LONDON
MATHEMATICAL  1OP Publishing

EST. 1463

Nonlinearity @

PAPER

Response solutions to the quasi-periodically forced systems with
degenerate equilibrium: a simple proof of a result of W Si and J Si and
extensions

To cite this article: Hongyu Cheng et al 2021 Nonlinearity 34 372

View the article online for updates and enhancements.

This content was downloaded from IP address 143.215.38.32 on 25/08/2021 at 19:32



I0OP Publishing | London Mathematical Society Nonlinearity

Nonlinearity 34 (2021) 372-393 https://doi.org/10.1088/1361-6544/abbf33

Response solutions to the
quasi-periodically forced systems with
degenerate equilibrium: a simple proof of a
result of W Si and J Si and extensions

Hongyu Cheng'-*, Rafael de la Llave®°>® and
Fenfen Wang?6-*

! School of Mathematical Sciences, Tiangong University, Tianjin 300387, People’s
Republic of China

2 School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332,
United States of America

3 School of Mathematical Sciences & Laurent Mathematics Center, Sichuan Normal
University, Chengdu 610066, People’s Republic of China

E-mail: hychengmath@ 126.com, rafael.delallave @math.gatech.edu and
ffenwang @hotmail.com

Received 23 September 2019, revised 3 October 2020
Accepted for publication 7 October 2020 @
Published 20 January 2021

CrossMark
Abstract
We give a simple proof of the existence of response solutions in
some quasi-periodically forced systems with degenerate fixed points.
The same questions were answered by Si and Si (2018 Nonlinear-
ity 31 2361-18) using two versions of Kolmogorov—Arnold—Moser
(KAM) theory. Our method is based on reformulating the existence of
response solutions as a fixed point problem in appropriate spaces of smooth
functions. By algebraic manipulations, the fixed point problem is transformed
into a problem dealt with contraction mapping principle. Compared to the KAM
method, the present method does not incur a loss of regularity. That is, the
solutions we obtain have the same regularity as the forcing. Moreover, the
method here applies when problems are only finitely differentiable. It also
weakens slightly the non-resonance conditions on the forcing frequencies.
Since the method is based on the contraction mapping principle, we also
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obtain automatically smooth dependence on parameters and, when studying
complex versions of the problem we discover the new phenomenon of mon-
odromy. We also present results for higher dimensional systems, but for higher
dimensional systems, the concept of degenerate fixed points is much more
subtle than in one dimensional systems. To illustrate the power of the method,
we also consider two problems not studied by Si and Si (2018 Nonlinearity 31
2361-18): the forcing with zero average and second order oscillators. We show
that in the zero average forcing case, the solutions are qualitatively different,
but for the second order oscillators are remarkably similar.

Keywords: degenerate fixed points, response solutions, fixed point theorem,
second order oscillators
Mathematics Subject Classification numbers: 34D10, 34G20, 42B30, 47H10.

1. Introduction

The goal of this paper is to find response solutions to quasi-periodically forced systems with
degenerate fixed points. The main technique we use is the contraction mapping theorem in
carefully chosen Banach spaces.

1.1. The one-dimensional model

The 1-D version of the problem (the higher dimensional version of the problem will be
formulated in section 6) is the following:

i=x+ h(wt,x) +ef(wt, x), xR, (1.1)

where [ € N with [ > 2,0 < [¢] < | is a small real parameter (the small adaptations needed
for considering e complex will be discussed in section 5), and w is a vector in R? with d € N.
The function / is assumed to vanish in x to order higher than /. In the analytic case, vanishing
to high order just means that 4(6, x) = x'*'H(6, x) with H an analytic function. In the finitely
differentiable case, we will just need that a-;h(e, 0)=0forj=0,1,2,...,/(we will also need
that all the derivatives up to a sufficiently high order are bounded for all x in a neighbourhood
of the origin).

The functions will be assumed to have some regularity properties, which we will detail once
we have detailed the spaces in which we will formulate the problem.

