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Activity-dependent persistent changes in neuronal intrinsic excitability and synaptic 
strength are widely thought to underlie learning and memory. Voltage-gated KCNQ/Kv7 
potassium channels have been of great interest as the potential targets for memory 
disorders due to the beneficial effects of their antagonists in cognition. Importantly, de 
novo dominant mutations in their neuronal subunits KCNQ2/Kv7.2 and KCNQ3/Kv7.3 are 
associated with epilepsy and neurodevelopmental disorder characterized by developmental 
delay and intellectual disability. The role of Kv7 channels in neuronal excitability and epilepsy 
has been extensively studied. However, their functional significance in neural plasticity, 
learning, and memory remains largely unknown. Here, we review recent studies that 
support the emerging roles of Kv7 channels in intrinsic and synaptic plasticity, and their 
contributions to cognition and behavior.

Keywords: KCNQ channel, Kv7, intrinsic excitability, synaptic transmission, neural plasticity, learning, 
memory, behavior

INTRODUCTION

Voltage-gate channel potassium (K+) subfamily Q member 1–5 (KCNQ 1–5) encodes Kv7.1–Kv7.5 
channels (Gutman et  al., 2005) that are critical regulators of excitability in neurons, muscles, 
and sensory cells (Soldovieri et  al., 2011). All Kv7 subunits have six transmembrane segments 
(S1–S6; Robbins, 2001). The S1–S4 comprise a voltage-sensing domain with the S4 being the 
main voltage-sensor (Robbins, 2001). The pore domain consists of the S5-S6 flanking the 
pore loop important for K+ ion selectivity (Sun and MacKinnon, 2017). The gate is formed 
by the intersection of four S6 segments (Cui, 2016; Sun and MacKinnon, 2017). Upon 
depolarization, the electric field on the basic residues of S4 promotes its translational rotation 
and outward displacement, which leads to the opening of the gate (Cui, 2016; Sun and 
MacKinnon, 2017). All Kv7 channels require phosphatidylinositol-4,5-bisphosphate (PIP2) in 
the plasma membrane for channel opening (Zhang et  al., 2003; Suh and Hille, 2008; Zaydman 
and Cui, 2014), and PIP2 is proposed to couple the voltage-sensing domain to the pore 
domain in Kv7.1 (Zaydman et  al., 2013; Sun and MacKinnon, 2020). Each Kv7 subunit also 
has a short intracellular N-terminal domain and a long intracellular C-terminal tail that 
harbors four helices (helices A–D; Haitin and Attali, 2008). Helices A and B bind to calmodulin 
(CaM; Strulovich et  al., 2016; Sun and MacKinnon, 2017), whereas helices C–D mediate 
subunit assembly (Haitin and Attali, 2008).

In neurons, Kv7 channels open at subthreshold potentials around −60  mV and produce 
slowly-activating and non-inactivating outward K+ currents that potently suppress repetitive and 
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TABLE 1  |  Distribution of Kv7 subunit in the brain and the diseases associated with its pathogenic variants.

Gene Protein Primary location
Distribution in the brain Pathogenic variants

  Regions Reference Associated diseases Reference

KCNQ1 Kv7.1 Heart CTX, HPF, MB, CB, BS Casimiro et al., 2001; Goldman 
et al., 2009. AIBS, THPA

Long QT syndrome 1, JLNS, 
familial atrial fibrillation 
epilepsy, SUDEP, ASD, 
developmental disorder

ClinVar, LOVD, denovo-db

KCNQ2 Kv7.2 Nervous system CTX, HPF, A, HY, TH, OA, 
MD, SN, P, MY, CB

Wang et al., 1998; Cooper et al., 
2001; Devaux et al., 2004; 
Klinger et al., 2011; D’Este et al., 
2016; Galvin et al., 2020. AIBS, 
THPA

BFNE, EE, ASD, intellectual 
disability, developmental 
disorder, sporadic infantile 
spasm syndrome

