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Frequency Stability Using MPC-Based Inverter
Power Control in Low-Inertia Power Systems
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Abstract—The electrical grid is evolving from a network consist-
ing of mostly synchronous machines to a mixture of synchronous
machines, and inverter-based resources such as wind, solar, and en-
ergy storage. This transformation has led to a decrease in mechani-
cal inertia, which necessitate a need for the new resources to provide
frequency responses through their inverter interfaces. In this paper
we proposed a new strategy based on model predictive control to
determine the optimal active-power set-point for inverters in the
event of a disturbance in the system. Our framework explicitly
takes the hard constraints in power, and energy into account, and
we show that it is robust to measurement noise, limited commu-
nications, and delay by using an observer to estimate the model
mismatches in real-time. We demonstrate the proposed controller
significantly outperforms an optimally tuned virtual synchronous
machine on a standard 39-bus system under a number of scenarios.
In turn, this implies optimized inverter-based resources can provide
better frequency responses compared to conventional synchronous
machines.

Index Terms—Frequency control, low-inertia systems, MPC,
optimization, power systems dynamics, renewables.

I. INTRODUCTION

THE electric grid has been undergoing a transition from
a network with dynamics fully governed by synchronous

machines to a mixed-source network with dynamics governed
by both synchronous machines and inverter-based resources
(IBRs). This transition is marked by a reduction in the amount
of mechanical inertia in the system, which has led to more
pronounced frequency responses to disturbances and faults in
the grid [1], [2]. At the same time, by the virtue of the speed of
power electronic circuits, IBRs such as solar, wind and energy
storage have the capability to respond to frequency changes in
the grid at a much faster rate than traditional generators with
rotating masses. The challenge of how to best utilize these new
capabilities has spurred much research interest in the last few
years (e.g., see [3] and the references within).
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Various control strategies that utilizes the IBRs in providing
frequency regulation services has been proposed. The goal of
these strategies is to design the active power response of the
IBRs to changes in frequency, such that some frequency response
objective is minimized. For example, standard objectives of
interests are the magnitude of the frequency deviation, the rate
of change of frequency (ROCOF) and the settling time. A unique
challenge in the control of IBRs is that they tend to face much
tighter limits than conventional machines. For example, solar
and wind resources cannot increase their power output beyond
the maximum power tracking point, which introduces a hard
(and asymmetrical) constraint on the action of the inverters. For
a storage unit, it has only a limited amount of energy that can be
used to respond to a disturbance.

Of the varying control strategies proposed for IBRs, Droop
Control [4]–[6] and Virtual Synchronous Machines (VSMs) [7]–
[9] are the most popular as they function by mimicking the
frequency-power dynamic response of a synchronous machine.
As suggested by their names, droop control injects/absorbs an
amount of active power in proportion to the frequency devi-
ation, and VSM, in its basic configuration, acts as a second
order oscillator to provide inertia and damping to the grid.
The parameters (droop slope, inertia and damping constants)
used in these strategies can be optimized using a number of
techniques [10]–[12].

The structural simplicity of VSMs also leads to a fundamental
limitation [10], [13]. Since there are only two parameters to tune
(inertia and damping) in the basic VSM configuration, there is
an inherent trade-off between different objectives and there is
no choice of parameters that will make the frequency deviation,
ROCOF, and settling time small at the same time [10]. While
the performance of the VSM can be enhanced by incorporat-
ing virtual governors, virtual exciters and other power systems
controllers in their virtual form [14], [15], it difficult to tune the
multiple parameters of the combined virtual controller simulta-
neously, since the performance of one might negatively affect the
other. In addition, it is also difficult to include hard constraints,
since simply thresholding the output once the constraints are
reached tend to lead to very poor performances [16]. Adaptive
rules can be used to alleviate this drawback somewhat, and works
in [13], [17], [18] change the parameter based on the measured
frequency deviation and ROCOF values. However, it is difficult
to find an optimal rule to update these parameters in real-time.

In this work, we propose a novel control strategy, based on
model predictive control (MPC), called the MPC-based Inverter
Power Control (MIPC). We explicitly formulate the problem of
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finding the optimal active power set-point of an IBR to minimize
the frequency deviation and the ROCOF. It turns out that this
formulation also implicitly minimizes the systems settling time.
More specifically, at any timestep, we simulate the dynamics of
the systems for a finite horizon, then find the best set-points that
optimizes the objective over that horizon. The first action is then
adopted for the current timestep, and the process repeats. Our
approach is similar in spirit to the ones in [13], [17], [18] since
an objective is optimized in an online fashion. However, instead
of optimizing the parameters, we directly find the best power
set-points. This approach turns out to provide both an easier
optimization problem and better control performances. Namely,
the hard constraints on the IBRs are explicitly included in the
optimization process.