In our method the lower order terms do not play any important role and can get incorporated
in f by scaling. We will keep it in the model to facilitate the comparison with the paper [SS18]
but we advice the reader that all the terms that come from it will be subdominant.

The model (1.1) represents physically the forcing of a (one dimensional) fixed point which
is degenerate. We recall that ‘response solutions’ means solutions that have the same frequency
as the forcing. The standard definition of quasi-periodic functions are functions of time of the
form (2.2). Hence, the problem we are considering is to produce solutions of (1.1) of the form
(2.2).

1.2. Assumptions in the frequency
Without loss of generality, we assume that, for w = (wy, . ..,wy) € R4,

k-w#0, fork=(ki,... ,kg)ez\{0}, (1.2)
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where k- w = Zf: | kiw;. Indeed, if there is a kg € 74\ {0} such that ky - w = 0, we could
reformulate the forcing with only (d — 1)-dimensional variables which are orthogonal to k.

In many related problems, one needs to assume not only (1.2) but also lower bounds on

|k - w|. Tt is remarkable that for the main results of this paper (and in [SS18] ) the only require-

ment on w is (1.2). Hence, the results hold without any assumption in the frequencies. In the

study of some very degenerate results (not considered in [SS18]), we will impose some non-

resonance conditions (some rather weak Diophantine properties (7.10) for the analytic case and
the generally Diophantine properties for the finitely differentiable case). (See the section 7.)

1.3. The results in this paper

We will produce two main results for model (1.1), one assuming analytic regularity in the
problem (see theorem 8) and another one for finite regularity (see theorem 12). These two
results are aimed at the real parameter ¢.

We will also consider the case of complex parameter € and establish monodromy.
(See section 5 for more details.) Moreover, we will consider analogues of (1.1) in higher
dimensions and establish results in analytic and finite regularity. (See theorem 14 in section 6.)

We will also present results on the case of zero average forcing and on oscillators, which are
second order problems and, in principle a singular perturbation. Remarkably, we obtain that
in the case of zero average, the solutions are qualitatively different (see section 7), but in the
oscillator case, the solutions are similar to the solutions in the first order (see section 8).

1.4. Relation to other papers

The same problem was studied in many other papers. In particular, it was studied in [SS18],
using two versions of Kolmogorov—Arnold—Moser (KAM) theory. We refer to the comprehen-
sive introduction of [SS18] for a review of related literature on the problem and other methods
used to study it.

The method of this paper is very different from the method of [SS18] and the methods
in other papers referred in [SS18]. The basic idea of our method is that we formulate the
existence of response solutions as functional equation, which we manipulate till it becomes
a fixed point in an appropriate space of functions. Algebraic manipulations transform the fixed
point problem into a fixed point for contractions.

We anticipate that, perhaps, the most delicate step on our argument is the choice of spaces
since we want that they satisfy several properties (see section 3). Similar methods had also
been used in other response solution problems [CCdIL13, CCCdIL17, WdIL20]. In particular,
we will follow the notation of [WdIL20] and refer to that paper for standard technical details
(for example, well known properties of Sobolev spaces).

Eliminating the sophisticated KAM iteration allows us to deal straightforwardly with cases
in which the problem is only finitely differentiable, and obtain automatically smooth depen-
dence on parameters. Also the solutions produced have the same regularity as the forcing and
we do not incur the loss of regularity that appears in KAM iteration.

The assumptions on the order of vanishing we use is slightly weaker than in [SS18]. We
also weaken the non-resonance assumptions in the case that / is even. We do not need to
assume a sign for the average, but in the even case, we need to restrict the values of €. See the
discussion of (2.7). In section 6 we obtain analogues of the results in higher dimensions. Since
the proofs we present are based on soft methods, they also work for infinitely dimensional prob-
lems. The method allows to discuss complex values of the parameters. The use of the complex
values for ¢ leads to the new phenomenon of ‘monodromy’, which we study in section 5. We
also consider some problems not considered in [SS18], namely, the case of zero average forcing
(section 7) and second order degenerate oscillators (section 8).
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1.5. Organization of this paper

