by e. In particular, as

n — oo, for any sequence €, — 0, there exists a constant C' > 0 such that
1> Xi| < Cloy/log(1/en) + blog(1/en)] (B.6)
i=1

holds with probability 1 — ¢,. Similarly, in Lemma 3, for any sequence ¢, — 0, we can choose an

appropriate t to prove: With probability 1 — ¢,,

n

> Xl <€ [a ) S0 - ai)log(1/en). (5.7)
=1

=1

In the proof below, we use (B.6) and (B.7), instead of the original statements of Lemmas 2-3.

With the technical preparation, we now proceed to study the right hand side of (B.5). First, we
bound |Ay;| and [Ag;|. The random variables {b; ;¢ —Eb;; ¢} are independent, mean-zero, satisfying
that D5 > oty var(bjae) < D2l >ty (Fy + mily) < 3201 32,1 2F; = 2nsFy. By (B.6), with

probability 1 —m™le,,

Agj| = (Z S (e — Ebj,u)‘ < C/n3F; log(m/en) + Clog(m/e,)
=1 4=1

< Cy/nsFjlog(m/ey), (B.8)

where the last line is due to the assumption n5F;/log(m/e,) — oo. Recall that Ay =77 | Y770 (ti—
t)(bjie—Ebj;¢). We condition on {y;}? ;. Then, ¢;’s are non-random; additionally, by Assumption 3,
{dji}1<i<n have the same Binomial distributions as in the unconditional case. By similar arguments

as above, conditioning on {y;}™_;, with probability 1 — m™tep,

Al < CL | F Y silti — )2 log(m/en) + C(max|[t; — #]) log(m/en)
i1 !

45



< Cy/nsFjlog(m/ey), (B.9)

where the last inequality is due to |t; —¢| < 1. Since the bound in (B.9) does not depend on y;’s, the
inequality also holds unconditionally with the same probability.

We then insert (B.8)-(B.9) into (B.5). Consider the term (n§F;+T; >, s;n;) in the denominator
of (B.5). It can be re-written as > i ; si[piO+ ; + (1 — p;)O— j], which, by item (d) in Assumption 4,
is lower bounded by ¢ > 1" ; si(O4 ;+O— ;) = 2¢o5Fj, for a constant ¢o > 0. At the same time, since
|nil <1 and Tj < Fj, this term also has an upper bound: nsF; +T; > 1 ; sin; < 2nsF;. Combining
the above results with (B.5) gives

T3 2 iy silte = Onil— Fy[ 35 (si — 8)(ti — ) Ayl
2nsF + ’A2]| QCongFj — ‘Agj’ 2CQTL<§F' — ’A2j|
’T Zz 1 SZ i t_)nz‘ o O |Z?=1(Si — t - t_)’ V log m/en) (B 10)
2nsF) ns \/n3F; ’ ’

In the second line, we have plugged in the bounds in (B.8)-(B.9); furthermore, we have used the fact
that |Ayj| = o(n5F}) and |Agj| = o(n5Fj), due to nsF}/log(m/e,) — 0.
Last, we deal with the randomness of {¢;}" ; in (B.10). Recall that ¢; = sgn(y;). By Assumption 3,

y;’s are dependent, and the dependence structure is captured by a dependency graph with maximum

|fj =7 >

degree K,,. It is easy to see that the same graph can be used as a dependency graph for ¢;’s. Hence,
we can apply (B.7) with d*(I") = K,,.

In (B.10), we first study the term | Y | s;(t; —t)n;|. Note that Et; = 2¢g(p;) — 1 and Et = 2g — 1.
We thus have the decomposition t; — ¢ = 2[g(p;) — g] + (t; — Et;) — (t — Et). It follows that

)Z Si( 7 E)Th > 2‘251772 pz ’ - ‘ZSMZ 7 Et
i=1

= 4ns60 — ‘Z Si’l’]i(ti — Etl) — ‘n_l Z SiNi
=1 =1

(T Ef)’

Z(ti — Et;)|,
=1

(B.11)

where in the last line we have used the definition of § in (12) and the equality t—Et = n=1 Y7 | (t; —
Et;). We apply (B.7) to X; = t; — Et;. Since |t; — Et;| < 1, it gives that, with probability 1 —m™le,,

’i(ti -
i=1

Similarly, we apply (B.7) to X; = s;nm;(t; — Et;). Since |n;| = |2p; — 1| < 1 and s; < C5 (by item (a)

of Assumption 4), it follows that, with probability 1 —m™te,,

‘Z 31,771 i Etz

)| < OV, Togimjer).

< Csy/nKylog(m/ey).

Plugging the above results into (B.11) and noting that [n=t 3" | s;m;| < C5, we immediately have:
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With probability 1 —m™le,,

n
‘Z si(ti —t)n;
i=1

Next, we study the term | > "7 ;(s; — 5)(¢t; —t)| in (B.10). Using the decomposition t; —t = 2[g(p;) —
gl + (t; — Et;) — (t — Et) again, we get:

> 4nsl — 0(5\/m). (B.12)

5 s = 0t = )] < 2350~ lalpo) — ] + | 3o — )t — 5
=1 =1 ]

+ ’Z(si—E)(f—]Et_) .
=1

The last term is zero. The first term is bounded by C's\/n kK, log(m), due to item (e) of Assumption 4.
The second term can be bounded using (B.7) again. We omit the details and state the results directly:

With probability 1—m™te,, | Yo (si—38)(t; —Et;)| < C5y/nK, log(m/e,). Combining these results

gives

‘Z(si —8)(t — f)) < O5v/nK, log(m/en). (B.13)
i=1
We plug (B.12) and (B.13) into (B.10). It follows that, with probability 1 —m™!e,,

7> 2T _O(\/Knlog(m/en) N m>
’ ~F vn VnsF; )

Combined with the probability union bound, it yields that the above inequality holds simultaneously

for all j € S with probability 1 — €,. This proves the first claim.
Next, consider j € N. Note that f; — 7 has the same expression as in (B.3), and we aim to study

its numerator and denominator. By Assumption 3,
dji | {y1,---,yn} ~ Binomial(n;, Q;;(v:)), 1<i<n.