ClinVar, RIKEE, denovo-db

KCNQ3 Kv7.3 Nervous system CTX, HPF, A, HY, TH, OA, 
MD, SN, P, MY, CB

Wang et al., 1998; Devaux et al., 
2004; Klinger et al., 2011; Galvin 
et al., 2020. AIBS, THPA

BFNE, EE, ASD, intellectual 
disability, developmental 
disorder

ClinVar, RIKEE, denovo-db

KCNQ4 Kv7.4 Inner ear BS, OA, MD, RN, NA, MY, 
VTA, P

Hansen et al., 2006; Su et al., 
2019. AIBS, THPA

DFNA2, ASD ClinVar, denovo-db

KCNQ5 Kv7.5 Nervous system CTX, HPF, BS, CB Lerche et al., 2000; Schroeder 
et al., 2000; Tzingounis et al., 
2010; Fidzinski et al., 2015; 
Galvin et al., 2020. AIBS, THPA

EE, ASD, intellectual 
disability, schizophrenia

ClinVar, RIKEE, denovo-db

Brain regions: CTX, cortex; OA, olfactory areas; HPF, hippocampal formation; A, amygdala; NA, nucleus accumbens; BS, brain stem; TH, thalamus; HY, hypothalamus; MB, 
midbrain; RN, raphe nuclei; SN, substantia nigra; VTA, ventral tegmental area; PAL, pallidum; HB, hindbrain; CB, cerebellum; P, pons; MY, medulla. Kv7 channelopathies: JLNS, 
Jervell and Lange-Nielsen syndrome; SUDEP, sudden unexpected death in epilepsy; BFNE, benign familial neonatal epilepsy; EE, epileptic encephalopathy; ASD, autism spectrum 
disorder; DFNA2, nonsyndromic sensorineural deafness type 2. Database website: Allen Institute for Brain Science (AIBS, https://alleninstitute.org/what-we-do/brain-science/), The 
Human Protein Atlas (THPA, https://www.proteinatlas.org/), ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), Leiden Open Variation Database (LOVD, https://research.cchmc.org/
LOVD2/home.php), denovo-db (http://denovo-db.gs.washington.edu/denovo-db/index.jsp), and Rational Intervention for KCNQ2/3 Epileptic Encephalopathy (RIKEE, https://www.
rikee.org/).

burst firing of action potentials (APs; Brown and Passmore, 2009). 
Their functional significance in inhibiting neuronal excitability 
is underscored by the fact that mutations in their subunits 
cause epilepsy (Nappi et al., 2020), whereas Kv7 agonist retigabine 
inhibits seizures in rodents and humans (Miceli et  al., 2008). 
Importantly, emerging new evidence suggests that Kv7 channels 
may contribute to activity-dependent persistent changes in 
neuronal intrinsic excitability and synaptic strength that are 
widely thought to underlie learning and memory. This review 
will summarize the function of Kv7 channels in the hippocampus 
and discuss recent studies that investigate their contributions 
to hippocampal plasticity, cognition, and behavior.

BRAIN DISTRIBUTION OF KV7 
SUBUNITS AND THEIR 
CHANNELOPATHIES

Kv7.2, Kv7.3, and Kv7.5 are the major neuronal Kv7 subunits 
(Table  1). Kv7.2 and Kv7.3 show strong overlapping expression 
in the cerebral cortex, hippocampal formation, amygdala, basal 
ganglia, and hypothalamus (Wang et  al., 1998; Cooper et  al., 
2001; Klinger et  al., 2011). Kv7.5 is highly expressed in the 
brain stem and to less extent in the cerebral cortex, hippocampus, 
occipital, frontal, and temporal lobes (Lerche et  al., 2000; 
Schroeder et  al., 2000; Tzingounis et  al., 2010; Fidzinski et  al., 
2015). While Kv7.1 and Kv7.4 are mainly found in the heart 
and cochlear hair cells, respectively (Wang et  al., 1996; 
Kubisch et  al., 1999), they are also detected at low level in 

multiple regions of the brain (Casimiro et  al., 2001; 
Hansen et al., 2006; Goldman et al., 2009; Su et al., 2019; Table 1).