This paper is organized as follows: in section 2, we present the main idea of reformulating
the existence of response solutions for equation (1.1) as a fixed point problem. To solve this
fixed point equation, in section 3, we give the precise function spaces that we work in and
we list their important properties, such as Banach algebra property and composition operator.
We state our main results and present the concrete proof in section 4. In section 5 we study
the case of complex parameters and the monodromy phenomenon. In section 6, we deal with
the generally high-dimensional system. In section 7, we generalize the system (1.1) to the one
whose forcing is zero average. In section 8, we study the degenerate second oscillators. For the
oscillators model, we just make some changes of variable to reduce this model to the one like
(2.9) for model (1.1).

2. Overview of the method in one-dimensional system

In this section, we discuss heuristically the main ideas of our treatment. We will present in
this section only the formal manipulations ignoring questions of domains etc. Those will be
discussed later but indeed, the formal manipulations of this section, will be the motivations for
the precise definitions later.

2.1. A guide

The manipulations we perform are rather systematic and very common in nonlinear analysis.
We firstly identify what we expect to be the main part of the solution (in our case a con-
stant). If we write the unknown as the guess plus an unknown correction, we see that the
original equation is equivalent to an equation for the correction. We furthermore observe that
the equation for the correction has a main part that can be inverted, then, we are left with a
fixed point problem that has a good chance of being a contraction. Of course, identifying what
are the main parts of the solution requires some experimentation (and some luck), but checking
that a guess is the correct one, can be done systematically.

2.2. Some elementary notations

For a function f : T¢ x R" — R", we denote:

fe)=[ f(0,xado,
Td @2.1)

f(0,x):=f(0,x) — f(x).

We refer to f as the average of f with respect to 6 and f as the oscillatory part of f.
We look for quasi-periodic solutions with forcing frequency w € R?. They are functions of
time ¢ with the form

x(H) = a + V(wi), (2.2)

where a € R is anumber and V : T¢ — R is a function to be determined. Note that representa-
tion of the function x(#) is not unique. From a; + V;(wt) = a, + V,(wt), we can only conclude
that Vi = Vh, a1 —a, = Vo — V.

Remark 1. A good heuristic guide to guess that the dominative term in the response
function (2.2) is a constant is the ‘averaging principle’ (presented and partially justified in
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[Min62, BM61, Hal80]) which suggests that one substitutes the forcing terms by their aver-
ages to obtain the leasing approximations. Of course, the present paper can be considered as
another justification of the method.

In our case, the averaged equations of the system (1.1) are:

i=xl+ef(x)

and the equilibrium is obtained by solving x + £ f(x) = 0, which we can further approximate
by x' +£(0) = 0.

Note that the case f(0) = 0 is a situation where the averaging principle does not provide
any guidance and indeed, we will see that the leading part has a different form and, hence,
the solutions in this case are qualitatively different from those with non-zero average forcing.
(See section 7.)

Remark 2. Note that we depart slightly from the notation of [SS18]. We write the forcing
as f (wt, x). The paper [SS18] writes the forcing as f(wt, x; €).

The paper [SS18] presents two main theorems about analytic functions.

Theorem 3.1 in [SS18] assumes Diophantine condition

- w| = 7/QkD.  In(0)/1 -0 2.3)

and a sign on the average. We do not need any conditions in w.
In theorem 3.2 of [SS18], the Diophantine conditions (2.3) are eliminated, but there are two
new assumptions:

e That the function agrees with the average to order €2, see (3.6) in [SS18]. In our notation,
this amounts to f(#,0) = 0 (we only need it is small enough).
o i = O(x?), we assume h = O(x'T).

2.3. The invariance equations

Substituting (2.2) into equation (1.1) and using that {wr},cg is dense in T, we obtain that (1.1)
holds for a continuous function x if and only if @ and V satisfy

(- ) V(O) = (a+ V) +h(0,a+ V() +ef (0,a+ V()
=d +1a""'V(0) + S(a, V(9)) + h(B,a + V(0))
+££(0) + £ (0,0) + g(0,a + V(B)), (2.4)
where
Sa,Vy=@+V)—d—1d'v,
80, x) = f(0,x) — £(0,0).