Similarly as before, we introduce random variables {h;; ¢}1<i<n,1<¢<n,: conditioning on {y1,...,yn},
they are independent, and hj; ¢ ~ Bernoulli(Q;;(y;)). Then, d;; can be replaced by > ;% h;,; .. We

thus re-write the numerator and denominator in (B.3) as

n 7

Uj = Z(tl — E)dj,i = Z Z(tl — f)hjmg, and V} = Zdj’i = Z hj,i,ﬁ'
i=1 i=1 ¢=1 i=1 i=1 ¢=1
We first study U;. Re-write
U= (ti =) [hjie — a(y)] + D nilti = DQiyi) = (1) + (L),
i=1 ¢=1 i=1

Conditioning on {y;}!"_, the variables {(t; —t)(h;;.c — (i) }1<i<n,i<¢<n, are mutually independent,
\hjie— iyl <1, and 370 D70t var(hyelyr, - - un) < i miQ5(yi) < Cgj i ni = Cnng;,
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where we have used item (b) of Assumption 4. We apply (B.6) to get: Conditioning on {y;}7,, with

probability 1 — m™le,,

|(I1)] < Cy/nng;log(m/ey) + Clog(m/e,) < C’\/nﬁqj log(m/ey), (B.14)

where the last inequality comes from nng;/log(m/e,) — oco. This bound does not depend on y;’s,

therefore, it also holds marginally without conditioning. We then bound |(I2)|. Write

(IQ) =7 — A, where Z = an(tz - Ef) Qj,i(yi)a A= ZTL,L(E— Ef) Q],z(yz)
i=1 i=1
We use Assumption 1. Since E[(t; —£)Q;:(y;)] = E[(t; — 1) E(n; 'y, ... Yn)] = Eln; 1 (t; —1)d;.),
it holds that

n

E[(L2)] = ZE[(Sgn(yi) —5gn,) dji] = 0. (B.15)
As a result,
(I2)| = |(I2) = E[(I2)]| < |Z —EZ| + |A] + E|A|. (B.16)

We bound the three terms on the right hand separately. By item (b) of Assumption 4, it is always
true that 0 < Q;;(y;) < Cqj. As a result, |A] = [t — Et| - | >0 n:Q5:(y:)| < |t — Et| - Cnng; <
Cng;| > i, (t; —Et;)|. In the equation below (B.11), we have already proved that | " | (t; — Et;)| <
C \/W(m/en) , with probability 1 — m~!e,. Combining them gives

|A| < Cngj/nKylog(m/ey).

Furthermore, if we apply Lemma 3, instead of (B.7), to Y i, (t; — Et;), we will find out that this is a
sub-Gaussian variable with a sub-Gaussian norm O(nkK,). In particular, it is first absolute moment
is O(v/nk,,). It follows that

) < CgjV/nk,.

E|A| < crnqu()zn:(ti — Et;)
=1

Write Z —EZ = 7 ni{(t; — E0)Q;i(ys) — E[(t; — E£)Q;,i(y:)] }. We shall apply (B.7). Note that
each summand only depends on y;. Hence, the dependency graph in Assumption 3 is still a valid
dependency graph here. Additionally, each summand is upper bounded by n; - Cg;|t; — Et| < Cng;,
where we have used item (a) of Assumption 4 which says nmax < Cn. It follows from (B.7) that,

with probability 1 — m™le,,

|Z —EZ| < Cngj/nkKy,log(m/ey).

We plug the above inequalities into (B.16) and find out that

|(I2)] < Cngjv/nKy,log(m/ey). (B.17)
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Combining (B.14) and (B.17) gives

\U;| < C(\/nﬁqj log(m/eyn) + ngj/nky, log(m/en)). (B.18)

We then study V;. Rewrite

n n;

n n
Vi =) Bl + > na{ Qi) — B} + > > [hyie — Qalwi)].
i=1 i=1 i=1 £=1
The last two terms can be bounded in similar ways as we bound |Z —EZ| and |({1)|. Moreover, using
items (a) and (b) of Assumption 4, we have > 7" | 7 E[Q;:(yi)] > nmin 25y E[.i(yi)] = nhmingj >
C_lnﬁqj. It follows that

Vi > C’_lnﬁqj — C<\/nﬁqj log(m/en) + ngj\/nky, log(m/en)>

> C’*lnﬁqj — o(nﬁqj), (B.19)

where the last inequality is due to niig;/log(m/e,) — oo and nK, ! /log(m/e,) — co. We put (B.18)
and (B.19) together to get: With probability 1 —m™!e,,

fi — 7| = 1G;1 :O(\/log(m/en) n \/Knlog(m/€n))
’ v N N
This proves the second claim. 0

B.2 Proof of Theorem 1

Proof. In Lemma 1, letting €, = 1/m, we have: With probability 1 — O(m™!), simultaneously for all
1<j<m,

> 20F; ' |Tj| + O(en), j €5,

|fi =l ,
< O(ep), JEN,

where €2 = (min{K,, !, §minjes F}, iminjen %})71%. The assumption (13) ensures HFJ._l |T;| >

eny/log(m). By setting the threshold at e,+/log(log(m)), all words in S will retain and all words in
N will be screened out. This proves the claim. ]

B.3 Proof of Theorem 2

Proof. By Theorem 1, P(S = S) = 1—o0(1). Hence, it suffices to prove the claim by replacing S with
S in the estimation step. In particular, we replace h; in (8) by hi = dg),i/si- Write H = [h, ..., hy].

The estimate O is obtained by modifying and renormalizing

O=HWWW)™
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By Model (3), EH = OW. It motivates us to define an intermediate matrix
O* = OWW' (WW')!
Let F* = %(Oi +O*) and T* = %(O*+ — O*). In the first part of our proof, we show that
IF* = Flli=0®™"),  |T* =pT|=0(n™). (B.20)

In the second part of our proof, we show that

|10+ = OLlh < CV/[S[log(m)/(ns) + O(n™"). (B.21)

The claim follows by combining (B.20)-(B.21) and noting that max{||F—F*||1, |[T—T*[l} < (|04~
Ol + 0= = O ).
First, we show (B.20). By definition,

[F*, T*] = O E 51] = OWW )(WW')~! [% 51]
2 T2 2 T2
11 — i1
= [F, T] ] (WwWH(ww')=t [f 21] (B.22)
- 2 T2
=M

We now calculate the 2 x 2 matrix M. With the returns sorted in the ascending order, y(1) < y(2) <
.. < Y(n), the estimation step (9) sets p(;) = i/n, for 1 <i < n. It follows that
T - [ S D} doia(l— @')ﬁi] _ ! > i1 By Do (1= A( )P )] '
S (L =p)pi >y (1 —pi)? i (M =Da)pey i (1= Dy)?

