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Abstract

‘We prove persistence result of whiskered tori for the dynamical system which preserves an
exact presymplectic form. The results are given in an a-posteriori format. Given an approx-
imate solution of an invariance equation which satisfies some non-degeneracy assumptions,
we conclude that there is a true solution close by. The proof is based on certain iterative
procedure by which the accuracy of the approximate solutions of the invariance equation
can be improved. The iterative procedure is not based on transformation theory, which is
cumbersome for presymplectic systems, but on finding corrections to the solutions of the
invariance equation. This iterative procedure takes advantage of identities that come from
the preservation of the geometric structure and leads to a very efficient numerical method
which has low storage requirements, low operator count per step and it is quadratically con-
vergent. We note that a particular case of presymplectic systems is symplectic perturbed by
quasi-periodic systems.
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1 Introduction and Motivation

In this paper, we prove persistence of whiskered tori in presymplectic systems. See later for
more precise definitions. We anticipate informally that whiskered tori are tori in which the
motion is a rotation, such that there are many infinitesimal perturbations that grow exponen-
tially. Presymplectic systems are dynamical systems whose evolution leaves it invariant under
a presymplectic form and a presymplectic form is just a closed form which may be degen-
erate. See Sect. 2.1. As it happens often in the KAM theory of persistence of quasi-periodic
motions, there is a deep interaction between the dynamics and the geometric structures pre-
served by the systems [17,26,27]. For example, the preservation of a form requires that the
tori and their manifolds have special properties. In this paper, we do not deal with the most
general case, we only consider some cases when the geometric structures have some extra
properties with respect to the map. These assumptions happen in applications and are stable
under perturbation. We hope that the methods developed here can cover several other cases.

The presymplectic systems appear in a variety of applications, including time dependent
perturbations of Hamiltonian systems [25]. The original motivation for the study of presym-
plectic manifolds was the Bergmann—Dirac theory of constraints [4,14,15], [16, Section V]
[12,21]. The presymplectic geometry provided a framework for quantization [8,22]. The
theory for presymplectic systems has been found useful in many situations that involve con-
straints such as gauge theory [24] or even financial models [9]. Several mechanics textbooks
that contain general presentations of presymplectic systems in mechanics are [13,25,30].
Similarly, we mention that whiskered tori were shown to be important structures in the insta-
bility of quasi-integrable systems. Indeed, till recently whiskered tori were considered as the
only structures causing instability in nearly integrable systems [2].

Our main result is a persistence theorem for whiskered tori in presymplectic systems for-
mulated in the a-posteriori format standard in numerical analysis. We formulate an invariance
equation for an embedding and a splitting of the tangent space at the range of the embed-
ding in such a way that the zeros of this functional equation are whiskered tori (with the
corresponding stable and unstable splittings).

The proof of the persistence result involves adjusting parameters, as it is common in KAM
theory [26-28]. Since it will be hard to find an invariant torus for a fixed presymplectic map, we
consider a family of presymplectic maps indexed by parameters A. Our first assumption is the
existence of a torus which is approximately invariant under a map indexed by some parameter
X0 and the approximately invariant torus has an approximately invariant hyperbolic splitting.
Assuming that the errors are small enough compared to some explicit condition numbers
computed on the approximate torus considered (no global conditions such as twist to verify),
then, by modifying the approximately invariant torus and the parameter in the family, we
obtain a truly invariant torus and the corresponding presymplectic map indexed by some
parameter A which is slightly different from the parameter Xg. As to the dimension of the
parameter A, we refer to the Remark 3.5. We also prove local uniqueness of the invariant tori
and the parameter A.

Note that this a-posteriori format implies the usual formulation of persistence under small
perturbations or the existence of tori in nearly integrable systems. An exactly invariant torus
is approximately invariant for a slight perturbation of the map and the whiskered invariant
tori of an integrable system are approximately invariant for a nearly integrable system.

With a view to numerical applications, it is relevant to note that the method of our proof
is to prove convergence of an iterative process. This iterative process can be implemented
as a very efficient algorithm: we only need to consider functions of a number of variables
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equal to the dimension of the torus considered (we do not need to deal with functions of
the dimension of the phase space). A step of the process is quadratically convergent. If we
discretize our functions using N numbers, we need a storage O(N) and a step requires
O(N In(N)) operations. Note that thanks to the a-posteriori theorem, by computing the
condition numbers we can be assured that the computations are reliable even in regions when
other more conventional methods of diagnostic become equivocal. Applying the a-posteriori
result to validate Lindstedt series leads to smooth dependence on parameters, even parameters
in ranging over a Cantor set, for example, frequencies of the torus which range over the set
of Diophantine vectors.

The method of our proof is based on formulating an equation for parameterizations of tori
that captures the fact that the torus is invariant and that the motion in it is a rotation as well
as another equation that captures the invariance of the bundles. One should think of these
equations as equations for the embedding and for the parameters in the family. Then, we
describe an iterative procedure that given an approximate solution (embedding of the torus,
splitting and parameter value in the family) produces a more approximate solution which
satisfies the equation much more accurately. Furthermore, we show that if the initial error
is small enough, the procedure can be iterated infinitely many times and it converges to a
true solution. To implement this procedure, it is important to take advantage of identities that
follow from the fact that the system preserves an exact presymplectic form.

Similar methods were described in [19,20] (a more efficient modification, which we will
follow, and numerical algorithms are in [23]) for symplectic systems and in [6,7] for confor-
mally symplectic systems. It could be instructive to compare the differences between these
different contexts.

Note that the method of proof used here does not use transformation theory. This is advan-
tageous for numerical implementations since transformations require to discretize functions
of as many variables as the dimension of the phase space whereas the present method only
requires to discretize functions of as many variables as the dimension of the torus. We also note
that, in contrast to Hamiltonian theory where a small transformation can be parameterized by
a function (the Hamiltonian—using e.g the Weinstein chart [3]—), a good parameterization
of the infinitesimal presymplectic transformations is not easy [7,10,11].

2 Preliminaries and Notations

In this section, we present some preliminary set up and some standard notations. This section
can be used as reference.

2.1 Presymplectic Form

We recall that a 2-form 2 is called presymplectic when d2 = 0. In contrast with symplectic
forms, which are assumed to be non-degenerate, presymplectic forms are allowed to have
non-trivial kernel, that is:
kerQ, ={ve T, M|i(v)Q =0}
=f{velM|Qu,w)=0, YweT M}
We will assume that the dimension of ker(€2y) is independent of x. We warn the readers

that some references allow the dimension of the kernel to change over the phase space but
we assume it is constant. On the other hand, some authors include the assumption that the

@ Springer



4 Journal of Dynamics and Differential Equations (2021) 33:1-34

dimension of the kernel is 1, but we will allow any dimension of the kernel. See the discussion
in [25].

In[1], we can find the result that the distribution ker (€2, ) satisfies the Frobenius condition,
therefore, there is a foliation whose leaves have ker(€2,) as tangent space. This is usually
described as “there is a foliation integrating the distribution ker(€2,)”. Note that this uses
the fact that the kernel of € has several derivatives so that the proof uses the Frobenius
integrability theorem. In our case, we will assume that the kernel of the presymplectic form
Q is analytic.

Animportant particular case of presymplectic forms are exact forms which satisfy Q = do
for certain 1-form «. The presymplectic forms that appear in the Dirac—Bergmann theory
of mechanical systems subject to constraints are exact. In our paper, we will assume that
presymplecitc form is exact.

2.2 The Phase Space We Will Consider

Since we are looking for invariant tori, without too much loss of generality, we consider the
manifold

M =R x (T" x R") x T' 2.1)

endowed with a presymplectic 2-form 2 = do and denote n = 2d + 2m + [. We also recall
that, a manifold endowed with a presymplectic form is called presymplectic manifold.

The factor T in (2.1) in our applications will correspond to the kernel of the presymplectic
form.

Note that the integrability of the kernel established in [1] does not imply that the leaves
integrating the kernel are compact or that the phase space is a product manifold. The com-
pactness of the leaves integrating the kernel and the product manifold structure of the phase
space are extra assumptions in our set up. See Sect. 8 for an example of a presymplectic
system which is not a product. These assumptions hold in examples, which, as we will show,
are stable.

‘We hope that the method presented here can incorporate other situations at the price of a
more complicated notation and adding parameters. This seems very interesting question and
we hope to come back to them.

In this paper we obtain quasi-periodic motions on the kernel, which does not make sense
if the foliation tangent to the kernel does not have leaves with compact closure. One notable
case where the phase space indeed factorizes is the case of symplectic systems subject to
quasi-periodic perturbations. In the case of quasi-periodic perturbations, the system is a
skew system and the presymplectic form is constant. We do not make the assumption that
the presymplectic form is the standard one.

In the models we will consider R?? corresponds to the hyperbolic directions. Asin [19,20],
we note that we do not need that the stable/unstable bundles are trivial. See examples in [19]
of systems with non-trivial stable and unstable bundles.

We note that the manifold M is Euclidean and we can compare vectors at different points.
This is mainly for convenience (in general manifolds one can use connectors) and without a
big loss of generality, since we are seeking tori (See Remark 3.4). Note that all our arguments
happen in a vicinity of a whiskered torus, we can assume that the manifolds are as in M. The
metric in M is only used in the analysis and we can just as well use the Euclidean metric.
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2.3 Norms and Spaces of Embeddings

In this subsection, we collect several definitions of norms that we will use. They are norms
in spaces of analytic functions and they are very standard.
Ifx = (x1, ..., X)) € R™ we set

|x]:=  max |x;].
Jj= +m

Then, denote U, as the complex strip of width p > 0, that is:
U, ={z e C"/z"* . lIm(z)| < p}.