A requirement of MPC is that the IBR must have a model
of the system to be optimized. If wide-area measurements are
available, then the system states can be obtained from these
measurements [19]. In some systems, only a limited buses
are equipped with these measurement devices (e.g. PMUs).
We show that our proposed MIPC framework is still applicable to
these systems by building an observer to estimate unmeasured
disturbances and states. Through simulation studies, we show
that the MIPC strictly outperforms optimally tuned VSMs for
the IEEE 39-bus system, even under limited communication and
large measurement noises.

This proposed controller finds practical application by en-
hancing the capability of the IBRs to participate in providing
frequency regulation services. The additional power required
can be obtained by running solar below its maximum power
point to create sufficient headroom, utilizing the inertia from the
decoupled rotating wind turbine and, leveraging on the stored
energy in a battery. By explicitly considering hard constraints
and costs on energy and power in the MPC formulation, eco-
nomic considerations can be accounted for.

The remainder of this paper is organized as follows: Section II
defines the models used in this paper. Section III presents the
design and formulation of the MIPC algorithm. Section IV
presents the state and disturbance observer design. Section V
compares the performances of MIPC to VSMs in a standard test
system. Section VI concludes the paper.

II. MODELING

We denote the real line by R, the cardinality of a set S as |S|,
the n× n identity and zero matrices as In and 0n, respectively.
Matrices and vectors are denoted by a bold-faced variables.

A. System Structure

Steady state conditions in a power systems are achieved
when there is a balance between the power produced by the
generating sources and the power consumed by loads and lossy
components. For stability analysis, the entire system can be
reduced to an equivalent network via Kron reduction [20]. This
eliminates passive and non-dynamic load buses and leaves only
buses with at least one generating source connected. With this
in place, frequency stability analysis can be carried out, with the
frequency dynamics governed by the reactions of buses to active
power imbalances in the system.

In this work, we assume the availability of state variables and
network information for control purposes. In a later section, we
will relax this assumption to partial availability of state variables
from some generators.

Because the generators and IBRs had different dynamics, we
denote their sets by G and I, respectively. Note that the total
number of generating sources in the network is N := G ∪ I.

B. Synchronous Machines

The rotor dynamics of each synchronous generator in a given
power system is governed by the well-known swing equa-
tion [21]. Here we adopt a discretized version of the equations,
which in per unit (p.u.) system is:

ωt+1
i = ωt

i +
h

mi

(
P t

m,i − P t
e,i − diω

t
i

)
,

δt+1
i = ωb

(
δti + h ωt+1

i

)
, (1)

∀i ∈ G where h is the step size for the discrete simulation, δi
(rad) is the rotor angle,ω = ω̄i − ω0 is the rotor speed deviation,
ωb is the base speed of the system, mi is the inertia constant, di
is the damping constant, Pm,i is the mechanical input power and
Pe,i is the electric power output of the ith machine.

The electrical output power Pe,i is given by the AC power
flow equation in terms of the internal emf |Ei| and rotor
angle δi:

P t
e,i =

∑
i∼j

|EiEj |[gij cos(δti − δtj) + bij sin(δ
t
i − δtj)], (2)

∀i, j ∈ G, where gij + jbij is the reduced admittance between
nodes i and j. We assume the internal emf are constant because
of the actions of the exciter systems.

The nonlinearity of the AC power flow in (2) makes (1)
difficult to use for control applications. Linearizing (1) around
the nominal point and using the DC power flow approximation
[22], the bus dynamics become:

�ωt+1
i = �ωt

i +
h

mi

(�P t
m,i −�P t

e,i − di � ωt
i

)
,

�δt+1
i = ωb

(�δti + h � ωt+1
i

)
, (3)

where �P t
e,i =

∑
i∼j bij � δtij is the dc power flow between 2

buses. We model changes to the mechanical input power �P t
m,i

by a combination of droop and automatic governor control
(AGC) actions [22].

C. Virtual Synchronous Machine (VSM)

From the network point of view, the grid-connected IBR is
seen as producing a constant power according to its predeter-
mined set-point and fast dynamics governed by closed-loop
controls actions [23]. When configured in the grid-following
mode, these controls help maintain the output power of the IBRs
while remaining synchronized to the terminal voltage set by the
grid [24]. For system analysis, the inverter can be modeled as
a voltage source behind a reactance, much like a synchronous
machine.

In the event of a power imbalance in the network reflected
by a frequency deviation, an inverter does not have a “natural”
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Fig. 1. Block Diagram showing the operation of the MIPC controller which
utilizes state and network variables to modify the real power set-point of the
IBR at each timestep.

response to frequency deviation as synchronous machines does
since they are made of power electronics components and have
no rotating mass. To elicit some response, an additional control
loop is therefore needed to enable the inverters to participate
in frequency control by changing the power set-point of the in-
verter based on frequency measurements. The concept of virtual
synchronous machine (VSM) has been proposed in literature to
provide this additional control loop and it comes in different
configurations [8], [25], [26]. The basic idea is to mimic the
behavior of a synchronous machine’s response to a frequency
deviation by choosing appropriate gains corresponding to the
inertia and damping of the machines and producing power
proportional to the ROCOF and frequency deviation. Since the
response of the inverter is entirely digital, it can be programmed
with almost arbitrary functions.