It is known that Z" 1= n(";l) and Y I i = w. We thereby calculate each entry of

W' First, ZZ 1p = #ZLI i2 = F[1+0(n~ 1)]. Second, S 1(1 P@)Pu) = n2 ZZ Li(n—1) =
iZz:l - n2 Ez:lZ %[1 +O(n~ )] Third, Zz (1= ) = nz Zz 1 (n— Z) = n2 Zn fi? =
2[1+ O(n™')]. Combining them gives

o~ 1/3 1/6 o~ 4 =2
nHWW') = /31 +0(n™Y) = naWw) = +0(n™h), (B.23)

1/6 1/3 —2 4
where O(n~!) is with respect to the element-wise maximum norm || - ||max of a matrix. Additionally,

the definition of W in (10) yields
o =3 pibi =3 pi(1—p;

,I(WW/) — L n Zzpp R . n Zzp ( p )A . (B24)

a2l =pidpi 5 22(1—pi)(1—pi)
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We now plug (B.23)-(B.24) into (B.22). It gives

LR RIS 7 RS D OO ) I B AT S A
. 1 _1] in(l—pi)@ ,iZi(l—pi)(l—@)] [—2 4] [% -3 Fou
| N e N I LN I
__%Zi@pi—l)ﬁi L5 @pi— 1)1 —py) [1 -3 o)

|1 SO N

En-b 2m-bE-h T

By Assumption 2, we have ) . (p; —1/2) = 0. Additionally, the way we construct {p;}}_; guarantees
> ;(pi —1/2) = 0. Combining these results and using the definition of p in (15), we have

1
M = [O 0 + A, where || Allmax = O(n™ ). (B.25)

~

p

We plug (B.25) into (B.22). It gives
F*=F+[F,T]A, T*=3T +[F T]A.

Let || - |1 denote the matrix Li-norm, which is equal to the maximum column sum of the matrix. It
is easy to see that ||[F, T]|l1 < 1. Moreover, ||All; < 2[|Allmax = O(n™1). Tt follows that

IF* = Flle < I, TNl Al = O™, 7" = 5Tl < |[F, T][IAlL = O ™").

This proves (B.20)
Second, we show (B.21). Write Oi’o )= F +pT. Note that F' is a nonnegative vector whose entries
sum to 1, T'is a vector whose entries sum to 0, and |T}| < Fj for each j. As a result, when 0 < p <1,

the two vectors Of ) are nonnegative and satisfy ||Of )||1 = 1. Also, it follows from (B.20) that

|05 — 0P|y = 0(n™Y). (B.26)

Let O = [O4,0_] be the matrix obtained from setting negative entries of O to zero. The estimation
step outputs Oy = (1/[|O+]1)O<. It follows that, for j € S,

~ P I 1
19) ,70(!’)' <0 ,70(!’)4 + 1045 |——— —1].
0y = 0L} < Oy = OB+ Pl i~

Since [|0%]|; = 1, it holds that |[O+[|7* = 1] = [O[lT [0« — [0 1] < [Ox]7 1O« — O 1.

Hence,

| [

01— 0P| < [0, — 0P| + T |0+ — 0P, (B.27)
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Summing over j on both sides gives

10+ = 0L|Ix < 20 — OF 1.
2 are nonnegative vectors, the operation of truncating out negative entries in 6i

(to obtain O4) always makes it closer to Of). It implies ||O+ — O@Hl <0+ — O@Hl. Combining

Moreover, since Oy

the above gives
10+ = 0P| < 20 — O]

1- (B.28)

It follows that

101 - 0%l < (102 = 0P|y + 0¥ — 0%
< 2|04 — Oi |1 + HOi - Oilh
< 2|04 — 0%l +310% — Ol
< 2|04 — OL|h +O0(n™Y),

where the second line is from (B.28) and the last line is due to (B.26). Therefore, to show (B.21), it

suffices to show that

10+ — 01l < CV/1S[1og(m)/(ns). (B.29)

We now show (B.29). As mentioned before, EH = OW. Define Z = H — OW and write
O = (OW + 2)W(WW')"! = 0* + ZW'(WW') !
Let z; € R™ be the i-th column of Z, 1 < i < n. Plugging in the form of W, we have
ZW (W)™ =[S0 pier Siy (1 - Bi)si] (W)™
It follows that
01 — 0%, < [1ZW' WW) ;.

(‘ sz i ‘i(l - Pz

i=1
C(‘n ;@Zm + ‘ﬁ 2(1 —Di)Zj

i=1
where in the last line we have used (B.23). We now bound |2 ™" | ,Z; ;|. The bound for |2 3" | (1—
Pi)Z;,i| can be obtained similarly, so the proof is omitted. By definition, Z;; = H;; — EH;;, where

3 In 7))

>, (B.30)

Hj,; = s;'d;;. By Assumption 3, conditioning on {y;}7_,, the distribution of dig),; is a multinomial
distribution. It follows that

djil{y1, 92, yn} ~ Binomial(s;, p;O4 ; + (1 —p;)O— ).
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Let {b;¢},-, be a collection of iid Bernoulli variables with a success probability [p;O j+(1—p;)O— j].
: d
Then, d;; has the same distribution as ) ;" bj;¢. As a result, Z;; @ 21 ;1(bj7i7g —Ebj ), and

we can write
sz jz—zzpz ]zE_Ebj,i,é)'

=1 (=1
Conditioning on {y;}" 1, pi’s now become non-random. We shall apply (B.6). Note that the variables
@S;l(bj7i,g — Ebj; ) are mutually independent, upper bounded by 2sm11n < C571, each with mean 0

and variance < 572(O4 ; + O_ ;) = 257 2F;. By (B.6), with probability 1 — O(m™2),

‘Z 12| < C\/n51Fjlog(m) + C5 'log(m) < C'\/n5—1F; log(m), (B.31)
i=1

where the last line is due to nsF}/log(m) — oo. The bound for | >~" | (1—p;)Z; ] is similar. Plugging
them into (B.30) gives