Definition 2.1 The space (P, || - ||,) consists of functions K : U, — M which are one
periodic in all their arguments, real analytic on the interior of U, and continuous on the
closure of U, with the norm

. k
||K||CK‘UP = sup ID*K (2)].
0<|k|<K.zeU,

It is well known that (P, || - [|,5) is a Banach space.

2.4 Diophantine Properties

To deal with the small divisors as the previous KAM type results, we introduce the following
definition, which is standard.

Definition 2.2 Given y > 0 and o > [ 4+ m, we will denote by D(y, o) the set of frequency
vectors w € RI*™ satisfying the Diophantine condition:

[(k,w) — pl = yIk| 7, VkeZ*™\{0}, peZ, (2.2)
where (-, -) is the Euclidean product.

‘We will introduce the classical result (see [29]) which provides existence and estimate of
a solution of cohomology equations for Diophantine rotations.

Lemma2.1 Let w € D(y, o) and assume that h : T — M is analytic on U, and has
zero average, avg(h) = 0. Then for all 0 < § < p, the difference equation

V(@) —v(@ + w) = h(b) (2.3)

has a unique zero average solution v : T — R¥"* which is analytic in U o—5. Moreover,
this solution satisfies the following estimate:

Ivll—s < coy ™87l 24

where ¢ is a constant depending only on the dimension of the torus m + [ and on o.

2.5 Families of (Exact) Presymplectic Maps

Let M be a manifold endowed with a presymplectic 2-form 2. We introduce that:
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Definition 2.3 A diffeomorphism f : M — M is called presymplectic diffeomorphism if
Q=Q. (2.5)

Moreover, if the presymplectic 2-form €2 is exact, that is, & = d«, we say that f is an exact
presymplectic diffeomorphism if there exists a function S such that

ffa=a+dS, (2.6)
which also equals that if at the level of de Rham cohomology one has :
[ffa —a] =0. (2.7)

Note that, since d(f*o — @) = f*Q — Q, an exact presymplectic diffeomorphism is a
presymplectic diffeomorphism.

Definition 2.4 An (m + [)-parametric family of presymplectic (resp. exact presymplectic)
diffeomorphisms f; is a function

f:MxB—> M, B C R,

such that for each x € M, the map f(x, A) is C? with respect to the variable A varying the
B and for each A € B, the map f; := f(-, A) is a real analytic presymplectic (resp. exact
presymplectic) diffeomorphism. We also assume that f and its derivatives with respect to A
extend to a complex neighborhood.

In our paper, we assume that the presymplectic form €2 is exact. In many other papers,
it is also assumed the diffeomorphism is exact. Since we will dealing with a family of
parameterized presymplectic diffeomorphisms f;, we do not assume they are exact, but we
will consider a larger dimension of parameters, which is (m +/)-dimension. See Remark 3.5.

2.6 Invariant Tori

We say that K : T+ — M is an invariant torus with frequency @ € R™* for a map
i M- M,if

f(K@)—K@O+w)=0, Y0eT", (2.8)
and we say that f has an approximate invariant torus K with frequency w if
F(K(@) —K(@® +w)=e@®)., VOeT". (2.9)

As we will see, it will be hard to find invariant tori of frequency w for a fixed map. A natural
problem [26-28] is to consider families and to search at the same time for the embedding of
the torus and the parameter of the family.

Given a family f : M — M, we will seek a parameter A and an embedding K in such a
way that

fUK@) - KO +w) =0, VOeT", (2.10)

The Eq. (2.10) for (1, K) will be the centerpiece of our analysis. We will develop an
iterative procedure that starting from an approximate solution, (i.e a parameter A and a
embedding K so that (2.10) has a small right hand side) if applied repeatedly, produces a
true solution. This improvement algorithm will require to include assumptions about the
linearized behavior that we will discuss in the following sections. The notions of norms and
spaces are discussed in Sect. 2.3.
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2.7 Approximately Whiskered Invariant Tori

Definition 2.5 Let f; be a presymplectic diffeomorphism on M and K be an embedding
which satisfies (2.9). We say that K is an approximately invariant whiskered torus if the
followings hold.

(H1) Spectral condition: the tangent space Tk )M has an invariant splitting for all § €

Tm+l

TxkoyM = 5}2(9) D 5'?((9) D SIC((G), (2.11)
where .Sf((g), 5}‘“9), EIC{(G) are the stable, unstable, center invariant spaces,
respectively.

Moreover, the splitting (2.11) is characterized by asymptotic growth conditions, that
is, there exist constants O < w1, w2 < 1, u3 > lsuchthat w3z < 1, uppu3 < 1 and
Cj, > 0 such that
Ve 5;«0) < VneN,
DK 0 Ty~ (0) x - x DK @I < Chuf vl (2.12)
Ve 5;2(9) < VneN,
IDFTHEK) o T, "D @) x -« x DK O] < ChpghlIv]l, (2.13)
and
Ve S};(g) & VneN,
IDFIK) o TL1O) x -+ x DK @) < Curilv]l, (2.14)
IDF) " (K)o T, "D (@) x - x DA (K@) < ChpilIvll.
(H2) We assume that the dimension of the center subspace is 2m + [, that is, the torus is as

hyperbolic as allowed by the presymplectic structure and there are no elliptic directions
in the normal direction.

Remark 2.1 Note that, if K satisfies (2.10), that is, K is an invariant torus for some A, the
factor DK o T is just D f"" o K. The definition as it is written makes sense even when K is
approximately invariant as (2.9) in an Euclidean manifold. Moreover, if (A, K (0)) satisfies
(2.10), the following holds,

Df(K@)ERE = Exiao). (2.15)

Remark 2.2 A crucial result later will be the fact that assuming &5} are analytic splitting
asin (HI) and

disty(Dfi(KO)DEKGS EX (o) <0 O €U,

for some sufficiently small 8, where di st, stands for the infimum of the distances when
0 varies in U, then there is an analytic invariant splitting satisfying (2.15) close to the
approximately invariant splitting. Results of this type appear as Proposition 5.2 in [20].
Much more detailed and quantitative versions appear in [7]. We note that the proof does not
rely on geometry, only on hyperbolicity. See more details in Sect. 5.5.
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Remark 2.3 Defining
C"(®) =Df(K(@® + (n— Dw)) x --- x Df(K(®)),
then C"(0) satisfies
CM@) = C"(0 + mw)C™ (). (2.16)

The identity (2.16) is usually referred as saying C is a “cocycle” over the rotation by w. This
property will be used to solve the Eq. (2.10) on the hyperbolic subspace in Sect. 5.4.

Remark 2.4 Given a splitting as in (2.11), we find that it is convenient to introduce the

projections IT ) % ) I1¢ % (¢) Which take a vector in Tk )M and assign its components

into each of the sub-bundles. Note that each projection depends on the whole splitting, not
just on its range.

Remark 2.5 The invariance of the bundles expressed in terms of the projections means
s o Df(K(6)) = Df(K @), (2.17)

which is not a geometrically natural equation except when K is invariant, thatis K o T,,(6) =
f(K(6)). The geometrically natural equation would be

M55 DS (K(©) = Df (K@) (2.18)

One can find that D f(K) sends Tx@yM to Tfk@))M. The condition (2.18) agrees with
(2.17) only when K is an invariant torus. For our purposes, the Eq. (2.17) is relevant. This is
related to the fact that for us, the relevant cocycle (2.16) is not geometrically natural either.
In our formulation we use the fact that the phase space is Euclidean, so that we can identify
tangent spaces at different points. Formulating the results in general manifolds will require
slight modifications of the treatment such as using connectors. The modifications needed are
mathematically straightforward, but typographically awkward.

We anticipate that, in the main result we will impose that the dynamical spaces we have
included, have certain relation with the kernel of the form Q.

2.8 Lagrangian Properties of Invariant Tori

Due to the Diophantine condition on w and the exactness of the presymplectic form €2, we
have the following lemmas:

Lemma 2.2 Assume K (0) € P, and K(0) satisfies (2.8), w is rationally independent, then
K*Q is identically zero.

Proof Using the identity for pullback and the fact that f*Q = Q since f is a presymplectic
diffeomorphism, we have

(foK)'Q=K*o f*Q = K*Q,
(K oT,) Q =TFo K*Q.

Together with K (0) satisfying (2.8), then

K*Q=T!oK*Q.
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Since w is rationally independent, K*S2 is constant. Moreover, if we write K*< in matrix
form, we have

K*Q(&. m) = (§, L(O)n), (2.19)

where L(6) is constant matrix. Then we will prove K *Q is identically zero.
Since the 2-form €2 is exact, that is, 2 = da, where @(1) = a(u)du. Then we have the
following expression

m+l

(K*a) =) Ci(6)do;
i=1
with components C;(0) = [D(K (0))a(K (0))];,i = 1,2, ..., m + L. It follows that

L) =DCT(0) — DC(0).

Moreover, we obtain that avg(L(0)) = 0. Together with the fact L(6) is constant matrix, we
proved that L(0) = 0, that is, K*Q is identically zero. O

The following lemma is an analogous of a result found in [1].

