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ABSTRACT
Quantitative phase imaging (QPI) has been widely applied in characterizing cells and tissues. Spatial light interference microscopy (SLIM)
is a highly sensitive QPI method due to its partially coherent illumination and common path interferometry geometry. However, SLIM’s
acquisition rate is limited because of the four-frame phase-shifting scheme. On the other hand, off-axis methods such as diffraction phase
microscopy (DPM) allow for single-shot QPI. However, the laser-based DPM system is plagued by spatial noise due to speckles and multiple
reflections. In a parallel development, deep learning was proven valuable in the field of bioimaging, especially due to its ability to translate
one form of contrast into another. Here, we propose using deep learning to produce synthetic, SLIM-quality, and high-sensitivity phase
maps from DPM using single-shot images as the input. We used an inverted microscope with its two ports connected to the DPM and SLIM
modules such that we have access to the two types of images on the same field of view. We constructed a deep learning model based on
U-net and trained on over 1000 pairs of DPM and SLIM images. The model learned to remove the speckles in laser DPM and overcame
the background phase noise in both the test set and new data. The average peak signal-to-noise ratio, Pearson correlation coefficient, and
structural similarity index measure were 29.97, 0.79, and 0.82 for the test dataset. Furthermore, we implemented the neural network inference
into the live acquisition software, which now allows a DPMuser to observe in real-time an extremely low-noise phase image.We demonstrated
this principle of computational interference microscopy imaging using blood smears, as they contain both erythrocytes and leukocytes, under
static and dynamic conditions.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0041901

I. INTRODUCTION

Quantitative phase imaging (QPI) has developed into an active
field with the goal of providing a label-free alternative to biomedi-
cal imaging, complementary to the standard techniques relying on
stains and fluorescent tags.1 QPI yields the optical path length map
associated with the specimen and, thus, informs about both the
thickness and the refractive index of the structure of interest. Due
to its quantitative and nondestructive nature, QPI has found impor-
tant biomedical applications ranging from basic science to clinical
diagnosis.2 As the specimen refractive index reports on the dry mass
density, QPI has been employed to study cell growth.3–7 Analyzing
the spatio-temporal fluctuations of dry mass provided a new way
of monitoring intracellular transport and differentiating between

diffusive and active processes.8–10 Due to its sensitivity to nanometer
scale optical path length changes, QPI is capable of measuring cell
membrane fluctuations11–14 and imaging unlabeled single micro-
tubules.15 The full holographic information (phase and amplitude)
associated with a field scattered by a transparent object allows for
tomographic reconstructions without ambiguity, as demonstrated
by Wolf in 1969.16 Thus, QPI-based tomography has been demon-
strated by acquiring phase imaging data as a function of illumination
angles,17–19 scanning the object through focus,20,21 and perform-
ing spectroscopic measurements.22 This approach has been recently
extended to second harmonic fields.23 QPI has led to the discovery
of new intrinsic markers for cancer diagnosis and prognosis with-
out the variability generally introduced by stains.24–31 More recently,
QPI has been extended to strongly scattering specimens, such as
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embryos, spheroids, and acute brain slices,32,33 which significantly
expanded QPI’s range of applications.

In terms of methodology, QPI instruments are divided into off-
axis34–38 and phase shifting32,39,40 geometries. Phase shifting meth-
ods (see Chap. 10 of Ref. 1) use time domain modulation and,
as a result, preserve the maximum space–bandwidth product for
a given imaging instrument at the expense of frame rate. Con-
versely, off-axis interferometry (see Chap. 9 in Ref. 1) operates on
spatial modulation, which provides single shot fast imaging at the
expense of space–bandwidth product. In addition, due to the spa-
tial domain image processing, off-axis methods also generally result
in higher spatial phase noise. This spatial noise is further amplified
by speckles whenever monochromatic rather than broadband light
is used (see Ref. 39 for an assessment of the spatial noise in both
geometries).