Fjlog(m)

04— 01, <C = (B.32)
ns
It follows from Cauchy-Schwarz inequality that
log log |S|log(m)
10+ — 0%l < /28 Z«/F <0y gz (ZF) mo,
JES
This proves (B.21). The proof is now complete. O

B.4 Proof of Corollary 1

Proof. Define O* = OWwW' (WW’ )~! similarly as in the proof of Theorem 2, except that W is now
constructed from an arbitrary estimate p;. In the proof of Theorem 2, we have shown ”6i 0% <
C+/]S|log(m)/(n5) + O(n~1), with probability 1 —o(1). The proof there does not use any particular

structure of p;, so the conclusion continues to hold for an arbitrary p;. As a result, to show the claim,

it suffices to show that,

n

max{||F* = Flj1, |[T* = T|h1} < C,|n! Z(@ — pi)2. (B.33)
i=1

Below, we prove (B.33). Note that we can re-write O = OWW/(WW’)~L. It follows that O* — O =
O(W — W)W/'(WW")~!. We thus write

i1 s 11
[F*—F, T"=T]=(0"~0)|] *|=0W-W)WWw)™! [f 21]
2 2 2 2
11 - 11
= [F, T . (W -—w)W'WwwH= |2 2
- 2 T2
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]! 1] [,}Zi(zii—@)}j %Zi@_@)u_@)l e F %1]
L -1 Ezi(pz Pi)Di 527;(]91‘—]?1')(1—]%) 5 -1
=[F, T 0 0 ] ()1 F %]
YRS D PR DI -

M*

By our assumption, ||n(W/VI7’)_1H < ay'. Then, the 2 x 2 matrix M* satisfies that |[M*|| < C. As a

result,

By Cauchy-Schwarz inequality, [n=* > (Di—p:)pi| < n '/ >0 — pi)2y/ > P2 < /n 1Y, (0 — pi)2.
A similar bound holds for [n ™! > (p;—p;) (1—P;)|. Moreover, note that ||[F, T]||; = max{||F||1,[|T]1} =
1. Plugging them into the above inequality gives (B.33). This completes the proof. O

Y

* & ]' - fy) o
([ = Flu, |7 = Tlh} < O, 11l wax{ |2 6 - o
i=1

LS G- -5
=1

B.5 Proof of Theorem 3

Proof. By Theorem 1, P(S = S) =1 — o(1). Hence, we assume S = S without loss of generality.
Recall that p and p* are the true sentiment and rescaled sentiment of the new article, respectively.
The penalized MLE in (11) also uses the notation p. We now replace it by po, to differentiate from

the true sentiment p. In other words, we write

D= 1N 41 Os i+ (1 =p)O_ )+l 1— .
P argpome%ﬁ]{s jezsgog(po 4+ (1 —po) ,g>+ og (po po))}

Let 1o = 2po — 1. It is seen that po(1 — po) = (1 —52)/4 and poO4j + (1 — po)O_; = Fj + noT}.

~

With re-parametrization by no, we have p = (1 +1)/2, where i) = argmax, c;_1 11¢(n0), with

U(no) =571 Z d; log(ﬁj + 7707/\}‘) + Alog(1 —no) + Alog(1 + no). (B.34)
jes
Let n* = 2p* — 1. Then, |p — p*| < |7 —n*|/2. It is sufficient to bound | — n*|.
In preparation, we study ' (no) and v (no). By direct calculations,

—13.7 —1,4.72 9

- s d;T; 2Ang -~ s d;T; 2A(1 +n2)

C)=) = =-7-5 l)=-> —= 12—(1_ 2)(;. (B.35)
Fj +mn0Tj "o (Fj +noTy) U

jeSs Jjes

First, consider #(19). By Model (3), d ~ Multinomial(s, F +5T). It implies that Ed; = s(F; +nTj).
Additionally, by Theorem 2, (ﬁj, fj) are close to (F}, pTj). In light of this, we write

~ s~ T F;: + nT;)pT;
e Flmo) = Z (£ +nT;)pT;

flm) =) = =,

o4



where f(no) is the first term in Z’(no) and f(np) is its counterpart. Let E be the event that

|Fj — Fj| < Cy\/Fylog(m)/(ns),  |T; — 5T;| < Cy/Fjlog(m)/(ns), (B.36)

simultaneously for all 7 € S. In the proof of Theorem 2, we have seen that P(E) =1 —o(1). We now
condition on training data and assume that the realized (F,T)) satisfy (B.36). Note that

~

|£(m0) — f(no)| =

Z s Ty (Ed;)
Fj +noT; = B+ mopT;
d; — Ed T, Rd; 5T

ZS &J A]) il Z ( )( —p )

jes it moT; Fj +moT;

<

jes

1 1
s~ (Ed,) ,T)T( >‘
]Ze;q Fy+nd; Fj+mnoply

First, note that [p] <1, [no| < 1 and |T}| < (1—c1)Fj. Asaresult, Fj+nopl; > Fj—(1—c1)F; > c1 Fj.
Second, by (B.36) and the assumption n5F}/log(m) — oo, we know that max{\ﬁj —Fj, |1/;j —-pT;|} =
o(Fj). It implies F\j —i—nofj > (Fj+nopTy)[1+0(1)] = 1 Fj. Last, s7'Ed; = F;+nT; < 2F;. Plugging

them into the above equation gives

Fjlog(m
| F(0) — +0) L=
Z; _|_ UOT Jze;‘ ns
—E I
< Z s~ (d d; ) |S] og_(m)’ (B.37)
jes F —|—770T ns

where the last inequality is due to 3 ;o /Fj < /IS 22, Fj < 1/[S|. We then bound the first term in
(B.37). We condition on the training data. Since d is independent of training data, it is still true that
d ~ Multinomial(s, F' +nT). Let {b¢};_, be iid random vectors, where b; ~ Multinomial(1, F' 4 nT).
Then, conditioning on the training data, d has the same distribution as > _;_; bg. It follows that

dj — Edj)T; 57T}
PR @ z@, with & =3 <5 L0 _(b,, — Eby,).
jes Fj+770T j€5F+770T

Note that (ﬁ T, p) are non-random, conditional on the training data. Hence, {£,}j_, are iid variables
— 17,
with mean zero. We compute the variance of &. Let v € RIS! be the vector such that vj = ﬁ8+nTJ’f .
ji+m0T;y
Then, & = v'(by—Eby). By elementary properties of multinomial distributions, the covariance matrix

of & is diag(F +nT) — (F' +nT)(F +nT)" 2 diag(F +nT). Hence, Var(§) < > cqv; 2(F;+nTy). It

follows that i -
s7T7 - (F; + 0T} pT:

Var(&)gz /J\ ( ],\ z ]) < S—ZzpijsCSfQﬁQ@?
o (Frnody) jes

where we have used |T | < pITj| + o(F;) and F + 770T] 2 c1Fj (derivation is in the paragraph above
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(B.37)). Additionally, |&| < p(scp)~t > jes bejl < p(sc1)~t. We apply (B.6) and find that, for any
fixed 19, conditioning on the training data, with probability 1 — e,

AT 20 1oe(e-1)  Blog(e~1 log(e—1
Z (A d;)T; < C( p*Olog(e1) + plog(e )) <Cp GLM’ (B.38)
jes F; —i-T]()T S S S

where the last inequality is due to s© — oo. A combination of (B.37) and (B.38) gives the following
result: Conditioning on the training data where the event E occurs (this event, as defined in (B.36),
is about the training data; hence, it does not affect the probability here), for any given g € [—1, 1],
with probability 1 — ¢,

-~ __ [©log(e~! S| log(m
Flm) — )] < C’<p\/ ), [lolboelm)y (B.39)
s ns
where the constant C' does not depend on 79. We now investigate f(ny). By definition, »_ . jesFi=1
and .o T = 0. Additionally, we recall that n* = p~'n. It follows that
(£ + nopT;)pT (p~'n —no)p*T;
fo) =Y o, Z — !
o Fitmr Fj +nopT
> ZAQT'Q
=02 Ti+ (" =m) ——
jes s B+ mopT;
92
P
=" - e e B.40

We plug (B.39) and (B.40) into v (no) in (B.35). It implies that, conditioning on training data where
the event E occurs, for a fixed ny € (—1,1), with probability 1 — e,

< C(ﬁ\/elog(e_l) + ’Sllog(m)) (B.41)

’\2T2 2\
? (o) — [ o ] e

Second, consider @/(770)~ Since d; > 0 and ﬁj + Uofj < 2Fj for all nyg € [—1,1], the first term of
" (no) in (B.35) satisfies that

s‘ldjf-2 s~ 1d.T2
J J7g
sup — g — > < — E _
{ 2} 4FJ2

no€[—1,1] jes (Fj + 770T]') jes

Similar to (B.38), we can easily prove that, conditioning on the training data, with probability 1 — e,

D

jes

s~1(d;j — Edj)T?
AF?

Olog(e™1)

S

< Cp?
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Combing the above and noting that s_lEdj = Fj +nTj > c1F}, we have

s~1d,T? 1 FjT? O log(e!
no€[—1,1] S (Fj + nUTj) jeSs 4Fj 5

On the event E, |T? — 5°T?| < CHIT;||Tj — pT;| < C|T;|\/F;log(m)/(n5), and similarly, |[F? — F?| <

CFj\/Fjlog(m)/(ns). It follows that,

011'7}'1/:1]-2 ClF],O T 2 1 Cle|f-2 — b\2T2|
D X —TMZ it
2 AF? 2 2
jes AL ST AF;
22
clpT Flog
< — C \/
S_clp@w |S|log_<m>,
4 ns

where the last line is due to g \/Fj < /|53 5 Fj < /[S]. We plug it into (B.42) to get

s71d,T? 52 log(e1 1
s {_Z 5T }S _cm@JrC(ﬁg\/@ og(e )+\/\5 Og_(m)> (B.43)
me-11) U 555 (85 +moTj)? 4 5 ns

We further plug it into the expression of v (no) in (B.35). It implies that, conditioning on the training

data where the event E occurs, with probability 1 — e, simultaneously for all ny € (—1,1),

) ap® 221 +m) o [©log(e ) |S|log(m)
(o) < ==~ - (1771%)‘; +C<p2\/ ; +\/ > (B.44)

ns

With (B.41) and (B.44), we are ready to show the claim. Since A > 0, it is true that £(1y) — —o0
as ng — 1. Therefore, the maximum can only be attained in the interior of (—1,1). By Lagrange’s

mean value theorem, there exists 7, which is between n* and 7, such that
0=20(m) =)+ @) - (7 —n").

It follows that -~
~ el 1¢'(n")] _
)| (intgen 1270))

Recall that err, = ©7!(1/|S|log(m)/(n5) + \/©/s) and note that 0 < p < 1. Then, in both (B.41)

and (B.44), the term in the brackets can be written as C.®err,, where C. is a generic constant that

(B.45)

depends on €, the meaning of which varies from occurrence to occurrence. Additionally, [7*| < 1—2ca,
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by our assumption. It follows from (B.41) and (B.44) that

~ 27|77 Aln*|
7—1—0@67'7“”_
7)1 < T g

, ~ , 20  2\(1 + n?
inf |P'(m)| > inf {9 U+ )
moE(~1,1) me(-1,H) L 4 (1—-n5)

+ C.Oerry,

} - C.©err,, > 1/;09

+ 2\ — C.Oerr,.
According to (B.41) and (B.44), the above inequalities hold with probability 1 — e when conditioning
on the training data where the event E occurs. Since the right hand side does not depend on training
data, the above holds with the same probability marginally (i.e., without conditioning), provided that
the event E occurs. We have seen that P(E) = 1 — o(1). Therefore, the above inequalities hold with
probability 1 — e. We plug them into (B.45) and find that, with probability 1 — e,

AA\n*| + CO - erry,

U 8co\ + 6102/)(2)@ — COerry,
<c O~ \|[n*| + err,, if A <O,
In*| + A" 1@erry,, if A > O,
< C. min{l, %} x |n*| + Ce min{l7 %} X €Ty, (B.46)
This proves the claim. O

B.6 Proof of Theorem 4

Proof. Since {pi}{;l are drawn from a continuous density, with probability 1, their values are distinct

from each other. The Spearman’s correlation coefficient has an equivalent form:

L
SR(p,p) =1— L(L?6—1) Z(fz —r)?, (B.47)

=1

where 7; is the rank of p; among {p;}%_,, which also equals to the rank of p} among {pj} and 7;

Jj=0 j=1s

is the rank of p; among {pj}jzl. By definition,

L
LLel . L+1
ngnpz )+ =5 nzigsgn(pi—pj)JrT,

where the sign function takes values in {0, +1}. We condition on {p;}~ ; and let ¢ = L=2 in Theorem 3
(the statement of this theorem assumes that € is a fixed constant, but the proof can be easily extended

to allow for € — 0) and apply the probability union bound. It yields that, with probability 1 — L1,

\/\5’] log(m) \/Iog(L)>
i —pi| <5, where &= + . B.48
il whene o= (VIR YO8 B.45)
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Let D be the event that (B.48) holds. For each 1 < i < L, define the index set
Bi(30) ={1<j<L:j#i, |pj —pi| <36}

On the event D, for j ¢ B;(39), |p} —p;f\ > 36, while [p; — pf| < ¢ and |p; —p;] < §; hence, (p; — pj)

must have the same sign as (p; — p;). It follows that

S° (sen(p} — p})| + sgn(p; — ;)) < |Bi(39)]
JE€B;(39)

R 1
‘Ti_ri’ < 5

We plug it into (B.47) and note that |#; — r;|? < L|f; — r;|. It yields

max | Bi(36)]. (B.49)

L
6

_ h.p) < Fi — 1| <

1 - SR(p,p) ;‘“ T"—LQ—llgigL

—L%2—1¢

More precisely, conditioning on {p;}%_;, (B.49) holds with probability 1 — L~1.

We now bound |B;(35)|, taking into account the randomness of {p;}~ ;. Each p} is a non-random
linear function of p;. Therefore, the distribution of {p;}%, yields that {p;}L, are iid drawn from a
continuous density on [£ — (po/p)(5 — c2), 3+ (po/P)(5 — c2)] (note: p depends on the training data,
hence, it is independent of p}’s). Since this is a compact set, the probability density function must

be Lipschitz. Fix ¢ and write
1B:(36)| = " 1{pi € [p} — 36, pj +30]}.
J#i

Conditioning on p;, the other p}"s are iid drawn from a Lipschitz probability density. As a result,
each other p7 has a probability of O(d) to fall within a distance of 34 to pj, i.e., |B;(30)| is the
sum of (L — 1) iid Bernoulli variables with a success probability of O(d). Then, E|B;(3d)| = O(L9).
Moreover, by the Bernstein’s inequality (B.6), with probability 1 — L=2,

|Bi(36)| < CL& + C+\/Ldlog(L) + Clog(L).

Combining it with the probability union bound, with probability 1 — L', the above inequality holds
simultaneously for all 1 <4 < L. We then plug it into (B.49) and get

. dlog(L) Clog(L) log(L)
— < < . .
L= SR(p,p) <CO+ O\ —p—F+—F— < C’max{é, T } (B.50)
Under our assumption, the right hand side of (B.50) is o(1). The claim follows immediately. O
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C DMonte Carlo Simulations

In this section, we provide Monte Carlo evidence to illustrate the finite sample performance of the
estimators we propose in the algorithms above.
We assume the data generating process of the positive, negative, and neutral words in each article

follows:
dis),i ~ Multinomial(si, piO4 + (1 — pi)O_), dn,s ~ Multinomial (ni, Q), (C.51)

where p; ~ Unif(0,1), s; ~ Unif(0, 25), n; ~ Unif(0,2n), and for j = 1,2,...,|S|,

0uy — 2 (1-2) + 4 o= 2 () 1+ 2
ARSIV F R O S AN GNP AME F R = 53

and €; is drawn from m%‘S‘Unif(O, 2), for j = |S|+1,..., m, then renormalized such that ), Q; = 1.
As a result, the first |S|/2 words are positive, the next |S|/2 words are negative, and the remaining
ones are neutral with frequencies randomly drawn from a uniform distribution. As such, the difference
between O ; and O_ ; reaches the minimum at j = |S|/2. This means among all words within the
set S, those with j around |S|/2 are close to neutral.

Next, the sign of returns follows a logistic regression model: P(y; > 0) = p;, and its magnitude |y;]|
follows a folded Student t-distribution with the degree of freedom parameter set at 4. The standard
deviation of the t-distribution has negligible effects on our simulations, since only the ranks of returns
matter for our results.

We fix the number of Monte Carlo repetitions at M, = 200 and the number of articles in the
testing sample at 1,000. In the benchmark case, we set |S| = 100, m = 500, n = 10,000, s = 10,
and n = 100.

We first evaluate the screening step. Although tuning threshold parameters give better results,
for convenience we choose the top 100 words in terms of |f; — 0.51,~x), where £ is set at the
10% quantiles of all kjs. Figure A.1 reports the frequency of each word selected in the screening
step across all Monte Carlo repetitions. Across all repetitions, the probability of selecting any word
outside the set S is about 0.4%. Not surprisingly, the words in S that are occasionally missed are
those with corresponding js around |S|/2.

Next, Figure A.2 illustrates the accuracy of the estimation step, taking into account potential
errors in the screening step. The true values of T and F' are shown in black. The scaling constant p
is approximately 0.5 in this setting. As shown from this plot, the estimators F and T are fairly close
to their targets F' and pT across all words, as predicted by our theory. The largest finite sample
errors in F occur for those words in F' that are occasionally missed from the screening step.

Finally, we examine the accuracy of the scoring step, accounting for errors propagated from the
previous steps. Data from the testing sample are never used in the previous two steps. Table A.1
reports Spearman’s rank correlation coefficients between the predicted p and the true p for 1,000

articles in the testing sample in a variety of cases. We report the rank correlation because what
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Figure A.1: Screening Results in Simulations
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Note: This figure reports the frequencies of each word in the set S selected in the screening step across all Monte Carlo
repetitions. The red bars correspond to those words with frequencies less than 100%. The red bar on the right reports
the aggregate frequency of a selected word outside the set S.