Lemma23 Let f, : M — M be a presymplectic analytic diffeomorphism with fixed > € B
and K € P, be an approximate invariant torus with frequency o € D(y, o), that is,
the pair (f, K(0)) satisfies (2.9). Assume [, extends holomorphically to some complex
neighborhood of the image of U, under K :

By = {z € C2+2m+ . qup |z — K(©®)| < r}.
0eU,

Then, there exists a constant ¢y > 0, depending on l,d,m, o, p, |DK ||, |filc1 ss,, such
that for0 <& < §

ILlp—25 < coy '8 el (2.20)

where L is the matrix representing the pullback form K*SQ.

The reason for Lemma 2.3 is that if f; o K = K o T, + e with e being a small error, then
denote by

e =K'Q-T!oK*'Q=K"f] =T 0 K*Q,

where € can be estimated by e and its derivative. Using the result in Lemma [29], we conclude
that K*Q is a constant plus a term whose size can be estimated by ¢. Besides the fact that,
if Q is exact and w is rationally independent, the average of K*Q over the torus is zero.
Consequently, we conclude that K*Q2 is bounded by a term whose size can be estimated
by e. The formal proof can be found in [1]. Similar results happen in the symplectic or
conformally symplectic contexts as well. See [18].

3 Statement of the Results

In this section, we will formulate our main result after introducing some notations and defi-
nitions of non-degenerate torus.
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For the sake of convenience, we will introduce matrix notations for linear operations in
the following discussion and we will take advantage of the fact that our phase space is an
Euclidean manifold. We denote by

Vo={(u, (x,y,0) €eTM : ueM, x e R¥ yeR™},
N :=Ker (k) = {, (0,0,2) e TM : ueM, z R}, (3.1)

We will assume that V @ N is the center space, it follows that
TxoyM = 5}(9) @ 6}4(9) ©VEN. (3.2)

As it will be specified in the assumption (A1) in Theorem 1 below, we assume that we have
chosen a metric in which the subspaces V and N are orthogonal and the center subspace
5;( © = V @ N is trivial. As it was mentioned in Definition 2.5, the dimension of 5;( ©) is
2m + 1, hence £ ;) ~ R,

Moreover, for each £, € S;((g), we have the linear map J““(K (9)) : 51%(0) — 5;((9)
defined by

Qi 9y (& 1) == (&, T(K(O))n), 3.3)

where Q% ©) is the restriction of the presymplectic form on the center subspace,

FEE©)) (J(I(f)(e» 0 ) ’

and (-, -) denotes the standard inner product on R%"*!_ The skew-symmetry of Q¢ yields that
JT = —J. It is important to notice that the matrix J also depends on the metric in the
center subspace, as indicated in (3.2). But we do not need to keep track of the basis and metric
for the hyperbolic subspace. Because of our assumption that the rank of the presymplectic
form is constant, we have that the rank of J¢ is constant.

For K (9) € P, satisfying (2.8) or (2.10) for some fixed A, we denote by

DK (0) = (X(0), Z(9)), (3.4)

where X (0), Z(0) are the first m and last/ columns of DK (0), X, (9), Z$, () are projections
of X(6), Z(#) onsubspace V and X§,(6), Z§,(6) are projections on subspace N, respectively.
Then we have the following definitions.

Definition 3.1 We say that K (9) € P, is a non-degenerate torus if
(1) There exists an m x m matrix valued function A(6) that satisfies the following relation:
AO) (X, (0) X5 ©0) = I,

where X7, (9) are the projections of X (@) on the subspace V.
(2) The matrix B(#), which will be specifically defined in (4.12), is invertible.

To formulate the non-degeneracy condition for a pair (f;, K(0)), we denote the (2m +
[) x (m 4 [) matrix A (6) as follows:

) Bf)\ All(g) AIQ(Q)
A@©) = B 10)0(0) |:HLK(0+(4))87(K(6))] = Au®) Axn@®) |, (3.5)
A31(0)  An®)
where the sub-matrices A1, A2, Az1, Axp, A3y, Az areofthesizesm xm,m x[,m xm,
m x 1,1 x m,l x [, respectively. The matrices B~ and Q are defined as (4.20), (4.15).
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Definition 3.2 We say a pair (f, K (0)) is non-degenerate at Ag, if f3 is an (m+[)-parametric
family of presymplectic diffeomorphisms, K (¢) € P, is a non-degenerate torus, and the
(2m 4+ 1) x (2m + 1) matrix

An@)  Ap@®) S6O)
©:=avg| Aai(6) An@®) O (3.6)
Az31(0)  Axn(©) A@)

is invertible, where A(6) will be defined in (4.18), S(0) is the last expression in (5.11).
Remark 3.1 Note that the matrix A(#) and A(#) have no connection with each other.

Remark 3.2 The role of Definition 3.2 is to reduce the Newton equation to a constant coef-
ficient equation up to a small error. Even if we will not give the formula for the matrices
B, 0, A, S now and we postpone till they are motivated, we note that they are explicit
matrices obtained from the approximate solution (K, 1), by taking derivatives, performing
algebraic operations and averaging. Therefore, the assumptions on matrices B, Q, A, S are
explicit assumptions on the approximate solution and do not involve any global hypothesis
about the map.

Now, we formulate our main theorem of the present paper:

Theorem 1 Letw € D(y, 0), let f; be the (m+1)-parametric family of analytic presymplectic
diffeomorphisms, defined as Definition 2.4 and let Ky € P,.
Assume that:

(Al) We have chosen a metric in which the subspaces V and N are orthogonal and the
dimension of the center subspace £y, ©® is 2m+l.

(A2) The pair (fy, Ko) is non-degenerate at the point . = g in the sense of Definition 3.2.

(A3) The family f, can be holomorphically extended to some complex neighborhood of the
image of U, under K (0):

B ={z€C: suplz—K(@)| <r}
such that | fillc2, g, is finite.

Denote the error term eg(0) as

eo(0) == fi,(Ko(0)) — Ko (0 + ). 3.7
Then, there exists a positive constant Ct > 0, depending on cr,m,l,d,po,r,g, I falle2, B,
IDKol el Ac®) e 152 1m0 (Ko@)l e 10711, IDKIDK0) e 1TSS 4o
such that if 0 < 8o < min{l, 13} and
leoll g < min | =—y*ste, 2827 |, (3.8)
0 2Ct Cr

then there exists a mapping Koo € Ppy—es, and a vector koo € R+ satisfying

Jiroo © Koo = Koo 0 Tyy. 3.9

Moreover, the following estimates hold:
Koo — Kolljp—650 < CT¥ 285 " lleoll o (3.10)
hoo = 2ol < Cry 285 Nleoll - (3.11)
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Remark 3.3 The assumption (A1) has the geometric meaning that the kernel of Q—which is
an invariant space under a presymplectic diffeomorphism by Lemma 4.2—is contained in the
center. Equivalently, we assume that the vectors in the kernel satisfy the growth conditions
(2.14). Due to the stability properties of the hyperbolic splittings, if the kernel vectors satisfy
(2.14), they will satisfy similar hypothesis if we change slightly the map or the splitting. In
this paper, we will consider the case when the kernel is a factor and the dynamics on it is a
rotation, which is stronger than (Al).

Once we have that the kernel is contained in the center, it is standard in bundle theory that
we can define a metric which makes the two bundles orthogonal.

We note that these assumptions, even if non-trivial,! remain valid under perturbations and
hold in systems that appear in applications. The triviality of bundles assumed here enters into
the study of cocycle equations using Fourier series.

Remark 3.4 One of the features of the method in the present paper is that it applies even when
the stable and unstable bundles are non-trivial. We note that to solve the linearized invariance
equations, we just project on the stable (unstable) and center bundles. Then, the components
along the stable and unstable directions are solved by very simple iterative formulae (5.23)
and (5.24) which make sense even for non-trivial bundles.

In contrast, the treatment of the center projection of the linearized equations relies on
Fourier methods and on identifications which only make sense for trivial bundles. The paper
[19] includes examples of whiskered tori in symplectic systems with non-trivial stable (unsta-
ble) bundles. One important result of [7] is that the center bundle of conformally symplectic
whiskered tori is trivial in the sense of bundle theory, i.e., it is a product bundle.

Remark 3.5 We remark that the m components of parameters A that we use have a geometric
meaning to adjust the averages of the presymplectic conjugate of the tangent to the torus.

We can eliminate the use of these m parameters if we add to the non-degeneracy Defi-
nition 3.2 the assumption that m components of the cohomology of the presymplectic form
vanish, corresponding to the directions of the embedding of the torus.

Of course, the above assumption is implied by the more natural assumption that the
presymplectic diffeomorphism fj is exact, which is defined as in Definition 2.3. It means
that all components of the cohomology of the presymplectic form vanish, which is satisfied
in the mechanically constrained systems.

The proof of the result relies on a vanishing lemma as in [1] and reformulating the non-
degeneracy assumptions. We will not do this in this paper.

3.1 Local Uniqueness

In this subsection, we claim the local uniqueness of the embedding K., and the parameter
XAoo provided in Theorem 1. Note that, if K is the solution of (3.9) for some A, then for
every ¥ € T x T/, the solution 1%00(9) = Koo (6 + ) is also a solution for (3.9). Hence,
we consider that the solution K, and Ko, are equivalent. As a result, we mean uniqueness
up to this equivalence relation.