An ideal QPI method would provide the low noise, high reso-
lution associated with phase shifting interferometry, and single-shot
performance associated with off-axis geometries. In this paper, we
demonstrate that such a performance can be achieved by using deep
learning to produce an image-to-image translation from single shot
noisy data to phase-shifting low-noise images, on which the network
was a priori trained. For generating the input data, we used diffrac-
tion phasemicroscopy (DPM),34 an off-axis common path QPI tech-
nique, while for ground truth, we used images of the same field
of view obtained by spatial light interference microscopy (SLIM),39
which is a broadband light, phase-shifting, common path method. A
U-Net41 convolutional neural network was trained to infer a SLIM
image from a DPM image as the input. The performance of this
image translation was significant, with a peak signal-to-noise ratio
(PSNR) around 30 and a Pearson correlation coefficient of 0.79.
Finally, we integrated the inference algorithm into the acquisition
software, which allows for real-time operation.

II. RESULTS
A. DPM and SLIM data collection

In order to acquire training data necessary to produce SLIM-
quality images in a single-shot, we developed a combined SLIM-
DPM system, which generates both images from the same field of
view (Fig. 1). The DPM and SLIM modules were placed at the two
side ports of a commercial inverted microscope (Axio Observer Z1,
Zeiss). A coupled fiber green laser (λ = 532 nm) was used as illumi-
nation for DPM, with the condenser aperture closed to minimum.
A collimated LED source (λ = 623, 20 nm bandwidth) was used as
illumination for SLIM (CellVista SLIM Pro, Phi Optics, Inc.), with
the conventional ring illumination associated with phase contrast
microscopy. Using the 20×/0.4 NA objective, the magnified image
is replicated to either port by using a switch.

The DPM principle has been presented in detail previously.42
Briefly, a phase diffraction grating is placed at the image plane to
replicate the spatial frequency content at the Fourier plane of lens
1 along multiple diffraction orders. The zeroth order is spatially fil-
tered to remove all higher frequencies, the first order beam is passed
unaltered, and all the remaining orders are completely blocked.
Thus, following lens 2, the camera detects the interference between
the image field and the filtered zeroth order, which acts as a refer-
ence field. There is a further 2.5× magnification produced by the
L1–L2 4-f system. The resulting interferogram is processed using
the well-known Hilbert transform to retrieve the phase map from
a single recording. The exposure time for each DPM image was 2ms
throughout all our measurements. As illustrated in Fig. 1, the result-
ing DPM image is affected by background non-uniformities, which
in the past have been mitigated using post processing.43

The SLIMmodule (see Ref. 39 for details) contains a phase-only
spatial light modulator (SLM) at the pupil plane created by lens 3. A

FIG. 1. Schematic of the imaging setup. The system is built around an inverted microscope. We are using a 20×/0.4 NA objective. The two side ports connect to the DPM
(right) and SLIM (left) modules. Thus, we obtain SLIM and DPM images on the same field of view. The focal lengths of lenses 1 and 2 are 100 and 200 mm, respectively.
Lenses 3 and 4 have the same focal length. When switching between DPM and SLIM, prisms 1 and 2 are switched to different positions and the condenser is set to the
PH1 set. Due to the magnification of the 4f system in DPM, a registration is needed to match the DPM and SLIM images.

APL Photon. 6, 046103 (2021); doi: 10.1063/5.0041901 6, 046103-2

© Author(s) 2021

https://scitation.org/journal/app


APL Photonics ARTICLE scitation.org/journal/app

FIG. 2. Oil-immersed 1 μm diameter polystyrene beads imaged by DPM and SLIM.
(a) The cropped DPM phase map of the bead and the cross section plot. (b) The
cropped SLIM phase map of the bead and the cross section plot. The measured
phase values are comparable to the expected number, as detailed in the text.

binary mask is created on the SLM to precisely match the phase con-
trast ring placed in the condenser aperture. By shifting the phase of
the mask in increments of π/2, we record four intensity images using
camera 2. The four frames are combined to obtain the quantitative
phase map, as described in Ref. 39.

FIG. 3. The U-net structure. The model has a symmetric layout and consists of
three major parts: the encoder path, the bottleneck, and the decoder path. We
added batch normalization layers between convolution and activation layers to
stabilize the learning process. After every two convolutional operations, a residual
connection was added for faster convergence. Three drop-out layers were also
used to avoid overfitting. The kernel size was set to 3 × 3 and the number of ker-
nels was reduced to a quarter of the original proposed number. A 400× 400 region
was randomly cropped from each original 1536 × 1536 image during training.