Figure A.2: Estimation Results in Simulations
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Note: This figure compares the averages of F (blue, solid) and T (red, solid) across Monte Carlo repetitions with F
(black, dotted), T' (thin, black, dashed), and pT" (thick, black, dashed), respectively, using the benchmark parameters.
The blue and red dotted lines plot the 2.5% and 97.5% quantiles of the Monte Carlo estimates.
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matters is the rank of all articles instead of their actual scores (which are difficult to consistently
estimate due to the bias of estimating p;). Also, the penalization term (A = 0.5) in our likelihood
shrinks the estimated scores towards 0.5, although it barely has any impact on their ranks. In the
benchmark setting, the average correlation across all Monte Carlo repetitions is 0.85 with a standard
deviation 0.0014. If we decrease s from 10 to 5, the quality of the estimates becomes worse due to
having fewer observations from words in S. Similarly, if we decrease n to 5,000 the estimates become
less accurate because the sample size is smaller. If the size of the vocabulary, m, or the size of the
dictionary of the sentiment words, |S|, drop by half, the estimates improve, though the improvement

is marginal. Overall, these observations match what our theory predicts.

Table A.1: Spearman’s Correlation Estimates

benchmark 5] nl ml S|4
Avg S-Corr 0.850 0.776 0.834 0.857 0.852
Std Dev 0.0014 0.0043 0.0024 0.0025 0.0009

Note: In this table, we report the mean and standard deviation of Spearman’s correlation estimates across Monte Carlo
repetitions for a variety of cases. The parameters in the benchmark case are set as: |S| = 100, m = 500, n = 10, 000,
and 5 = 10. In each of the remaining columns, the corresponding parameter is decreased by half, whereas the rest
three parameters are fixed the same as the benchmark case.

D RavenPack

The data we use are composite sentiment scores from RavenPack News Analytics 4 (RPNA4) DJ
Edition Equities. The underlying news data for this version of RavenPack should be identical to the
collection of Dow Jones articles that we use to build SESTM. However, the observation count that
we see in RavenPack is somewhat larger than the number of observations we can construct from
the underlying Dow Jones news. The discrepancy arises from the black-box transformations that
RavenPack applies during its analytics process. Ultimately, what we observe in RavenPack is their
collection of article-level scores that is indexed by stock ticker and time, and it is not possible to
accurately map RavenPack observations back to the original news. As a result, we cannot pin down
the precise source of the difference in observation counts between our two data sets. The most likely
explanation is that RavenPack uses a proprietary algorithm to assign ticker tags to articles, while
we rely on the tags assigned directly by Dow Jones.

Figure A.3 shows the differences in observation counts in our data set (the complete set of Dow
Jones Newswires from 1984 through April 2020) versus RavenPack (only used in our out-of-sample
analysis from 2004). We restrict all counts to those having a uniquely matched stock identifier in
CRSP with which we can find open-to-open returns. We see that the article counts for Newswires
and RavenPack are quite close except for the middle part of our sample. When we map Newswires

to CRSP, we use articles’ stock identifier tags, which are provided by Dow Jones.
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Figure A.3: Dow Jones Newswire and RavenPack Observation Counts
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E Word Power

This section explains the implementation details of the word-power approach by Jegadeesh and Wu

(2013). They assume the score for each article i takes the following form:
J
Score; = ijFi,jai_l,
j=1

where J is the total number of positive and negative words in a pre-determined dictionary, w; is the
unknown weight parameter for word j, F;; is the number of occurrences of word j in document ¢,
and a; is the total number of words in document 1.
They specify the following regression relationship between the score and the contemporaneous
abnormal return: ;
r; = a4+ bScore; + ¢ = a+ Z B;F; ja; !,
j=1
where B; = bw; are consolidated parameters that can be estimated using article-level regressions.

Denote these estimates as Ej. They then estimating w; by

) BB

wj = =\
?" Standard Deviation(B))

and B is the sample average of Ej across all words. The final score of a new article k in a testing

sample is thereby constructed as
J

Scorey, = Z @ijvjalzl.
i=1
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Jegadeesh and Wu (2013) use the dictionary of negative and positive word lists from Loughran and
McDonald (2011) and define r; to be an “abnormal return” calculated as the difference between the
return on stock i and the return on the S&P 500 over a four-day window from event day 0 through
+3. We follow these choices, with the event date defined as the date of the news article. We follow
the same training and testing procedures described in the text, i.e., a 15-year rolling window for

model (i.e., weights) estimation, which is then employed for a year out-of-sample.

F Additional Exhibits
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Table A.2: List of Top 50 Positive/Negative Sentiment Words