In this work, we adopt the VSM configuration in [26], where
the additional power required to combat a frequency deviation
is computed using:

�P = �Pkm +�Pkd = Km
d� ωibr

dt
+Kd � ωibr. (4)

The local frequency at the IBR node �ωibr is approximated by
the center of inertia (COI) frequency [23], [27], which is an
inertia-weighted average frequency given by:

�ωibr =

∑n
i=1 mi � ωi∑n

i=1 mi
(5)

where n = |G|, �ωi is the rotor speed deviation, and mi is
the inertia constant of the ith synchronous generators in the
network. The gainsKm andKd in (4) represent the virtual inertia
and damping constants respectively. In contrast to synchronous
machines where the constants are decided by the physical pa-
rameters, these constants of the VSM can be optimized over [10].

In the next section, we fully leverage the flexibility of the
power electronic interfaces using a MPC framework.

III. MPC-BASED INVERTER POWER CONTROL (MIPC)

In this work, we propose a novel method for controlling the
output power of the IBR, called the Inverter Power Control
(MIPC). This controller functions by modifying the initial real
power set-point P0 to a new set-point Pref as shown in Fig. 1
at each time step such that a weighted sum of the frequency
deviation and ROCOF is minimized. Due to the timescale
difference between IBRs and synchronous machines, the real
power set-points of an IBR can be set almost instantaneously.
Therefore, the important question becomes how to solve the
optimization problem at each time step fast enough to find the

real power set-point and how much communication is required in
performing these calculations. In this section, we describe how
to formulate the optimization problem and provide an efficient
algorithm, assuming all of the information are known at the
IBR. The next section then discusses how to deal with limited
and noisy measurements, as well as incomplete communication.

For the kth IBR, let uk denote its angle (referenced to the
slack-bus). We think of this uk as the control variable in the
optimization problem. Note that the actual control of the IBR is
not done via angle control, rather, we use the optimized uk to
find the corresponding active power output of the inverter, then
set the inverter to that power.

To determine this real power set-point at a given time step,
consider the power flow equation in (2), we write out the ith

generator’s power outputPe,i into two parts: power flowing from
the ith generator to other generator denoted as PeG,i and from
the ith generator to IBRs denoted as PeI,i, such that:

Pe,i = PeG,i + PeI,i

=
∑

i∼j,i,j∈G
|EiEj |[gij cos(δi − δj) + bij sin(δi − δj)]

+
∑

i∼k,i,∈G,k∈I
|EiEk|[gik cos(δi − uk) + bij sin(δi − uk)],

(6)

and the output power from the kth IBR denoted as Pibr,k can also
be written in two parts as:

Pibr,k = Pibr,ki + Pibr,kj ,

=
∑

k∼i,k∈I,i∈G
|EkEi|[gki cos(uk − δi) + bki sin(uk − δi)]

+
∑

k∼j,j,k∈I
|EkEj |[gkj cos(uk − uj) + bkj sin(uk − uj)].

(7)

A. Nonlinear Optimization Problem

At any timestep, we consider the behavior of the system N
steps ahead. Without loss of generality, we start the problem at
time t = 0. The control variables are the inverter angles, which
we denote as u0,u1, . . . ,uN−1. Once these are set, the rest of
the system are governed by their swing equations. As stated
before, the objective is to minimize a function of the frequency
deviation and the ROCOF, and the MIPC problem is given by:

Min.
{u0,u1,...,uN−1}

N−1∑
t=0

{
‖ωt+1‖22 +

1

h
‖ωt+1 − ωt‖22

}
(8a)

s.t. ωt+1
i = ωt

i +
h

mi

(
P t

m,i − P t
e,i − diω

t
i −�P t

i

)
, ∀i ∈ G

(8b)

P t
e,i = Equation (6), ∀i ∈ G (8c)

P t
ibr,k = Equation (7), ∀k ∈ I (8d)

P t
ibr,min,k ≤ P t

ibr,k ≤ P t
ibr,max,k, (8e)

N∑
t=1

P t
ibr,k ≤ Et

ibr, tot,k, (8f)
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where ωt+1 ∈ R|G| is a vector of all machine frequency devi-
ations at the next time step and ωt+1 − ωt is a vector of all
machine ROCOF between the current and next time step. The
evolution of ω is given in (8b) (swing equations) with the added
�Pi used to denote disturbances to the network which can be
either a loss in generation or load, the power constraints are
given in (8e) and the energy constraints are in (8f). Here we take
the frequency deviation and the ROCOF to be equally weighted
for simplicity, but their weighting can be adjusted as needed for
different practical scenarios.