FIG. 4. DPM input data (left column), SLIM ground truth data (center), and the
U-net inference (right). All images share the same calibration and scale bar. The
neural network correctly infers SLIM images from the DPM input with drastically
reduced noise levels.

To validate our phase measurements, we performed a side-by-
side comparison of the two measurements on a 1 μm polystyrene
bead, immersed in oil (Zeiss, Immersol 518F), as illustrated in Fig. 2.
We diluted one drop of bead suspension into 10 ml of ethanol and

FIG. 5. Model convergence and performance. After each epoch, we plotted the
mean-squared loss value on both the training dataset and validation dataset. The
model checkpoint with the lowest error on the validation dataset was selected as
our end model for evaluation and deployment. The average PSNR, Pearson cor-
relation coefficient, and structural similarity index measure (SSIM) of our model on
the training, validation, and test datasets were computed. Our models generalized
well on the unseen test dataset.
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used a vortex mixer to disperse it. The refractive index of the beads is
1.588 at 623 nm wavelength, while that of the oil is 1.518. As a result,
the expected phase shift from the bead using red led is

ϕ = 2πd(n − n0)/λ = 0.71, (1)

where d is the height of the bead, n and n0 are the refractive index of
bead and oil, respectively, and λ is the wavelength of light.

For comparison, the DPM phase map, which was imaged with
a green laser, was normalized by the ratio of two wavelengths.
The values obtained by DPM and SLIM, 0.71 rad and 0.71 rad, are
compatible with the expected value of 0.71 rad.

B. Training procedure
In order to use deep learning to infer SLIM images from DPM

data, we employed the U-Net described in Fig. 3. Our model was
a modified version of the U-Net.41 We added residual connection
within each feature-extracting block in the encoder path and batch
normalization layers44 between convolution and activation layers.

Three drop-out layers were added in the encoder path and the bottle-
neck to avoid overfitting. Our model had far fewer trainable param-
eters than the original U-Net, as we reduced the number of channels
in each layer to a quarter of the original proposed value. The model
was optimized using adaptive moment estimation (Adam)45 against
the mean-squared error. All the input values were scaled into the
range of [0, 1].

To demonstrate the deep-learning-enabled computational
interference microscopy (CIM) operation on live cells, we used
blood cell smears, which contain red blood cells and several types
of white blood cells. More than 1200 images were recorded by both
SLIM and DPM with over 100 cells in each field of view. To boost
variation within our dataset, the images were cropped into random
400 × 400 pixel2 regions and fed into the U-net for training. The net-
work was trained for 21 h on a single GTX 1070 graphic processing
unit (GPU) using 1000 epochs.

Figure 4 illustrates the DPM input data (left column), SLIM
ground truth (middle), and the resulting CIM (right). Visually, the
U-Net is able to reduce the overall noise of the DPM input and

FIG. 6. Comparison of the CIM images with the lowest, average, and highest Pearson correlation coefficient. The images were chosen from the test dataset. We plotted
the profile of a chosen red blood cell at the exact same pixel position. The Pearson correlation coefficient (denoted as ρ) and the structural similarity index measure (SSIM,
denoted as s) were computed for each image pair. CIM was able to capture all the structures properly. In CIM images with higher Pearson correlation coefficient and SSIM,
the cross section profile matched closely to that of the SLIM image.
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produce a remarkably similar image to the SLIM ground truth. In
order to quantify the performance of the neural network, we com-
puted the peak signal to noise ratio (PSNR), the Pearson correla-
tion coefficient, and structural similarity index measure (SSIM)46
between the ground truth and the prediction. The mean-squared
loss value on the training dataset and the validation dataset after
each epoch is plotted in Fig. 5. The model checkpoint with lowest
loss value on the validation dataset was selected as our end model
for evaluation and deployment. Figure 5 also shows the result of
the average PSNR, Pearson correlation, and SSIM calculated on the
training, validation, and test datasets. The SSIM is computed using
the following equation:

SSIM(x, y) = (2μxμy + C1)(2σxy + C2)
(μx2 + μy2 + C1)(σx2 + σy2 + C2) , (2)

where μx and μy are the mean values of x and y, respectively, σx2 and
σy2 are the variance of x and y, respectively, and σxy is the covari-
ance of x and y. C1 and C2 are small constants used for numerical
stability. The results are consistent among all three datasets, indi-
cating that the model generalized well on the unseen test dataset.
Figure 6 illustrated the CIM images with lowest, average, and high-
est Pearson correlation coefficients. The profiles of a red blood cell
at the exact same position in both SLIM and CIM images were plot-
ted. The results indicated that even in the worst-performing test
cases, CIM was able to capture the sample structures. In most test
cases, the CIM image and the SLIM image had a closely matched
profile.

