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PARAMETERIZATION METHOD FOR STATE-DEPENDENT DELAY

PERTURBATION OF AN ORDINARY DIFFERENTIAL EQUATION∗

JIAQI YANG† , JOAN GIMENO‡ , AND RAFAEL DE LA LLAVE†

Abstract. We consider state-dependent delay equations (SDDEs) obtained by adding delays
to a planar ODE with a limit cycle. Situations of this type appear in models of several physical
processes, where small delay effects are added. Even if the delays are small, they are very singular
perturbations since the natural phase space of an SDDE is an infinite-dimensional space. We show
that for the SDDE, there are initial values which lead to solutions similar to those of the ODE. That
is, there exist a periodic solution and a two parameter family of solutions whose evolution converges
to the periodic solution (in the ODE case, these are called the isochrons). The method of proof
bypasses the theory of existence, uniqueness, dependence on parameters of SDDE. We consider the
class of functions of time that have a well defined behavior (e.g., periodic, or asymptotic to periodic)
and derive functional equations which impose that they are solutions of the SDDE. These functional
equations are studied using functional analysis methods. We provide a result in “a posteriori”
format: given an approximate solution of the functional equation, which has some good condition
numbers, we prove that there is a true solution close to the approximate one. Thus, our result can
be used to validate the results of numerical computations or formal expansions. The method of proof
also leads to practical algorithms. In a companion paper, we present the implementation details
and representative results. One feature of the method presented here is that it allows us to obtain
smooth dependence on parameters for the periodic solutions and their slow stable manifolds without
studying the smoothness of the flow (which seems to be problematic for SDDEs, for now the optimal
result on smoothness of the flow is C1).

Key words. state-dependent delay equations, limit cycle, slow stable manifolds, perturbation

AMS subject classifications. 34K19, 39A23, 39A60, 39A30, 37G15

DOI. 10.1137/20M1311430

1. Introduction. Many causes in the natural sciences take some time to gener-
ate effects. If one incorporates this delay into the models, one is led to descriptions
of systems in which the derivatives of states are functions of the states at previous
times. These are commonly called delay differential equations.

In the case that the delay is constant (say 1), one can prescribe the data in
an interval [−1, 0] and then propagate the differential equation. This leads to a
rather satisfactory theory of existence and uniqueness and even a qualitative theory
[Dri84, Hal77, HVL93, DvGVLW95]. Note that the natural phase space is a space of
functions on [−1, 0]. This is an infinite-dimensional space.
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and Competitiveness, through the Maŕıa de Maeztu Programme for Units of Excellence in R&D
(MDM-2014-0445), the Spanish grant PGC2018-100699-B-I00 (MCIU/AEI/FEDER, UE), and the
Catalan grant 2017 SGR 1374. The work of the first and second authors was supported by the H2020-
MCA-RISE grant 734577, which supported visits of the first author to the University of Barcelona
and the second author to Georgia Institute of Technology.

†School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160 USA
(yangjiaqi@zoho.com, rafael.delallave@math.gatech.edu).

‡Department of Mathematics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1,
00133 Rome Italy (joan@maia.ub.es).

4031

D
o
w

n
lo

ad
ed

 0
8
/2

5
/2

1
 t

o
 1

4
3
.2

1
5
.3

8
.3

2
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



© 2021 Jiaqi Yang, Joan Gimeno, and Rafael De La Llave

4032 JIAQI YANG, JOAN GIMENO, AND RAFAEL DE LA LLAVE

When the delay is not a constant and depends on the state, one needs to consider
state-dependent delay equations (SDDEs for short). In contrast with the constant
delay case, the mathematical theory of SDDEs has complications. The papers [Wal03]
made important progress for the appropriate phase space for SDDE. We refer to
[HKWW06] for a very comprehensive survey of the mathematical theory and the
(rather numerous) applications.

In this paper, we consider a simple model (two-dimensional ordinary differential
equation with a limit cycle) and show that all solutions close to the limit cycle present
in this model persist (in some appropriate sense) when we add a state-dependent delay
perturbation. Models of the form considered in this paper (see (2.2)) appear in sev-
eral concrete problems in the natural sciences (circuits, neuroscience, and population
dynamics); see [HKWW06].

The result is subtle to formulate since the perturbation of adding a state-dependent
delay is very singular; it changes the nature of the equation: the unperturbed case is
an ODE and the perturbed case is an infinite-dimensional problem. The basic idea
is that we establish the existence of some finite-dimensional families of solutions (in
the phase space of the SDDE), which resemble (in an appropriate sense) the solutions
of the original ODE. This allows us to establish many other properties (e.g., depen-
dence on parameters) which may be false for general solutions of SDDE. We hope that
the method can be extended in several directions. For example, we hope to produce
higher-dimensional families, families with other behaviors, and treat more compli-
cated models. The conjectural picture is that in SDDEs, even if the dynamics in a
full Banach space of solutions is problematic, one can find a very rich set of solutions
organized in families. The families may not fit together well and leave gaps, so that a
general theory giving a description for all the solutions may have problems [CJS63].

1.1. Overview. Let us start by an informal overview of the method. It is known
that in a neighborhood of a limit cycle of a two-dimensional ODE, we can find K :
T × [−1, 1] → R2, and ω0 and λ0 in such a way that for any θ, s, the function given
by

(1.1) x(t) = K(θ + ω0t, se
λ0t)

solves the ODE; see [HdlL13]. The fact that all the functions of the form (1.1) are
solutions of the original ODE is equivalent to a functional equation for K, ω0, and
λ0, which we call the “invariance equation.” Efficient methods to study the resulting
functional equation were presented in [HdlL13]. We will, henceforth, assume that K,
ω0, λ0 are known.

Similarly, for the perturbed case, when we impose that for fixed θ, s the function
of the form

(1.2) x(t) = K ◦W (θ + ωt, seλt)

is a solution of our delay differential equation, we obtain a functional equation for
W , ω, λ (see (2.6)). Note that the unknowns in (2.6) are the embedding W and the
numbers ω, λ.

Our goal will be to solve (2.6) using techniques of functional analysis. The equa-
tion is rather degenerate and our treatment has several steps. We first find some
asymptotic expansions in powers of s to a finite order and, then, we formulate a fixed
point problem for the remainder. Due to the delay, information at previous times is
needed. We anticipate a technical problem in that the domain of definition of the un-
known has to depend on the details of the unknown. Similar problems appear in the

D
o
w

n
lo

ad
ed

 0
8
/2

5
/2

1
 t

o
 1

4
3
.2

1
5
.3

8
.3

2
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



© 2021 Jiaqi Yang, Joan Gimeno, and Rafael De La Llave

STATE-DEPENDENT DELAY PERTURBATION TO AN ODE 4033

theory of center manifolds [Car81]. Here we have to resort to cut-offs and extensions.
After this process, we get a prepared equation, (2.7), which has the same format as
(2.6), and agrees with (2.6) in a neighborhood. Solutions of the prepared equation
which stay in the neighborhood will be solutions of the original problem.

The main result of this paper is Theorem 10, which establishes that with respect
to some condition numbers of the problem, verified for small enough ε, given an
approximate solution of the extended invariance equation (2.7), one obtain a true
solution nearby. (This is sometimes referred as “a posteriori” format.)

As in the case of center manifolds, the family of solutions found in the original
problem may depend on the extension considered.

1.2. Some comments on the results. In a geometric language, we can de-
scribe our procedure as that we are finding an embedding of the phase space of the
ODE into the phase space of the SDDE in such a way that the range of the embedding
is foliated by solutions of the SDDE and that the flow in this manifold is similar to
the flow of the ODE. Note that this bypasses the need for developing a general theory
of solutions of the SDDE. We only construct a two-dimensional manifold of solutions
of the SDDE. For these solutions, it is possible to comfortably discuss many desirable
properties such as smooth dependence on the model, etc.

Philosophies similar to that of this paper (finding solutions of functional equa-
tions that imply the existence of solutions of special kinds) have already been used
in [HdlL17, HDlL16, CCdlL20] to study quasi-periodic solutions of SDDEs. For con-
stant delay equations, we can find [KY74, Les10, KL12, vdBGL20] for the study
of periodic solutions. The paper [KL17] studies specific models similar to ours for
constant delay perturbations. The paper [LdlL09] studies quasi-periodic solutions
analytically; [GMJ17] studies numerically unstable manifolds near fixed points. The
papers [Sie17, CHK17, HBC+16, MKW14] study normal forms and numerical com-
putations of periodic and quasi-periodic solutions of SDDEs and obtain bifurcations
and numerical solutions. Even if the evolutions of the SDDEs considered above are
difficult to define as smooth evolutions, we believe that the results above can be un-
derstood as suggesting the existence of a subsystem of the evolution which indeed
experiences bifurcations. The careful numerical solutions of [CHK17] can presumably
be validated.

By solving the invariance equation, (2.7), one actually obtains a parameterization
of the limit cycle and its isochrons (two-dimensional slow stable manifolds of the
limit cycle). In other words, K ◦W (θ, 0) parameterizes the limit cycle, and for fixed
θ, we have K ◦ W (θ, s) parameterizes the local slow stable manifold of the point
K ◦W (θ, 0) on the limit cycle. We remark that in some previous work, e.g., Chapter
10 of [HVL93], persistence of limit cycles was studied with a different method in the
setting of retarded functional differential equations (RFDEs). They have also studied
infinite-dimensional stable manifolds of periodic orbits of RFDE. In this paper, we
study SDDE, and get a parameterization of a submanifold of the infinite-dimensional
stable manifold, which corresponds to the eigenvalue of the time-T map with largest
modulus (dominating the evolution). In this sense, we think that the manifold in
this paper is practically more relevant than the infinite-dimensional manifolds. For a
more detailed comparison of the results and approach of this paper with the study of
SDDEs as evolutionary equations, see section 4.3.

Of course, the notions of approximate solutions and that of solutions close to the
approximate ones, require us to specify a norm in the space of functions. In [HdlL13],
it was natural to specify analytic norms. In this paper, however, we use spaces of
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finitely differentiable functions. Indeed, we conjecture that the solutions we produce
are not more than finitely differentiable.

The a posteriori format of Theorem 10 allows us to validate approximate so-
lutions produced even by nonrigorous methods. In that respect, we note that the
related paper [GYdlL19] develops numerical methods that produce approximate solu-
tions. Some papers that study formal expansions in the delay are [CF80] for periodic
solutions and bifurcations, mostly with constant delay, and [CCdlL20] which studies
periodic and quasi-periodic solutions for SDDEs (and even more general models such
as those appearing in electrodynamics).

Using Theorem 10, we obtain that the numerical solutions produced in [GYdlL19],
have true solutions nearby and that the formal expansions produced in [CCdlL20]
are not just formal expansions but are asymptotic to true solutions. For an earlier
example of related philosophies, we mention that asymptotic expansions for equations
with small constant delay was produced and validated in the paper [Chi03].

A rather subtle point is that we do not obtain uniqueness of the solution. The
reason is that the nature of the problem involves cutting off the perturbation and the
solution produced may depend on the cut-off function used. Both the finite regularity
and the lack of uniqueness due to the introduction of a cut-off are reminiscent to
effects found in the study of center manifolds [Car81, Lan73]. Of course, since one of
the goals of the paper is to remedy the paucity of solutions of SDDEs, having many
solutions is a feature not a bug. The dependence of the solutions on the cut-offs
has to be small as the delay tends to zero (note that the asymptotic expansions in
[CCdlL20] do not depend on the cut-off), but we expect that they are small in other
senses similar to the situation in center manifolds [Sij85]. We will not formulate here
results making precise this intuition.

We hope that the methods of this paper can be extended to prove the existence of
other finite-dimensional families of solutions that are not close to families of solutions
of the unperturbed ODE.

1.3. Organization of the paper. We introduce the problem and formulate the
equations to be solved in section 2. In section 3 we present some notations and some
classical results in functional analysis which will be used in the proof. We state our
main results in section 4. We give an overview of the proof in section 5. Detailed
proofs of the results are given in section 6.

2. Formulation of the problem. We consider an ODE in the plane

(2.1) ẋ(t) = X0(x(t)),

where x(t) ∈ R2, X0 : R2 → R2 is analytic. We assume the above equation (2.1)
admits a limit cycle. Clearly, there is a two-dimensional family of solutions to this
ODE. This family can be parameterized, e.g., by the initial conditions, but as we will
see, there are more efficient parameterizations near the limit cycle.

The goal of this paper is to study an SDDE that is a “small” modification of (2.1)
in which we add some small term for the derivative that depends on some previous
time. Adding some dependence on the solution at previous times arises naturally in
many problems. Limit cycles appear in feedback loops and if the feedback loops have
a delayed effect, which depends on the present state, to incorporate them into the
model, we are led to

(2.2) ẋ(t) = X(x(t), εx(t− r(x(t)))), 0 ≤ ε ≪ 1.

D
o
w

n
lo

ad
ed

 0
8
/2

5
/2

1
 t

o
 1

4
3
.2

1
5
.3

8
.3

2
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



© 2021 Jiaqi Yang, Joan Gimeno, and Rafael De La Llave

STATE-DEPENDENT DELAY PERTURBATION TO AN ODE 4035

Where x(t) ∈ R2, X : R2 × R2 → R2 is analytic, the state-dependent delay function
r : R2 → [0, h] is as smooth as we need. Equation (2.2) is formally a perturbation of
(2.1) with X(x, 0) = X0(x).

We can rewrite (2.2) as

(2.3) ẋ(t) = X(x(t), 0) + εP (x(t), x(t− r(x(t))), ε),

where we define

εP (x(t), x(t− r(x(t))), ε) = X(x(t), εx(t− r(x(t))))−X(x(t), 0).