After (8) is solved, the control variable u0 is substituted into
the power flow equations (7) to find the active power set-points
of the IBRs. Then the IBRs hold their power at these set-points
until the next time the optimization problem is solved. This is in
line with the MPC convention, where the optimal control action
is computed for the whole control horizon and only the first
action is used. The process is then repeated again to determine
the new control action.

It turns out that the AC power flow equations in (6) and (7)
makes the problem nonlinear and difficult to solve in real-time.
Therefore, the next two sections uses DC power flow to obtain
an approximate problem that is much easier to solve.

B. Unconstrained Linearized Problem

The main source of non-linearity in (8) comes from the AC
power flow equations in (8c) and (8d) and we use the standard
DC power flow model from (3) to approximate these equations.

Therefore, at bus i ∈ G (synchronous machines), we have:

�Pe,i = �PeG,i +�PeI,i

=
∑

i∼j,j∈G
bij(�δi −�δj) +

∑
i∼j,k∈I

bik(�δi − uk),

(9)

which can be written in matrix form as:

�Pe =

[
bii −bij

−bji bjj

]
︸ ︷︷ ︸

BGG

[
�δi

�δj

]
+

[
−bik

−bjk

]
︸ ︷︷ ︸

BGI

uk,
(10)

where BGG contains the connection between synchronous gen-
erators and BGI contains the connection between a synchronous
generator and IBRs. In state space form, it becomes[

�ωt+1

�δt+1

]
︸ ︷︷ ︸

xt+1

=

[
−M−1D −M−1BGG

In 0n

]
︸ ︷︷ ︸

Ā

[
�ωt

�δt

]
︸ ︷︷ ︸

xt

+

[
−M−1BGI

0n

]
︸ ︷︷ ︸

B̄u

ut +

[
−M−1

0n

]
︸ ︷︷ ︸

B̄d

�P t︸ ︷︷ ︸
dt

(11)

where �δ ∈ Rn is the rotor angles deviation, �ω ∈ Rn is the
rotor speed deviation, M = diag(m1, . . . ,mn) ∈ Rn×n, D =
diag(d1, . . . , dn) ∈ Rn×n, �P t ∈ Rn is vector of all power
deviations which comes from the disturbances and noises in the
system, denoted by dt.

Since the MIPC does not know the disturbance or noise
impacting the system, we use a two step process to solve the
optimization problem. First, we ignore the disturbance term such
that the MIPC’s model of the system is:[

�ωt+1

�δt+1

]
︸ ︷︷ ︸

xt+1

=

[
−M−1D −M−1BGG

In 0n

]
︸ ︷︷ ︸

Ā

[
�ωt

�δt

]
︸ ︷︷ ︸

xt

+

[
−M−1BGI

0n

]
︸ ︷︷ ︸

B̄

ut. (12)

Note that in this case the MIPC’s model of the system is actually
wrong since the disturbances are not modeled. It turns out that
this model is still useful, since the measurements are updated
every time the MPC problem is solved, and this compensates
for using a wrong model. In the rest of this section, we focus on
solving the optimization problem using the model in (12) since it
illustrates our methodology. Of course, when the measurement
noise in the system is large or not every bus is equipped with
wide-area measurement devices, it becomes necessary to ex-
plicitly estimate the mismatch between the model and the actual
system. We do so in Section IV.

We reformulate the objective function in terms of the network
model in (12) by defining the output of the linearized model as
the frequency deviation �ωt:

yt = [In 0n]︸ ︷︷ ︸
C

xt = �ωt (13)

such that the ROCOF becomes:

�yt =
1

h

[
yt − yt−1

]
=

1

h

[�ωt − �ωt−1
]

(14)

The MIPC optimization algorithm in (8) without the power
limit constraint (8e) and total energy constraints (8f) can now
be written as a linear quadratic programming problem:

Min.
ut

J =
1

2

N−1∑
t=0

[ytT Q1y
t +�ytT Q2 � yt]

s.t. xt+1 = Āxt + B̄ut

yt = Cxt. (15)

This can be written in matrix form for N time step ahead as:

Min.
u

J =
1

2
x0TGx0 + x0TFu+

1

2
uTHu. (16)

where H and F are constant matrices depending on Ā and B̄
(see Appendix).

C. Constrained Linearized Optimization Problem

In the presence of constraints, the problem becomes:

Min.
u

J =
1

2
x0TGx0 + x0TFu+

1

2
uTHu

s.t. Lu ≤ W + V x0, (17)
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where L,W and V encodes the constraints. In this paper, we
consider constraints on the power output at each time step (8e)
and constraints on the total energy available (8f). This problem
is a linearly constrained quadratic program and is convex.

1) Power Output Constraint: In practical considerations,
there can be a limit on the amount of instantaneous power that
can be drawn from the IBR due to factors such as the distance to
the maximum power tracking operating point, the current ratings
and switching speed of some power electronics components, and
also power capability or C-rate of a battery.

