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Activity-dependent persistent changes in neuronal intrinsic excitability and synaptic
strength are widely thought to underlie learning and memory. Voltage-gated KCNQ/K,7
potassium channels have been of great interest as the potential targets for memory
disorders due to the beneficial effects of their antagonists in cognition. Importantly, de
novo dominant mutations in their neuronal subunits KCNQ2/K, 7.2 and KCNQS3/K, 7.3 are
associated with epilepsy and neurodevelopmental disorder characterized by developmental
delay and intellectual disability. The role of K, 7 channels in neuronal excitability and epilepsy
has been extensively studied. However, their functional significance in neural plasticity,
learning, and memory remains largely unknown. Here, we review recent studies that
support the emerging roles of K,7 channels in intrinsic and synaptic plasticity, and their
contributions to cognition and behavior.

Keywords: KCNQ channel, K,7, intrinsic excitability, synaptic transmission, neural plasticity, learning,
memory, behavior

INTRODUCTION

Voltage-gate channel potassium (K*) subfamily Q member 1-5 (KCNQ 1-5) encodes K,7.1-K/7.5
channels (Gutman et al., 2005) that are critical regulators of excitability in neurons, muscles,
and sensory cells (Soldovieri et al., 2011). All K7 subunits have six transmembrane segments
(S1-S6; Robbins, 2001). The S1-S4 comprise a voltage-sensing domain with the S4 being the
main voltage-sensor (Robbins, 2001). The pore domain consists of the S5-S6 flanking the
pore loop important for K* ion selectivity (Sun and MacKinnon, 2017). The gate is formed
by the intersection of four S6 segments (Cui, 2016; Sun and MacKinnon, 2017). Upon
depolarization, the electric field on the basic residues of S4 promotes its translational rotation
and outward displacement, which leads to the opening of the gate (Cui, 2016; Sun and
MacKinnon, 2017). All K7 channels require phosphatidylinositol-4,5-bisphosphate (PIP,) in
the plasma membrane for channel opening (Zhang et al., 2003; Suh and Hille, 2008; Zaydman
and Cui, 2014), and PIP, is proposed to couple the voltage-sensing domain to the pore
domain in K,7.1 (Zaydman et al., 2013; Sun and MacKinnon, 2020). Each K7 subunit also
has a short intracellular N-terminal domain and a long intracellular C-terminal tail that
harbors four helices (helices A-D; Haitin and Attali, 2008). Helices A and B bind to calmodulin
(CaM; Strulovich et al, 2016; Sun and MacKinnon, 2017), whereas helices C-D mediate
subunit assembly (Haitin and Attali, 2008).

In neurons, K7 channels open at subthreshold potentials around —60 mV and produce
slowly-activating and non-inactivating outward K* currents that potently suppress repetitive and
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burst firing of action potentials (APs; Brown and Passmore, 2009).
Their functional significance in inhibiting neuronal excitability
is underscored by the fact that mutations in their subunits
cause epilepsy (Nappi et al., 2020), whereas K,7 agonist retigabine
inhibits seizures in rodents and humans (Miceli et al., 2008).
Importantly, emerging new evidence suggests that K,7 channels
may contribute to activity-dependent persistent changes in
neuronal intrinsic excitability and synaptic strength that are
widely thought to underlie learning and memory. This review
will summarize the function of K7 channels in the hippocampus
and discuss recent studies that investigate their contributions
to hippocampal plasticity, cognition, and behavior.

BRAIN DISTRIBUTION OF K7
SUBUNITS AND THEIR
CHANNELOPATHIES

K7.2, K7.3, and K7.5 are the major neuronal K,7 subunits
(Table 1). K,7.2 and K;7.3 show strong overlapping expression
in the cerebral cortex, hippocampal formation, amygdala, basal
ganglia, and hypothalamus (Wang et al., 1998; Cooper et al,
2001; Klinger et al., 2011). K,7.5 is highly expressed in the
brain stem and to less extent in the cerebral cortex, hippocampus,
occipital, frontal, and temporal lobes (Lerche et al, 2000;
Schroeder et al., 2000; Tzingounis et al., 2010; Fidzinski et al.,
2015). While K/7.1 and K,7.4 are mainly found in the heart
and cochlear hair cells, respectively (Wang et al, 1996;
Kubisch et al, 1999), they are also detected at low level in

multiple regions of the brain (Casimiro et al, 2001;
Hansen et al., 2006; Goldman et al., 2009; Su et al., 2019; Table 1).