The question we want to address in this paper is to find a two-dimensional family
of solutions of (2.2) which resembles the two-dimensional family of solutions of (2.1).
This is a much simpler problem than developing a general theory of the existence of
solutions to an SDDE, which is a rather difficult problem. Nevertheless, persistence
of some family of solutions is of physical interest.

Note that, when ε > 0, (2.3) is an SDDE, which is an equation of a very different
nature than the equation when ε = 0, which is an ODE. Hence, we are facing a very
singular perturbation in which the nature of the problem changes drastically from an
ODE—whose phase space is R2—to an SDDE—whose natural phase space is a space
of functions. The precise meaning of the continuation of the unperturbed solutions
into solutions of the perturbed problem is somewhat subtle.

2.1. Limit cycles and isochrons for ODEs. Under our assumption, there
exists a limit cycle (stable periodic orbit) in the unperturbed equation (2.1). In a
neighborhood of the limit cycle, points have asymptotic phases (see [Win75, Guc75]).
The points sharing the same asymptotic phase as point p on the limit cycle is the
stable manifold for point p. The stable manifold of the limit cycle is foliated by the
stable manifolds for points on the limit cycle (sometimes referred as stable foliations).
The stable manifolds for points on the limit cycle are also called isochrons in the
biology literature; see [Win75, Guc75].

According to [HdlL13], we can find a parameterization of the limit cycle and
the isochrons in a neighborhood of the limit cycle. More precisely, there exist real
numbers ω0 > 0, λ0 < 0, and an analytic local diffeomorphism K : T× [−1, 1] → R2,
such that

(2.4) X0(K(θ, s)) = DK(θ, s)

(
ω0

λ0s

)
,

where K is periodic in θ, i.e., K(θ + 1, s) = K(θ, s). Saying that K solves (2.4) is
equivalent to saying that for fixed parameters θ and s, the function x(t) = K(θ +
ω0t, se

λ0t) solves (2.1) for all t such that |seλ0t| < 1. Notice that when s = 0, K(θ, 0)
parameterizes the limit cycle, and for a fixed θ with varying s, we get the local stable
manifold of the point K(θ, 0).

Note that geometrically, K can be viewed as a change of coordinates, under which
the original vector field is equivalent to the vector field X ′

0(θ, s) = (ω0, λ0s) in the
space T × [−1, 1]. We could have started with this vector field X ′

0 and then added
some perturbation to it. However, to keep contact with applications, we decided not
to do this.

Remark 1. As pointed out in [HdlL13], the K solving (2.4) can never be unique.
If K(θ, s) is a solution of (2.4), then for any θ0, b 6= 0, K(θ + θ0, bs) will also be a
solution of (2.4). [HdlL13] also shows that this is the only source of nonuniqueness.
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We will call such a b the scaling factor, and such a θ0 the phase shift. Note that by
using a different b, we can change the domain of K. However, no matter how the
domain changes, s has to lie in a finite interval.

In this paper, for the equation after perturbation (2.2), we will show that if ε is
small enough, the limit cycle and its isochrons for the unperturbed equation persist
as the limit cycle and its slow stable manifolds of the delayed model. We will use
the name isochrons to denote the slow stable manifolds and distinguish them from
the infinite-dimensional stable manifolds similar to the one established in [HVL93].
Meanwhile, we will find a parameterization of them. More precisely, we will find
ω > 0, λ < 0, and W which maps a subset of T × R to a subset of T × R, such that
for small s, K ◦ W (θ, s) gives us a parameterization of the limit cycle as well as its
isochrons in a neighborhood. We assume that W can be lifted to a function from R2

to R2 (we will use the same letter to denote the function before and after the lift)
which satisfies the periodicity condition:

(2.5) W (θ + 1, s) = W (θ, s) + ( 10 ) .

We remark thatK◦W being a parameterization of the limit cycle and its isochrons
is the same as for the given θ, and s in the domain of W , x(t) = K ◦W (θ+ ωt, seλt),
solving (2.2) for t ≥ 0.

2.2. The invariance equation and the prepared invariance equation.

Substitute x(t) = K ◦W (θ + ωt, seλt) into (2.3), let t = 0, use the fact that DK is
invertible; we get that x(t) = K ◦W (θ+ωt, seλt) solves (2.2) if and only if W satisfies

(2.6) DW (θ, s)

(
ω

λs

)
=

(
ω0

λ0W2(θ, s)

)
+ εY (W (θ, s), W̃ (θ, s), ε),

where W2(θ, s) is the second component of W (θ, s), W̃ is the term caused by the delay

W̃ (θ, s) = W (θ − ωr ◦K(W (θ, s)), se−λr◦K(W (θ,s))),

and

Y (W (θ, s), W̃ (θ, s), ε) = (DK(W (θ, s)))−1P (K(W (θ, s)),K(W̃ (θ, s)), ε).

Note that even if W̃ is typographically convenient, W̃ is a very complicated
function of W , as it involves several compositions.

Now we need to look at (2.6) more closely and specify the domain and range of
W . One cannot define W on T× [−b, b], where b > 0 is a constant. Indeed, observing

the second component in the expression of W̃ , se−λr◦K(W (θ,s)), one will note that
|se−λr◦K(W (θ,s))| > |s|. This will drive us out of the domain of W since the second
component of W lies in a finite interval. Therefore, W has to be defined for all s on
the real line. So we let W : T × R → T × R. There is another technical issue as
pointed out in Remark 2.

Remark 2. When ε is small, we expect W to be close to the identity map. Then
for s far from 0, W (θ, s) does not lie in the domain of K, thus the invariance equation
is not well defined.

Similarly to the study of center manifolds, we will use cut-off functions to resolve
the above issues.
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We will transform our original equation (2.6) into a well-defined equation of the
same format:

(2.7) DW (θ, s)

(
ω

λs

)
=

(
ω0

λ0W2(θ, s)

)
+ εY (W (θ, s), W̃ (θ, s), ε),

where Y is defined on (T×R)2×R+, and r ◦K is defined on T×R; with slight abuse

of notation, we still denote the term caused by the delay as W̃ :

W̃ (θ, s) = W (θ − ωr ◦K(W (θ, s)), se−λr◦K(W (θ,s))).

We follow standard practice in the theory of center manifolds of differential equa-
tions (see [Car81]), and introduce the following extensions:

• For r ◦ K which is defined only on T × [−1, 1], we define a function r ◦K
on T × R, which agrees with r ◦ K on T × [− 1

2 ,
1
2 ], and is zero outside of

T× [−1, 1].
• For Y : (T × [−1, 1])2 × R+ → R2, we define Y : (T × R)2 × R+ → R2,
which agrees with Y on the set (T × [− 1

2 ,
1
2 ])

2 × R+, and is zero outside
(T× [−1, 1])2 × R+.

To achieve the above extensions, let φ : R → [0, 1] be a C∞ cut-off function:

(2.8) φ(x) =

{
1 if |x| ≤ 1

2 ,

0 if |x| > 1.

We define

r ◦K(θ, s) = r ◦K(θ, s)φ(s)

and

Y (W (θ, s), W̃ (θ, s), ε) = Y (W (θ, s), W̃ (θ, s), ε)φ(W2(θ, s))φ(W̃2(θ, s)).

After these extensions, the main equation (2.6) is turned into the well-defined
equation (2.7). Note that, Y , r ◦K defined above have bounded derivatives in their
domains up to any order.

Remark 3. In the definition of cut-off function, one can let φ vanish for |x| > c1,
where the constant c1 < 1, and let φ = 1 for |x| ≤ c2, where the constant c2 < c1.

Remark 4. The use of the cut-off function here is very similar to the use of cut-
offs in the study of center manifolds in the literature, if we choose a different cut-off
function φ, we will possibly end up with a different W , which solves (2.7) with the
new cut-off function φ.

Remark 5. If instead of having a stable periodic orbit, the unperturbed ODE
has an unstable periodic orbit, then λ0 in (2.4) is positive. Analogous results to
Theorems 9 and 10 will give us the parameterization of the periodic orbit and the
unstable manifold for small ε. The same proof, only with minor modifications, will
work. At the same time, since the invariance equation (2.6) will be well-defined for a
suitably chosen domain for W , we do not need to do extensions. Similarly, the idea
here will also work for advanced equations, which have the same format as (2.2), with
r : R2 → [−h, 0]. We omit the details for these cases.
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2.3. Representation of the unknown function. In order to study the func-
tional equation (2.7), we consider W of the form

(2.9) W (θ, s) =

N−1∑

j=0

W j(θ)sj +W>(θ, s)

solving (2.7). WhereW 0(θ) is the zeroth order term in s,W j(θ)sj is the jth order term
in s, W>(θ, s) is of order at least N in s. W j : T → T×R and W> : T×R → T×R.
As we will see, the truncation number N could be chosen as any integer larger than
1 to obtain the main result of this paper. From now on, we will use superscripts to
denote corresponding orders, and subscripts, as we did before, to denote corresponding
components.

We consider lifts of W 0(θ), W j(θ), and W>(θ, s), which will be functions from R

or R2 to R2. We will not distinguish notations for the functions before or after lifts.
According to the periodicity condition for W in (2.5), the lifted functions satisfy the
following periodicity conditions:

W 0(θ + 1) = W 0(θ) + ( 10 ) ,(2.10)

W j(θ + 1) = W j(θ),(2.11)

W>(θ + 1, s) = W>(θ, s).(2.12)

Based on the form of W in (2.9), we can match coefficients of different powers of s
in the invariance equation (2.7). Thus, the invariance equation (2.7) is equivalent to a
sequence of equations. As we will see, the equations for W 0 and W 1 are special. The
equation for W 0 is very nonlinear and the equation for W 1 is a relative eigenvector
equation. The equations for the W j ’s are all similar. The equation for W> is hard
to study, it has 2 variables. As we will see later, for small enough ε, W> is the only
case where we need the cut-off.

2.3.1. Invariance equation for the zeroth order term. Matching zero order
terms of s in (2.7), we obtain the equation for the unknowns ω and W 0:

(2.13) ω
d

dθ
W 0(θ)−

(
ω0

λ0W
0
2 (θ)

)
= εY (W 0(θ), W̃ 0(θ;ω), ε),

where
W̃ 0(θ;ω) = W 0

(
θ − ωr ◦K(W 0(θ))

)

is the function caused by delay.

2.3.2. Invariance equation for the first order term. Equating the coeffi-
cients of s1 in (2.7), we obtain the equation for the unknowns λ and W 1:

(2.14) ω
d

dθ
W 1(θ) + λW 1(θ)−

(
0

λ0W
1
2 (θ)

)
= εY

1
(θ, λ,W 0,W 1, ε),

where Y
1
(θ, λ,W 0,W 1, ε) is the coefficient of s in Y . Y

1
(θ, λ,W 0,W 1, ε) is linear in

W 1. We will specify it later in (6.20).

2.3.3. Invariance equation for the jth order term. For 2 ≤ j ≤ N − 1,
matching the coefficients of sj , the equation for the unknown W j is

(2.15) ω
d

dθ
W j(θ) + λjW j(θ)−

(
0

λ0W
j
2 (θ)

)
= εY

j
(θ, λ,W 0,W j , ε) +Rj(θ),

D
o
w

n
lo

ad
ed

 0
8
/2

5
/2

1
 t

o
 1

4
3
.2

1
5
.3

8
.3

2
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



© 2021 Jiaqi Yang, Joan Gimeno, and Rafael De La Llave

STATE-DEPENDENT DELAY PERTURBATION TO AN ODE 4039

where Y
j
(θ, λ,W 0,W j , ε) is the coefficient of sj in Y . Y

j
(θ, λ,W 0,W j , ε) is linear in

W j , which will be specified in (6.32), and Rj is a function of θ which depends only
on W 0, W 1, . . . ,W j−1.

Having W 0, . . . ,WN−1, we are ready to consider W>.

2.3.4. Invariance equation for the higher order term. We note that
W>(θ, s) solves the equation:

(2.16) (ω∂θ + sλ∂s)W
>(θ, s)−

(
0

λ0W
>
2 (θ, s)

)
= εY >(W>, θ, s, ε),

where Y >(W>, θ, s, ε) is the term of order at least N in s of Y , which will be specified
later in (6.40).

3. Some basic definitions and basic results on function spaces. In this
section, we collect some standard results on the spaces of continuously differentiable
functions that we will use.

For a given positive integer L, we will denote by CL(Y,X) the space of all func-
tions from (an open subset of) a Banach space Y to a Banach space X, with uniformly
bounded continuous derivatives up to order L. We endow CL(Y,X) with the norm

‖f‖CL = max
0≤j≤L

sup
ξ∈Y

‖Djf(ξ)‖Y ⊗j→X ,

so that CL(Y,X) is a Banach space.
Note that we include in the definition that the derivatives are uniformly bounded.

This is not the same as the Whitney topology on spaces of L times differentiable
functions in a σ-compact manifold [GG73, p. 40], which is a Fréchet topology. Even
more general definitions appear in [KM97].

We use CL
B(Y,X) to denote the closed subset of CL(Y,X) which consists of func-

tions with ‖ · ‖CL norm bounded by the constant B.
We will also denote CL+Lip(Y,X) as the space of CL functions with Lth derivative

Lipschitz. We define

Lip(DLf) = sup
ξ1 6=ξ2

‖DLf(ξ1)−DLf(ξ2)‖Y ⊗L→X

‖ξ1 − ξ2‖Y
,

and the norm ‖ · ‖CL+Lip(Y,X) as the maximum of the ‖ · ‖CL norm and Lip(DLf).