C. Real-time inference
To boost the usability of CIM, we integrated the inference

algorithm into the real-time acquisition software for DPM (wDPM

CellVista Pro, Phi Optics, Inc.). Figure 7 shows the user interface,
with the DPM image being reconstructed and used as the input
for inference. Supplemental video visualization 1 illustrates the real-
time operation. The conversion from the noisy DPM images to CIM
takes place at a push of a button. Note that translating the stage does
not affect the quality of the inference, which works very well for
both red and white blood cells. Thus, we envision that CIM can be
readily used for automating large field of view and multi-well plate
scanning. To integrate the trained model into our acquisition soft-
ware, we built the same network architecture from scratch using the
Nvidia TensorRT library and loaded the transposed trained weights.
The computer was equipped with the Nvidia RTX2070 GPU. The
software then ran the model inference on a 1536 × 1536 image at a
speed of 58 ms/image. Thus, the resulting CIM is computed and dis-
played in real time at a rate of up to 14 frames/s. This performance
can be boosted further by either lowering the pixel size or upgrading
the GPU.

Supplemental video visualization 2 shows a CIM time lapse of
a fresh unlabeled blood smear. We collected blood from a healthy
volunteer and diluted one drop of blood with 10 ml phosphate-
buffered saline. No effect was devoted to stabilizing the smear such
that we can test the ability of CIM to operate on highly dynamic sam-
ples. These specimens were never imaged by SLIM, and thus, the
network was not trained on these samples. Clearly, CIM performs
very well and even reveals minute membrane fluctuation in individ-
ual red blood cells. The area of cell overlapping sometimes displays
lower phase values than expected, but this appears to be an optical
artifact, rather than a computational artifact, as it is also present in
Fig. 4 (SLIM column). These data highlight the capability of CIM
to run under flow conditions for applications such as flow cytom-
etry. Figure 8 shows four sequential frames from the time lapse in
visualization 2, taken 100ms apart, with 2ms exposure each. The
cells selected in the rectangular boxes moved very fast, as can be

FIG. 7. Live imaging interface. We demonstrate our live imaging system through the three channels: DPM, SLIM, and CIM channel (see visualization 1). The image shows
the graphic user interface and a snapshot of CIM operation in real-time. Multimedia view: https://doi.org/10.1063/5.0041901.1
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FIG. 8. Dynamic imaging of blood cells with snapshots at different moments in time, 100 ms apart, as indicated. The scale bar and color bar are the same for all the frames.
The full video can be visualized as visualization 2. In these frames, one can see cells (e.g., those in the rectangular boxes) that flow very fast. However, the CIM inference
is accurate and operates in real-time. Multimedia view: https://doi.org/10.1063/5.0041901.2

visualized in the movie and these snapshots. These results prove that
the CIM system can provide single-shot high speed measurements,
as allowed by DPM, while the output has the high quality of SLIM
images.