The transformation of the minimum and maximum instan-
taneous power limit from P t

ibr,min,k ≤ P t
ibr,k ≤ P t

ibr,max,k to the
linear constraint in (17) involves writing the linearized power
output of the kth IBR at time step t in terms of the control variable
ut and states xt, and then stacking them in matrix form for the
N control horizon.

The linearized output power P t
ibr,k is written in terms of the

power flow to generators and to other IBRs as:

P t
ibr,k =

∑
k∼i,k∈I,i∈G

bki(u
t
k −�δti) +

∑
k∼j,j,k∈I

bkj(u
t
k − ut

j)

= −
∑

k∼i,i∈G
bki � δti +

∑
k∈I

bkku
t
k −

∑
k∼j,j∈I

bkju
t
j ,

which can be written in matrix form as:

P t
ibr,k =

[
0n −[B]ki

]
xt +

[
−[B]kj [B]kk

]
ut (18)

Stacking (18) for a N time horizon and writing the linear
system dynamics in term of the initial state results in a form:

Pibr,k = Bp1x
0 + Bp2u, (19)

which can finally be written in the linear constraint form of (17)
as [

−Bp2

Bp2

]
︸ ︷︷ ︸

L

u ≤
[
−Pibr, min

Pibr, max

]
︸ ︷︷ ︸

W

+

[
Bp1

−Bp1

]
︸ ︷︷ ︸

V

x0. (20)

See appendix for derivation.
2) Total Energy Constraint: This constraint occurs when

there is a limit on the energy capacity of the IBR as in the case
of a battery. For this constraint to be fully satisfied, the total
energy not only at the end of the control horizon but also at each
rolling sum of the consecutive time step should be less than the
maximum energy capacity.

As with the power output constraint, the total energy con-
straint

∑N
t=1 P

t
ibr,k ≤ Et

ibr, tot,k can also be written in the linear
constraint form in (17) by taking the rolling sum over the inverter
power output matrix in (19). This results in another matrix of
the form:

Eibr,k = Be1x
0 + Be2u. (21)

To avoid a sudden decline in the power output when the maxi-
mum available energy limit is reached, a rate constraint can be
added to the power output decline between a specified consec-
utive time step. This can also be represent in the form of (17)
by taking a one time step difference of the IBR power output
matrix in (19), that is, a difference between the next time step

Fig. 2. Observer integrated MIPC in a power systems. The state measurements
received by the observer in addition to the predicted state by the model is used
to estimate the true state of the system.

and current time step IBR power output. This results in a matrix
of the form:

Br1x
0 + Br2u ≤ �Pibr,k � ε. (22)

Equation (21) and (22) can finally be written in the linear
constraint form of (17) as[

Be2

Br2

]
︸ ︷︷ ︸

L

u ≤
[
Eibr, tot

ε

]
︸ ︷︷ ︸

W

+

[
−Be1

−Br1

]
︸ ︷︷ ︸

V

x0. (23)

where ε is a vector of IBR power output rate limit for each one
time step difference. See appendix for derivation.

Even with constraints, a linear quadratic program can be
solved extremely efficiently for systems with thousands of vari-
ables and constraints [28]. Again, to actually implement the
controller, we compute and set the power output of the IBRs.

IV. MIPC WITH STATE ESTIMATION AND LIMITED

COMMUNICATION

In Section III, the MIPC controller was designed using the
reduced linearized model of the network as in (12) and under
the assumption of a full state measurement. When operating this
controller in a realistic setting, we would want the controller to
be robust against issues such as model mismatch, that is, the
difference between the actual system model and the linearized
model used by the MIPC; noisy measurements, and incom-
plete measurements because of limited communication between
buses.

We address these issues in this section by integrating an
observer into the MIPC controller system according to Fig. 2
to enable the controller estimate a better model of the system
from the received measurements.

Let the dynamics of the actual power systems governed by
(1) be represented concisely as:

xt+1 = f(xt, ut)

yt = g(xt, ut).d (24)

A simple discrete observer model design [29] for the system in
(24) can be written as:

x̂t|t = x̂t|t−1 + K(yt − ŷt)

ŷt = Cx̂t|t−1, (25)

where the notation x̂t|τ means the prediction of xt made at time
τ . Therefore the variables with x̂t|t is the updated observer state
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prediction based on new measurement yt, x̂t|t−1 is the observer
state prediction of the current time step using measurements
from the previous time step, and K is a gain chosen such that
the error between the measured and predicted state yt − ŷ

t is
quickly driven to zero.