Define CL+Lip
B (Y,X) to be the closed subset of the space CL+Lip(Y,X) consisting

of all functions with norm ‖ · ‖CL+Lip(Y,X) bounded by the constant B.

3.1. Closure of Cr balls in weak topology. We quote proposition A2 in
[Lan73], as it will be used several times throughout this paper. It can be interpreted

as C
L+Lip
1 (Y,X) is closed under pointwise weak topology on X. A related notion,

quasi-Banach space, was used in [HT97].

Lemma 6 (Lanford). Let (un)n∈N be a sequence of functions on a Banach space
Y with values on a Banach space X. Assume that for all n, y,

‖Djun(y)‖ ≤ 1 j = 0, 1, 2, . . . , k,

and that each Dkun is Lipschitz with Lipschitz constant 1. Assume also that for each
y, the sequence (un(y)) converges weakly (i.e., in the weak topology of X) to u(y).
Then,

(a) u has a Lipschitz kth derivative with Lipschitz constant 1;
(b) Djun(y) converges weakly to Dju(y) for all y and j = 1, 2, . . . , k.
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Note that the assumption of weak convergence of (un(y)), and part (b) in the
conclusion imply that ‖Dju(y)‖ ≤ 1 for all y and j = 0, 1, 2, . . . , k.

As mentioned in [Lan73], if X and Y are finite dimensional, the above lemma is
just an application of the Arzela–Ascoli theorem. This is actually the only case we
need. For the proof of the above lemma in the general case, we refer to [Lan73].

3.2. Faà di Bruno formula. We also quote the Faà di Bruno formula, which
deals with the derivatives of the composition of two functions.

Lemma 7. Let g(x) be defined on a neighborhood of x0 in a Banach space E,
and have derivatives up to order n at x0. Let f(y) be defined on a neighborhood of
y0 = g(x0) in a Banach space F , and have derivatives up to order n at y0. Then, the
nth derivative of the composition h(x) = f [g(x)] at x0 is given by the formula

(3.1) hn =
n∑

k=1

fk
∑

p(n,k)

n!

n∏

i=1

gλi

i

(λi!)(i!)λi
.

In the above expression, we set

hn =
dn

dxn
h(x0), fk =

dk

dyk
f(y0), gi =

di

dxi
g(x0),

and

p(n, k) =

{
(λ1, . . . , λn) : λi ∈ N,

n∑

i=1

λi = k,

n∑

i=1

iλi = n

}
.

This can be proved by the chain rule and induction. See [AR67] for a proof.

3.3. Interpolation. The interpolation inequalities will also be used many times.
One can refer to [Had98, Kol49, dlLO99] for some related work. We quote the following
result from [dlLO99].

Lemma 8. Let U be a convex and bounded open subset of a Banach space E and
F be a Banach space. Let r, s, t be positive numbers, 0 ≤ r < s < t, and µ = t−s

t−r
.

There is a constant Mr,t, such that if f ∈ Ct(U,F ), then

‖f‖Cs ≤ Mr,t‖f‖
µ
Cr‖f‖

1−µ
Ct .

4. Main results.

4.1. Results for prepared equations. Under the assumption that the map
Y : (T×R)2×R+ → R2 has bounded derivatives up to any order, r ◦K : T×R → [0, h]
has bounded derivatives up to any order, we have the following.

Theorem 9 (zero order). For any given integer L > 0, there is ε0 > 0 such
that when 0 ≤ ε < ε0, there exist an ω > 0 and an L times differentiable map
W 0 : T → T× R, with Lth derivative Lipschitz, which solve (2.13).

Moreover, for initial guess ω0, and W 0,0(θ) satisfying the periodicity condition
(2.10), if they satisfy the invariance equation (2.13) with error E0(θ), then there exist
unique ω, W 0(θ)(satisfying the periodic condition (2.10)) closed by solving the same
equation exactly with

‖W 0,0 −W 0‖Cl ≤ C‖E0‖
1− l

L

C0 , 0 ≤ l < L,(4.1)

|ω0 − ω| ≤ C‖E0‖C0(4.2)
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for some constant C, where C may depend on ε, ω0, λ0, l, L, and a prior bound for
‖W 0,0‖L+Lip. In fact, W 0 has derivatives up to any order.

Moreover, we have the following.

Theorem 10 (all orders). For any given integers N ≥ 2 and L ≥ 2 +N , there
is ε0 > 0 such that when 0 ≤ ε < ε0, there exist ω > 0, λ < 0, and W : T×R → T×R

of the form

(4.3) W (θ, s) =

N−1∑

j=0

W j(θ)sj +W>(θ, s)

which solve (2.7) in a neighborhood of s = 0.
Where W 0 : T → T × R is L times differentiable with Lipschitz Lth derivative,

for 1 ≤ j ≤ N − 1, W j : T → T × R is (L − 1) times differentiable with Lipschitz
(L − 1)th derivative, and W> is of order at least N in s and is jointly (L − 2 − N)
times differentiable in θ and s, with (L− 2−N)th derivative Lipschitz.

Moreover, if ω0, W 0,0(θ), λ0, W 1,0(θ), W j,0(θ), and W>,0(θ, s) satisfy the in-
variance equations (2.13), (2.14), (2.15), and (2.16), with errors E0(θ), E1(θ), Ej(θ),
and E>(θ, s), respectively, then there are ω, W 0(θ), λ, W 1(θ), W 1(θ), and W>(θ, s)
which solve (2.13), (2.14), (2.15), and (2.16). Therefore, (2.7) is solved by ω, λ, and
W (θ, s) of above form (4.3). For 0 ≤ l ≤ L− 2−N , we have

‖W (θ, s)−

N−1∑

j=0

W j,0(θ)sj −W>,0(θ, s)‖Cl

≤ C

(N−1∑

j=0

‖Ej‖C0 |s|j + ‖E>‖0,N |s|N
)1− l

(L−2−N)

,

(4.4)

|ω − ω0| ≤ C(‖E0‖C0),

(4.5) |λ− λ0| ≤ C(‖E1‖C0)

for some constant C depending on ε, ω0, λ0, N , l, L, prior bounds for ‖W 0,0‖L+Lip,
‖W j,0‖L−1+Lip, j = 1, . . . , N − 1, and derivatives of W>,0.

Remark 11. In Theorem 9, W 0(θ) is unique up to a phase shift.

Remark 12. The above theorems are in a posteriori format. The main input
needed are some functions that satisfy the invariance equations approximately. These
can be numerical computations (that indeed produce good approximate solutions) or
Lindstedt series; see, for example, [CCdlL20].

Notice that with these theorems, we do not need to analyze the procedure used
to produce the approximate solutions. The only thing that we need to establish is
that the solutions produced satisfy the invariance equations up to small errors.

The a posteriori format of the theorem leads to automatic Hölder dependence of
the solution W 0 on ε and Y .

It suffices to observe that if we consider W 0 solving the invariance equation for
some ε1, Y1, it will solve the invariance equation for ε2, Y2 up to an error which is

bounded in the Cl norm by C (|ε1 − ε2|+ ‖Y1 − Y2‖C0)
1− l

L .
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As a matter of fact, one of the advantages of our approach is that it leads very
easily to smooth dependence on parameters.

Theorem 13. Consider a family of functions Yη, rη as above, where η lies in an
open interval I ⊂ R. Assume that Yη and rη are smooth in their inputs as well as in
η, with bounded derivatives.

Then for any positive integer L, there is a small enough positive ε0 such that when
ε < ε0, for each η ∈ I, we can find ωη, W

0
η solving (2.13).

Furthermore, W 0
η (θ) is jointly CL+Lip in η, θ.

Theorem 14. Under the same assumption as in Theorem 13, for any given in-
tegers N ≥ 2, and L ≥ 2 + N , there is a small enough positive ε0 such that when
ε < ε0, for each η ∈ I, we can find ωη, W

0
η , λη, W

j
η , j = 1, . . . , N − 1, and W>

η (θ, s),
which solve the invariance equations (2.13), (2.14), (2.15), and (2.16).

Furthermore, W 0
η (θ) is jointly CL+Lip in η, θ; W j

η (θ), j = 1, . . . , N −1, is jointly

CL−1+Lip in η, θ; W>
η (θ, s) is jointly CL−2−N+Lip in η, θ, and s.

Note that the regularity conclusions of Theorem 13 can be interpreted in a more
functional form as the mapping that to η associates W 0

η is Cℓ+Lip when the space

of embedding W is given the CL−ℓ topology. Similar interpretation can be made for
Theorem 14. This functional point of view is consistent with the point of view of
RFDE where the phase space is infinite dimensional.

4.2. Results for original problem in a neighborhood of the limit cycle.

Note that to find the low order terms, W j (j = 1, . . . , N−1), for small ε, the extensions
are not needed. Heuristically, the low order terms are infinitesimals. Hence, to
compute them, it suffices to know the expansion of the vector field.

More precisely, if we take the initial guess for the zero order term as W 0,0(θ) =
( θ0 ), the error for this initial guess is of order ε. Then by Theorem 9, the true solution
W 0 is within a distance of order ε fromW 0,0(θ). Therefore, with ε being small enough,
we have supθ∈T |W

0
2 (θ)| <

1
2 , we are reduced to the case without extension:

r ◦K(W 0(θ)) = r ◦K(W 0(θ)),

Y (W 0(θ), W̃ 0(θ;ω), ε) = Y (W 0(θ), W̃ 0(θ;ω), ε),

where
ga) = W 0(θ − ωr ◦K(W 0(θ))).

Then we can rewrite the invariance equation for W 0, (2.13), as

(4.6) ω
d

dθ
W 0(θ)−

(
ω0

λ0W
0
2 (θ)

)
= εY (W 0(θ), W̃ 0(θ;ω), ε).

Similar arguments apply for the equations for W 1 and W j ’s (2 ≤ j ≤ N − 1) if

we look at expressions of Y
1
in (6.20), Y

j
in (6.32), and the form of Rj .

We can find 0 < s1 < 1
2 such that W (T × [−s1, s1) ⊂ T × [− 1

2 ,
1
2 ], and W̃ (T ×

[−s1, s1]) ⊂ T× [− 1
2 ,

1
2 ]. Therefore, the original problem is solved in a neighborhood

of the limit cycle by applying the results in section 4.1.
For the original problem in section 2, we have the following.

Corollary 15 (limit cycle). When ε < ε0 in Theorem 9 is so small that
supθ∈T |W

0
2 (θ)| <

1
2 , (2.2) admits a limit cycle close to the limit cycle of the unper-

turbed equation. If ω, W 0 solve the invariance equation (4.6), then K ◦W 0(θ) gives
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a parameterization of the limit cycle of (2.2), i.e., for any θ, K ◦W 0(θ + ωt) solves
(2.2) for all t.

We can also find a two-parameter family of solutions close to the limit cycle:

Corollary 16 (isochrons). For small ε as in Corollary 15, there are isochrons
for the limit cycle of (2.2). If ω, λ, and W : T × R → T × R solve the extended
invariance equation (2.7), then there exists 0 < s0 < 1

2 such that K ◦W (θ, s), |s| ≤ s0,
gives a parameterization of the limit cycle with its isochrons in a neighborhood, i.e.,
for any θ, and s, with |s| ≤ s0, K ◦W (θ + ωt, seλt) solves (2.2) for all t ≥ 0.

One can formulate dependence on parameter results using Theorems 13 and 14.
The cut-offs and extensions should be carried out in a way that preserves the smooth-
ness with respect to parameters, which can be done by applying the bump functions
in the same way for all the elements in the family. Note that only the higher order
term W> requires extension. We omit the precise formulations here.

4.3. Comparison with results on RFDE based on time evolution. The
persistence of a periodic solution under perturbation for RFDE is presented in Chapter
10 of [HVL93], notably Theorem 4.1. In this section, we present some remarks that
can help the specialists to compare our results with those obtainable considering the
time evolution of RFDEs.

The setup presented there does not seem to apply to our case since the phase space
considered in [HVL93] is the space of continuous functions on an interval, namely,
C0[−h, 0], and they require differentiability properties of the equation which are not
satisfied in our case. Note also that we can obtain smooth dependence on parameters
(see Theorem 13). Obtaining such smooth dependence using the methods based on the
evolutionary approach would require obtaining regularity of the evolution operator,
which does not seem to be available.

More precisely, if we employ the notation xt as a function defined on [−h, 0], with

xt(s) = x(t+ s)

for s ∈ [−h, 0], we can write our SDDE (2.2) as

ẋ(t) = F (xt, ε),

where we define F (φ, ε) := X(φ(0), εφ(−r(φ(0)))). For ε = 0, we have an ODE,
which can be viewed as a delay equation, with a nondegenerate periodic orbit (see
[HVL93]). However, the above F cannot be continuously differentiable in φ if φ is
only continuous. This obstructs application of Theorem 4.1 for RFDE in [HVL93].

It is very interesting to study whether a similar method to the one in [HVL93] can
be extended to our case with some variations of the phase space (solution manifold; see
[Wal03]). However, since only C1 regularity of the evolution has been proved [Wal03]
(higher regularity of the evolution in SDDE seems problematic), one cannot hope to
obtain more than C1 dependence on parameters. On the other hand, the method in
this paper allows one to get rather straightforwardly higher smoothness with respect
to parameters for the special solutions considered here. See Theorem 13. We mention
that some progress in continuation of periodic orbits is in [MPN86, MPNP94].