III. METHODS
A. Deep learning

We formulated the problem as an image-to-image regression,
where the deep neural network takes in a DPM image as the input
and predicts a new image that is close to a SLIM image of the same
field of view. Our neural network was a variant of U-Net, which has
shown great performance on similar tasks with quantitative phase
imaging data.47 Unlike the stock U-Net, we added batch normal-
ization layers between convolution and activation layers to stabilize
the learning process. We also added in a residual connection after
every two convolution operations (on the same field of view) for
faster convergence and better performance. The model has a sym-
metric layout and consists of three major parts: an encoder path, a
bottleneck, and a decoder path. The encoder path captures contex-
tual information in the image. It consists of four stages of convo-
lutional and non-linear activation operations with residual connec-
tion. Each stage was followed by a 2 × 2 downsampling operation.
The decoder path is almost symmetric to the encoder path, except
that it has upsampling operations to combine low-resolution and
high-resolution information and enables localization. The convolu-
tion kernel size within the network was set to 3 × 3 except for those
used in residual connection, which was set to 1 × 1. The number
of kernels in each stage was set to 16, 32, 64, and 128, respectively,
reduced to a quarter of the proposed value in the original U-Net
paper.41 Thus, our model had only 3.3 × 106 trainable parame-
ters. Based on the training results, it was apparent that this model
was already complex enough to approximate the transform from
DPM images to SLIM images. We picked the mean-squared error
as our loss function and used the Adam optimizer with the default
exponential decay rate for both moment estimates (0.9 and 0.999,
respectively). We used PSNR, Pearson correlation coefficient, and
structural similarity index measure (SSIM) to measure the perfor-
mance of our network. All the input images (DPM and SLIM) were
scaled from [−π,π] to [0, 1]. We trained the model from scratch
with a learning rate of 6 × 10−5 for 1000 epochs. The batch size
was set to 4 during training. The mean squared loss value on both

the training and the validation dataset was plotted after each epoch.
To add more variation during the training process, we applied ran-
dom cropping to each training image. A 400 × 400 crop was selected
randomly from each original 1536 × 1536 image and fed into the
model during one epoch. Since U-Net is fully convolutional, it can
pick up features on these smaller crops and apply them later onto
the larger images. This random cropping has two main advantages.
First, it served as a form of data augmentation, contributing to bet-
ter generalizability. Second, it reduced the training time and GPU
memory requirement. The model was implemented using Tensor-
Flow and the training was performed on a GTX 1070 GPU with
8 GB memory. The training took ∼21 h. This training cost can be
justified as it is a one-pass operation. The trained model can be
applied to a larger number of red blood cell measurements, and
overall, the time CIM saved can outweigh the training time cost.
In addition, the training time can be reduced by using more recent
GPUs.

B. Real-time implementation
To incorporate the trained model into our acquisition software,

we first saved all the trained weights (convolution kernels and batch
normalization parameters) into a single HDF5 file. Then, we con-
structed the same network architecture within our acquisition soft-
ware using the Nvidia TensorRT API in C++. Due to the mismatch
between weight formats in TensorFlow and TensorRT, the weights
were first transposed and then loaded into the network architecture
in C++. Once the network was built, TensorRT optimized the infer-
ence procedure by enumerating different configuration of kernels.
This optimization was necessary because the optimal configuration
for inference differs from hardware to hardware. Thus, we over-
lapped the model optimization with the software initialization by
utilizing multi-threading in C++.

IV. DISCUSSION
QPI has developed into several types of methods, character-

ized by different advantages and drawbacks according to the spe-
cific geometry. The laser DPM enables a high acquisition rate but
is plagued with speckles and background phase noise. White light
DPM overcomes the noise with broadband light at the expense of
intensity loss; thus, it has a lower acquisition rate. Because of illumi-
nation NA, SLIM has a higher transverse resolution than the DPM
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based methods. However, the acquisition speed of SLIM is further
limited by the four phase shifts.

Artificial intelligence (AI) has already demonstrated its poten-
tial to transform biomedical imaging. In microscopy, image-to-
image translation techniques proved to be valuable in generating
synthetic fluorescence images for cell biology applications48,49 and
digital staining for pathology applications.50 Phase imaging with
computational specificity (PICS) has been introduced recently to
retrieve molecular specificity via deep learning, thus eliminating
the phototoxicity and photobleaching associated with fluorescence
tags51 and intrinsic fertility makers.52

Here, we presented a different application of AI, where the
goal was to combine the benefits of different QPI instruments. The
trained model performed generally well in producing high quality
images given relatively noisy input DPM images, attaining, on aver-
age, a Pearson correlation coefficient and SSIM around 0.8 on the
test dataset. Even in the worst-performing test cases, CIM was able
to keep the structure of the samples. CIM is a new QPI method
that combines a high acquisition rate from DPM and low-noise and
high resolution from SLIM, fitting into the category of QPI meth-
ods that are relatively inexpensive and high-speed. This approach
allows for applications that involve both highly dynamic and sensi-
tivemeasurements. Since phase is the intrinsicmarker of transparent
samples, we anticipate that our current model can be extended to
other specimens via transfer learning with a small amount of new
data, making our method extendible to new biological samples at
low costs.
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