Importantly, >300 dominant mutations in KCNQ2 and
KCNQ3 cause epilepsy including benign familial neonatal
epilepsy (BFNE) and epileptic encephalopathy (EE; Rikee and
ClinVar database). KCNQ2 is the second most frequently
mutated gene in neurodevelopmental disorder (Traynelis et al.,
2017; Coe et al., 2019) characterized by cognitive and behavioral
deficits (Mullin et al, 2013). A few mutations in KCNQI,
KCNQ4, and KCNQS5 have been associated with epilepsy,
autism, schizophrenia, and developmental disorder (Table 1).
Haploinsufficiency in K,7 function seems to underlie BFNE
variants that cause the transient appearance of neonatal seizures
(Soldovieri et al., 2011). EE patients display severe and often
drug-resistant neonatal seizures and psychomotor retardation
(Weckhuysen et al., 2012), and de novo EE mutations in
KCNQ2 and KCNQ3 induce multiple defects in current and
surface expression of K7 channels (Weckhuysen et al., 2012,
2013; Milh et al., 2013; Miceli et al., 2015; Kim et al., 2018;
Zhang et al., 2020).

GENERAL PROPERTIES AND
REGULATION OF K,7 CURRENTS

K,7.1 assembles with auxiliary B subunit KCNE1 to produce
the slow delayed rectifier K* current (I,) important for the
repolarization of cardiac APs (Barhanin et al, 1996).
Importantly, coassembly with KCNEI slows the activation

TABLE 1 | Distribution of K,7 subunit in the brain and the diseases associated with its pathogenic variants.

Distribution in the brain

Pathogenic variants

Gene Protein Primary location
Regions Reference Associated diseases Reference
KCNQ1 K,7.1 Heart CTX, HPF, MB, CB, BS Casimiro et al., 2001; Goldman Long QT syndrome 1, JLNS, ClinVar, LOVD, denovo-db
et al., 2009. AIBS, THPA familial atrial fibrillation
epilepsy, SUDEP, ASD,
developmental disorder
KCNQ2 K.,7.2  Nervous system CTX, HPF, A, HY, TH, OA, Wang et al., 1998; Cooper et al., BFNE, EE, ASD, intellectual ~ ClinVar, RIKEE, denovo-db
MD, SN, P, MY, CB 2001; Devaux et al., 2004; disability, developmental
Klinger et al., 2011; D’Este et al.,  disorder, sporadic infantile
2016; Galvin et al., 2020. AIBS, spasm syndrome
THPA
KCNQ3 K,7.3  Nervous system CTX, HPF, A, HY, TH, OA, Wang et al., 1998; Devaux et al., BFNE, EE, ASD, intellectual  ClinVar, RIKEE, denovo-db
MD, SN, P, MY, CB 2004; Klinger et al., 2011; Galvin  disability, developmental
et al,, 2020. AIBS, THPA disorder
KCNQ4 K,7.4  Inner ear BS, OA, MD, RN, NA, MY, Hansen et al., 2006; Su et al., DFNA2, ASD ClinVar, denovo-db
VTA, P 2019. AIBS, THPA
KCNQ5 K.,7.5  Nervous system CTX, HPF, BS, CB Lerche et al., 2000; Schroeder EE, ASD, intellectual ClinVar, RIKEE, denovo-db

et al., 2000; Tzingounis et al.,

disability, schizophrenia

2010; Fidzinski et al., 2015;
Galvin et al., 2020. AIBS, THPA

Brain regions: CTX, cortex; OA, olfactory areas; HPF, hippocampal formation; A, amygdala; NA, nucleus accumbens; BS, brain stem; TH, thalamus, HY, hypothalamus; MB,
midbrain; RN, raphe nuclei; SN, substantia nigra; VTA, ventral tegmental area; PAL, pallidum; HB, hindbrain; CB, cerebellum; F, pons; MY, medulla. K,7 channelopathies: JLNS,
Jervell and Lange-Nielsen syndrome; SUDER, sudden unexpected death in epilepsy; BFNE, benign familial neonatal epilepsy; EE, epileptic encephalopathy; ASD, autism spectrum
disorder; DFNA2, nonsyndromic sensorineural deafness type 2. Database website: Allen Institute for Brain Science (AIBS, https.//alleninstitute.org/what-we-do/brain-science/), The
Human Protein Atlas (THPA, https://www.proteinatlas.org/), ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), Leiden Open Variation Database (LOVD, https.//research.cchmc.org/
LOVD2/home.php), denovo-db (http://denovo-db.gs.washington.edu/denovo-db/index.jsp), and Rational Intervention for KCNQ2/3 Epileptic Encephalopathy (RIKEE, https.//www.