Note that the equation (2.4) is slightly undetermined because of the lack of uniqueness in the
representation (2.2). This undetermination will be useful for us.

2.5)

2.4. An important assumption
A crucial assumption in our treatment (as well as that in [SS18]) is:

f0) #£0. (2.6)
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The importance of the assumption (2.6) is that the leading term in the response solution
will be a constant. Moreover, we will modify the method for the case that £(0) # 0 to study
the situation when J_‘(O) = 0 but the results (i.e. the form of the solutions) are qualitatively
different. (See section 7.)

2.5. The leading term of the solution

Our first step is to choose a in (2.2) such that:
a +ef(0)=0. (2.7)

Note that this choice is possible in several cases. If / is odd, we can find such an a solving (2.7)
for all € real. If [ is even, we can find a solving (2.7) for all € such that ££(0) has negative
sign. Depending on the sign of f(0) we obtain solutions in the positive real interval or in the
negative real interval.

In the even [ case, we obtain two solutions in the appropriate interval of €. Each of them
could be taken as the basis to find the corrections V so that we get two response solutions. As
we vary €, we obtain two branches of solutions.

We note that finding a as above makes sense even for values of € which are complex, pro-
vided, of course, that we allow for complex valued solutions. In section 5, we will take up the
issue of complex values of €. The use of complex values allows for much more topology and
we discover the phenomenon of ‘monodromy’.

Once we have accomplished finding an a which eliminates several terms in (2.4), we study
the remaining equation. We find it convenient to introduce the linear operator:

Lo=w-0p—ld"™" (2.8)
defined on one-dimensional periodic functions of 6 € T¢.

2.6. The equation for the corrections

Using the choice of a in (2.7) and the notation (2.8), we see that the equation (2.4) is equivalent
to the following equation for V:

LLV(0)) = S(a. V() + h(0.a+ V() + £ (0,0) + eg(®.a+ V(©).  (2.9)

If we select spaces in which £, is boundedly invertible, then the equation (2.9) can be
transformed into:

VO) = £, (S@, V() + hb,a+ V() +=F 0,0) +g(6.a+ V(©)))
= T.(V)(O). (2.10)

We will show that we can apply the contraction mapping principle to the equation (2.10)
once we identify appropriate Banach spaces and a ball in them mapped to itself by the operator
Ta defined in (2.10). In the following section, we will make the choice of spaces explicitly.

3. Choice of spaces and some preliminary results on them

To make precise the calculations in section 2, we just need to choose appropriate function
spaces and check that we can carry the steps indicated formally there and indeed obtain that
T, is a contraction in a ball.
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3.1. Some preliminary considerations
There are a few guiding principles in the choice of spaces:

e The norms of the functions in the spaces can be read off from the size of the Fourier
coefficients. In such a way, the norm of the operator £, defined in (2.8), which is diagonal
in Fourier series, can be estimated very precisely from one space in the class to itself.

e The spaces have to possess good Banach algebra properties for multiplication so that one
can perform nonlinear analysis.

e The operator of composition in the left can be estimated.

With the above considerations, it is reasonable to consider the following well known spaces
which have been found useful in many nonlinear problems (in particular, they were used in
problems similar to ours in [CCdIL13, CCCdIL17, WdIL20]).

3.2. Some standard spaces we will use

For p > 0, we denote by

T¢ = {9 € C?/@nZ)" : Re(8;) € T,

S
j=

,,,,,

We denote the Fourier expansion of a periodic function f(6) on ’H‘g by

FO) => fi ",

kezd

where k-0 = Z;i':l k;9; represents the Euclidean product in C¢ and /f; are the Fourier
coefficients of f.

Definition 3. For p > 0, m € N, we denote by H”" the space of analytic functions V in ’]I“pi
with finite norm:

HY" = HP'(T¢,C")

= VT C | [VIZm = D IVil? Mk + 1" < 400
kezd

It is obvious that the space (H”™, || - ||z ) is a Banach space and indeed a Hilbert space.
From the real analytic point of view, we consider the Banach space H”" of the functions that
take real values for real arguments. This is Banach space over the reals.