Importantly, >300 dominant mutations in KCNQ2 and 
KCNQ3 cause epilepsy including benign familial neonatal 
epilepsy (BFNE) and epileptic encephalopathy (EE; Rikee and 
ClinVar database). KCNQ2 is the second most frequently 
mutated gene in neurodevelopmental disorder (Traynelis et al., 
2017; Coe et al., 2019) characterized by cognitive and behavioral 
deficits (Mullin et  al., 2013). A few mutations in KCNQ1, 
KCNQ4, and KCNQ5 have been associated with epilepsy, 
autism, schizophrenia, and developmental disorder (Table  1). 
Haploinsufficiency in Kv7 function seems to underlie BFNE 
variants that cause the transient appearance of neonatal seizures 
(Soldovieri et  al., 2011). EE patients display severe and often 
drug-resistant neonatal seizures and psychomotor retardation 
(Weckhuysen et  al., 2012), and de novo EE mutations in 
KCNQ2 and KCNQ3 induce multiple defects in current and 
surface expression of Kv7 channels (Weckhuysen et  al., 2012, 
2013; Milh et  al., 2013; Miceli et  al., 2015; Kim et  al., 2018; 
Zhang et  al., 2020).

GENERAL PROPERTIES AND 
REGULATION OF KV7 CURRENTS

Kv7.1 assembles with auxiliary β subunit KCNE1 to produce 
the slow delayed rectifier K+ current (IKs) important for the 
repolarization of cardiac APs (Barhanin et  al., 1996). 
Importantly, coassembly with KCNE1 slows the activation 
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kinetics of Kv7.1 channel, potentiates its current amplitude, 
and eliminates its voltage-dependent inactivation (Barhanin 
et  al., 1996; Sanguinetti et  al., 1996; Tristani-Firouzi and 
Sanguinetti, 1998). Homomeric Kv7.2 channels activate at 
−60  mV and produce slow-activating and non-inactivating 
currents (Biervert et al., 1998). In comparison, currents through 
Kv7.3 channels are negligible due to an Ala residue in the 
pore domain (Wang et  al., 1998; Gomez-Posada et  al., 2010). 
Kv7.5 activates at −60  mV with slower kinetics than Kv7.2 
and Kv7.3 (Schroeder et  al., 2000; Gamper et  al., 2003). Kv7.4 
activates at −40  mV with slower activation kinetics than 
other Kv7 channels (Kubisch et  al., 1999).

Neuronal Kv7 channels are mostly heterotetrameric channels 
composed of Kv7.2 and Kv7.3, and to a lesser extent Kv7.3 and 
Kv7.5 (Wang et al., 1998; Shah et al., 2002; Table 1). Compared 
to homomeric channels, significantly larger currents are generated 
by Kv7.2/Kv7.3 channels (Schroeder et  al., 1998; Wang et  al., 
1998; Schwake et al., 2000) and Kv7.3/Kv7.5 channels (Schroeder 
et  al., 2000; Gilling et  al., 2013). Kv7.2/Kv7.3 channels produce 
M-current (IM; Wang et  al., 1998), which potently suppresses 
neuronal hyperexcitability (Wang et  al., 1998; Yue and Yaari, 
2004). IM is inhibited by muscarinic acetylcholine receptor 
activation (Selyanko et  al., 2000) and the depletion of PIP2 
(Suh and Hille, 2002; Zhang et  al., 2003). Kv7 channels are 
also inhibited by other G-protein coupled receptors, including 
substance P, bradykinin, serotonin, angiotensin, luteinizing 
hormone-releasing hormone, opioid, and metabotropic glutamate 
receptors (Marrion, 1997). General properties and diverse 
regulation of Kv7 channels are described in detail in a previous 
review (Soldovieri et  al., 2011).