rikee.org/).
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kinetics of K,7.1 channel, potentiates its current amplitude,
and eliminates its voltage-dependent inactivation (Barhanin
et al, 1996; Sanguinetti et al, 1996; Tristani-Firouzi and
Sanguinetti, 1998). Homomeric K,7.2 channels activate at
—60 mV and produce slow-activating and non-inactivating
currents (Biervert et al., 1998). In comparison, currents through
K,7.3 channels are negligible due to an Ala residue in the
pore domain (Wang et al.,, 1998; Gomez-Posada et al., 2010).
K,7.5 activates at —60 mV with slower kinetics than K,7.2
and K,7.3 (Schroeder et al., 2000; Gamper et al., 2003). K,7.4
activates at —40 mV with slower activation kinetics than
other K,7 channels (Kubisch et al., 1999).

Neuronal K,7 channels are mostly heterotetrameric channels
composed of K,7.2 and K;7.3, and to a lesser extent K,7.3 and
K,7.5 (Wang et al., 1998; Shah et al., 2002; Table 1). Compared
to homomeric channels, significantly larger currents are generated
by K7.2/K,7.3 channels (Schroeder et al., 1998; Wang et al,
1998; Schwake et al., 2000) and K,7.3/K,7.5 channels (Schroeder
et al., 2000; Gilling et al., 2013). K,7.2/K,7.3 channels produce
M-current (I,; Wang et al., 1998), which potently suppresses
neuronal hyperexcitability (Wang et al., 1998; Yue and Yaari,
2004). Iy is inhibited by muscarinic acetylcholine receptor
activation (Selyanko et al., 2000) and the depletion of PIP,
(Suh and Hille, 2002; Zhang et al., 2003). K,7 channels are
also inhibited by other G-protein coupled receptors, including
substance P, bradykinin, serotonin, angiotensin, luteinizing
hormone-releasing hormone, opioid, and metabotropic glutamate
receptors (Marrion, 1997). General properties and diverse
regulation of K,7 channels are described in detail in a previous
review (Soldovieri et al., 2011).

ROLE OF K,7 CHANNELS IN INTRINSIC
EXCITABILITY AND PLASTICITY IN THE
HIPPOCAMPUS

Brown and Adams have first reported in 1980 that inhibition
of Iy upon stimulation of muscarinic acetylcholine receptor
results in repetitive firing of APs in bullfrog sympathetic
ganglion neurons (Brown and Adams, 1980). In the hippocampus,
strong expression of K7.2, K7.3, and K7.5 is detected in
pyramidal neurons (Schroeder et al., 2000; Cooper et al., 2001;
Devaux et al, 2004). K,7 antagonists XE991 and linopirdine
depolarize resting membrane potential (RMP) and reduce AP
threshold of hippocampal CA1 pyramidal neurons, resulting
in spontaneous AP firing (Aiken et al, 1995; Shah et al,
2008; Figure 1A). K7 antagonists also increase intrinsic
excitability (Yue and Yaari, 2004, 2006; Shah et al, 2008),
contribute to medium and slow afterhyperpolarization (AHP)
currents (Gu et al., 2005), reduce spike frequency adaptation
(Aiken et al, 1995), and ultimately lead to an increased AP
firing rate (Lezmy et al, 2020; Figure 1A). Consistent with
pharmacologic inhibition, suppression of K7 current by
overexpressing K,7.2 containing dominant-negative pore mutation
G279S enhances intrinsic excitability and reduces spike frequency
adaptation and mAHP in CAl neurons (Peters et al., 2005).
Similarly, conditional homozygous deletion of KCNQ2 increases

CAL excitability due to longer-lasting spike afterdepolarization
(ADP) and reduced medium AHP (Soh et al., 2014; Figure 1A).
Thus, K,7 channels serve as critical “brakes” on neuronal
excitability (Soldovieri et al., 2011).