A easy example when the assumption A1) does not hold is a product, M = A x T, Aisa symplectic
manifold. When f(a, b) = (g(a), h(b)), g(0) = 0 and g preserves the symplectic form in A. In this case, M
could be a manifold with presymplectic form. Then 0 x T/ is an invariant torus of the presymplectic form in
M. Depending on the dynamics of &, the kernel may contain (un)stable directions.
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Theorem 2 Letw € D(y, o) and assume that ( fi,, K1), (fr,, K2) represent non-degenerate
pairs satisfying the hypotheses of Theorem 1 and

Su (K1(0)) — K1(0 + ) =0,
Sz (K2(0)) — K2 (0 + w) =0,

such that K\(U,) C B, and K»(U,) C B,. Then, there exists a positive constant C‘T

depending on o,m,Ld,p,r, || fillc2. g,» IDK1llp. 1A©)]l, ,||HSK"1'ig)||p L 1O, such that

1Ky = Kall, < Cry?8%, |a — ha| < Cry?s™ (3.12)
with § = %. Furthermore, there exists an initial phase to, € T™ x T! such that in Up)2
KioTr, = Ka,
Al = Ao

The proof will be given in Sect. 7. We anticipate the idea is that, since the proof of
Theorem 1 is based on a quasi-Newton method, it suffices to study the iterative step and see
that its only neutral directions are in the directions of change of phase. A related argument
appears in [18].

4 Some Results in Presymplectic Geometry

In this section, we will establish some results in presymplectic geometry, which we will use
later.

Lemma 4.1 Given K(0) that satisfies (2.8), we deduce that Qg @) (u, v) = 0 in any of the
Sollowing case:

1 wu,ve 5%(9)’
() u,v ey,

@) we & vEErp Ulkor
@) vEEy, 1EEry UL,

Proof From
Qi o), v) = Qpnk @) (Df"(K(@)u, D" (K())v), Vn € Z, 4.1)

we see that, for the case (1), using the contraction property (2.12), we can make the term
Qx 9)(u, v) as small as desired. Then, sending n — oo, we prove that

Qi@y(u,v) =0, VYu,ve 5;((0).

All the other cases can be proved in a similar way. It suffices to use (4.1) and make n tend
to +00. The differences in the rates of growth, shows that there is always a choice of sign so
that the right hand side of (4.1) goes to zero. O

Lemma 4.2 Given the 2-form Q2 defined as above, K(0) satisfying (2.10) and the spectral
condition (HI), (H2), we have

Ker (QK(g)) ﬂ 52(0) = Ker (Q%(g)) ,
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where Q%(Q) is defined as in (3.3) and

Ker (523((9)) — (W € ] Loy W W) =0, Vi € Ex ). 4.2)
Moreover, we have

f*(Ker QK((.))) = Ker Q(f([(((.)))). (4.3)

Proof Given any v € Ker (Q%(9)>, then v € 52(9) and for any w € R”", we denote

w = w’ +w* + w, where w’ € 82(0), wh e 5;‘“9), wt e 52(0). By Lemma 4.1 and (4.2),
we have

Qk9) (v, W) = Qg e) (v, W) + Lk o) (v, W) + Qi (v, W)
= 0’

that is, v € Ker (R 9)) N Eg (4~ The opposite is obvious.
As for (4.3), given any v € Ker Qg g), then, for any w € Tx )M, Q (v, w) = 0. Italso
implies that

Q(fiv, fiw) =0, Yw € Tk )M & Q(fiv,u) =0, Vi € TrxeyM,
that is,

fxv € Ker Q7 (k 9)))-

4.1 A Useful Basis for the Center Subspace

In this subsection, we will first find a useful basis for the center subspace £, ©) in the case that
K () is a solution for (2.10). A similar basis will be constructed later for an approximately
invariant solution, i.e., K (0) satisfies (2.9) for some f;. For the Newton method, the latter is
the one that will be useful, but the basis in the invariant case is geometrically natural.
Remember that, for K(6) € P,, we decompose the Jacobian matrix in the form

DK (0) = (X(®), Z(9)), 4.4)

where X(6), Z(6) are the first m and last / columns of DK (#). Denote by X7, (6), Z{,(0)
the projections of X(#), Z(6) on the subspace V and by X¢,(0), ZY(#) the projections on
subspace N.

Assume that K (@) satisfies (2.10) for some fj and there exists an m x m matrix A(6)
such that

AKX 6) - X5(6)) = In. 4.5)

The formula (4.5) is an important non-degeneracy assumption to solve the Eq. (5.3) on the
center subspace. Roughly, it says that the matrix X{, has maximal rank. Also, denote

Y5(0) == X$(0)AB) and Y@O) = (J UK @B)Y5@), 0)7. (4.6)

Note that the span of the columns X7, (6) is the same as the span of Yy, (6), but we use A(#)
as a convenient normalization. Then, the following matrix denoted by M, will provide us
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with a linear change of variables which simplifies the Eq. (5.3) projected on the center space.
That is,

X50) JTUK©O)YS0) Z§ (9)>
MO = ¢ viERZV ) 47
© ( X5,(0) 0 Z5,(0) @7
By the non-degeneracy assumption (4.5) and Lemma 2.2, we obtain that
Qi 9)(X(0), X°(0)) =0, (4.9)
Qi (0)(X°0), Z°(0)) = 0, (4.10)

where X€(0), Y¢(0), Z¢(0) denote the three columns of M () respectively.

‘We will now check that the first 2m-columns of M (0) are linearly independent. We will
procede by contradiction. Assume that there existetj, B;, j =1, ..., m, such that the linear
combination L is equal to zero,

m m
L:=Y a;XO)ej+ Y B;YO)e; =0. (4.11)
j=1 j=1
We will prove that «; = 8; = O forall j = 1, ..., m. This establishes that the first 2m-
columns of M (@) are linearly independent.
First, for any 1 < k < m, we have due to (4.8), (4.9), (4.10)

0= QX O)er, L) = Y _ Bjef (X°©)TJ(KO)Y*(O)e;
j=1

Z (etse)) = B

~

Once we have that ,3 7 = 0, the linear combination (4.11) reduces to

m
L:=) ajX()e; =0.
j=1
Again for any 1 < k < m, we have
0=Q°(Y°BO)e, L) = ay,

that is, ¢y = 0, for all 1 < k < m. It shows that first 2m-columns of M (#) are linearly
independent.

Lemma4.3 The columns of M(0) form a basis for 51{(9) provided the matrix

0 Ln 0
BO)=| —I, (JHKYH)TYSO) (J UK)YSTI(K)ZS () (4.12)
X5, (0) 0 Z5(6)

is invertible. In this case, we have

Df{(K(@)(X(0), Z°(0)) = (X (0 + w), Z°(0 + w)),
Df{(K(@)(Y(0) = X0 +w)S1(8) + YO + w)
+Z°(0 + w)A(H), (4.13)
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where A(0) and S (0) are matrices satisfying:

Im 51(9) 0
DfS(K@)M@B)=M@B+w)| 0 I, 0 (4.14)
0 A®) I

and D f{ (K (9)) denotes the last (2m + 1) x (2m + 1) block of matrix D f5 (K ()).

Proof Let
X50)" T (K 6)) 0
) :=| U HKO)YONTIEK®O) O : (4.15)
0 I Cm—+1)x2m+l)
By calculation, we have
QO)M(O) = B(). (4.16)

Since we assume that the matrix B is invertible, we conclude that the matrices Q, M are
both invertible and the columns of M(#) provide a basis for £f ©®) O

Since f; is presymplectic as (2.5), we have
D f{ (K(0)(X(0), Z°(0)) = (X (0 + w), Z°(0 + w)).

Then, we will find matrices S1(6), A(®) satisfying the Eq. (4.14). Moving the term Y(0 +
w) I, to the left side of the second equation of (4.13), we have

Df{(K@)Y(O) — YO + w),, = X0 + w)S1(0) + Z°(6 + 0)A®@B).  (4.17)

Since M is invertible, there exists the inverse T = (T, T, T3)" such that T3X¢ =
Orxm, T3Z¢ = I;x;. Multiplying T3 on both sides of (4.17), we have

A(0) = T30 + 0)[Df(K @)Y (O) = YO + ) ). (4.18)
Then moving Z€(6 + ) A(0) to the left side and multiplying X(6 + a))TJ (K@ + w)) on
both sides of (4.17), we have
$1(6)
= X0+ a))TJ(K(G + ) [DfI(KO)YO) — YO+ wl,
—Z°(0 + w)AO)]. (4.19)

Remark 4.1 By a simple calculation, we have that the inverse of B has the following form:
-1 ~1 ~1
| By B, By
B~ =1 I, 0 0 1, (4.20)
-1 ~1 -1
By By By
where B,.;l are matrices of appropriate dimensions and defined by (4.20). The content of

the formula (4.20) is precisely the special form of the middle row. We note that the Bi;l are
explicit formulas which involve only the projections on the bundles and algebraic operations
with the derivatives of the function.
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5 The Linearized Equation and the Quasi-Newton Method

In this section, we find an approximate solution of the linearized equation appearing in the
Newton method. This approximate solution is the solution of a simplified equation obtained
by dropping a term in the equation suggested by the Newton method. Hence, we call it the
quasi-Newton method. As usual in KAM theory, the quadratic estimates for the new error
hold in a slightly smaller domain, and have a factor that grows in a controlled way when the
domain loss is small.

The analysis is similar to that in [19], but there is a new obstruction due to the fact that in
the present equation we have to adjust parameters to take care of the directions in the kernel
of 2, which leads to a coupling among different equations. The difficulty of the correction of
the parameters appears also in [5] in the study of Lagrangian tori in conformally symplectic
systems and in the study of whiskered tori in conformally symplectic systems [6,7].

Now we give a more detailed sketch of the proof that can serve as a reading guide. We
begin with a pair ( f, K (9)) satisfying (A1)—(A3) at some A = A as in Theorem 1 and define

e(®) := G(K, ) = fL,(K©®)) — K6 + w)

as the error term.