Positive Negative
Word Score Samples LM HIV Word Score Samples LM HIV
undervalue 0.601 17 0 0 shortfall 0.338 17 1 0
repurchase 0.566 17 0 0 disappointing 0.389 17 1 1
surge 0.547 16 0 1 downgrade 0.390 17 1 0
beat 0.556 14 0 0 tumble 0.404 17 0 0
surpass 0.555 14 1 1 blame 0.415 17 0 1
jump 0.547 14 0 0 hurt 0.419 17 1 1
benign 0.554 13 0 1 plunge 0.425 17 0 0
upward 0.545 12 0 1 slowdown 0.436 17 1 0
climb 0.540 12 0 0 plummet 0.420 16 0 0
unsolicited 0.550 11 0 0 miss 0.423 16 1 1
customary 0.551 10 0 0 warn 0.437 15 1 0
unanimously 0.543 10 0 0 halt 0.424 14 1 0
mouse 0.541 10 0 0 auditor 0.426 14 0 0
treasury 0.570 9 0 0 grace 0.429 14 0 0
imbalance 0.567 9 0 0 fell 0.429 13 0 0
reconnaissance 0.538 9 0 0 lackluster 0.438 13 1 0
valve 0.537 9 0 0 resign 0.441 13 1 0
testament 0.532 9 0 0 issuable 0.442 13 0 0
declare 0.544 8 0 0 unfortunately 0.444 13 1 0
tender 0.539 8 0 0 hamper 0.445 13 1 1
armor 0.536 8 0 0 subpoena 0.425 12 1 0
unregulated 0.536 8 0 0 sluggish 0.427 12 1 1
deepwater 0.535 8 0 0 slash 0.434 12 0 1
gratify 0.531 8 0 1 soften 0.446 12 0 0
accretion 0.531 8 0 0 unlawful 0.446 12 1 1
soar 0.543 7 0 0 postpone 0.446 12 1 0
propane 0.536 7 0 0 woe 0.430 11 0 1
terrain 0.535 7 0 0 regain 0.432 11 0 0
petrochemical 0.535 7 0 0 worse 0.433 11 1 1
bracket 0.533 7 0 0 downward 0.434 11 1 0
boost 0.530 7 1 1 allotment 0.435 11 0 0
oversold 0.614 § 0 0 widen 0.439 11 0 0
anticancer 0.566 6 0 0 inefficiency 0.439 11 1 1
clip 0.558 6 0 0 deficit 0.441 11 1 1
potent 0.558 6 0 1 waiver 0.413 10 0 0
upbeat 0.555 6 0 1 lower 0.420 10 0 1
tanker 0.549 6 0 0 covenant 0.426 10 0 0
warfare 0.548 6 0 0 delay 0.430 10 1 1
bought 0.545 6 0 0 deficiency 0.448 10 1 1
lift 0.532 6 0 0 temporarily 0.455 10 0 1
infrared 0.532 6 0 0 insufficient 0.433 9 1 1
railroad 0.532 6 0 0 parenthesis 0.435 9 0 0
elegant 0.531 6 0 1 irregularity 0.440 9 1 1
fastener 0.530 6 0 0 setback 0.443 9 1 0
buoy 0.575 5 0 0 bondholder 0.446 9 0 0
cheer 0.570 5 0 1 default 0.431 8 1 1
fossil 0.565 5 0 0 soft 0.434 8 0 0
terrific 0.564 5 0 1 erosion 0.437 8 1 1
chest 0.563 5 0 0 renegotiate 0.443 8 1 0
thrift 0.545 5 0 1 worsen 0.451 8 1 1

Note: The table shows the list of top 50 words with positive and negative sentiment based on screening from the 17
training and validation samples. These 50 words are selected by first sorting on the number of samples (out of 17) in
which the word was selected, and then sorting on their average sentiment score. A label 1 in Columns “LM” or “HIV”
indicates this word also appears in the LM or Harvard-IV dictionaries.

65



Table A.3: List of Top 50 Positive/Negative Sentiment Phrases (including Words)

Positive Negative
Word Score  Samples LM HIV ~ Word Score  Samples LM  HIV
repurchase 0.567 17 0 0 disappointing 0.390 17 1 1
undervalue 0.603 15 0 0 downgrade 0.391 17 1 0
beat 0.558 15 0 0 hurt 0.420 17 1 1
jump 0.550 15 0 0 miss 0.423 17 1 1
repurchase program 0.561 14 0 0 shortfall 0.337 16 1 0
stock repurchase 0.557 14 0 0 tumble 0.404 16 0 0
surge 0.550 14 0 1 blame 0.415 16 0 1
privately negotiate 0.564 11 0 0 plunge 0.425 16 0 0
surpass 0.562 11 1 1 plummet 0.419 15 0 0
unsolicited 0.551 11 0 0 slowdown 0.433 14 1 0
upward 0.553 10 0 1 halt 0.425 13 1 0
climb 0.543 10 0 0 woe 0.431 13 0 1
treasury 0.571 9 0 0 warn 0.436 13 1 0
imbalance 0.568 9 0 0 resign 0.442 13 1 0
deepwater 0.540 9 0 0 take longer 0.409 12 0 0
initiate coverage 0.562 8 0 0 auditor 0.423 12 0 0
customary 0.553 8 0 0 fell 0.429 12 0 0
benign 0.549 8 0 1 lackluster 0.438 12 1 0
unanimously 0.546 8 0 0 fall short 0.407 11 0 0
reconnaissance 0.542 8 0 0 waiver 0.414 11 0 0
tender 0.540 8 0 0 sluggish 0.426 11 1 1
upon reasonable 0.547 7 0 0 slash 0.435 11 0 1
declare 0.547 7 0 0 deficit 0.441 11 1 1
open market 0.583 6 0 0 issuable 0.443 11 0 0
self administer 0.552 6 0 0 lower 0.424 10 0 1
warfare 0.552 6 0 0 grace 0.432 10 0 0
investment advisor 0.552 6 0 0 unfortunately 0.445 10 1 0
sign definitive 0.551 6 0 0 go concern 0.389 9 0 0
mouse 0.547 6 0 0 prospectus supplement  0.419 9 0 0
investment objective  0.543 6 0 0 downward 0.427 9 1 0
soar 0.543 6 0 0 subpoena 0.433 9 1 0
armor 0.543 6 0 0 soft 0.435 9 0 0
free copy 0.542 6 0 0 widen 0.439 9 0 0
obtain free 0.540 6 0 0 hamper 0.446 9 1 1
financial advisor 0.539 6 0 0 postpone 0.446 9 1 0
valve 0.537 6 0 0 unlawful 0.447 9 1 1
propane 0.537 6 0 0 independent auditor 0.412 8 0 0
treasury stock 0.577 5 0 0 covenant 0.421 8 0 0
clip 0.564 5 0 0 regain 0.430 8 0 0
potent 0.563 5 0 1 worse 0.436 8 1 1
tanker 0.557 5 0 0 irregularity 0.437 8 1 1
bought 0.549 5 0 0 revenue recognition 0.441 8 0 0
troop 0.544 5 0 0 financial covenant 0.405 7 0 0
unregulated 0.539 5 0 0 delay 0.423 7 1 1
definitive proxy 0.538 5 0 0 allotment 0.428 7 0 0
testament 0.533 5 0 0 base compensation 0.431 7 0 0
gratify 0.532 5 0 1 parenthesis 0.434 7 0 0
accretion 0.531 5 0 0 soften 0.435 7 0 0
post split 0.619 4 0 0 compute basic 0.436 7 0 0
horizon 0.588 4 0 0 web front 0.437 7 0 0

Note: The table shows the list of top 50 phrases (including words) with positive and negative sentiment based on
screening from the 17 training and validation samples. These 50 phrases are selected by first sorting on the number of
samples (out of 17) in which the phrase was selected, and then sorting on their average sentiment score. A label 1 in
Columns “LM” or “HIV” indicates this phrase also appears in the LM or Harvard-IV dictionaries.
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