The inhibitory effects of K,7 currents on neuronal excitability
are largely attributed to axonal K7 channels. K,7.2/K,7.3 channels
are preferentially enriched at the axonal plasma membrane
compared to the somatodendritic plasma membrane in
hippocampal neurons (Chung et al., 2006) with the highest
concentration at the axonal initial segments (AIS; Chung et al.,
2006; Pan et al., 2006) where AP initiates (Clark et al., 2009).
CaM binding to K,7.2 is critical for targeting K,7.2/K,7.3 channels
to the axonal surface (Cavaretta et al., 2014), whereas disruption
of this binding decreases I and increases hippocampal neuronal
excitability (Shahidullah et al., 2005). Furthermore, disrupting
the enrichment of K7 channels at the AIS by blocking their
interaction with ankyrin-G results in spontaneous firing of
CA1 neurons by depolarizing RMP and reducing AP threshold
(Shah et al., 2008).

In contrast to the well-documented function of axonal
K.7 channels discussed above, the existence and role of
dendritic K7 channels are still in debate. Non-inactivating
K,7 current sensitive to muscarinic agonist is detected in
the distal apical dendrites of CAl neurons (Chen and
Johnston, 2004). Dendritic K,7 current can increase the
threshold for initiating calcium (Ca*") spikes and induce
spike bursts only in hyperexcitable conditions that promote
Ca* electrogenesis in these dendrites (Yue and Yaari, 2006).
However, XE991 and linopirdine do not affect input resistance
of CAl dendrites (Shah et al., 2008), and focal inhibition
of dendritic I; has no effect on the excitatory postsynaptic
potential (EPSP) summation and excitability of CA1 neuron
(Hu et al., 2007), indicating very low level of dendritic
K,7 current.

There is accumulating evidence for activity-dependent
modulation of K7 channels and their contribution to persistent
changes in intrinsic excitability termed “intrinsic plasticity.”
In the pilocarpine model of temporal lobe epilepsy, reduced
K,7 function and expression may contribute to muscarinic-
dependent ictogenesis (Maslarova et al., 2013). However,
acute induction of seizures increases KCNQ2 and KCNQ3
transcripts in the hippocampi as a homeostatic response to
suppress neuronal hyperexcitability, and this regulation
requires activation of L-type voltage-gated Ca** channels
(Zhang and Shapiro, 2012). Enhancing neuronal activity by
K.7 inhibition with XE991 also results in homeostatic
suppression of firing rate over 48 h (Lezmy et al., 2020).
In contrast, prolonged blockade of neuronal activity or
N-methyl-D-aspartate (NMDA) receptors increases firing
rate and reduces in KCNQ3 transcript and K,7 current in
hippocampal neurons (Lee and Chung, 2014; Lee et al.,
2015). In the avian cochlear neurons, depriving afferent
inputs induces a switch from fast activating K1 to slow
activating K,7.2 channels at the AIS, resulting in enhanced
excitability (Kuba et al, 2015). This activity-dependent
regulation of K,7 transcript and distribution offers a powerful
means to control intrinsic excitability.
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FIGURE 1 | The role of K,7 channels in hippocampal neurons, memory, and behavior. (A) Function of K,7 channels in excitatory pyramidal neuron and GABAergic
inhibitory neuron in the hippocampus. AP, action potential; RMP, resting membrane potential; EPSP, excitatory postsynaptic potential; ADP, afterdepolarization;
mAHP, medium afterhyperpolarization; sAHP, slow afterhyperpolarization; SEPSC, spontaneous excitatory postsynaptic current; mEPSC, miniature excitatory
postsynaptic current; PPF, paired-pulse facilitation; LTP, long-term potential; sIPSC, spontaneous inhibitory postsynaptic current; PV, parvalbumin; and eEPSC,
evoked excitatory postsynaptic current. (B) Effects of pharmacological or genetic inhibition of K,7 channels on memory and behavior. HP, hippocampus; PFC,

pre-frontal cortex; AMPH, amphetamine; and EPM, elevated plus maze.
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ROLE OF K,7 CHANNELS IN SYNAPTIC
TRANSMISSION AND PLASTICITY IN
THE HIPPOCAMPUS

Since the discovery of long-term potentiation (LTP) in the
dentate gyrus of the hippocampus (Bliss and Lomo, 1973),
persistent modification in synaptic strength termed “synaptic
plasticity” has attracted significant attention as the cellular
correlate of learning and memory (Nicoll, 2017). LTP at excitatory
synapses can exert destabilizing influence on neural circuits
by generating unconstrained synaptic strengthening (Turrigiano,
2012). Homeostatic plasticity counteracts such destabilizing
condition by allowing neurons to adjust their synaptic strength
(Turrigiano, 2012). While activity-dependent modulation of
glutamate release and glutamate receptors serves as key
mechanisms for LTP expression (Turrigiano, 2012; Humeau
and Choquet, 2019), K,7 channels and upstream muscarinic
acetylcholine receptors have emerged as important regulators
of excitatory synaptic transmission and plasticity.