ROLE OF KV7 CHANNELS IN INTRINSIC 
EXCITABILITY AND PLASTICITY IN THE 
HIPPOCAMPUS

Brown and Adams have first reported in 1980 that inhibition 
of IM upon stimulation of muscarinic acetylcholine receptor 
results in repetitive firing of APs in bullfrog sympathetic 
ganglion neurons (Brown and Adams, 1980). In the hippocampus, 
strong expression of Kv7.2, Kv7.3, and Kv7.5 is detected in 
pyramidal neurons (Schroeder et al., 2000; Cooper et al., 2001; 
Devaux et  al., 2004). Kv7 antagonists XE991 and linopirdine 
depolarize resting membrane potential (RMP) and reduce AP 
threshold of hippocampal CA1 pyramidal neurons, resulting 
in spontaneous AP firing (Aiken et  al., 1995; Shah et  al., 
2008; Figure  1A). Kv7 antagonists also increase intrinsic 
excitability (Yue and Yaari, 2004, 2006; Shah et  al., 2008), 
contribute to medium and slow afterhyperpolarization (AHP) 
currents (Gu et  al., 2005), reduce spike frequency adaptation 
(Aiken et  al., 1995), and ultimately lead to an increased AP 
firing rate (Lezmy et  al., 2020; Figure  1A). Consistent with 
pharmacologic inhibition, suppression of Kv7 current by 
overexpressing Kv7.2 containing dominant-negative pore mutation 
G279S enhances intrinsic excitability and reduces spike frequency 
adaptation and mAHP in CA1 neurons (Peters et  al., 2005). 
Similarly, conditional homozygous deletion of KCNQ2 increases 

CA1 excitability due to longer-lasting spike afterdepolarization 
(ADP) and reduced medium AHP (Soh et al., 2014; Figure 1A). 
Thus, Kv7 channels serve as critical “brakes” on neuronal 
excitability (Soldovieri et  al., 2011).

The inhibitory effects of Kv7 currents on neuronal excitability 
are largely attributed to axonal Kv7 channels. Kv7.2/Kv7.3 channels 
are preferentially enriched at the axonal plasma membrane 
compared to the somatodendritic plasma membrane in 
hippocampal neurons (Chung et  al., 2006) with the highest 
concentration at the axonal initial segments (AIS; Chung et al., 
2006; Pan et  al., 2006) where AP initiates (Clark et  al., 2009). 
CaM binding to Kv7.2 is critical for targeting Kv7.2/Kv7.3 channels 
to the axonal surface (Cavaretta et al., 2014), whereas disruption 
of this binding decreases IM and increases hippocampal neuronal 
excitability (Shahidullah et  al., 2005). Furthermore, disrupting 
the enrichment of Kv7 channels at the AIS by blocking their 
interaction with ankyrin-G results in spontaneous firing of 
CA1 neurons by depolarizing RMP and reducing AP threshold 
(Shah et  al., 2008).

In contrast to the well-documented function of axonal 
Kv7 channels discussed above, the existence and role of 
dendritic Kv7 channels are still in debate. Non-inactivating 
Kv7 current sensitive to muscarinic agonist is detected in 
the distal apical dendrites of CA1 neurons (Chen and 
Johnston, 2004). Dendritic Kv7 current can increase the 
threshold for initiating calcium (Ca2+) spikes and induce 
spike bursts only in hyperexcitable conditions that promote 
Ca2+ electrogenesis in these dendrites (Yue and Yaari, 2006). 
However, XE991 and linopirdine do not affect input resistance 
of CA1 dendrites (Shah et  al., 2008), and focal inhibition 
of dendritic IM has no effect on the excitatory postsynaptic 
potential (EPSP) summation and excitability of CA1 neuron 
(Hu et  al., 2007), indicating very low level of dendritic 
Kv7 current.