The prescription of the standard Newton method is to find a correction (A(6), ¢) at each
iteration step, which satisfies the infinitesimal equation up to a quadratic error term with
respect to ||e||. The infinitesimal equation prescribed by Newton method is as follows:

DG (K, M)(A, &) :=Dfi(KO)HAW®) — A + w) + wg 5.1
= —e(0). '
Then we denote K. = K + A, A4 = X+ ¢ and
4 (0) 1= G(Ky, hy) i= fo, (K4(0) — K46 + )

as the new error term. In Sect. 5.6, we will prove that the estimate of |le4 || is a quadratic term
with respect to ||e]| in a slightly smaller domain, which completes an iterative step.

We take the projections of Eq. (5.1) on the stable, unstable and center subspaces, respec-
tively. Then Eq. (5.1) is equivalent to the system of three equations as follows:

s,u,c af)»(K(G))E

T 54 DK ODA®) — TG ) AG +0) + G,y e o)

K(0+w)

= —TT% i )€ O).

Using the invariance of vector bundles (2.17), we obtain that (5.2) can be rewritten as:

satc sac o 0H(K(©)
D fi (KON A0) — TG ) AW + o) + TG, 3N K ®) TR

s, u,c
= —Ig (1we®).

‘We introduce the notation

AMEO) = T I AG),

s @) = H“};L(‘é:_w)e(e).
Taking into account that, by the invariance of the bundles, we can consider D f; (K (9)) in
diagonal blocks, so we rewrite that

Df,(K@)TI5 AW®) = D" (K @)A™"(©).
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Using the notation above, we see that (5.1) is equivalent to the system of three equations
as follows:

_— ue O (K@
Df)f,u,c (K(@))AS‘M’C(G) _ As,u,c‘(9 + w) + Hsktzé:_w) fk(a)\( ))6 (5 3)
— _es,u,c(g). ’

Note that (5.3) consists of three equations but four unknowns, namely, (A*-*-€(0), ¢). The
study of the system (5.3) will be done in three steps:

(1) In Sect. 5.1-5.2, we will use the geometric structure on the tangent bundle to find a basis
for £¢ ©® for the case that K (0) is an approximate invariant torus. The basis provides us
a change of variable under which we can transform the Eq. (5.3) on the center space into
a constant coefficients equation up to a small error.

(2) In Sect. 5.3, we will solve the Eq. (5.3) on the center subspace. The parameter € will be
chosen so that the compatibility conditions for A€ are satisfied and then, we will solve
the equation for A€. Hence, in this step, we use one equation to find two unknowns.

(3) In Sect. 5.4, we will be able to solve the equations for A*, A" by using the conditions
on the co-cycles over 2. (See Remark 2.3).

Remark 5.1 Note that, as in [1], we will not solve the equation for A¢ exactly, but solve it
only up to a quadratic error. The equation for A€ is an elaborated equation that involves small
divisors and entails a loss of domain for the estimates. We also remark that all the constants
appearing in the iteration step are all positive constants.

After we have solved the linearized equation with detailed estimates, we show that, indeed,
the error has decreased. This requires to verify that the composition involved in the function
can be performed. Note that the estimates produced for the correction depend on the properties
of the splitting and on the twist condition, so we have to estimate how do they change. Since
the correction of the splittings is obtained by a contraction argument and the twist is an
algebraic expression of derivatives, it is quite straightforward to show that the change in the
constants can be estimated by the error times a factor depending on the loss of domain.

‘We call attention to the fact that the solutions of the linearized equation are not unique
but they have some arbitrary parameters. As it is well known, the Newton method does not
need an inverse of the linearization, but just a right inverse. The proof of the local uniqueness
(Theorem 2) is based on reexamining the procedure and identifying the lack of uniqueness
of the right inverse as the directions of change of origin in the parameterization.

5.1 Basis for the Center Subspace When K(6) is an Approximate Solution

‘We consider the linearized equation projected on the center subspace, that is,
H;(0+wJDG(K, M)A e)

3 f(K (O
= [n;me] £+ DfL(K(0)AO) — A°(O + w) = — (). (5.4)

We will find an approximate solution (A€, &) such that
ITTS g4y PG (K. M)A, £) + € @)l -5 < Cy 8 7 e,

where C is a constant to be made explicit later.
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Remark 5.2 'We note that the process we use to go from e to (A€, ¢) is linear. We just take
projections (to obtain ¢, multiply by explicit expressions obtained from derivatives of the
approximate solution by algebraic operations). Hence we can formulate the construction of
(A€, ¢) as creating a linear operator. A similar construction will happen for the hyperbolic
directions. Hence, the process of constructing (A, ¢) can be described as creating an approx-
imate right inverse on the derivative (which involves losses of domain). This is the basis of
abstract implicit function theorems. One abstract implicit function theorem particularly well
adapted to the situation described here is in [5].

To find (A€, €), we first prove that the columns of M(0) still consist of a basis for £ ©)
if the error term e(6) is small enough.

Since (A, K (9)) satisfies (2.9), it follows that Q“(X{,, X§,), Q(X{,, Z},) # 0, then the
Eq. (4.16) becomes:

QOIM(O) = B(6) + R(®), (5.5)
where
X50) T T(KONXSq 0 X5 0) J(K©))ZS 4
R(9) = 0 0 0

0 0 0
Applying Lemma 2.3, we estimate the error term R(6):

Lemma 5.1 Assume that all the hypotheses of Lemma 2.3 hold. Then there exists a constant
Cy dependingonm, 1, d, p, || fillcr B,» I/llct B, IDKIl, suchthat for every 0 < § < g
we have

T

IB=YO)RO) | p—25 < Cry '8V e]l,.

As an easy corollary, we have the following lemma, which will be useful to show that the
hypothesis of invertibility applies.

Lemma 5.2 Assume that all the hypotheses of Lemma 2.3 hold and the error term e(9)
satisfies

Ciy~ '8 Ve, < % (5.6)
Then, the matrix M is invertible and
M7 ®) = B~'(0)06) + B(®).
where
B(®) = —[(Iow4 + B~'R)T'BT'RB™ 0](0). (5.7)
Moreover, we have the estimate
IB@)llp—25 < C2y '8~ Vle]l,, (5.8)

where Cy is a constant depending on m, 1, d, p, r, || fillcr g,» Wt g, IAll, and
IDK |-

Proof Rewrite (5.5) as
QOIM(O) = BO)(Lomsi + B~ (O)R®)).

We now use the Neumann series and the estimate of B~!'R, we conclude that I, 4; +
B~L(®)R() is invertible. o
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5.2 Change of Variables in the Linearized Equation

In this subsection, we will apply a change of variable to solve the Eq. (5.4) up to a quadratic
erTor.

Since f; (K (9)) is presymplectic, together with Lemma 4.2 and the assumptions of The-
orem 1, we claim that

¢ _(F®) 0

Lemma5.3 Let K(0) be an approximate invariant torus with error e(0). Assume that the
pair (fi, K(0)) satisfies the non-degeneracy condition in Definition 3.2 and e(0) satisfies
(5.6). Then, we take the change of variable

A(0) = M(0)&(0) (5.10)
such that the Eq. (5.4) is transformed as follows:
L, S@® 0
0 In O |+Bi()|§0)—§0+w)
0 A©B) I
- 0
= —B71)0#)e0 — A(B)e — B(0)e () — B(G)HK(9+w) fA(B}\( ))8, (5.11)
where
Iy 51(9) 0
E(0) :=Df{(KOHYM@O) —M@O+w) | 0 Iy 0
0 A@©) I

= (D1€°(9), E1(8), D2 (9)),

where Dye“(0) and D,e(0) are the first m columns and the last | columns of E (6), respec-
tively. We also denote by

E (0) :=Df(K@O)HY(O)— X O+ w)S1(0) —Y O +w), —Z°0 + w)A@H),

0 5:(6) 0
Bi(®) :=M'O+)E@)—| 0 0 0],
0 0 0

$2(0) == Bl_31 FZ(G)J_l(K(G))Y‘C,(G) — X500+ w)S10) — Z5,0 + w)A(8),
$(0) := S10) + $2(0),
and A(6), E(G), S1(0) and A(9) are defined as (3.5), (5.7), (4.19), (4.18), respectively.