Considering RFDEs as evolutions in infinite-dimensional phase spaces, [HVL93]
establishes the existence of infinite-dimensional strong stable manifolds for periodic
orbits corresponding to the Floquet multipliers smaller than a number.
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Again, we remark that there are some technical issues of regularity of evolutions
in the phase space of SDDE to define stable manifolds and even stability. We hope
that these regularity issues of the evolution can be made precise (using techniques as
in [Wal03, MNnO17, MPN11]).

Nevertheless, there is a very fundamental difference between the manifolds we
consider and those in [HVL93].

If we consider the unperturbed ODE as an RFDE in an infinite-dimensional phase
space, the Floquet multipliers are 1 with multiplicity 1, exp (λ0

ω0
) with multiplicity 1,

and 0 (with infinite multiplicity). With C1-smoothness of the evolution as in [Wal03],
under small perturbation, the new Floquet multipliers are closed by (one exactly 1,
one close to exp(λ0

ω0
), and infinitely many near 0).

The theory developed in [HVL93] attaches an infinite-dimensional manifold to
the most stable part of the spectrum in the case of RFDEs. That is the strong stable
manifold.

Although the stability for all the solutions in a neighborhood of the limit cycle is
out of the scope of the present paper, heuristically, the manifold that we consider here,
in the infinite-dimensional phase space, is attached to the least stable Floquet multi-
plier, hence it is a slow stable manifold from the infinite-dimensional point of view.

We think that the finite-dimensional manifold we obtain is more practically rele-
vant than the strong stable manifold. We expect that infinitely many modes will die
out very fast and, therefore, be hard to observe. All the solutions of the full problem
will be asymptotically similar to the solutions we consider. In summary, solutions
close to the limit cycle will converge to the limit cycle tangent to the slow stable
manifolds described here. One problem to make all this precise is that the evolution
is only known to be C1.

Our motivation is to obtain solutions which resemble solutions of the ODE, in ac-
cordance with the physical intuition that the solutions in the perturbed problem—in
spite of the singular nature of the perturbation—look similar to those of the unper-
turbed problem (this is the reason why relativity and its delays were hard to discover).

One of the features of the formalism in this paper is that it allows one to describe
in a unified way the solutions of the SDDE in an infinite-dimensional space and the
solutions of the unperturbed finite-dimensional ODE.

Of course in this paper, we only deal with models of a very special kind (we
indeed have the hope that the range of applicability of the method can be expanded;
the models considered in this paper are a proof of concept) but we obtain rather
smooth invariant manifolds and smooth dependence on parameters with high degree
of differentiability. Furthermore, the proof presented here leads to algorithms to
compute the limit cycles and their manifolds. These algorithms are practical and
have been implemented; see [GYdlL19].

It is also interesting to investigate whether evolution based methods lead to com-
putational algorithms [Gim19] and compare them with the algorithms based on func-
tional equations as in [GYdlL19].

5. Overview of the proof. In (2.13), ω and W 0 are the unknowns. Under a
choice of the phase, we define an operator such that its fixed point solves (2.13). We
will show that when ε is small enough, the operator is a “C0” contraction and maps a
CL+Lip ball to itself. Then one obtains the existence of the fixed point (ω,W 0), and
that W 0 in the fixed point has some regularity. Therefore, (2.13) is solved.

In (2.14), λ and W 1 are the unknowns. We will impose an appropriate normal-
ization when defining the operator to make sure the solution is uniquely found, and

D
o
w

n
lo

ad
ed

 0
8
/2

5
/2

1
 t

o
 1

4
3
.2

1
5
.3

8
.3

2
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



© 2021 Jiaqi Yang, Joan Gimeno, and Rafael De La Llave

STATE-DEPENDENT DELAY PERTURBATION TO AN ODE 4045

that W is close to the identity map with appropriate scaling factor. Then similarly to
the above case, for small enough ε, this operator has a fixed point (λ,W 1) in which
W 1 has some regularity.

In (2.15), W j is the only unknown. We define an operator which is a contraction
for small enough ε. The operator has a fixed point with certain regularity solving the
equation.

In (2.16), W> is an unknown function of 2 variables. We will define an operator
on a function space with a weighted norm, then prove that for small ε, this operator
has a fixed point in this function space, which solves (2.16).

We emphasize again that for small enough ε, the equation for W> is the only
place where extension is needed (recall section 4.2).

There are finitely many smallness conditions for ε, so there are ε’s which satisfy
all the smallness conditions.

The same idea will be used for proving the smooth dependence on parameters.

6. Proof of the main results.

6.1. Zero order solution. In this section, we prove our first result, Theorem
9.

Recall (2.13), the invariance equation for ω and W 0, which is obtained by setting
s = 0 in (2.7).

Componentwise, W 0 = (W 0
1 ,W

0
2 ) and Y = (Y 1, Y 2), we have the equations as

ω
d

dθ
W 0

1 (θ)− ω0 = εY 1(W
0(θ), W̃ 0(θ;ω)ε)(6.1)

and

ω
d

dθ
W 0

2 (θ)− λ0W
0
2 (θ) = εY 2(W

0(θ), W̃ 0(θ;ω), ε).(6.2)

Taking periodicity condition (2.10) into account, we define an operator Γ0 as
follows:

Γ0




a

Z1

Z2


 (θ) =




Γ0
1(a, Z)

Γ0
2(a, Z)(θ)

Γ0
3(a, Z)(θ)




=




ω0 + ε
∫ 1

0
Y 1(Z(θ), Z̃(θ; a), ε)dθ

1
Γ0
1(a,Z)

(
ω0θ + ε

∫ θ

0
Y 1(Z(σ), Z̃(σ; a), ε)dσ

)

ε
∫∞

0
eλ0tY 2(Z(θ − at), Z̃(θ − at; a), ε)dt


 .

(6.3)

Notice that if Γ0 has a fixed point (a∗, Z∗), then (2.13) is solved by ω = a∗ and
W 0 = Z∗; at the same time, periodic condition (2.10) is satisfied.

Remark 17. As we can see, the operator Γ0 depends on ε; however, to simplify
the expression, we do not include ε in the notation of the operator Γ0.

Remark 18. Similarly to Remark 1, we will not have uniqueness of the solution
to invariance equation (2.13). Once we have a solution W 0(θ) to the equation, for
any θ0 6= 0, W 0(θ + θ0) will also solve the equation, which is called phase shift. This
is indeed the only source of nonuniqueness.

By considering the operator (6.3), we fix a phase by Γ0
2(a, Z)(0) = 0.
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For the domain of Γ0, we consider the closed interval I0 = {a : |a − ω0| ≤
ω0

2 }.
For fixed positive integer L and positive constant B0, define a subset of the space of
functions which are L times differentiable with Lipschitz Lth derivative as follows:

CL+Lip
0 = {f | f : T → T× R, f can be lifted to a function from R to R2,

still denoted as f,which satisfies f(θ + 1) = f(θ) + ( 10 ) ,

f1(0) = 0, ‖f‖L+Lip ≤ B0},(6.4)

where

‖f‖L+Lip = max
i=1,2,k=0,...,L

{
sup

θ∈[0,1]

‖f
(k)
i (θ)‖, Lip(f

(L)
i )

}
.

Define D0 = I0 × CL+Lip
0 , then Γ0 is defined on D0. We have the following.

Lemma 19. There exists ε0 > 0, such that when ε < ε0, Γ0(D0) ⊂ D0.

Proof. For (a, Z) ∈ D0, by assumption, we have that Y 1(Z(θ), Z̃(θ; a), ε) is
bounded by a constant which is independent of choice of (a, Z) in D0. Then, one

can choose ε small enough such that Γ0
1(a, Z) = ω0 + ε

∫ 1

0
Y 1(Z(θ), Z̃(θ; a), ε)dθ is in

I0.
Now consider Γ0

2(a, Z)(θ) = 1
Γ0
1(a,Z)

(
ω0θ + ε

∫ θ

0
Y 1(Z(σ), Z̃(σ; a), ε)dσ

)
. First we

observe that
Γ0
2(a, Z)(θ + 1) = Γ0

2(a, Z)(θ) + 1.

Then we need to check bounds for the derivatives

d

dθ
Γ0
2(a, Z)(θ) =

1

Γ0
1(a, Z)

(
ω0 + εY 1(Z(θ), Z̃(θ; a), ε)

)
.

By Faà di Bruno’s formula in Lemma 7, for 2 ≤ n ≤ L, dn

dθnΓ
0
2(a, Z)(θ) will be a

polynomial of a common factor ε
Γ0
1(a,Z)

, each term will contain products of derivatives

of Y 1, Z, and r ◦K up to order (n − 1). By assumption on Y 1 and r ◦K, for
(a, Z) ∈ D0, if we choose B0 to be larger than 2, then for small enough ε, Γ0

2(a, Z)(θ)
on [0, 1] has derivatives up to order L bounded by B0 and Lth derivative Lipschitz
with Lipschitz constant less than B0.

For Γ0
3(a, Z)(θ) = ε

∫∞

0
eλ0tY 2(Z(θ − at), Z̃(θ − at; a), ε)dt, it satisfies

Γ0
3(a, Z)(θ + 1) = Γ0

3(a, Z)(θ).

To establish bounds for the derivatives of Γ0
3(a, Z)(θ), we apply a similar argument as

above. Notice that for n ≤ L, ∂n

∂θnY 2(Z(θ − at), Z̃(θ − at; a), ε) will be a polynomial

with each term a product of derivatives of Y 2, Z, and r ◦K up to order n. With
regularity of Y 2, and r ◦K, for (a, Z) ∈ D0, | ∂n

∂θnY 2(Z(θ − at), Z̃(θ − at), ε)| will
be bounded. Therefore, for small enough ε, Γ0

3(a, Z) has derivatives up to order L

bounded by B0 and its Lth derivative is Lipschitz with Lipschitz constant less than
B0.

If we take ε0 such that the above conditions are satisfied at the same time, then
for ε < ε0, we have Γ0(D0) ⊂ D0.

We now define a distance on D0, which is essentially C0 distance. Under this
distance, the space D0 is complete. For (a, Z) and (a′, Z ′) in D0,

(6.5) d((a, Z), (a′, Z ′)) := |a− a′|+ ‖Z − Z ′‖,
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where

(6.6) ‖Z − Z ′‖ = max

{
sup
θ

|Z1(θ)− Z ′
1(θ)|, sup

θ

|Z2(θ)− Z ′
2(θ)|

}
.

Lemma 20. There exists ε0 > 0 such that when ε < ε0, under the above choice of
distance (6.5) on D0, the operator Γ0 is a contraction.

Proof. We will show that for ε small enough (the explicit form of smallness con-
ditions will become clear during the proof), we can find a constant µ0 < 1 such that
for distance defined in (6.5)

(6.7) d(Γ0(a, Z),Γ0(a′, Z ′)) < µ0 · d((a, Z), (a′, Z ′)).

Note that

d(Γ0(a, Z),Γ0(a′, Z ′)) =
∣∣Γ0

1(a, Z)− Γ0
1(a

′, Z ′)
∣∣

+ ‖(Γ0
2(a, Z),Γ0

3(a, Z))− (Γ0
2(a

′, Z ′),Γ0
3(a

′, Z ′))‖.
(6.8)

More explicitly, the above distance is

ε

∣∣∣∣
∫ 1

0

Y 1(Z(θ), Z̃(θ; a), ε)dθ −

∫ 1

0

Y 1(Z
′(θ), Z̃ ′(θ; a′), ε)dθ

∣∣∣∣

+max

{
sup
θ

∣∣∣∣
1

Γ0
1(a, Z)

(
ω0θ + ε

∫ θ

0

Y 1(Z(σ), Z̃(σ; a), ε)dσ
)

−
1

Γ0
1(a

′, Z ′)

(
ω0θ + ε

∫ θ

0

Y 1(Z
′(σ), Z̃ ′(σ; a′), ε)dσ

)∣∣∣∣,

ε sup
θ

∣∣∣∣
∫ ∞

0

eλ0tY 2(Z(θ − at), Z̃(θ − at; a), ε)dt

−

∫ ∞

0

eλ0tY 2(Z
′(θ − a′t), Z̃ ′(θ − a′t; a′), ε)dt

∣∣∣∣
}
.

(6.9)

Now we consider each term of the above expression (6.9). Note that in the above
expression, it suffices to take the supremums for θ ∈ [0, 1], which follows from period-
icity condition (2.10). By adding and subtracting terms, we have
∣∣∣Y 1(Z(θ), Z̃(θ; a), ε)− Y 1(Z

′(θ), Z̃ ′(θ; a′), ε)
∣∣∣

=
∣∣Y 1(Z(θ), Z(θ − ar ◦K(Z(θ))), ε)− Y 1(Z

′(θ), Z ′(θ − a′r ◦K(Z ′(θ))), ε)
∣∣

≤
∣∣Y 1(Z(θ), Z(θ − ar ◦K(Z(θ))), ε)− Y 1(Z

′(θ), Z(θ − ar ◦K(Z(θ))), ε)
∣∣

+
∣∣Y 1(Z

′(θ), Z(θ − ar ◦K(Z(θ))), ε)− Y 1(Z
′(θ), Z ′(θ − ar ◦K(Z(θ))), ε)

∣∣

+
∣∣Y 1(Z

′(θ), Z ′(θ − ar ◦K(Z(θ))), ε)− Y 1(Z
′(θ), Z ′(θ − a′r ◦K(Z(θ))), ε)

∣∣

+
∣∣Y 1(Z

′(θ), Z ′(θ − a′r ◦K(Z(θ))), ε)− Y 1(Z
′(θ), Z ′(θ − a′r ◦K(Z ′(θ))), ε)

∣∣ .
By the mean value theorem, and the fact that (a, Z) and (a′, Z ′) are in D0, we

have
∣∣Y 1(Z(θ),Z̃(θ; a), ε)− Y 1(Z

′(θ), Z̃ ′(θ; a′), ε)
∣∣

≤ 2‖DY 1‖‖Z − Z ′‖+ ‖DY 1‖‖DZ ′‖‖r ◦K‖|a− a′|

+ |DY 1‖‖DZ ′‖|a′|‖D(r ◦K)‖‖Z − Z ′‖

≤ ‖DY 1‖
(
2 +B0|a′|‖D(r ◦K)‖

)
‖Z − Z ′‖

+ ‖DY 1‖B
0‖r ◦K‖|a− a′|,
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where the norms are supremum norms on R or R2 (defined as above in (6.6)), and

(6.11) ‖DY 1‖ = max{‖D1Y 1‖, ‖D2Y 1‖},

where ‖DiY 1‖, i = 1, 2, is the supremum of the operator norm corresponding to the
infinity norm defined on R2.