There is accumulating evidence for activity-dependent 
modulation of Kv7 channels and their contribution to persistent 
changes in intrinsic excitability termed “intrinsic plasticity.” 
In the pilocarpine model of temporal lobe epilepsy, reduced 
Kv7 function and expression may contribute to muscarinic-
dependent ictogenesis (Maslarova et  al., 2013). However, 
acute induction of seizures increases KCNQ2 and KCNQ3 
transcripts in the hippocampi as a homeostatic response to 
suppress neuronal hyperexcitability, and this regulation 
requires activation of L-type voltage-gated Ca2+ channels 
(Zhang and Shapiro, 2012). Enhancing neuronal activity by 
Kv7 inhibition with XE991 also results in homeostatic 
suppression of firing rate over 48  h (Lezmy et  al., 2020). 
In contrast, prolonged blockade of neuronal activity or 
N-methyl-D-aspartate (NMDA) receptors increases firing 
rate and reduces in KCNQ3 transcript and Kv7 current in 
hippocampal neurons (Lee and Chung, 2014; Lee et  al., 
2015). In the avian cochlear neurons, depriving afferent 
inputs induces a switch from fast activating Kv1 to slow 
activating Kv7.2 channels at the AIS, resulting in enhanced 
excitability (Kuba et  al., 2015). This activity-dependent 
regulation of Kv7 transcript and distribution offers a powerful 
means to control intrinsic excitability.
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ROLE OF KV7 CHANNELS IN SYNAPTIC 
TRANSMISSION AND PLASTICITY IN 
THE HIPPOCAMPUS

Since the discovery of long-term potentiation (LTP) in the 
dentate gyrus of the hippocampus (Bliss and Lomo, 1973), 
persistent modification in synaptic strength termed “synaptic 
plasticity” has attracted significant attention as the cellular 
correlate of learning and memory (Nicoll, 2017). LTP at excitatory 
synapses can exert destabilizing influence on neural circuits 
by generating unconstrained synaptic strengthening (Turrigiano, 
2012). Homeostatic plasticity counteracts such destabilizing 
condition by allowing neurons to adjust their synaptic strength 
(Turrigiano, 2012). While activity-dependent modulation of 
glutamate release and glutamate receptors serves as key 
mechanisms for LTP expression (Turrigiano, 2012; Humeau 
and Choquet, 2019), Kv7 channels and upstream muscarinic 
acetylcholine receptors have emerged as important regulators 
of excitatory synaptic transmission and plasticity.

Synaptic functions of Kv7 channels have been extensively 
studied at the excitatory synapses formed by hippocampal CA1 
and CA3 pyramidal neurons (Figure 1A). These neurons show 

strong expression of Kv7.2 and Kv7.3 (Cooper et  al., 2001; 
Pan et  al., 2006). Conditional deletion of KCNQ2 and KCNQ3 
increases the frequency of spontaneous excitatory postsynaptic 
currents (EPSC) in CA1 neurons (Soh et  al., 2018), suggesting 
enhanced presynaptic release at CA1–CA3 synapses. Consistent 
with this notion, application of Kv7 antagonist XE991 increases 
whereas Kv7 agonist Flupirtine decreases miniature EPSC 
frequency in CA1 neurons (Sun and Kapur, 2012). Furthermore, 
Kv7 inhibition with linopirdine and XE991 treatment also 
increases neurotransmitter release (Nickolson et al., 1990; Martire 
et  al., 2004; Peretz et  al., 2007). While Kv7 current restrains 
AP-evoked Ca2+ influx into the presynaptic terminal and decreases 
the paired pulse ratio of evoked EPSCs at the mossy fiber–CA3 
synapses (Martinello et  al., 2019), paired pulse facilitation of 
EPSP is higher at CA1–CA3 synapses in XE991-treated mice 
(Fontan-Lozano et  al., 2011), suggesting differential roles of 
Kv7 channels in short-term plasticity at two different synapses.

Kv7.2 and Kv7.3 are expressed in GABAergic neurons including 
parvalbumin (PV)- and somatostatin (SST)-positive interneurons 
in the hippocampus (Cooper et al., 2001; Lawrence et al., 2006). 
Application of XE991 abolishes IM, depolarizes RMP, and increases 
AP firing in SST+ interneurons (Lawrence et  al., 2006) and 
enhances intrinsic excitability of PV+ interneurons 