Synaptic functions of K7 channels have been extensively
studied at the excitatory synapses formed by hippocampal CA1
and CA3 pyramidal neurons (Figure 1A). These neurons show

strong expression of K,7.2 and K7.3 (Cooper et al., 2001;
Pan et al., 2006). Conditional deletion of KCNQ2 and KCNQ3
increases the frequency of spontaneous excitatory postsynaptic
currents (EPSC) in CAl neurons (Soh et al., 2018), suggesting
enhanced presynaptic release at CA1-CA3 synapses. Consistent
with this notion, application of K,7 antagonist XE991 increases
whereas K7 agonist Flupirtine decreases miniature EPSC
frequency in CA1 neurons (Sun and Kapur, 2012). Furthermore,
K7 inhibition with linopirdine and XE991 treatment also
increases neurotransmitter release (Nickolson et al., 1990; Martire
et al., 2004; Peretz et al., 2007). While K,7 current restrains
AP-evoked Ca** influx into the presynaptic terminal and decreases
the paired pulse ratio of evoked EPSCs at the mossy fiber—-CA3
synapses (Martinello et al., 2019), paired pulse facilitation of
EPSP is higher at CA1-CA3 synapses in XE991-treated mice
(Fontan-Lozano et al, 2011), suggesting differential roles of
K,7 channels in short-term plasticity at two different synapses.

K7.2 and K,7.3 are expressed in GABAergic neurons including
parvalbumin (PV)- and somatostatin (SST)-positive interneurons
in the hippocampus (Cooper et al.,, 2001; Lawrence et al., 2006).
Application of XE991 abolishes I;, depolarizes RMP, and increases
AP firing in SST+ interneurons (Lawrence et al, 2006) and
enhances intrinsic  excitability —of PV+  interneurons
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(Soh et al,, 2018; Figure 1A). Furthermore, conditional deletion
of KCNQ2 and KCNQ3 from PV+ interneurons increases their
firing and spontaneous inhibitory postsynaptic current (sIPSC)
frequency of CAl neurons in the hippocampus (Soh et al., 2018).

These studies highlight the presynaptic influence of K7
channels at glutamatergic and GABAergic synapses. Given that
increased firing rate and burst firing can enhance neurotransmitter
release probabilities (Hansen et al., 2008), K7 inhibition may
increase neurotransmitter release as a consequence of increased
axonal excitability (Devaux et al., 2004; Shah et al., 2008; Klinger
et al,, 2011). Indeed, when CA3 neurons are depolarized upon
elevating extracellular K* concentration, XE991 enhances EPSP
amplitude in CA1 neurons as a consequence of increasing spike
ADP and burst firing of CA3 neurons (Vervaeke et al., 2006).
Alternatively, K,7 channels at the presynaptic terminals (Cooper
et al., 2001; Martire et al., 2004; Regev et al., 2009) may directly
counteract the depolarization of the presynaptic membrane
necessary for synaptic vesicle fusion and neurotransmitter release.

The postsynaptic role of K7 channels is unclear. A recent
electron microscopy study shows that K,7.2, K,7.3, and K/7.5
colocalize with muscarinic acetylcholine receptors at dendritic
spines in layer IIT pyramidal neurons of the primate prefrontal
cortex (Galvin et al, 2020), although the specificity of the
immunolabeling needs to be further validated. In the CA1-CA3
synapses, the mEPSC amplitude is unaltered by agonist nor
antagonists of K;7 channels (Sun and Kapur, 2012), suggesting
their negligible role in regulating postsynaptic glutamate receptor
function at this synapse (Figure 1A).

Nonetheless, accumulating evidence suggests that K7 channels
regulate hippocampal synaptic plasticity. At CA1-CA3 synapses,
XE991 induces LTP by subthreshold theta-burst stimulation
(Petrovic et al., 2012). Systemic administration of XE991 also
decreases the threshold for LTP induction in the hippocampal
CA1 area in vivo without affecting the field EPSP amplitude
(Song et al., 2009; Fontan-Lozano et al., 2011). Lastly, homeostatic
increase in excitatory synaptic transmission in CAl neurons
has been observed upon conditional deletion of KCNQ2 and
KCNQ3 from GABAergic interneurons (Soh et al, 2018),
suggesting the contribution of K,7 channels in synaptic scaling.