By (6.10),

∣∣Γ0
1(a, Z)− Γ0

1(a
′, Z ′)

∣∣ ≤ ε‖DY 1‖
(
2 +B0|a′|‖D(r ◦K)‖

)
‖Z − Z ′‖

+ εB0‖DY 1‖‖r ◦K‖|a− a′|.
(6.12)

Now consider the first component of the maximum for θ ∈ [0, 1] in (6.9); by adding
and subtracting terms, we have

∣∣Γ0
2(a, Z)− Γ0

2(a
′, Z ′)

∣∣

≤
ε

|Γ0
1(a, Z)|

∫ 1

0

∣∣∣Y 1(Z(θ), Z̃(θ), ε)dθ − Y 1(Z
′(θ), Z̃ ′(θ), ε)

∣∣∣ dθ

+
ε
∫ 1

0

∣∣∣Y 1(Z
′(θ), Z̃ ′(θ; a′), ε)

∣∣∣ dθ
|Γ0

1(a, Z)Γ0
1(a

′, Z ′)|

∣∣Γ0
1(a, Z)− Γ0

1(a
′, Z ′)

∣∣

+
|ω0|

|Γ0
1(a, Z)Γ0

1(a
′, Z ′)|

∣∣Γ0
1(a, Z)− Γ0

1(a
′, Z ′)

∣∣

≤
ε

|Γ0
1(a, Z)|

∫ 1

0

∣∣∣Y 1(Z(θ), Z̃(θ), ε)dθ − Y 1(Z
′(θ), Z̃ ′(θ), ε)

∣∣∣ dθ

+
|ω0|+ ε‖Y 1‖

|Γ0
1(a, Z)Γ0

1(a
′, Z ′)|

∣∣Γ0
1(a, Z)− Γ0

1(a
′, Z ′)

∣∣ .

(6.13)

By (6.10) and (6.12), with Γ0
1(a, Z), Γ0

1(a
′, Z ′) ∈ I0, we have

∣∣Γ0
2(a, Z)− Γ0

2(a
′, Z ′)

∣∣

≤
ε|ω0|+ ε2‖Y 1‖+ ε|Γ0

1(a
′, Z ′)|

|Γ0
1(a, Z)Γ0

1(a
′, Z ′)|

(
‖DY 1‖B

0‖r ◦K‖|a− a′|

+ ‖DY 1‖
(
2 +B0|a′|‖D(r ◦K)‖

)
‖Z − Z ′‖

)
.

(6.14)

For the third term, similarly to before, we add and subtract terms, then use the
mean value theorem to get the estimate

∣∣∣Y 2(Z(θ − at), Z̃(θ − at; a), ε)− Y 2(Z
′(θ − a′t), Z̃ ′(θ − a′t; a′), ε)

∣∣∣

≤ 2‖DY 2‖‖Z − Z ′‖+ 2t‖DY 2‖‖DZ ′‖|a− a′|+ ‖DY 2‖‖DZ ′‖‖r ◦K‖|a− a′|

+ ‖DY 2‖‖DZ ′‖|a′|‖D(r ◦K)‖‖Z − Z ′‖

+ t‖DY 2‖‖DZ ′‖2|a′|‖D(r ◦K)‖|a− a′|

≤ ‖DY 2‖
(
2 +B0|a′|‖D(r ◦K)‖

)
‖Z − Z ′‖

+B0‖DY 2‖‖r ◦K‖|a− a′|+ tB0‖DY 2‖
(
2 +B0|a′|‖D(r ◦K)‖

)
|a− a′|,

(6.15)
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where ‖DY 2‖ is defined similarly to (6.11). Then,

∣∣Γ0
3(a, Z),−Γ0

3(a
′, Z ′)

∣∣

≤ ε‖DY 2‖B
0

(
1

λ2
0

(2 +B0|a′|‖D(r ◦K)‖)−
‖r ◦K‖

λ0

)
|a− a′|

−
ε

λ0
‖DY 2‖

(
2 +B0|a′|‖D(r ◦K)‖

)
‖Z − Z ′‖.

(6.16)

With the above estimates for each term (6.12), (6.14), and (6.16), we have that
for the distance defined in (6.5), d

(
Γ0(a, Z),Γ0(a′, Z ′)

)
is smaller than the sums of

the right-hand sides of (6.12), (6.14), and (6.16). More precisely,

d
(
Γ0(ω,Z),Γ0(ω2, Z

′)
)
≤ c1|a− a′|+ c2‖Z − Z ′‖,

where

c1 = εB0‖r ◦K‖

(
‖DY 1‖

(
1 +

|ω0|+ ε‖Y 1‖+ |Γ0
1(a

′, Z ′)|

|Γ0
1(a, Z)Γ0

1(a
′, Z ′)|

)
−

‖DY 2‖

λ0

)

+ ε
B0

λ2
0

‖DY 2‖
(
2 +B0|a′|‖D(r ◦K)‖

)

and

c2 = ε
(
2+B0|a′|‖D(r ◦K)‖

)(
‖DY 1‖

(
1 +

|ω0|+ ε‖Y 1‖+ |Γ0
1(a

′, Z ′)|

|Γ0
1(a, Z)Γ0

1(a
′, Z ′)|

)
−

‖DY 2‖

λ0

)
.

Since a, a′, Γ0
1(a, Z), and Γ0

1(a
′, Z ′) are all in I0, we have

c1 ≤ εB0‖r ◦K‖

(
‖DY 1‖

(
1 +

4|ω0|+ 4ε‖Y 1‖+ 6|ω0|

|ω0|2

)
−

‖DY 2‖

λ0

)

+ ε
B0

λ2
0

‖DY 2‖
(
2 +B0|a′|‖D(r ◦K)‖

)

and

c2 ≤ ε
(
2 +B0|a′|‖D(r ◦K)‖

)(
‖DY 1‖

(
1 +

4|ω0|+ 4ε‖Y 1‖+ 6|ω0|

|ω0|2

)
−

‖DY 2‖

λ0

)
.

Because c1 and c2 are bounded by ε multiplied by some constants, they can be as
small as we want when ε is small. Therefore, for sufficiently small ε, we can find a
constant µ0 < 1 such that (6.7) is true and Γ0 is a contraction.

Take any initial guess (ω0,W 0,0(θ)) ∈ D0. For example, one can take ω = ω0,
W 0,0(θ) = ( θ0 ). Iterations of this initial guess under Γ0 will have a limit by Lemma
20. Then Lemmas 19 and 6 ensure that the limit is in D0. Therefore, we have a
fixed point of Γ0 in D0, that is, there exist ω > 0 and W 0 in CL+Lip

0 such that
(2.13) is solved. Moreover, by the contraction argument, we know that the solution is

unique. Therefore, ω is unique, W 0 is unique in the CL+Lip
0 space for the fixed phase

W 0
1 (0) = 0.
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Now we prove the a posteriori estimation part of Theorem 9. Since Γ0 is a
contraction on D0, we know that

d
(
(ω0,W 0,0), (ω,W 0)

)
= lim

k→∞
d
(
(ω0,W 0,0), (Γ0)k(ω0,W 0,0)

)

≤

∞∑

k=0

(µ0)
kd
(
(ω0,W 0,0),Γ0(ω0,W 0,0)

)

≤
1

1− µ0
d
(
(ω0,W 0,0),Γ0(ω0,W 0,0)

)
.(6.17)

It remains to estimate d
(
(ω0,W 0,0),Γ0(ω0,W 0,0)

)
by ‖E0‖, where the norm is the

maximum norm defined in (6.6). We have

E0(θ) = ω0 d

dθ
W 0,0(θ)−

(
ω0

λ0W
0,0
2 (θ)

)
− εY (W 0,0(θ), W̃ 0,0(θ;ω0), ε),

that is,

(
E0

1(θ)
E0

2(θ)

)
=

(
ω0 d

dθ
W

0,0
1 (θ)− ω0 − εY 1(W

0,0(θ), W̃ 0,0(θ;ω0), ε)

ω0 d
dθ
W

0,0
2 (θ)− λ0W

0,0
2 (θ)− εY 2(W

0,0(θ), W̃ 0,0(θ;ω0), ε)

)

and

d
(
(ω0,W 0,0),Γ0(ω0,W 0,0)

)

≤

∣∣∣∣ω0 + ε

∫ 1

0

Y 1(W
0,0(θ), W̃ 0,0(θ;ω0), ε)dθ − ω0

∣∣∣∣

+ sup
θ

∣∣∣∣∣
1

Γ0
1(ω

0,W 0)

(
ω0θ + ε

∫ θ

0

Y 1(W
0,0(σ), W̃ 0,0(σ;ω0), ε)dσ

)
−W

0,0
1 (θ)

∣∣∣∣∣

+ sup
θ

∣∣∣∣ε
∫ ∞

0

eλ0tY 2(W
0,0(θ − ω0t), W̃ 0,0(θ − ω0t;ω0), ε)dt−W

0,0
2 (θ)

∣∣∣∣

≤

∣∣∣∣
∫ 1

0

E0
1(θ)dθ

∣∣∣∣+
∣∣∣∣
∫ ∞

0

eλ0tE0
2(θ − ω0t)dt

∣∣∣∣

+
1

|Γ0
1(ω

0,W 0)|

( ∣∣∣∣∣

∫ θ

0

E0
1(σ)dσ

∣∣∣∣∣+ ‖W 0,0
1 ‖

∣∣∣∣
∫ 1

0

E0
1(θ)dθ

∣∣∣∣
)

≤

(
1 +

2B0

|ω0|

) ∣∣∣∣
∫ 1

0

E0
1(θ)dθ

∣∣∣∣+
2

|ω0|

∣∣∣∣∣

∫ θ

0

E0
1(σ)dσ

∣∣∣∣∣+
∣∣∣∣
∫ ∞

0

eλ0tE0
2(θ − ω0t)dt

∣∣∣∣ .

For θ ∈ [0, 1], we have

d
(
(ω0,W 0,0),Γ0(ω0,W 0,0)

)
≤

(
1 +

2 + 2B0

|ω0|

)
‖E0

1‖ −
1

λ0
‖E0

2‖.

Combining this with inequality (6.17), we have

(6.18) d
(
(ω0,W 0,0), (ω,W 0)

)
≤

1

1− µ0

[(
1 +

2 + 2B0

|ω0|

)
‖E0

1‖C0 −
1

λ0
‖E0

2‖C0

]
.

By the definition of the norm, (4.2) and the l = 0 case of (4.1) are true for a constant
C, which depends on ε, B0, ω0, λ0.
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For other values of l, one can use the interpolation inequality in Lemma 8, to get

‖W 0,0
1 −W 0

1 ‖Cl ≤ c(l, L)‖W 0,0
1 −W 0

1 ‖
1− l

L

C0 ‖W 0,0
1 −W 0

1 ‖
l
L

CL

≤ c(l, L)‖W 0,0
1 −W 0

1 ‖
1− l

L

C0 (2B0)
l
L .

(6.19)

Similar estimates can be done for the second component; this finishes the proof of the
estimations in Theorem 9.

For the solution of (2.13), note that K ◦W 0(θ + ωt) solves the equation (2.2):

d

dt
K ◦W 0(θ + ωt) = X(K ◦W 0(θ + ωt),K ◦W 0(θ + ω(t− r(K ◦W 0(θ + ωt))))).

If W 0 is L times differentiable, then the right-hand side of the above equation is L
times differentiable, as is the left-hand side. Using the fact that K is an analytic local
diffeomorphism, one can conclude that W 0 is (L+1) times differentiable. A bootstrap
argument can be used to see W 0 is differentiable up to any order.

6.2. Proof of Theorem 10. With Theorem 9, ω and W 0 are known to us. To
prove Theorem 10, we have to consider the equations for the first order term, the jth
order term, and then higher order term in s. We will obtain λ, W 1 solving the first
order equation (2.14), W j solving (2.15), and then W> which solves (2.16).

6.2.1. First order equation. Recall that for the first order term, we have an
invariance equation (2.14); see also below:

ω
d

dθ
W 1(θ) + λW 1(θ)−

(
0

λ0W
1
2 (θ)

)
= εY

1
(θ, λ,W 0,W 1, ε),

where

(6.20) Y
1
(θ, λ,W 0,W 1, ε) = A(θ)W 1(θ) +B(θ;λ)W 1(θ − ωr ◦K(W 0(θ))),

A(θ) = −ωD2Y (W 0(θ), W̃ 0(θ), ε)DW 0(θ − ωr ◦K(W 0(θ)))D(r ◦K)(W 0(θ))

+D1Y (W 0(θ), W̃ 0(θ), ε),

(6.21)

and
B(θ;λ) = e−λr◦K(W 0(θ))D2Y (W 0(θ), W̃ 0(θ), ε).