For p =0, H" .= H%"(T? R") is the standard Sobolev space, we refer to the reference
[Tay97] for more details. Moreover, when m > ‘2—1, by the Sobolev embedding theorem, we
obtain that H"*?(T¢,R") (p = 1,2,...) embeds continuously into C”(T¢, R").

For p > 0, functions in the space H”"" are analytic in the interior of ']I“/f and extend to Sobolev
functions of order m on the boundary of 'I[‘;f. For m > d, the space H”" can also be considered

as closed subspace of the Sobolev space in the 2d-dimensional real manifold with boundary
T<.
p
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3.3. Some standard properties of the Sobolev spaces H""

Itis well known that the Sobolev spaces H”"" defined above satisfy the Banach algebra property
for large enough m (we refer to [Tay97] for more details).

Lemma 4 (Banach algebra properties). We have the following properties in two
cases:

(a) Sobolev case: for p =0, m > % there exists a constant C,, 4 > 0 depending only on m,d
such that for V1, V, € H", the product V| - Vo, € H" and

(IViVallgm < Cona|| Vil m | Vall am

(b) Analytic case: for p > 0,m > d, there exists a constant C,,;, 4 > 0 depending on p,m,d
such that for V1,V, € H™™, the product Vy - Vo, € H"™ and

ViVallaem < Cpmall Vil o || V2| o

In particular, H”" is a Banach algebra when p, m,d are as above.

It is interesting to remark that the value of m is what controls the Banach algebra properties
(which are crucial for us). On the other hand, for regularity, the parameter p is much more
relevant. For a KAM argument, one could use many different sets of spaces since the Newton
method would overcome all these difficulties. The present method of using only a contraction
argument is much more restrictive on the spaces we use since we cannot lose any regularity in
the iterative step and we also need some Banach algebra properties.

The Banach spaces H”" seem a good compromise between having norms given by Fourier
coefficients (which makes the linear estimates efficient) and having Banach algebra proper-
ties. They are also Hilbert spaces which makes spectral theory particularly powerful. These
properties have been found useful in several areas such as quantum field theory.

The following results on composition are also rather standard.

Lemma 5 (composition properties). Assume that p > 0.

Letg: ']T‘ff X B — C" with B being an open ball around the origin in C" and assume that g
is analytic in ']TZ X B.

Then, for V € H””"(TZ, C™ N L>(TY, C") with V(Tz) C B, we have

8. V)l < Com (IV]1) (1 + [V 1) @)
for some C,, 4 > 0 depending on the norm of V. Moreover, when m > d,

||g(9’ Vv + W) - g(e’ V) - Dvg(e’ V) . W”Hﬂ-’”
< Coma (V1) (U [V o) [1W - (3.2)
In the case that p = 0, it suffices to assume that g € C™? in real neighbourhood and that

m > d /2. Then, we have (3.1) and (3.2).

The results in lemma 5 are somewhat standard. For the sake of completeness, we give some
sketch. Many details, counterxamples for related statements, etc are in [AZ90, IKT13, Tay97]
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or in [WdIL20].
The reason for the inequality (3.2) is that, by the fundamental theorem of calculus

8(0,V(0) + W(0)) — (6, V(0) — Dyg(6, V(9)) - W(0)
1 1
= / / tD}g(0, V(0) + stW(0)) - W(0)ds dt.
0 0

Then, we get the desired result by the facts that D3, g(6, V(0) + stW(0)) € H*™ and its H""™
norm is bounded uniformly in ¢, s and that H”" is a Banach algebra under multiplication by
lemma 4 and using (3.1) for the second derivative.

To establish the standard inequality (3.1), it suffices to use the Faa di Bruno formula for
derivatives and then, the Moser—Nirenberg inequalities for products of derivatives.

Remark 6. We call attention that we are considering only the cases when the Sobolev
embedding theorem applies and the functions we are considering are bounded. This allows
the consequence that the bounds in (3.2) are the bounds of the derivatives of g in the range of
the functions considered.