F>(0) is the sub-matrix in (5.9).
Moreover, we have the following estimates:

1B®)e @)llp-25 < Coy '8 Vle]?,

3. (K (0)) _ . 9 f.(K(6))
IBOT gy =55l = Coy ™87V I ) === | lellllell,,
I1Billp—2s < C3y~'67“F Ve, (5.12)

where C» is the same constant as in (5.8) and C3 is another positive constant depends on the
same parameters with C,.
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Proof Note that when K (0) satisfies (2.9) for some f;, we have

D fy (K (0))M(0) (5.13)
Im Sl(G) 0
=M@E@+w) | 0 Ly 0|+ (D), Ei(6), D2e(9)).
0 A®) I

Substituting (5.13) and (5.10) into Eq. (5.4), one can verify that & satisfies (5.11). To prove
the estimates, note that ¢ is the projection of the error e under IT¢ and IT¢ is bounded, we
have bounds for ¢¢ similar to the bounds of e in (5.6). Then, (5.12) directly follows from
Lemma 5.2 and Cauchy estimates, so that

ML + @) Die O) p—25 < Cay ™67 Vje|2,

where i = 1,2, C4 is a constant depending on the same parameters as C,. Then, we will
estimate the term M~ (9) E| () to complete the third estimate of (5.12).
Recalling that we write the inverse of M as ML= (T, Ty, T3)T and that 73(6 +
)X O +w) =0ixm, T30 +w)Z (0 +w) = Iy, it follows that T3(0 +w) E1(6) = -
Hence, we have

T (0 + w)
Mfl(G +w)E1(0)=| Th(0 +w) | E{(0). (5.14)
0

Moreover, it follows from Lemma 5.2 that M~'(0) = B~'(0)Q(6) + B(6), where
B~1(0), Q(6) are defined as in (4.20), (4.15), respectively. In the following, we will split
the right side of (5.14) into three parts, that is,

7160 + w)
(5@+@)ﬂw>
00 B

_ p-1 A
=B (6—|—a))Q(9)E1(6)+<00 5

>E1(9) +BO)E((9), (5.15)

where B is the first 2m-lines of B and f?_l, Q are blocks from B~ !, Q as follows:
-1 p—1 - T
P (B“ B}, ) 06) = ( Xy ' @) (K ©) 0) _
In 0 (K@Y, 0)' 0
It is easy to verify that
IBO)E1(O)llp—25 < Csy ™87 Vel

where Cs depends on Cy4 and || E((0)]|. Note that since || E1(6)]| is not bounded by the error
in the invariant equation, then IBOYE )| p—25 18 not quadratically bounded by the error.
This will not affect the argument since we will use only E| multiplied by other quantities,
which are bounded by the error.

Consider (5.9) and rewrite E1(0) as follows:

E!
E@:=|
1

[ F@® T K @)Y O) = X0+ @)S10) = T (KO + )Y 0 +w) = Z5, 0 + »)AB)
- Fy(0)] 1 (K (0))Y5(0) — X5, (0 + 0)S1(0) — Z§,(6 + @) A®) ’

@ Springer



22 Journal of Dynamics and Differential Equations (2021) 33:1-34

where Y¢(6 + w) and Y[ (6 + w) are defined as in (4.6) for the variable (6 + ) in place of
(6). Then, the first term on the right side of (5.15) becomes:

B 'X§ T I(K)EY + BLZI(JI(K)Y\C/)TJ(K)Ei’>

B 'O +w0)0@O)EI(0) = ( i )
@ ! x5 TJ(K)E!

One can verify that the lower term X Q,TJ (K)EY is identically zero and the upper term is
controlled by the error by Lemma 2.1.
Consider the second term on the right side of (5.15), that is,

00 B _(5200)
<0 00 JEO=L" )
Since this term is not controlled by the error, we subtract this term from M~'(0 + w)E; (6).

That is the reason why we add S>(0) to the term S(0). Putting together the discussion above,
we proved Lemma 5.3. O

5.3 Solving the Linearized Equation on the Center Subspace

If the term £(@), ¢ are controlled by the error, we can omit the quadratically small terms
Bi(0)E(9). B(©)e“(0). BO)T, +w)we from Eq. (5.11). Then, we have the follow-
ing linearized equation:

I, S©®) 0
0 I, 0 |&®) —&®+w) =RO), (5.16)
0 A®) I

where R(0) := —B~'(0) 0(0)e‘0 — A(0)e. Note that R(9) has a term that depends on .
This linear system (5.16) can be solved by Lemma 2.1 and we have the following Proposition:

Proposition 5.1 Suppose that all the assumptions in Lemma 5.3 hold. Then, there exists
a mapping &(0) analytic on domain U,_»s and a vector & € R such that (5.16)
holds. Moreover, there are constants Ce, C7 depending on m, 1, d, p, r, |filc1 g,
Ilct B, I1All, and DK, and 1O~ such that

IE@) N —25 < Coy 28> lell,,
lel < G710 llell . (5.17)

Proof Let
R, (©) - (B_I(Q)Q(Q)e"(Q))X — Anier — Ape £.(0)
RO)=| Ry©®) | = | — (19‘1(9)Q(9)e"(9))_V —Aner—Aner |, £0)=|&0) |,
R-(6) —(B71©)00)e“(0)). — Azie1 — Axner £:(0)

where the subscripts x, y, z denote the directions of the columns of M and €1, &; denote the
first m components and last / components of ¢, respectively. Write (5.16) as

£x(0) — &x (0 + w) = Ry (0) — 5(0)§,(0),
§(0) = &0 + ) = Ry(©),
£:(0) — §:(0 + ) = R:(6) — A(0)§,(0). (5.18)
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We solve the second equation first by Lemma (2.1), that is, we have to choose parameter ¢ to
guarantee that avg(Ry) = 0. Based on the Definition 3.2, the average of matrix © is invertible
implies that the sub-matrix avg (A1 Apz) is of the rank m. It follows that the following linear
equation

avg (A21An) (2) = —avg (B~ 0)00)e ®)), (5.19)

is solvable. Using Lemma 2.1, we find a unique solution {?y with zero average and the estimate
that

1€l p—s < Cy '8 IRyl

Denote &y, = £ v+ éy, where Ey is a constant vector. On one hand, &, is still a solution of the
second equation, on the other hand, the values of é\, affect the right hand side of the first and
third equations. By choosing éy, we can make the first and third equations solvable, that is,
we solve the following equation for unique §y:

g (SO )z, _ (e (BT (0)00)e°®)), —ava(SEO)E, ©))
Ela®) ) 7\ —ave (B71©)00)e° ), — ava(A©)E,©)) |

4

Based on Definition 3.2, the matrix ® is invertible, it follows that the matrix avg (%(Z;)

has rank m. Consequently, the equation above is uniquely solvable for é‘ Then, we have
I€ylp—s < 1Esllo—s + 1] < Cay '8 IRyl

Using Lemma 2.1 again, we have that there exist unique zero average solutions &, &
satisfying

&l p—25 < Coy '8 IR (6) — S(0)&,O)ll s,
I&:llp—25 < Croy '8 I1R(6) — AB)E(O)] p—s-

The details of the proof are similar to proofs in [18]. O

Note that the solutions &, &. we have found would be modified by adding them an average
and that is the reason for non-uniqueness of the solutions.

Corollary 5.1 Assume that all the assumptions of Proposition 5.1 hold. Then

22
1Al p—2s < Criy =8 e,

IDAlIp—35 < Criy 28~ % Vel (5.20)
and
ITT% 910y DG (K. M) (A, ) + €[l p—2s < Cray 8 C7+ Ve, (5.21)

where Ci1, Ciy depend on m, I, d, p, r, |lfillc2, 5, IJlp, IIDKollp, [IAll,,
[| %(K(G))Hp, |©~ | and the norm of the projection ||H§<(9+w) II.

Proof Remind the change of variable (5.10), we have

IAC @)l p—25 < IM@EB)p—s < Cr1y 287 lell,.
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Also,

||HK(€+w)DG(K AM(AC, 8) + el p—2s

0/

- e[l B@)e @)

< 1B1@)lp—2518@) I p—25 + HB(H)HK(Q.HO)
p—25

< Cpay 287G D2

o
5.4 Solving the Linearized Equations on the Hyperbolic Subspaces
We project Eq. (5.1) on the stable and unstable subspaces, that is,
g4y DK O)DA®) — T, ) AB + )
4 f1.(K(6))
= M orey 55 ~ MK (o40)¢©)- (5.22)

By the invariance of the splitting (2.11), we can write, for the stable one,

Mk (94 DL.(O)A@O) =D fI (K (0)A*(0),

and for the unstable one:
% 61w Df(O)AO) = D f;/ (K () A" (0).

Introducing the change of variable 8’ = T,(0) = 6 + w and AS*(9') = HK(H )A(G ), we
can rewrite the Eq. (5.22) as follows.
For the stable part, we rewrite as:

D (K)o T_,(0)A*(T_,(0")) — A*(8") = —E* (0, ¢), (5.23)

where

9f3.(K) o T_‘“(G/)s).

ES(0 &) = M (gye 0 T_(8) + M 5, < o

For the unstable part, we write
Df (K)o T_,(0") A" (T_,(8") — A"(6") = —E" (¢, ¢), (5.24)
where

0 fL.(K) o T_, (0
E“ O, ¢) = M @eo T_,©0")+ M @) (MQ ]

oA

The following proposition provides the existence and the estimate of the solutions for Eqs.
(5.23) and (5.24).

Proposition 5.2 For any fixed p > 0, there exists a unique analytic solution A* : U, —
Ei((e) (resp. A" : U, — E‘,Q(O))for Eq. (5.23) (resp.for Eq. (5.24)) and a constant C\3

depending on the constant Cy, in Definition 2.5, the norm of || M llp, the norm of

the projection || I1% K®) I, (resp. ||H‘I‘<(9) llp ). the hyperbolic constant /Ll (resp.L2), such that

IA* ], < Cizlle™ 1, + le]). (5.25)

@ Springer



Journal of Dynamics and Differential Equations (2021) 33:1-34 25

Proof Using Eq. (5.23) iteratively, we have that

o

A (@O = Z (DFS(K) 0 Ty (8") X -+ x DfF(K) 0 T_y(8")) E* (T (8"), ).
k=0
(5.26)

Combining with the condition on the cocycles over T_,, (see (2.12)), u; < 1, the series
converges uniformly on U, that is,

o0

k

1A, < Calle*llp Y uh
k=0

As to the unstable part, we multiply (5.24) by (D f;'(K) o T_4)~ I then using the condition
(2.13), the unstable equation can be solved in the same way. O

5.5 Change of the Hyperbolicity and the Non-degeneracy Conditions in the Iterative
Step

In order to complete one iterative step, we introduce the following proposition to prove the
existence of the invariant splitting at each step. As a corollary, we estimate that the change
of invariant splitting will be controlled by the change of the embedding torus and hence by
the error. It is important that the change will be controlled by the size of the error, so that, as
the error decreasing, we can assume that non-degeneracy conditions remain hold under the
iteration.