Note that in the expressions of A and B above, we suppressed ω in the expression
of W̃ 0. We do this to simplify the notation, since ω is already known from Theorem
9.

Remark 21. Since Y
1
(θ, λ,W 0,W 1, ε) in (6.20) is linear in W 1, (2.14) for W 1

is linear and homogenous in W 1. Hence if W 1(θ) solves (2.14), so does any scalar
multiple of W 1(θ).

Componentwise, we have the following two equations:

ω
d

dθ
W 1

1 (θ) + λW 1
1 (θ) = εY

1

1(θ, λ,W
0,W 1, ε),(6.22)

ω
d

dθ
W 1

2 (θ) + (λ− λ0)W
1
2 (θ) = εY

1

2(θ, λ,W
0,W 1, ε).(6.23)
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As already pointed out, for the unperturbed case, W could be chosen as the
identity map. So after adding a small perturbation, W 1(θ) ≈ ( 01 ). We will be
able to find a unique W 1 close to ( 01 ) solving (2.14) by considering the following
normalization:

(6.24)

∫ 1

0

W 1
2 (θ)dθ = 1.

Remark 22. It is natural to choose normalization (6.24), since, under small per-
turbations, we have W 1(θ) ≈ ( 01 ). Meanwhile, one can show that λ does not depend

on the choice of normalization as long as
∫ 1

0
W 1

2 (θ)dθ 6= 0.

From now on, since W 0 is already known to us, we will omit W 0 from

Y
1
(θ, λ,W 0,W 1, ε),

and denote it as Y
1
(θ, λ,W 1, ε). We define an operator Γ1 as follows:

Γ1




b

F1

F2


 (θ) =




Γ1
1(b, F )

Γ1
2(b, F )(θ)

Γ1
3(b, F )(θ)




=




λ0 + ε
∫ 1

0
Y

1

2(θ, b, F, ε)dθ

−ε
∫∞

0
ebtY

1

1(θ + ωt, b, F, ε)dt

C(b, F ) + ε
ω

∫ θ

0
Y

1

2(σ, b, F,ε)− (
∫ 1

0
Y

1

2(θ, b, F, ε)dθ)F2(σ)dσ


 ,

(6.25)

where

C(b, F ) = 1−
ε

ω

∫ 1

0

∫ θ

0

Y
1

2(σ, b, F, ε)dσdθ

+
ε

ω

(∫ 1

0

Y
1

2(θ, b, F, ε)dθ

)∫ 1

0

∫ θ

0

F2(σ)dσdθ

(6.26)

is a constant chosen to ensure that Γ1
3(b, F ) also satisfies the normalization condition

(6.24), i.e.,
∫ 1

0
Γ1
3(b, F )(θ)dθ = 1.

Similarly to the previous section, section 6.1, for the domain of Γ1, we consider

the closed interval I1 = {b : |b− λ0| ≤
|λ0|
3 }, as well as the function space

CL−1+Lip
1 = {f | f : T → T× R, f can be lifted to a function from R to R2,

still denoted as f,which satisfies f(θ + 1) = f(θ),

‖f‖L−1+Lip ≤ B1, and

∫ 1

0

f2(θ)dθ = 1},

where

‖f‖L−1+Lip = max
i=1,2,k=0,...,L−1

{
sup

θ∈[0,1]

‖f
(k)
i (θ)‖, Lip(f

(L−1)
i )

}
,

L is the same as in Theorem 9, and B1 is a positive constant.
Let D1 := I1 × CL−1+Lip

1 be the domain of Γ1. We have the following.

Lemma 23. If ε is small enough, Γ1(D1) ⊂ D1.
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Proof. Since Y
1

2(θ, b, F, ε) is bounded, for small ε, we have Γ1
1(b, F ) ∈ I1.

Now consider Γ1
2(b, F )(θ); we first have to show that

Γ1
2(b, F )(θ + 1) = Γ1

2(b, F )(θ).

This follows from the fact that Y
1

1(θ + 1, b, F, ε) = Y
1

1(θ, b, F, ε), which is true by
periodicity of W 0 as in (2.10), of F , and of r ◦K with respect to its first component.

Now we check if dn

dθnΓ
1
2(b, F )(θ), 0 ≤ n ≤ L− 1, is bounded. Notice that

dn

dθn
Γ1
2(b, F )(θ) = −ε

∫ ∞

0

ebt
∂n

∂θn
Y

1

1(θ + ωt, b, F, ε)dt.

By the dominated convergence theorem, it suffices to check that ∂n

∂θnY
1

1(θ+ωt, b, F, ε)

is bounded. Using Faà di Bruno’s formula in Lemma 7, boundedness of ∂n

∂θnY
1

1(θ +

ωt, b, F, ε) is ensured by assumptions on Y , r ◦K, and W 0, as well as F ∈ CL−1+Lip
1 .

Then for ε small enough, the derivatives can be bounded by B1. The bound for

Lipschitz constant of dL−1

dθL−1Γ
1
2(b, F )(θ) also follows.

For Γ1
3(b, F )(θ), we first show that it is periodic. Notice that

(6.27)
d

dθ
Γ1
3(b, F )(θ) =

ε

ω
Y

1

2(θ, b, F, ε)−
ε

ω

(∫ 1

0

Y
1

2(θ, b, F, ε)dθ

)
F2(θ)

is periodic. Hence, to show periodicity of Γ1
3(b, F )(θ), it suffices to see that Γ1

3(b, F )(0) =

Γ1
3(b, F )(1), which is true because

∫ 1

0
F2(θ)dθ = 1. The choice of the constant C(b, F )

ensures that the normalization condition
∫ 1

0
Γ1
3(b, F )(θ)dθ = 1 is also verified.

Taking derivatives of (6.27), we have for 2 ≤ n ≤ L− 1

dn

dθn
Γ1
3(b, F )(θ) =

ε

ω

(
d(n−1)

dθ(n−1)
Y

1

2(θ, b, F, ε)−

(∫ 1

0

Y
1

2(θ, b, F, ε)dθ

)
d(n−1)

dθ(n−1)
F2(θ)

)
,

which will be ε
ω
multiplied by bounded functions due to the assumptions on Y , r ◦K,

and W 0, as well as F ∈ CL−1+Lip
1 . When ε is small, they will all be bounded by B1;

similarly for the Lipschitz constant of dL−1

dθL−1Γ
1
3(b, F )(θ).

Hence for ε small enough, where the smallness condition depends on the bounds of
the derivatives of Y , r ◦K, B0, and B1, but not on the specific choice of (b, F ) ∈ D1,

we have that (Γ1
2(b, F ),Γ1

3(b, F )) ∈ CL−1+Lip
1 . This finishes the proof.

Recall the distance introduced in (6.5):

d((a, Z), (a′, Z ′)) = |a− a′|+ ‖Z − Z ′‖,

where

‖Z − Z ′‖ = max

{
sup
θ

|Z1(θ)− Z ′
1(θ)|, sup

θ

|Z2(θ)− Z ′
2(θ)|

}
.

Lemma 24. Under the above definition of distance on D1, for small enough ε, Γ1

is a contraction.

Proof. We will show that for ε small enough, we can find a constant 0 < µ1 < 1
such that

(6.28) d(Γ1(b, F ),Γ1(b′, F ′)) < µ1 · d((b, F ), (b′, F ′)).
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Note that

d(Γ1(b, F ),Γ1(b′, F ′))

≤ ε

∣∣∣∣
∫ 1

0

Y
1

2(θ, b, F, ε)− Y
1

2(θ, b
′, F ′, ε)dθ

∣∣∣∣

+ ε sup
θ

∣∣∣∣
∫ ∞

0

ebtY
1

1(θ + ωt, b, F, ε)− eb
′tY

1

1(θ + ωt, b′, F ′, ε)dt

∣∣∣∣

+
ε

|ω|
sup
θ

∣∣∣∣∣

∫ θ

0

Y
1

2(σ, b, F, ε)−

(∫ 1

0

Y
1

2(θ, b, F, ε)dθ

)
F2(σ)dσ

−

∫ θ

0

Y
1

2(σ, b
′, F ′, ε) +

(∫ 1

0

Y
1

2(θ, b
′, F ′, ε)dθ

)
F ′
2(σ)dσ

∣∣∣∣∣
+ |C(F, b)− C(F ′, b′)|.

(6.29)

As before, we will consider each term of the right-hand side of the above inequality
(6.29).

Recall that Y
1
has the form (6.20)

Y
1
(θ, λ,W 1, ε) = A(θ)W 1(θ) +B(θ;λ)W 1(θ − ωr ◦K(W 0(θ))).

If we use the notation

A(θ) =

(
A11(θ) A12(θ)
A21(θ) A22(θ)

)
, B(θ;λ) =

(
B11(θ;λ) B12(θ;λ)
B21(θ;λ) B22(θ;λ)

)
,

then

Y
1

1(θ, λ,W
1, ε) = A11(θ)W

1
1 (θ) +A12(θ)W

1
2 (θ)

+B11(θ;λ)W
1
1 (θ − ωr ◦K(W 0(θ)))

+B12(θ;λ)W
1
2 (θ − ωr ◦K(W 0(θ)))

and

Y
1

2(θ, λ,W
1, ε) = A21(θ)W

1
1 (θ) +A22(θ)W

1
2 (θ)

+B21(θ;λ)W
1
1 (θ − ωr ◦K(W 0(θ)))

+B22(θ;λ)W
1
2 (θ − ωr ◦K(W 0(θ))).

We estimate

|B(θ; b)| ≤ e−
4
3λ0‖r◦K‖‖D2Y ‖

and

|B(θ; b)−B(θ; b′)| ≤ ‖D2Y ‖e−
4
3λ0‖r◦K‖‖r ◦K‖|b− b′|.

Also, if we define ‖A‖ = maxθ ‖A(θ)‖, where ‖A(θ)‖ is the operator norm corre-
sponding to the maximum norm ‖ · ‖ defined in (6.6), then,

|Y
1

1(θ, b, F, ε)− Y
1

1(θ, b
′, F ′, ε)|

≤ ‖A‖‖F − F ′‖+ ‖B(θ; b)‖‖F − F ′‖+ ‖B(θ; b)−B(θ; b′)‖‖F ′‖

≤ (‖A‖+ e−
4
3λ0‖r◦K‖‖D2Y ‖)‖F − F ′‖+B1‖D2Y ‖e−

4
3λ0‖r◦K‖‖r ◦K‖|b− b′|
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and, similarly,

|Y
1

2(θ, b, F, ε)− Y
1

2(θ, b
′, F ′, ε)|

≤ (‖A‖+ e−
4
3λ0‖r◦K‖‖D2Y ‖)‖F − F ′‖+B1‖D2Y ‖e−

4
3λ0‖r◦K‖‖r ◦K‖|b− b′|.

Note also that

|Y
1

1(θ, b, F, ε)| ≤ B1(‖A‖+ e−
4
3λ0‖r◦K‖‖D2Y ‖);

similarly,

|Y
1

2(θ, b, F, ε)| ≤ B1(‖A‖+ e−
4
3λ0‖r◦K‖‖D2Y ‖).

Now for the first term in (6.29), we have

∣∣Γ1
1(b, F )− Γ1

1(b
′, F ′)

∣∣ ≤ ε(‖A‖+ e−
4
3λ0‖r◦K‖‖D2Y ‖)‖F − F ′‖

+ εB1‖D2Y ‖e−
4
3λ0‖r◦K‖‖r ◦K‖|b− b′|.

For the second term in (6.29), we have for all θ,

∣∣Γ1
2(b, F )− Γ1

2(b
′, F ′)

∣∣

≤ −
3ε

2λ0
(‖A‖+ e−

4
3λ0‖r◦K‖‖D2Y ‖)‖F − F ′‖

−
3B1ε

2λ0

(
e−

4
3λ0‖r◦K‖‖D2Y ‖

(
‖r ◦K‖ −

3

2λ0

)
−

3

2λ0
‖A‖

)
|b− b′|.

For the third term in (6.29), we have

∣∣Γ1
3(b, F )− Γ1

3(b
′, F ′)

∣∣ ≤ ε

|ω|
(1 + 2B1)(‖A‖+ e−

4
3λ0‖r◦K‖‖D2Y ‖)‖F − F ′‖

+
B1ε

|ω|
(1 +B1)‖D2Y ‖e−

4
3λ0‖r◦K‖‖r ◦K‖|b− b′|.

Similarly holds for the last part in (6.29),

|C(F, b)− C(F ′, b′)| ≤
ε

|ω|
(1 + 2B1)(‖A‖+ e−

4
3λ0‖r◦K‖‖D2Y ‖)‖F − F ′‖

+
B1ε

|ω|
(1 +B1)‖D2Y ‖e−

4
3λ0‖r◦K‖‖r ◦K‖|b− b′|.

Combine all the estimations above, we can find constants c1, c2 such that,

d(Γ1(b, F ),Γ1(b′, F ′)) ≤ ε(c1|b− b′|+ c2‖F − F ′‖).

Therefore, for small enough ε, we have that Γ1 is a contraction, i.e., we can find a
constant µ1 such that (6.28) is true.

Taking any initial guess (λ0,W 1,0) ∈ D1, we could take λ0 = λ0 and W 1,0(θ) =
( 01 ), then sequence (Γ1)n(λ0,W 1,0) has a limit in D1, which we denote by (λ,W 1).
(λ,W 1) is the fixed point of operator Γ1, hence it solves (2.14). Since the operator is
a contraction, λ is unique and W 1 is unique in the C0 sense under the normalization
condition (6.24).
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Similarly to what we have done in estimation (6.17) in section 6.1, notice that

(6.30) d
(
(λ0,W 1,0), (λ,W 1)

)
≤

1

1− µ1
d
(
(λ0,W 1,0),Γ1(λ0,W 1,0)

)
.