A. State and Disturbance Estimation

To estimate the state and disturbance in a noisy system with
model mismatch and other forms of disturbance, we redefine dt

as a vector of all disturbances. We then integrate an input/output
constant disturbance model [29] into the MIPC system model in
(11) to obtain:

x̂t+1 = Āx̂t + B̄uu
t + B̄dd̂

t

d̂t+1 = d̂t

ŷt = Cx̂t + Cdd̂
t, (26)

where the disturbance d̂ is modeled as a constant disturbance
for the control period. Equation (26) can then be written in an
augmented form as:[

x̂t+1

d̂t+1

]
=

[
Ā B̄d

0 I

] [
x̂t

d̂t

]
+

[
B̄u

0

]
ut

ŷt =
[
C Cd

] [x̂t

d̂t

]
. (27)

The predicted augmented state and disturbance can then be
estimated using the observer model in (25) as:[

x̂t|t

d̂t|t

]
=

[
x̂t|t−1

d̂t|t−1

]
+ K

⎛
⎝yt −

[
C

Cd

]T [
x̂t|t−1

d̂t|t−1

]⎞⎠ (28)

where K is the gain matrix for the augmented state and distur-
bance variable. For simplicity, we adopt a fixed gain structure
for the gain matrix K.

This observer integrated MIPC model in (27) and (28) re-
places the linear model in (12), with the augmented state used
in place of the original states xt and the rest of the algorithm
follows through for the constrained and unconstrained case.

B. Limited Communication

While wide area measurement and communication systems
are becoming increasingly available [30], many networks still
do not yet have real-time communication capabilities. Even for
system with these types of infrastructure, there is always the
possibility of communication issues.

To tackle the issue of limited communication, we assume
that the initial state measurements of the generators is available.
For example, these can be conveyed using the existing SCADA
system every two to four seconds. The augmented state and
disturbance estimate in (28) is then used in estimating the full
state and disturbance. The only difference is in the gain used
since the structure and dimension of the gain K will change
depending on the number of generators with available state
information, that is, the dimension of yt.

The key idea here is that the mismatch between the evolved
initial state of the generators with limited communication and

Fig. 3. New England 39-bus system schematic with generator 5 at bus 34
replaced with an IBR of equal aggregated capacity.

what the state should be if there was communication is reflected
as a disturbance in the network and can be estimated using the
measurements from available generators.

V. CASE STUDIES

In this section, we validate the performance and versatility
of the MIPC controller by testing it on the popular IEEE New
England 10-machine 39-bus (NE39) system used for power
systems dynamics stability studies [31]. We study scenarios
including constraints on the power and energy output of the IBR,
noisy measurements and limited communication. Under each
scenario, a large disturbance in the form of a partial generating
capacity loss is applied to a generator in the network to initiate
an event that can lead to a marked frequency decline. The
performance metrics for the controller is its ability to maintain
the frequency deviation within a small range, quickly recovering
to the nominal frequency value and limiting the ROCOF.

The network is transformed into a low-inertia network by
removing the interconnection to the rest of the US network
and replacing generator 5 at bus 34 with an IBR whose total
aggregated capacity equal to the replaced generator as shown
in Fig. 3, and reduced to an equivalent network using Kron
reduction. The integrated IBR can be made up of either solar
or wind but will be coupled with energy storage devices to
guarantee the availability of the required capacity for frequency
control. The step size for the discrete simulation is set to 0.05
(50 ms) and the simulation starts of with the network in steady
state, after which a disturbance of 60% loss of capacity is applied
to the fourth generator (G4) located at bus 33 from 0.5 to 5
seconds.

The performance of the proposed controller is compared to
that of an optimally tuned VSM controller discussed in Sec-
tion II-C with computed optimal gain coefficients of Km =
201.7 and Kd = 520 according to [10]. Note that the VSM con-
trollers simply saturates when it hits its power or energy limits.

1) Unconstrained Scenario: Fig. 4 shows the generator fre-
quencies and IBR output power of the MIPC and VSM where
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Fig. 4. Comparison of MIPC and VSM control strategies for an unconstrained
scenario in a NE39 network. The plots show the frequency and generator
output power for some select generators and the IBR’s output power. The MIPC
outperforms the VSM in keeping the frequencies within limits.

Fig. 5. Frequencies of the individual generators (left) and the frequency of the
center of inertia (right).

there are not energy nor power limits. For a clearer viewing, only
the frequency response of the second (slack), fourth (disturbed),
seventh and ninth generator are shown. The proposed MIPC
controller keeps the frequencies within 0.2 Hz of nominal and
restores the frequency to its nominal value, while under the VSM
controller, the frequency varies by about 0.4 Hz and oscillates
for a much longer time.

This shows the look-ahead and adaptive nature of the proposed
MIPC controller enables it outperform the VSM by utilizing the
resources available to satisfy the given objective. It overcomes
a particular issue of when the local frequency measurement
becomes misleading a network with different coherent areas
swinging against each other. Fig. 5 shows the center of inertia
frequency given by (5) when utilizing the VSM control structure
compared to the true frequency of each generators, which the
former is misleadingly small.