Proposition 5.3 Assume that there is an analytic splitting
Tk M = Ex) ® Exg) ® Ex o) (5.27)

which is approximately invariant under the cocycle D f, (K) over T,,. That is, for ( f5., K(0))
satisfying (2.9), we have

disty(Dfi(KONEKGS EX (o4 <65 6 € U,

where dist, is defined as in Remark 2.2, T1*"““ are defined as in Definition 2.5. Moreover,
assume that for some N € N, 0 < 11, fto < 1, and some fiz > 1, such that max{fi, ft2}-
3 < 1, we have

IDFYK) o TYTHO) x - x DK @)W < @y V], Yv € Ex )
(5.28)

IO K)o T,V D6) x - x D) o (K@) < @B Ivll, Vv € Ex ),
(5.29)

and
IDFK) o TN @) x - x DK@ < 2 v,

IDAHTHEK) o T, N=0) x - x DK@V < @ vl Vv € Ex).

(5.30)

Assume that § < 8y, where 8 is a constant depending on N, |Df; (K@),
||Df;l(K(0))||p, (|T15-4:C]|| ,. Then, there is an analytic splitting

Tk )M = Ex ) © Ex o) D Ex )

@ Springer



26 Journal of Dynamics and Differential Equations (2021) 33:1-34

invariant under the cocycle D f5(K) over T, which satisfies the characterization of hyper-
bolic splittings (2.12)—-(2.14).

The splitting above is unique among the splittings in a neighborhood of the original
splitting of size o measured in dist,. Furthermore, we have that

disty (£, Extit) < C1sé,
12,3 — 12,31 < Cisé, (5.31)
where C\5 depends on the same parameters as 8 does.
Proof See more details in section 5.2 of [19] and in the appendix B of [7]. O

Remark 5.3 Note that the statements on the hyperbolicity condition in Proposition 5.3 do
not involve Cj, as the parameter in the asymptotic condition. But we involve N. It is easy to
verify that both formulations are equivalent if we take (2.12)—(2.14) for some fixed N. For
instance, if ji; > 1 and we take N as C;,(11//11)" < 1, then the condition (5.28) directly
follows from (2.12). The opposite is easy to verify.

Remark 5.4 The first result of Proposition 5.3 is a standard result in the theory of normally
hyperbolic sets that allows us to conclude that if we are given an approximately invariant
splitting, which has some hyperbolic characteristics, then we can find a truly invariant split-
ting nearby. The main use of Proposition 5.3 is to estimate the change in the hyperbolicity
hypotheses at each iterative step, as the following corollary.

Corollary 5.2 Assume that | K — K |, is small enough and the hypotheses of Proposition 5.1
and Proposition 5.2 hold for K. Then, there exists an analytic invariant splitting for D f) o K.
Furthermore, there exists a constant C g which depends on the same parameters as C\s, such
that the following estimates hold:

S,U,C S.u,C -
”HK(g) - HI?(O) lp < CisllK — Kllp,

123 — 123 < Ciol K — K,
Chp = Cp, (5.32)

where Cy, is the parameter in the asymptotic growth condition for K.

Proof We take the invariant splitting for D f; o K as approximately invariant for D f; o K.
Moreover, we take the § = Cig|| K — K l,. Then the first estimate in (5.32) follows from
the Proposition 5.3. The other two estimates follow from the discussion in Remark 5.3. See
more details in section 5.2 of [19] and in [7]. O

Once we have estimates for the change in the spaces, we can also obtain estimates in the
non-degeneracy conditions in Definition 3.1. Note that they are just matrices obtained by
taking projections on the invariant spaces. See Lemma 6.2.

5.6 Estimate for One Step

In the previous subsections, we found the approximate solutions (A(#), €) for Eq. (5.1) in
smaller analyticity domains. The estimates of the solutions depend on ||e||, and the loss of
domain 4. Denote by

Ay =hr+e Ki(0) =K©O)+AO), er(0) = fi (K+(0) — K+(0 + o),
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we will show that, if the estimates of the solutions [|A[l,—s, |e| are sufficiently small, then
the new torus K is still a non-degenerate approximate torus for f3_ and the new error term
e+ is quadratically small with respect to the original error e.

Lemma 5.4 Suppose that all the hypotheses for Propositions 5.1 and 5.2 hold and that
(K + A)(Up—s5, . + &) C Domain(f).

Then, there exists a constant C depending on o, m, I, d, p, r,|fillc2. 5., IDK]p,
u, 0 _
1A, ||H§<,zgi_w)||: IIT{AI;IIp and |avg(3) ™| such that

1fs (K4 (0)) = K48 + )l p—35 < Cy™*67 ]| 2. (5.33)

Furthermore, the pair (fi., K) is non-degenerate at A = Ay as defined in Definition 3.2
and the non-degeneracy constraints change by an amount bounded by C57 ||e]| .

Proof Adding and subtracting terms, we can rewrite the new error term as:

i (K4 (8)) — K4 (0 + @)

)
= fr. (K +A) = fi(K) — TJZ\L\:;\(K)S -Df(K)A (5.34)
+ fitK) —KoT,+Dfi(K)A—AoT,+ %b\:;(lf)e.

Now we can estimate the norm of the error by the sum of the norms of the lines in the identity
above. The second line can be estimated by Taylor’s theorem applied to the function f. Recall
that we made assumptions that ensured the range of K, was inside the domain of f. See
more details in Remark 5.5. The third line exactly equals (5.1), that is,

DG(K. V(A &) +e= fi(K) = KoT, + Dfi(K)A = AoT, + %I,\:x(lf)e

and the pair (A, ) were chosen precisely in such a way that the norm of the third line is
bounded by the square of the norm of the error.
It follows from Proposition 5.1, Corollary 5.1 and Proposition 5.2 that

I /e (K1(0)) — K40 + 0)llp-35 < Cy*6 7 |ell?.

O

Remark 5.5 Note that the solution of the linearized equation A is defined in domain U,_s
for any 0 < 6 < p and the estimate of A depends on the norm of the error term ¢(6) and the
loss of domain 8. If § is too small compared with ||e]| ,, the estimates of A will blow up. So
the estimates on each step require some restrictions on 6. For an instance, given the estimates
on (A(#), &), we can see that the assumption we made

Cy™2872 Yell, < n. (5.35)

where 7 is smaller than the distance of K (U)) to the complement of the domain f implies
that the range of K is contained in the domain of f. This is what allows us to use the Taylor’s
theorem with reminder to estimate the new error.
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6 Iteration of Newton’s Method and Convergence

In this section, we will show that if the initial error is small enough, we can repeat infinitely
the iterative step and it converges to a solution of the original problem. Furthermore, we can
estimate the distance between the true solution and the initial position.

Recall that we define G in the very begin of Sect. 5, now we start with f3,, Ko, @, po
satisfying the assumptions (A1)—(A3) as in Theorem 1, that is,

e0(0) := G (Ko, 20) := f1,(Ko(8)) — Ko(w +0). (6.1)
By Taylor theorem with remainder, we have

G (Ko + Ag, o + €0)

3 £,(Ko(6
— G(Ko, ho) + [W

+0(leol%, | A0l1%). (6.2)

Ix:,\o] 0 + D fi,, (Ko(6))Ao(0) — Ao(0 + w)

If the error |leglly, is small enough, applying the process in Sect. 5, we can get a pair of
corrections (Ao, €o) such that the first line on the right hand side of Eq. (6.2) cancel almost
exactly. Hence

N (K(©)) = KO + o)

has a new pair of approximate solution (f3,, K1(#)) defined on domain U,,, where 1| =
Xo + €0, K1 = Ko+ Ag, p1 = po — 380- By Lemma 5.4, we have that

letllpy == 11.f3, (K1(©)) — K1 (0 + @) < Coy ™ *85* lleoll?,-

Assume that we have already found the (i-1)th approximate solutions (f3, ,, Ki—1(¢)) on
domain U),_, which satisfies the assumptions in Theorem 1 and that ||e;_1 || ,_, is sufficiently
small, forany i = 1,2, 3, .... Consider the (i — 1)th linearized equation as follow:

DG(Ki 1, Ai—1)(Ai—1,8i-1) = —e;i—1(8). (6.3)

By Propositions 5.1 and 5.2, we can find approximate solutions (A{_,, ;1) on the center
subspace and Affl on the hyperbolic subspaces. Then we consider the corrections

Ai =Ai—1 +ei—1, Ki(0) = Ki—1(0) + Ai—1(0), 64)

defined on U, where p; = p;—1 — 381 and A; | = (A}_,. A!_,, A;‘_I)T such that the
new error term
¢i(0) = G(K;, A) := f,(Ki(0)) — Ki(0 +w)

is quadratically small with respect to [le;—1 [l p,_; -
Under this iterative process, we can find a sequence of approximate solutions

(20, Ko©)). (A1, K1(0)), ---, (A, Ki(0)), ---
defined on domains
Upy DUp D---DUp D---
for the equation

H(K(©)) = KO + o).
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We will verify that K; — Koo, Aj = Aoo, Pi = Poo >0, € = Oasi — oo.
The following lemma follows from Propositions 5.1 and 5.2. It generalizes Lemma 5.4
for a general step.