We will estimate d
(
(λ0,W 1,0),Γ1(λ0,W 1,0)

)
by ‖E1‖. If we write E1(θ) in matrix

form, we have

(
E1

1(θ)
E1

2(θ)

)
=

(
ω d

dθ
W

1,0
1 (θ) + λ0W

1,0
1 (θ)− εY

1

1(θ, λ
0,W 1,0, ε)

ω d
dθ
W

1,0
2 (θ) + (λ0 − λ0)W

1,0
2 (θ)− εY

1

2(θ, λ
0,W 1,0, ε)

)
.

Therefore,

d
(
(λ0,W 1,0), Γ1(λ0,W 1,0)

)

≤ |λ0 + ε

∫ 1

0

Y
1

2(θ, λ
0,W 1,0, ε)dθ − λ0|

+ sup
θ

∣∣∣∣W
1,0
1 (θ) + ε

∫ ∞

0

eλ
0tY

1

1(θ + ωt, λ0,W 1,0, ε)dt

∣∣∣∣

+ sup
θ

∣∣∣∣C(λ0,W 1,0) +
ε

ω

∫ θ

0

Y
1

2(σ, λ
0,W 1,0,ε)

−

(∫ 1

0

Y
1

2(θ, λ
0,W 1,0, ε)dθ

)
W

1,0
2 (σ)dσ −W

1,0
2 (θ)

∣∣∣∣

≤

∣∣∣∣
∫ 1

0

E1
2(θ)dθ

∣∣∣∣+
∣∣∣∣
∫ ∞

0

eλ
0tE1

1(θ + ωt)dt

∣∣∣∣+
2 + 2B1

|ω|
‖E1

2‖

≤
1

|λ0|
‖E1

1‖+

(
1 +

2 + 2B1

|ω|

)
‖E1

2‖

≤
3

2|λ0|
‖E1

1‖+

(
1 +

4 + 4B1

ω0

)
‖E1

2‖.

Then

(6.31) d
(
(λ0,W 1,0), (λ,W 1)

)
≤

1

1− µ1

[
3

2|λ0|
‖E1

1‖+

(
1 +

4 + 4B1

ω0

)
‖E1

2‖

]
.

Therefore, we can find a constant C, depending on ε, B1, ω0, and λ0 such that
|λ− λ0| ≤ C‖E1‖. This proves (4.5).

6.2.2. Equation for jth order terms. For each j ≥ 2, we can proceed in a
similar manner to find W j . With ω, λ, W 0, and W 1 known, equations for the W j ’s
are easier to analyze.

Remark 25. As we will see, for a theoretical result, we can stop at order 1 and
start to deal with the higher order term. We include here the discussion for W j ’s for
numerical interest.

Assume now that we have already obtained W 0, . . . ,W j−1, and ω, λ, we are going
to find W j(θ). To obtain the invariance equation satisfied by W j , mentioned in (2.15),
we consider the jth order term in (2.7). Note that there are only two terms in the

coefficient of sj in W̃ (θ, s) which contain W j :

−ωDW 0(θ − ωr ◦K(W 0(θ)))D(r ◦K)(W 0(θ))W j(θ)
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and

e−λjr◦K(W 0(θ))W j(θ − ωr ◦K(W 0(θ))).

Therefore, Y
j
is of the form

(6.32) Y
j
(θ, λ,W 0,W j , ε) = A(θ)W j(θ) +Bj(θ)W

j(θ − ωr ◦K(W 0(θ))),

where A(θ) is the same as in (6.21):

A(θ) = −ωD2Y (W 0(θ), W̃ (θ), ε)DW 0(θ − ωr ◦K(W 0(θ))D(r ◦K)(W 0(θ))

+D1Y (W 0(θ), W̃ (θ), ε)

and

Bj(θ) := e−λjr◦K(W 0(θ))D2Y (W 0(θ), W̃ 0(θ), ε).

We also note that Rj(θ) will be some expression in the derivatives of Y evaluated at

(W 0(θ), W̃ (θ), ε), multiplied by W 0, . . . ,W j−1. Therefore, Rj(θ) will have the same
regularity as W j−1. We will show inductively by the following argument that W j is
(L− 1) times differentiable with (L− 1)th derivative Lipschitz.

From now on, we will write Y
j
as Y

j
(θ,W j , ε) for that λ and W 0 are known to

us. Componentwisely, W j should satisfy

ω
d

dθ
W

j
1 (θ) + λjW

j
1 (θ) = εY

j

1(θ,W
j , ε) +R

j
1(θ),(6.33)

ω
d

dθ
W

j
2 (θ) + (λj − λ0)W

j
2 (θ) = εY

j

2(θ,W
j , ε) +R

j
2(θ).(6.34)

Consider functions in the space

CL−1+Lip
j = {f | f : T → T× R, f can be lifted to a function from R to R2,

still denoted as f,which satisfies f(θ + 1) = f(θ),

‖f‖L−1+Lip ≤ Bj},

where Bj ’s are positive constants, and

‖f‖L−1+Lip = max
i=1,2,k=0,...,L−1

{
sup

θ∈[0,1]

‖f
(k)
i (θ)‖, Lip(f

(L−1)
i )

}
.

Similarly to what we have done above, define an operator on the space CL−1+Lip
j :

(6.35) Γj(G)(θ) =


 −ε

∫∞

0
eλjt

(
Y

j

1(θ + ωt,G, ε) +R
j
1(θ + ωt)

)
dt

−ε
∫∞

0
e(λj−λ0)t

(
Y

j

2(θ + ωt,G, ε) +R
j
2(θ + ωt)

)
dt


 .

Assuming that we have already obtained W k in CL−1+Lip
k for k = 0, . . . , j− 1, we

have the following.

Lemma 26. For small enough ε, we have Γj(CL−1+Lip
j ) ⊂ CL−1+Lip

j .
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This follows from λ < 0 and (λj − λ0) < 0 for j ≥ 2 and the regularity of

W 0, . . . ,W j , Y
j
, and Rj . Moreover, we have ε in front of the expression. Since this

is very similar to the analysis of W 0 and W 1, we will omit the detailed proof here.
We also know that Γj is a C0 contraction for small ε.

Lemma 27. For small enough ε, Γj is a contraction in the C0 distance.

This follows easily from that λ < 0 and (λj − λ0) < 0 for j ≥ 2, and Y
j
is linear

in W j .
If we define the norm as before,

‖G‖ = max

{
sup
θ

|G1(θ)|, sup
θ

|G2(θ)|

}
,

the above lemma tells us that, if ε is small enough, then one can find 0 < µj < 1 such
that

‖Γ(G)− Γ(G′)‖ ≤ µj‖G−G′‖.

Taking any initial guess W j,0 ∈ CL−1+Lip
j , we would take W j,0(θ) = ( 00 ). The

sequence (Γj)n(W j,0) has a limit in CL−1+Lip
j ; we denote it by W j . W j is the fixed

point of operator Γj , so it solves (2.15). W j is close to the initial guess, and is unique
in the sense of C0 by the contraction argument. We will see quantitative estimates
below.

We know that

(6.36) ‖W j −W j,0‖ ≤
1

1− µj

‖W j,0 − Γj(W j,0)‖.

With a similar argument as in the error estimation of W 0 and W 1, we have

|W j,0
1 (θ)− Γj

1(W
j,0)(θ)| ≤ −

1

jλ
‖Ej

1‖,

|W j,0
2 (θ)− Γj

2(W
j,0)(θ)| ≤ −

1

jλ− λ0
‖Ej

2‖.

Therefore, we have

(6.37) ‖W j −W j,0‖ ≤
1

1− µj

(
−

1

jλ
‖Ej

1‖ −
1

jλ− λ0
‖Ej

2‖

)
≤ C‖Ej‖.

We stress that the above C depends on j, ε, λ, Bj , and the SDDE, however, it does
not depend on the choice of W j,0 in the space CL−1+Lip

j .

6.2.3. Equation of the higher order term. Now we have already found ω, λ,
W 0, . . . ,WN−1. It remains to consider the higher order term. We will solve equation
(2.16) locally in this section, which will establish the existence in Theorem 10. From
now on, we will write

(6.38) W (θ, s) = W≤(θ, s) +W>(θ, s),

where W≤(θ, s) =
∑N−1

j=0 W j(θ)sj . To make the analysis feasible, we do a cut-off to

the equation satisfied by W> in (2.16):

(6.39) (ω∂θ + sλ∂s)W
>(θ, s) =

(
0

λ0W
>
2 (θ, s)

)
+ εY >(W>, θ, s, ε)φ(s),
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where

(6.40) Y >(W>, θ, s, ε) = Y (W (θ, s), W̃ (θ, s), ε)−

N−1∑

i=0

Y
i
(θ)si,

Y
i
(θ) =

1

i!

∂i

∂si
(Y (W (θ, s), W̃ (θ, s), ε))

∣∣∣∣
s=0

,

and recall the C∞ cut-off function φ : R → [0, 1] introduced in (2.8):

φ(x) =

{
1 if |x| ≤ 1

2 ,

0 if |x| > 1.

Remark 28. A cut-off is needed in our method. We note that similarly to before,
the boundaries for the cut-off function above ( 12 and 1) could be changed to any
positive numbers a1 < a2.

Adding a cut-off is not too restrictive. Indeed, we only get local results for
the original problem near the limit cycle. Since we have used extensions to get the
prepared equation (2.7), what happens for s with large absolute value will not matter.

Now letting c(t) = (θ + ωt, seλt) be the characteristics, we define an operator

(6.41) Γ>(H)(θ, s) = −ε

∫ ∞

0

(
1 0
0 e−λ0t

)
Y >(H, c(t), ε)φ(seλt)dt.

If there is a fixed point of Γ> which has some regularity, it will solve the modified
invariance equation (6.39). For the domain of Γ>, assuming that L> is a positive
integer, we considerD>, the space of functionsH : T×R → T×R, where ∂l

θ∂
m
s Hi(θ, s),

i = 1, 2, exists if l +m ≤ L> with ‖ · ‖L>,N norm bounded by a constant B:

(6.42)

‖H‖L>,N := max
l+m≤L>,i=1,2

{
sup(θ,s)∈T×R |∂l

θ∂
m
s Hi(θ, s)||s|

−(N−m) if m ≤ N,

sup(θ,s)∈T×R |∂l
θ∂

m
s Hi(θ, s)| if m > N.

Using the notation introduced in (6.38), we have

W̃ (θ, s) = W (θ − ωr ◦K(W (θ, s)), se−λr◦K(W (θ,s)))

= W≤(θ − ωr ◦K(W (θ, s)), se−λr◦K(W (θ,s)))

+W>(θ − ωr ◦K(W (θ, s)), se−λr◦K(W (θ,s))).

We define

(6.43) W̃>(θ, s) = W>(θ − ωr ◦K((W≤ +W>)(θ, s)), se−λr◦K((W≤+W>)(θ,s))).

Lemma 29. If ε is small enough, Γ>(D>) ⊂ D>.

Proof. For H ∈ D>, we need to prove that for i = 1, 2 and l + m ≤ L>,
∂l
θ∂

m
s Γ>

i (H)(θ, s) exists, and that ‖Γ>(H)‖L>,N is bounded by B. Using the defi-
nition in (6.43)

H̃(θ, s) = H(θ − ωr ◦K((W≤ +H)(θ, s)), se−λr◦K((W≤+H)(θ,s))).
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We first claim that for ‖H‖L>,N ≤ B, we can find constant C, which does not

depend on the choice of H, such that for l +m ≤ L>, i = 1, 2, (θ, s) ∈ T̃× [−1, 1]:

(6.44)

{
|∂l

θ∂
m
s H̃i(θ, s)| ≤ C|s|(N−m) if m ≤ N,

|∂l
θ∂

m
s H̃i(θ, s)| ≤ C if m > N.

Note that within the proof of this lemma, C may vary from line to line. Finally,
we will take C to be the maximum of all C’s which appeared in this proof.

To prove the above claim, notice that ‖H‖L>,N ≤ B implies that
{
|∂l

θ∂
m
s Hi(θ, s)| ≤ B|s|(N−m) if m ≤ N,

|∂l
θ∂

m
s Hi(θ, s)| ≤ B if m > N

for l +m ≤ L>, i = 1, 2, and (θ, s) ∈ T× R. Then

|H̃i(θ, s)| ≤ B|s|Ne−λNr◦K((W≤+H)(θ,s)).

By the boundedness of r ◦K, we have that |H̃i(θ, s)| ≤ C|s|N . Note that

∂

∂θ
H̃i(θ, s) = ∂θHi

(
θ − ωr ◦K((W≤ +H)(θ, s)), se−λr◦K((W≤+H)(θ,s))

)

·
(
1− ωD(r ◦K)((W≤ +H)(θ, s))∂θ(W

≤ +H)(θ, s)
)

+ ∂sHi

(
θ − ωr ◦K((W≤ +H)(θ, s)), se−λr◦K((W≤+H)(θ,s))

)

· s(−λ)D(r ◦K)((W≤ +H)(θ, s))∂θ(W
≤ +H)(θ, s)e−λr◦K((W≤+H)(θ,s)).

Then, we have
∣∣∣∣
∂

∂θ
H̃i(θ, s)

∣∣∣∣ ≤B|s|Ne−λN‖r◦K‖(1 + |ω|‖D(r ◦K)‖‖∂θ(W
≤ +H)‖

+B|s|N−1e−λ(N−1)‖r◦K‖|s||λ|‖D(r ◦K)‖e−λ‖r◦K‖‖∂θ(W
≤ +H)‖.