ROLE OF K,7 CHANNELS IN
HIPPOCAMPUS-DEPENDENT LEARNING
AND MEMORY

Hippocampal LTP occurs during hippocampus-dependent
learning and memory (Bliss et al, 2018) and its reduction is
linked to memory loss in mouse models of Alzheimer’s disease
(Mango et al.,, 2019). Facilitation of LTP induction by XE991
(Song et al., 2009; Fontan-Lozano et al., 2011; Petrovic et al,,
2012) suggests that pharmacologic K,7 inhibition may enhance
learning and memory. Indeed, linopirdine enhances the
performance of rats in a hippocampus-dependent active avoidance
test (Cook et al, 1990). XE991 improves memory in object
recognition task in wild-type mice and mouse models of dementia
induced by cholinergic depletion and neurodegeneration (Fontan-
Lozano et al., 2011; Ballinger et al., 2016; Dennis et al., 2016)

despite its ability to induce seizures at a higher dose
(Fontan-Lozano et al, 2011; Figure 1B). In contrast, K7
agonists have yielded mixed results on affecting memory in
rodents (Li et al.,, 2014; Frankel et al., 2016).

The cognition-enhancing effect of linopirdine is correlated
with the increased release of acetylcholine in the hippocampus
(Nickolson et al., 1990; Fontana et al., 1994), and stimulation
of muscarinic acetylcholine receptor inhibits I, in hippocampal
neurons (Shah et al, 2002). Consistently, muscarinic agonist
improves whereas anticholinergic agent scopolamine impairs
performance in hippocampus-dependent memory tasks (Fontana
et al.,, 1994; Fontan-Lozano et al., 2011). Muscarinic acetylcholine
receptors in the prefrontal cortex also modulate working memory
in primates via K7 channels (Galvin et al, 2020). Since
cholinergic depletion and dysfunction in the hippocampus and
prefrontal cortex are implicated in age-related cognitive decline
and Alzheimer’s disease (Ballinger et al., 2016; Haam and Yakel,
2017), these studies support the therapeutic potential for K7
antagonists as cognitive enhancers.

Surprisingly, genetic inhibition or reduction of K,7 currents
induces an opposite effect on memory (Figure 1B). Deficits
in hippocampal-dependent spatial memory and spontaneous
seizures are observed in mice with conditional transgenic
expression of dominant-negative mutant K,7.2-G279S (Peters
etal., 2005) and heterozygous knock-in mice for K,7.2 containing
epileptic encephalopathy loss-of-function variant T274M (Milh
et al, 2020). Considering that K7 channels are critical for
development and inhibition of neonatal brain (Peters et al.,
2005; Soh et al., 2014), the memory impairment in these genetic
models could be attributed to abnormal hippocampal morphology
and/or hyperexcitability (Peters et al., 2005; Milh et al., 2020).

K7 channels also regulate multiple behaviors (Figure 1B).
Behavioral phenotyping of the global or conditional homozygous
KCNQ2 knock-out mice has not been possible due to their
early postnatal lethality or premature death, respectively
(Watanabe et al., 2000; Soh et al., 2014). However, heterozygous
KCNQ2 knock-out mice are viable and display increased
locomotor activity and exploratory behavior (Kim et al., 2020),
consistent with behavioral hyperactivity induced by transgenic
suppression of K,7 currents (Peters et al., 2005) and amphetamine
and XE991 (Sotty et al., 2009). These mice also show decreased
sociability and increased repetitive and compulsive behavior
(Kim et al., 2020), reminiscent of autism seen in some EE
patients with dominant KCNQ2 mutations (Weckhuysen et al.,
2012, 2013; Milh et al., 2013). However, the precise circuitries
responsible for these abnormal behaviors remain unknown.

FUTURE PERSPECTIVES

The studies discussed in this review support the emerging
concept that K7 channels contribute to neural plasticity, memory,
and behavior. However, there is a significant knowledge gap
in our understanding of the underlying molecular and cellular
mechanisms. Future studies should continue to investigate
structure-function and subcellular targeting of K7 channels,
which will provide mechanistic insights for developing specific
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modulators of their function and trafficking. Generation of
mouse models in which deletion of a K7 subunit from specific
neurons and subcellular localization with temporal control will
be critical to delineate cell- and circuit-specific function of
K7 channels in neural plasticity, cognition, and behavior.
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