2) Power and Energy Constraints: Figs. 6 and 7 shows select
generators’ frequency and output power, and also the IBR output
power for a power MIPC and VSM, respectively. The maximum
power limits at each time step was set to 7pu while the total
energy limit was set to 70pu. For a clearer viewing, only the
frequency response of the second (slack), fourth (disturbed),
seventh and ninth generator are shown. Compared to the VSM,
the MIPC is still able to limit the frequency deviation to about
0.3 Hz for the limited power case and 0.4 Hz for the limited
energy case, while keeping the system frequency from rapid os-
cillation as seen in the VSM case. This expected since the MIPC

Fig. 6. Comparison of MIPC and VSM control strategies for a power con-
strained scenario in a NE39 network. The MIPC controller is able to adaptively
change its power output to minimize frequency deviations while respecting the
power limits

Fig. 7. Comparison of MIPC and VSM control strategies for an energy
constrained scenario in a NE39 network. The MIPC controller is also able to
adaptively change its power output to ensure that the energy limits over its
operation horizon are respected.

is able to integrate the resource constraints into its optimization
but is very hard to achieved using a VSM controller since it
lacks an explicit optimization step to deal with hard constraints.
Similar performances are observed in the energy-limited setting,
which we do not show because of space constraints.

3) Robustness of the Controller: Fig. 8 demonstrates the
robustness of the MIPC controller to noise, model mismatch
and external disturbances to the system with the incorporation
of the observer model in (28).

We model noisy measurements by adding Gaussian noise to
create SNRs of 30 dB and 50 dB, respectively representing the
worst-case and an average-case SNR scenarios [32], [33]. Fig. 8
shows that noise has very little impact to the performance of the
MIPC (even under 30 dB of SNR). Of course, the observer plays
an important role in this robustness to noisy measurements.

4) Limited Communication: We further test the performance
of the MIPC in a limited communication scenario. In the partial
communication scenario, we assume that measurements can be
received from the generators G3, G4, G6, and G7 while only
initial state measurements is received from the generators G1,
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Fig. 8. Comparison of robust MIPC under SNR of 30 dB and 50 dB. The MIPC
controller is still able achieve a smooth response while keeping the frequency
within limit even in a worst-case noise scenario.

Fig. 9. MIPC control actions under a partial and no-communication scenario.

G2, G8 and G9 in Fig. 3 (so faulted generator (G4) is able
to communicate with the inverter). The left-side plot of Fig. 9
shows the MIPCs performance under the partial communication
scenario. By communicating with some buses, the MIPC is able
to reconstruct enough of the system-level information to make
the computations at the MIPC useful.

The right-side plot of Fig. 9 shows the no-communication
scenario, where none of the generators can exchange information
with each other. Here the MIPC performs much like a VSM. This
is expected since without communication, the best MIPC can do
is to utilize its local measurements to take actions.

5) Delayed Communication: In the previous scenarios, we
assumed that the measurements are received in time for the
controller to perform its computations. In this delayed communi-
cation scenario, we assume that there is a delay in measurement
data received from some generators in the network. Fig. 10
shows the MIPC performance when a delay in measurement
received is applied at random to any four generators thus creating
a possibility for the controller to receive delayed measurements
from the faulted generator (G4). The left-side plot of Fig. 10
shows a one time step delay, that is, a delay of 50 ms, while
the right-side plot shows a three time step delay, that is, a delay
of 150 ms. It can be observed that the MIPC controller is still
able to determine the appropriate inverter set-point to drive the

Fig. 10. MIPC control actions under a one- and three- time step delayed
communication scenario.

system to stability albeit with deteriorating performance as the
time lag increases.

VI. CONCLUSION

In this paper, we proposed a novel control strategy called
the Inverter Power Control that optimally determines the active
power set-point for an inverter-based resource in real-time.
Using a model predictive control framework, hard power and
energy constraints are considered explicitly in the optimization
process. We show via simulation on a test system the superiority
of the proposed controller in comparison to the optimally tuned
virtual synchronous machine, under both noisy and limited
communication settings. Our future work explores enhancing
the controller to function in a large network with multiple IBRs,
integrating model identification techniques and robustness to
communication delays.

APPENDIX

CONSTANT GAIN MATRIX FOR MIPC

The matrices H and F in III-B can be obtained as follows:
writing the linear system model in (12) for N time steps ahead
in matrix form, we have:⎡

⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

...

xN

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0

B̄ 0 . . . 0

ĀB̄ B̄ . . . 0
...

...
. . .

...

Ā
N−1

B̄ Ā
N−2

B̄ . . . B̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
S

⎡
⎢⎢⎢⎢⎣

u0

u1

...

uN−1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
u

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I

Ā

Ā
2

...

Ā
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
M

x0 (29)
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The objective function in (15) can then be written in terms of
the state variable as:

yTQ1y = (Cx)TQ1(Cx) = xT CTQ1 C︸ ︷︷ ︸
Q̂1

x (30)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

...

xN

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Q̂1 0 0 . . . 0

0 Q̂1 0 . . . 0

0 0 Q̂1 . . . 0
...