By the boundedness of W≤, H, r ◦K, and their derivatives, we have
∣∣∣∣
∂

∂θ
H̃i(θ, s)

∣∣∣∣ ≤ C|s|N .

The above C depends on B, but it will not depend on the choice of H ∈ D>.
Similarly,

∂

∂s
H̃i(θ, s) = ∂θHi(θ − ωr ◦K((W≤ +H)(θ, s)), se−λr◦K((W≤+H)(θ,s)))

· (−ω)D(r ◦K)((W≤ +H)(θ, s))∂s(W
≤ +H)(θ, s)

+ ∂sHi(θ − ωr ◦K((W≤ +H)(θ, s)), se−λr◦K((W≤+H)(θ,s)))

·
(
1 + s(−λ)D(r ◦K)((W≤ +H)(θ, s))∂s(W

≤ +H)(θ, s)
)
e−λr◦K((W≤+H)(θ,s)).

Then,
∣∣∣∣
∂

∂s
H̃i(θ, s)

∣∣∣∣ ≤ B|s|N−1e−λ(N−1)‖r◦K‖
(
1 + |s||λ|‖D(r ◦K)‖e−λ‖r◦K‖‖∂s(W

≤ +H)‖
)

+B|s|Ne−λN‖r◦K‖|ω|‖D(r ◦K)‖‖∂s(W
≤ +H)‖.
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Since we have |s| ≤ 1, the regularity of W≤ and H
∣∣∣∣
∂

∂s
H̃i(θ, s)

∣∣∣∣ ≤ C|s|N−1.

The C will not depend on the choice of H as long as ‖H‖L>,N ≤ B. The proof of the
claim is then finished by induction.

Now we observe that we can bound the integrand in the operator Γ>.
Claim: There exists a constant C, such that ‖Y (H, θ, s, ε)φ(s)‖L>,N ≤ C when

‖H‖L>,N ≤ B.
Note that by definition of the cut-off function φ, it suffices to consider s ∈ [−1, 1].

Y >(H, θ, s, ε) = Y ((W≤ +H)(θ, s), ˜(W≤ +H)(θ, s), ε)−

N−1∑

i=0

Y
i
(θ)si,

where

Y
i
(θ) =

1

i!

∂i

∂si
(Y ((W≤ +H)(θ, s), ˜(W≤ +H)(θ, s), ε))

∣∣∣∣
s=0

.

One can add and subtract terms in the above expression:

Y >(H, θ, s, ε) = Y ((W≤ +H)(θ, s), ˜(W≤ +H)(θ, s), ε)

− Y (W≤(θ, s), W̃≤(θ, s,H), ε)

+ Y (W≤(θ, s), W̃≤(θ, s,H), ε)

− Y (W≤(θ, s),W≤(θ − ωr ◦K(W≤(θ, s)), se−λr◦K(W≤(θ,s))), ε)

+ Y (W≤(θ, s),W≤(θ − ωr ◦K(W≤(θ, s)), se−λr◦K(W≤(θ,s))), ε)

−

N−1∑

i=0

Y
i
(θ)si,

(6.45)

where we used the notation

W̃≤(θ, s;H) = W≤(θ − ωr ◦K((W≤ +H)(θ, s)), se−λr◦K((W≤+H)(θ,s))).

We group the first two lines, the two lines in the middle, and the last two lines in
(6.45), and denote them as ℓ1, ℓ2, and ℓ3, respectively. Then for ℓ1:

ℓ1 =

∫ 1

0

D1Y ((1− t)W≤(θ, s) + t(W≤ +H)(θ, s), ˜(W≤ +H)(θ, s), ε)H(θ, s)dt

+

∫ 1

0

D2Y (W≤(θ, s), (1− t)W̃≤(θ, s;H) + t ˜(W≤ +H)(θ, s), ε)H̃(θ, s)dt.

By the regularity of Y and W≤, ‖H‖L>,N ≤ B, and that H̃ satisfies (6.44), we know
that ‖ℓ1φ(s)‖L>,N ≤ C.

Similarly, ℓ2 is
∫ 1

0

D2Y (W≤(θ, s),W≤(θ − ωr ◦K((W≤ + tH)(θ, s)), se−λr◦K((W≤+tH)(θ,s))), ε)·

[∂θW
≤(·)(−ω)D(r ◦K)(·) + ∂sW

≤(·)se−λr◦K(·)D(r ◦K)(·)(−λ)]H(θ, s)dt

and we have that ‖ℓ2φ(s)‖L>,N ≤ C.
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For ℓ3, notice that
∑N−1

i=0 Y
i
(θ)si is the Taylor expansion at s = 0 for

(6.46) Y (W≤(θ, s),W≤(θ − ωr ◦K(W≤(θ, s)), se−λr◦K(W≤(θ,s))), ε).

According to Taylor’s formula with remainder (see [LdlL10]), we just need to
show that for m ≤ N

∂N−m

∂sN−m

∂l

∂θl
∂m

∂sm
(6.46),

and for m > N ,

∂m

∂sm
∂l

∂θl
(ℓ3),

are bounded for all θ, |s| ≤ 1, and l + m ≤ L>. This is true if we assume that the
lower order term has more regularity, more precisely, L− 1 ≥ L> +N . We will take
L> = L − 1 − N to optimize regularity. Therefore, we have ‖ℓ3φ(s)‖L>,N ≤ C, and
the claim is proved.

Hence, according to (6.41), if m ≤ N , for small ε, we have that

(6.47) |∂l
θ∂

m
s Γ>

i (H)(θ, s)| ≤ ε

∣∣∣∣
∫ ∞

0

e−λ0tC|s|N−meλ(N−m)teλmtdt

∣∣∣∣ ≤ B|s|N−m;

if m > N , for small ε, we have that

(6.48) |∂l
θ∂

m
s Γ>

i (H)(θ, s)| ≤ ε

∣∣∣∣
∫ ∞

0

e−λ0tCeλmtdt

∣∣∣∣ ≤ B.

Therefore, for small ε, ‖Γ>
i (H)‖L>,N ≤ B when ‖H‖L>,N ≤ B.

Lemma 30. If ε is small enough, Γ> is a contraction in ‖ · ‖0,N .

Proof. Recall that ‖H‖0,N = sup(θ,s)∈T×R |H(θ, s)||s|−N . We consider

(6.49) Γ>(H)(θ, s)− Γ>(H ′)(θ, s)

= −ε

∫ ∞

0

(
1 0
0 e−λ0t

)(
Y >(H, c(t), ε)− Y >(H ′, c(t), ε)

)
φ(seλt)dt.

Given the low order terms, denoting W = W≤ +H and W ′ = W≤ +H ′, we have

(6.50) Y >(H, c(t), ε)− Y >(H ′, c(t), ε)

= Y (W (c(t)), W̃ (c(t)), ε)− Y (W ′(c(t)), W̃ ′(c(t)), ε).

Note that for all θ and s,

(6.51) |W (θ, s)−W ′(θ, s)| = |H(θ, s)−H ′(θ, s)| ≤ ‖H −H ′‖0,N |s|N .
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Then for W̃ (θ, s) − W̃ ′(θ, s), by adding and subtracting terms, we have for all θ
and s,

|W̃ (θ, s)− W̃ ′(θ, s)| =

∣∣∣∣W (θ − ωr ◦K(W (θ, s)), se−λr◦K(W (θ,s)))

−W ′(θ − ωr ◦K(W ′(θ, s)), se−λr◦K(W ′(θ,s)))

∣∣∣∣

≤

∣∣∣∣W (θ − ωr ◦K(W (θ, s)), se−λr◦K(W (θ,s)))

−W ′(θ − ωr ◦K(W (θ, s)), se−λr◦K(W (θ,s)))

∣∣∣∣

+

∣∣∣∣W
′(θ − ωr ◦K(W (θ, s)), se−λr◦K(W (θ,s)))

−W ′(θ − ωr ◦K(W ′(θ, s)), se−λr◦K(W (θ,s)))

∣∣∣∣

+

∣∣∣∣W
′(θ − ωr ◦K(W ′(θ, s)), se−λr◦K(W (θ,s)))

−W ′(θ − ωr ◦K(W ′(θ, s)), se−λr◦K(W ′(θ,s)))

∣∣∣∣

≤ M1‖H −H ′‖0,N |s|N ,

where

M1 = e−λN‖r◦K‖ + (‖DW≤‖+B)‖D(r ◦K)‖(|ω|+ |λ||s|e−λ‖r◦K‖).

Then,

|Γ>(H)(θ, s)− Γ>(H ′)(θ, s)| ≤ ε‖H −H ′‖0,N |s|N
∫ ∞

0

e(λN−λ0)tMφ(seλt)dt,

where

M = ‖D1Y ‖+ ‖D2Y ‖M1.

Now, notice that by the definition ofD1, we have that λ ∈ [ 4λ0

3 , 2λ0

3 ], then λN−λ0 < 0
if N ≥ 2. Under this assumption, we have for all θ, s,

|Γ>(H)(θ, s)− Γ>(H ′)(θ, s)| ≤ −
εM

λN − λ0
‖H −H ′‖0,N |s|N .

If ε is small enough, we have for all θ, s,

|Γ>(H)(θ, s)− Γ>(H ′)(θ, s)| ≤ µ‖H −H ′‖0,N |s|N .

Hence for small enough ε,

‖Γ>(H)− Γ>(H ′)‖0,N ≤ µ‖H −H ′‖0,N ;

Γ> is a contraction. Note that the smallness condition for ε depends on N , Bj ,
j = 0, . . . , N − 1, B, ω0, λ0, Y , and r ◦K.
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Now for any initial guess W<,0, the sequence (Γ>)n(W>,0), in the function space
D>, will converge pointwise to a function W>, which is the fixed point of Γ>. By
Lemma 6, we know that W> is (L> − 1) times differentiable, with the (L> − 1)th
derivative Lipschitz.

It remains to do the error analysis in this case. Notice that

E>(θ, s) = (ω∂θ + sλ∂s)W
>,0(θ, s)−

(
0

λ0W
>,0
2 (θ, s)

)
− εY >(W>,0, θ, s, ε)φ(s)

along the characteristics, we have

E>(c(t)) = (ω∂θ + seλtλ∂s)W
>,0(c(t))−

(
0

λ0W
>,0
2 (c(t))

)

− εY >(W>,0, c(t), ε)φ(seλt).

Hence,

Γ>(W>,0)(θ, s)−W>,0(θ, s) =

∫ ∞

0

(
1 0
0 e−λ0t

)
E>(c(t))dt.

The proof of Lemma 29 implies that ‖E>‖0,N is bounded; therefore, for the
maximum norm,

∥∥Γ>(W>,0)−W>,0
∥∥ ≤

1

λ0 − λN
‖E>‖0,N |s|N ,

and then
(6.52)

‖W> −W>,0‖ ≤
1

1− µ

∥∥Γ>(W>,0)−W>,0
∥∥ ≤

1

(1− µ)(λ0 − λN)
‖E>‖0,N |s|N .

Combining error estimations in (6.18), (6.31), (6.37), and (6.52), we see that
the l = 0 case of (4.4) is proved. Inequalities in (4.4) for l 6= 0 are obtained using
interpolation inequalities.

6.3. Proof of Theorems 13 and 14. The proofs of Theorems 13 and 14 are
obtained by considering the functions W j

η (θ) as functions of two variables η and θ, de-

noted as W̃ j(η, θ). We can straightforwardly lift the operators Γ0, Γ1, and Γj defined
in (6.3), (6.25), and (6.35) to operators acting on functions of two variables. We de-
note these operators acting on two-variable functions by Γ̃0, Γ̃1, and Γ̃j , respectively.
At the same time, we lift the operator Γ> to an operator acting on functions of three
variables, denoted as Γ̃>.

To prove Theorem 13, given a function W̃ 0(η, θ) of the variables η, θ, we treat η
as a parameter and take into account that now Y and r depend also on η in a smooth
way.

We use the same strategy as in the proof of Theorem 9. We first show the
propagated bounds property, similarly to Lemma 19, and then, show that the operator
is a contraction under a C0-type distance, similarly to Lemma 20. The distance here
is quite an analogue to the distance defined in (6.5). It is given by the sum of the
C0 distance of the two-variable functions and the difference between the frequencies.
Then, the desired result, Theorem 13 follows by an application of Lemma 6.
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In order to get the propagated bounds property, the key is to show that if
‖W̃‖L+Lip ≤ B̃0 for ε < ε0, we have that the CL+Lip norms of the function com-

ponents of Γ̃0(W̃ ) are also bounded by B̃0. This proof is rather straightforward and
identical to the proof as before. More precisely, we apply Faà di Bruno formula in
Lemma 7, and observe that the derivatives of order up to L of the function compo-
nents of Γ̃(W̃ 0), are polynomials in the derivatives of W̃ 0 of order up to L whose
coefficients are derivatives of Y , r, and combinatorial constants. Similarly, we can
estimate the Lipschitz constants because upper bounds for the Lipschitz constants
satisfy an analogue of the Faà di Bruno formula.

To obtain the proof of the contraction, we just need to observe that the proof of
the contraction in Lemma 20 only uses very few properties of Y and r. The properties
hold uniformly for all η. Hence, one can obtain the contraction in the uniform norm
on both variables.

Analogous arguments as above for the operators Γ̃j and Γ̃>, using similar methods
as in sections 6.2.1, 6.2.2, 6.2.3, complete the proof for Theorem 14.
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