A

B

FIGURE 1  |  The role of Kv7 channels in hippocampal neurons, memory, and behavior. (A) Function of Kv7 channels in excitatory pyramidal neuron and GABAergic 
inhibitory neuron in the hippocampus. AP, action potential; RMP, resting membrane potential; EPSP, excitatory postsynaptic potential; ADP, afterdepolarization; 
mAHP, medium afterhyperpolarization; sAHP, slow afterhyperpolarization; sEPSC, spontaneous excitatory postsynaptic current; mEPSC, miniature excitatory 
postsynaptic current; PPF, paired-pulse facilitation; LTP, long-term potential; sIPSC, spontaneous inhibitory postsynaptic current; PV, parvalbumin; and eEPSC, 
evoked excitatory postsynaptic current. (B) Effects of pharmacological or genetic inhibition of Kv7 channels on memory and behavior. HP, hippocampus; PFC, 
pre-frontal cortex; AMPH, amphetamine; and EPM, elevated plus maze.
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(Soh et  al., 2018; Figure  1A). Furthermore, conditional deletion 
of KCNQ2 and KCNQ3 from PV+ interneurons increases their 
firing and spontaneous inhibitory postsynaptic current (sIPSC) 
frequency of CA1 neurons in the hippocampus (Soh et al., 2018).

These studies highlight the presynaptic influence of Kv7 
channels at glutamatergic and GABAergic synapses. Given that 
increased firing rate and burst firing can enhance neurotransmitter 
release probabilities (Hansen et  al., 2008), Kv7 inhibition may 
increase neurotransmitter release as a consequence of increased 
axonal excitability (Devaux et al., 2004; Shah et al., 2008; Klinger 
et  al., 2011). Indeed, when CA3 neurons are depolarized upon 
elevating extracellular K+ concentration, XE991 enhances EPSP 
amplitude in CA1 neurons as a consequence of increasing spike 
ADP and burst firing of CA3 neurons (Vervaeke et  al., 2006). 
Alternatively, Kv7 channels at the presynaptic terminals (Cooper 
et al., 2001; Martire et al., 2004; Regev et al., 2009) may directly 
counteract the depolarization of the presynaptic membrane 
necessary for synaptic vesicle fusion and neurotransmitter release.

The postsynaptic role of Kv7 channels is unclear. A recent 
electron microscopy study shows that Kv7.2, Kv7.3, and Kv7.5 
colocalize with muscarinic acetylcholine receptors at dendritic 
spines in layer III pyramidal neurons of the primate prefrontal 
cortex (Galvin et  al., 2020), although the specificity of the 
immunolabeling needs to be further validated. In the CA1–CA3 
synapses, the mEPSC amplitude is unaltered by agonist nor 
antagonists of Kv7 channels (Sun and Kapur, 2012), suggesting 
their negligible role in regulating postsynaptic glutamate receptor 
function at this synapse (Figure  1A).

Nonetheless, accumulating evidence suggests that Kv7 channels 
regulate hippocampal synaptic plasticity. At CA1–CA3 synapses, 
XE991 induces LTP by subthreshold theta-burst stimulation 
(Petrovic et  al., 2012). Systemic administration of XE991 also 
decreases the threshold for LTP induction in the hippocampal 
CA1 area in vivo without affecting the field EPSP amplitude 
(Song et al., 2009; Fontan-Lozano et al., 2011). Lastly, homeostatic 
increase in excitatory synaptic transmission in CA1 neurons 
has been observed upon conditional deletion of KCNQ2 and 
KCNQ3 from GABAergic interneurons (Soh et  al., 2018), 
suggesting the contribution of Kv7 channels in synaptic scaling.