Lemma 6.1 Assume that (f,_,, Ki_1) is a pair of non-degenerate approximate solutions
for Eq. (6.3) such that

ri—1 = Ki—1 — Kollp;_, <. (6.5)

If llei—1ll p;_, is small enough, so that the assumptions of Lemma 5.2 apply, then for any

0<di_ < p’gl, there exists a function Aj_1(0) € Uy, | —35,_, and €;_1 € R+ such that

1Al —25- < Cio1y 2872 Nei—tll g+ (6.6)
IDA 1l =351 < Cicay 2875 P lleiillp
lei—1] < Ci—11®™[llei—1llpp_y (6.7)
where C;_ is apositive constant dependingonm, 1, d, o, r, pi_1, || fo,_, 18+ IDKi—tllp_;
1Ai ey T il | Heims | Moreover if
.
Cioy 28,20 Mleiillp, <7, 6.8)

then we denote K;, A as (6.4), which are the new non-degenerate approximate torus and
the new parameter. The new error term e;(0) satisfies the following estimate:

—48i—46

- 2
leillp < Ci—1y llei-1lly, -

Lemma 6.2 Assume that the hypotheses in Lemma 6.1 hold and that

1
< —-.
-2

~ —1lg—0—1
Ci—ly 8,'_01 ”ei—l”p,;l

(6.9)
Then, the following statements hold.
(1) Denote by
DK;(0) = (X;(0), Z;(0)), i=1,2,...
where X;, Z; are the first m and the last | columns and X; \, denote the projections on

the subspace V, defined as in (3.2). If the matrix [(X ) V)TXL1 V] is invertible, then

the matrix [(Xf V)TXI.C V] is also invertible and the inverse A; satisfies the following
estimate:

~ —2¢—(0+1
IAilly < NAi—tllpy + Cim1y 2857 Vet iy -
(2) Ifthe matrix B;_\ is invertible, then B; is invertible and the inverse satisfies the estimate
-1 -1 ~ —2¢—(Q0+1)
”B,‘ ||,0,- =< ||Bi71||pi71 +Ci1y 5,'71 llei—1 ”,0;71-
(3) Ifthe matrix ®;_y is invertible, then ®; is invertible and the inverse satisfies the estimate
—1 -1 5 —2¢—Q20+1
107 5 <107 1oy + Cicty 2677 Plleiztllpy -

(4) The assumption (6.5) guarantees that the range of (K;—1 4+ Aj_1, Ai—1 +¢&i—1) is inside
of the domain of f3,.
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The iterative lemmas above are very common arguments in the proof of KAM type theo-
rem. The most important reason for the lemmas to hold is that the constants C;, together with
the constants appearing in the discussion of Sect. 5, depending only on m, [, d, r which do
not change during the iterative process and the following quantities

: 0 fa
I fuillB, s IDKillgs 1Aillgs ITTEN G40 llois HH =1, (Ki)

s

Pi

which can be controlled when K; only changes in a neighborhood. By similar calculations,
one can claim that there exists a positive constant C* suchthat0 < C P < C* fori=1,2,....
See the discussion in [19] and in [7].

To ensure that we can perform the iterative process in Lemmas 6.1 and 6.2 to prove
Theorem 1, we only need to verify (6.5) and (6.9). Take the choice of the analyticity loss as

do 1
8 = i Pi=Picl— 38i 1 =po—6(1— 5)50-
Denote €; = |le; || 5, and together with the choice of §;, we have that, fori > 1,

€ < C‘y‘48f4"e,-2 | < C_’y_4564a240(i_1)€,-2_1

— i—1 ; : i—2 i
E(CJ/_450_4”)1+2+'"+2 Y401 =1)+26=2)+-+272] 2

i

_ 2
< <C240' v —450—40 60) ’
where we used

(=142 =2+ +22
=27 [ =02 =220 2 <2
We see that if €g is small enough, then we can ensure that 51_—_((17+I)EI__1 is small enough to
satisfy (6.9) forany i = 1, 2, .... We note that the smallness assumption of € is independent
of the iterative step.
Moreover, we have

i—1

_ 240
202
ri = ||K; — Kollp; < ;70 A1, < Cy~"8y €0 (1 o 1) ,

where k = C y’460_ 49949 . Note that, taking €q sufficiently small ensures that « is small,
so that the assumption (6.5) is satisfied. Therefore, the new torus K; never leaves the neigh-
borhood of K¢ and we can repeat the iterative process of any i € N. The estimate above also
establishes the estimate of (3.10) in Theorem 1. Together with (6.7) in Lemma 6.1, we have
that A; — Ag asi — oo.

This completes the proof of Theorem 1.

7 Proof of Local Uniqueness

In this section, we will prove Theorem 2 which is similar to Theorem 2 in [1]. We assume
that the embeddings K| and K satisfy the assumptions in Theorem 1. More specifically, we
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assume that Kj, K, are non-degenerate solutions for (2.10) for some vector A1, Ay € R+
Denote by

G, A2, K1, K2) = f3,(K2(0)) — K2(0 + w) — f3,(K1(0)) + K1(60 + w).
Note that G(A1, Ay, Ki, K») = 0. By the Taylor’s expression at (A1, K1), we have that

3 f1(K1)

0=6=Df,(KDA®) — A0 + ) + [ATM:M g,
where A(0) = K2(0) — K1(0), € = A2 — A1. Moreover, we obtain the following linearized
equation

3 f1(K1)

Dfi(K1(0)A0) — A0 +w) + BT =1, |6 =—R. (7.1)
where R = O(||A|?, |¢|?) is the Taylor reminder. We solve this equation by repeating the
process in Sect. 5. We first project Eq. (7.1) on the center subspace, that is,

9 f1 (K1)
Df{ (K1 (0)A°(6) — A°(0 + ) + [H%lme oy |6 = —RS, (12)
where A€(0) = H%](H)A, R¢ = l'[j(](gﬂ))R. Applying the change of variable A€(#) =

M(0)E(O), where M(0) is defined in (4.7) by replacing K with K, and we omit the quadrat-
ically bounded terms as in Sect. 5.3, the Eq. (7.2) can be rewritten as

£:(0) =50 + ) = R{ — S(0)€,(6), (7.3)
£,(0) —£,(0 + ) = RS, (7.4)
§:(0) — &0 + ) = RS — A(0)%,(6), (7.5)
where RS, = —[B~'(0)QO)R°(6) + A(®)¢], , . B, Q. A are defined as in (4.20),

(4.15), (3.5), respectively, by replacing K (8) by K/ (6).
Together with the proof of Proposition 5.1 and the following lemma, we can estimate the
norm of A€(6).

Lemma 7.1 There exists C depending onm, 1, p, |J|,, |IK1ll,, IIH%I(g)ll, IDK 1|, such

that if C||IK\ — Kall, < 1, then one can find 7| € {t € R"*|t| < [|K| — K2}, such
that

avg [(2) (H?(l(G)(KI oTy — Kz)(g))] —0.

As a consequence, forany 0 < § < g, there exists a constant C depending on Cand |©7),
such that the following estimates hold:

IT1%, 9y (K1 © Try — K2)(0)llp—25 < Cy 28 *7||K1 — Kall3.
A1 = A2l < ClIKL — K23, (7.6)

Moreover, we can project (7.1) on the hyperbolic subspace. By the discussion in Sect. 5.4,
we have that

T gy (K1 © Ty — K2)(0)p-25 < CIK1 — K2l
Combining with the estimates (7.6), we have proved that the following estimate holds:

IKy o Try — Kallp—2s < Cy 7287 ||K1 — Ka 2. (1.7)
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‘We end up this proof with a discussion similar to Sect. 6, by taking a sequence {7y, },»,>0 such
that

[T — -1 < Ky 0 Iy, , — KZ”pm_l,
and

IKy o Ty, — Kallp, < Cy 28, 1K1 0 Ty, , — K2l

m Pm—1"

where 79 = 0, pg = p, 8 = % and &4 = 8’% pm = p— 2 py 8 form > 1.Bya

simple calculation, we have the following estimates

N _ 2”! _
1K1 0Ty, — Kallp, =< (Cy 7672727 1K) = Kall,) - 272700,

Therefore, by the assumption in Theorem 2 that || K| — K> ||, is sufficiently small, we proved
that the sequence {1, },,>0 converges to T, and

1K1 0T — Kallg =0, A = A,

that is, Ky o Ty, and K> are analytic and coincide in U £ This completes the proof of
Theorem 2.

8 An Example of Presymplectic Systems

To end this paper, we will give a simple example in which the kernel does not integrate to a

product. We hope that the methods of this paper can be extended to deal with the examples

considered in this section, but it seems that the role of parameters will be very different.
Consider M = T3, which is a 3-dimensional torus, endowed with the form:

Qo p(u, v) = (et u) - (B, v) — (@, v) - (B, u),

where «, 8 € R3. The kernel of this form is the span of & x 8, where x is the standard cross
product. Of course the kernel in this case is integrable, since it is a 1-dimensional vector field.
If o x B is irrational, we see that all the leaves of the kernel can be dense in T3. On the
other hand, if & x B is resonant, it could be that each of the leaves is T> or T! (depending on
the multiplicity of the resonance.)
Similar example can be constructed in higher dimensional tori T9. For o, Bi € R, i =
1,..., N, we denote that

N

Qu,v) = Y o, u)(Bi, v) — (i, v){Bi, u).
i=1
In this case the kernel is the d — 2N dimensional space orthogonal to ¢;, B;. This is

always integrable and it can be arranged easily that all the leaves are dense or that they are
dense in lower dimensional tori.
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