Remark 7. Note that, in the case of analytic regularity, (3.2) establishes that the left compo-
sition operator C,(V)(8) :=g(0, V(8)), considered as a function from the space H”™ to itself, is
differentiable. This shows that the composition operator C, is analytic.

Note also that (3.2) establishes that the derivative is the multiplication by the another left
composition. Hence, we can apply the same result to obtain higher differentiability properties
(under appropriate hypothesis). This shows that if g € C”?*"*2 with p = 0,1,...andm > d/2,
the left composition operator C, is CP*! acting on the space H™. We refer to [AZ90)].

4. Existence of response solutions for one-dimensional system

In this section, we implement the strategy discussed at the beginning of section 2 using the
spaces discussed in section 3.

4.1. Analytic case

In this section, we state the main result and the corresponding proof for the model (1.1) in
which the forcing is analytic.

4.1.1. The main result. Theorem 8. We study the equation (1.1) with h vanishing to order
(I+ 1) at zero.

Assume that f, h are analytic in ']I“‘; X B with B being an open ball around the origin in the
space C and f(@, 0) € ij””(']l'd, C) for some p > 0,m > d.

If (2.6) holds and || f(6,0)||em is small enough compared to |f(0)|, then, there exists a
g0 > Osuch that, defining T = (—eo, o) forl odd and T = (—ey, 0) when L even and f(0) > 0,
and T = (0, g9) when [ even and ]_’(0) < 0, we have that for all € € Z, there exists a solution
of (1.1) of the form (2.2) in H*™.

Moreover, the solution for equation (1.1) is locally unique.

By reading the proof in the following part, we obtain explicit estimates of the domain where
local uniqueness holds. Roughly, they are domains of size = |¢|!//. This is consistent with the
fact that in the case that / is even we obtain several solutions at this distance (or when we
consider complex valued solutions).
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When we have a locally unique solution for all values of €, we can discuss the regularity
with respect to the parameter e. It follows that one can get that it is analytic in €.

Remark 9. Note that the above regularity statement, does not include regularity at € = 0.
This seems possible under some very weak Diophantine properties such as (7.10). One obtains
an approximate solution as a polynomial in € and starts a contraction mapping around it. We
omit a precise formulation and a proof. See [WdIL20, CCCdIL17].

4.1.2. Proof of theorem 8. In this section, we prove theorem 8 by considering the fixed point
equation (2.10) in Banach space H”"™.

It is easy to obtain the quantitative bounds on the inverse of £, defined in (2.8) with a being
the one in (2.7), as an operator from the space H”" to itself. Indeed, when we write a function
V(0) € H”" in the Fourier expansion as

V(9) = Zf/k ekl
kezd

the operator £, acting on the Fourier basis becomes
L% = (itk-w) — 1d"7") X =L, (k - w)e*?

with Ly(k - w) = i(k - w) — la~".
Due to the fact that the norm in the space H”" is characterized by the Fourier coefficients,
we obtain that

1

£71 1 m = S L71 k =S I ———

1a oo k:ZI;| ol w)| keuzg|i(k-w)—la’71|
4.1)

1 1 i
< N —— T ‘6‘ L.
Ol
Remark 10. In section 5, we will consider the case that a is complex.
We remark that when a is complex, we have, by the same argument

£, | omsgzom < 1/Re(la'™") = 1/dist(la’", iR), 4.2)

where dist(/a’',iR) is the distance between la'~' and iR, which is Re(la'™").
For simplicity, we will omit the subscript of || £, || gom_pem and use the notation ||£, | in
the following. We also simplify the notation || - ||gzem as || - || ,,» when there is no confusing.

We now look for a fixed point for the operator 7, defined in (2.10). Consider a ball B,(0)
around the origin in H”" with radius » > 0. We will show that one can obtain r such that
T.(B.(0)) C B,(0) and 7, is a contraction on 15,(0).