...
. . .

...

0 0 0 . . . Q̂1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Q̃1

⎡
⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

...

xN

⎤
⎥⎥⎥⎥⎥⎥⎦

= (Su + Mx0)T Q̃1(Su + Mx0) (31)

Let

Θ = S[0 : N − 1; 1 : N ] − S[1 : N ; 1 : N ]

Γ = M [0 : N − 1] − M [1 : N ]

�x = x[0 : N − 1] − x[1 : N ] (32)

such that

�yTQ2 � y = (C � x)TQ2(C � x)

= �xT CTQ2 C︸ ︷︷ ︸
Q̂2

�x

= (Θu + Γx0)T Q̃2(Θu + Γx0) (33)

Therefore (15) becomes:

J =
1

2

(
(Su + Mx0)T Q̃1(Su + Mx0)

+(Θu + Γx0)T Q̃2(Θu + Γx0)
)

=
1

2
x0T

⎡
⎣MT Q̃1 M + ΓT Q̃2Γ︸ ︷︷ ︸

G

⎤
⎦x0

+
1

2
uT

⎡
⎣ST Q̃1S + ΘT Q̃2Θ︸ ︷︷ ︸

H

⎤
⎦u

+ x0T

⎡
⎣MT Q̃1S + ΓT Q̃2Θ︸ ︷︷ ︸

F

⎤
⎦u

J =
1

2
x0TGx0 +

1

2
uTHu + x0TFu (34)

For optimality, ∇Ju = Hu + Fx0 = 0, such that the opti-
mal control action at a given start point forN time horizon ahead
becomes:

u∗ = −H−1F Tx0. (35)

POWER LIMIT

The linear constraint equation for the IBR power limit in (20)
can be derived by stacking (18) for a N step control horizon as

follows:⎡
⎢⎢⎢⎢⎣
P 1

ibr,k

P 2
ibr,k
...

PN
ibr,k

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Pibr,k

=

⎡
⎢⎢⎢⎢⎣
Bp1 0 . . . 0

Bp1 Bp1 . . . 0
...

...
. . .

...

Bp1 Bp1 . . . Bp1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Bp1,N

⎡
⎢⎢⎢⎢⎣
ẑ1

ẑ2

...

ẑN

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ẑ

+

⎡
⎢⎢⎢⎢⎣
Bp2 0 . . . 0

Bp2 Bp2 . . . 0
...

...
. . .

...

Bp2 Bp2 . . . Bp2

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Bp2,N

⎡
⎢⎢⎢⎢⎣

u0

u1

...

uN−1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
u

. (36)

From (29), we have that ẑ = Su + Mẑ0, therefore (36)
becomes,

Pibr,k = Bp1,NSu + Bp1,NMẑ0 + Bp2,Nu

= (Bp1,NS + Bp2,N︸ ︷︷ ︸
B̃p1

)u + Bp1,NM︸ ︷︷ ︸
B̃p2

ẑ0. (37)

The lower power limit can then be written as

−B̃p1u ≤ −P̃ibr, min + B̃p2ẑ
0 (38)

and the upper power limit as

B̃p1u ≤ P̃ibr, min − B̃p2ẑ
0 (39)

resulting in a combined form of:[
−B̃p2

B̃p2

]
︸ ︷︷ ︸

L

u ≤
[
−P̃ibr, min

P̃ibr, max

]
︸ ︷︷ ︸

W

+

[
B̃p1

−B̃p1

]
︸ ︷︷ ︸

V

ẑ0.
(40)

where P̃ibr, min and P̃ibr, max are matrices of P̃ t
ibr, min and P̃ t

ibr, max
stacked together for N horizon.

TOTAL ENERGY LIMIT

The linear constraint equation for the IBR total energy limit
in (23) can be derived from the power limit in (37) by taking the
rolling sum such that:

[B̃p1u + B̃p2ẑ
0]T 1N ≤ Ẽibr, tot (41)

resulting in

1T
NB̃p1︸ ︷︷ ︸
B̃e1

u ≤ Ẽibr, tot − 1T
NB̃p2︸ ︷︷ ︸
B̃e2

ẑ0.
(42)

The rate limit, represented as ε in this work, can be incorporated
by taking the difference between time steps of the output power
in (37) such that:

[B̃p1u + B̃p2ẑ
0][1:N−1] − [B̃p1u + B̃p2ẑ

0][2:N ] (43)

resulting in

B̃p1u + B̃p2ẑ
0][1:N−1] − [B̃p1u + B̃p2ẑ

0][2:N ] (44)
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The combined form of these two constraints is:[
B̃e2

B̃r2

]
︸ ︷︷ ︸

L

u ≤
[
Ẽibr, tot

ε

]
︸ ︷︷ ︸

W

+

[
−B̃e1

−B̃r1

]
︸ ︷︷ ︸

V

ẑ0.
(45)
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