ROLE OF KV7 CHANNELS IN 
HIPPOCAMPUS-DEPENDENT LEARNING 
AND MEMORY

Hippocampal LTP occurs during hippocampus-dependent 
learning and memory (Bliss et  al., 2018) and its reduction is 
linked to memory loss in mouse models of Alzheimer’s disease 
(Mango et  al., 2019). Facilitation of LTP induction by XE991 
(Song et  al., 2009; Fontan-Lozano et  al., 2011; Petrovic et  al., 
2012) suggests that pharmacologic Kv7 inhibition may enhance 
learning and memory. Indeed, linopirdine enhances the 
performance of rats in a hippocampus-dependent active avoidance 
test (Cook et  al., 1990). XE991 improves memory in object 
recognition task in wild-type mice and mouse models of dementia 
induced by cholinergic depletion and neurodegeneration (Fontan-
Lozano et  al., 2011; Ballinger et  al., 2016; Dennis et  al., 2016) 

despite its ability to induce seizures at a higher dose 
(Fontan-Lozano et  al., 2011; Figure  1B). In contrast, Kv7 
agonists have yielded mixed results on affecting memory in 
rodents (Li et  al., 2014; Frankel et  al., 2016).

The cognition-enhancing effect of linopirdine is correlated 
with the increased release of acetylcholine in the hippocampus 
(Nickolson et  al., 1990; Fontana et  al., 1994), and stimulation 
of muscarinic acetylcholine receptor inhibits IM in hippocampal 
neurons (Shah et  al., 2002). Consistently, muscarinic agonist 
improves whereas anticholinergic agent scopolamine impairs 
performance in hippocampus-dependent memory tasks (Fontana 
et al., 1994; Fontan-Lozano et al., 2011). Muscarinic acetylcholine 
receptors in the prefrontal cortex also modulate working memory 
in primates via Kv7 channels (Galvin et  al., 2020). Since 
cholinergic depletion and dysfunction in the hippocampus and 
prefrontal cortex are implicated in age-related cognitive decline 
and Alzheimer’s disease (Ballinger et al., 2016; Haam and Yakel, 
2017), these studies support the therapeutic potential for Kv7 
antagonists as cognitive enhancers.

Surprisingly, genetic inhibition or reduction of Kv7 currents 
induces an opposite effect on memory (Figure  1B). Deficits 
in hippocampal-dependent spatial memory and spontaneous 
seizures are observed in mice with conditional transgenic 
expression of dominant-negative mutant Kv7.2-G279S (Peters 
et al., 2005) and heterozygous knock-in mice for Kv7.2 containing 
epileptic encephalopathy loss-of-function variant T274M (Milh 
et  al., 2020). Considering that Kv7 channels are critical for 
development and inhibition of neonatal brain (Peters et  al., 
2005; Soh et al., 2014), the memory impairment in these genetic 
models could be attributed to abnormal hippocampal morphology 
and/or hyperexcitability (Peters et  al., 2005; Milh et  al., 2020).

Kv7 channels also regulate multiple behaviors (Figure  1B). 
Behavioral phenotyping of the global or conditional homozygous 
KCNQ2 knock-out mice has not been possible due to their 
early postnatal lethality or premature death, respectively 
(Watanabe et al., 2000; Soh et al., 2014). However, heterozygous 
KCNQ2 knock-out mice are viable and display increased 
locomotor activity and exploratory behavior (Kim et al., 2020), 
consistent with behavioral hyperactivity induced by transgenic 
suppression of Kv7 currents (Peters et al., 2005) and amphetamine 
and XE991 (Sotty et al., 2009). These mice also show decreased 
sociability and increased repetitive and compulsive behavior 
(Kim et  al., 2020), reminiscent of autism seen in some EE 
patients with dominant KCNQ2 mutations (Weckhuysen et  al., 
2012, 2013; Milh et  al., 2013). However, the precise circuitries 
responsible for these abnormal behaviors remain unknown.

FUTURE PERSPECTIVES

The studies discussed in this review support the emerging 
concept that Kv7 channels contribute to neural plasticity, memory, 
and behavior. However, there is a significant knowledge gap 
in our understanding of the underlying molecular and cellular 
mechanisms. Future studies should continue to investigate 
structure-function and subcellular targeting of Kv7 channels, 
which will provide mechanistic insights for developing specific 
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modulators of their function and trafficking. Generation of 
mouse models in which deletion of a Kv7 subunit from specific 
neurons and subcellular localization with temporal control will 
be  critical to delineate cell- and circuit-specific function of 
Kv7 channels in neural plasticity, cognition, and behavior.
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