For S(a, V), g(f,a + V) defined in (2.5), by the fact that one has that the Lipschitz constant
of the nonlinear terms over a ball with radius » small is

Lip,(S) < Cla|'?r,
Lipy (k) < C(la| + 1),
Lipy(g) < C,

where Lipy(#) denotes the Lipschitz constant of 4(6, V) with respect to the second argument
V in the ball of radius r, and C is a positive constant depending on / and f.
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Note that in the contraction arguments, there are two conditions (that the ball gets mapped
into itself and that the map is a contraction in the ball). We obtain two results: existence and
uniqueness. The uniqueness result is stronger taking large balls and the existence is stronger
for smaller balls. Hence, it is good to have some flexibility.

For any V), V, € B,(0), we have, assuming that r is small (remember that a is given by

2.7)

||7:1(V1) - 7:4(‘/2)”(),171
< ||£;1|| (LiPV(S) + Lipy(h) + ‘5|Lipv(g)) (Vi — V2||p,m
< )l (lal?r + al + 0"+ [e]) [Vi = Vallpn- 4.3)

Note that we have used remark 6 to take advantage of the fact that some functions appearing
in 7, vanish to a high order. The most delicate term above is the derivative of S which takes
advantage of S not only being second order in V but also a being small.

Taking |a| =~ |e|'/!, ||£; ]| = |¢|~"*!/" into account, we see that if we take r = A||'/! with
A sufficiently small, it follows from (4.3) that 7, is a contraction of a factor 1/10 in the ball of
radius r for || sufficiently small.

Now we try to identify the conditions that the ball 3,(0) with r chosen as above gets mapped
into itself for small €.

If r satisfies the conditions that make 7, a contraction in /3,(0), we have:

||7;(V)||p,m
< Tl pan + [ Ta(V) = Ta0) || pn

< ||‘£’a_1 [ (|5|||J~c(9a )l pn + 11O, @] o + |€][8CO. a)“/hm> +7r/10
< Clel ™ (I F@. 0l + |2+ e H) /10, @)
Therefore under the assumption that

1170, 0] 4.5)

is small enough we obtain that 7,(5,(0)) C B,(0) and we already had that 7, is a contraction
in this ball.

Remark 11. Note that the smallness assumption (4.5) depends on |f(0)|. Indeed a more
detailed analysis shows that we could write (4.5) as || £ (6, 0)|| ,,./|f(0)] sufficiently small.

It follows from the fixed point theorem in the Banach space H”™" that there exists a
unique solution V € H”" for equation (2.4). This produces a solution x(¢) = a + V(0) for
equation (1.1). Notice that, once we fix a, the V is unique in the chosen ball. This shows that
the solution x(#) = a 4+ V() of (1.1) is locally unique.

From the contraction mapping properties, we obtain easily regularity with respect to param-
eters, since the regularity of solutions of contraction mappings with parameters is standard. In
particular, we note that the contraction mapping for analytic families is very standard.

4.2. The finitely differentiable case
Theorem 12. We study the equation (1.1) with h vanishing to order (I + 1) at zero.
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Supposethat f, h € C"tP(TY x R,R) (p=1,2,...)and f(@, 0) € H™(T?,R) withm > %.

If £(0) # 0 and ||]~‘(0, 0)||,n is sufficiently small compared to |f(0)|, then, there exists a
g0 > Osuch that, defining T = (—<g, €9) forlodd and T = (—¢y, 0) when [ even and ]_‘(0) > 0,
and T = (0, g9) when [ even and ]_’(0) < 0, we have that for all € € I, there exists a solution
of (1.1) of the form of (2.2) in H™(T?, R).

Moreover, the solution of equation (1.1) is locally unique.

The same strategy presented for theorem 8 applies also to the case that fis finitely differen-
tiable (but with sufficiently high derivatives). Therefore, similar to the way in section 4.1 and
together with lemma 5 in Sobolev case, we can easily prove theorem 12.

Remark 13. Using remark 7 we see that, in the analytic case (resp. when g is sufficiently
differentiable), the operator 7, is analytic from H”" to itself (resp. several times differentiable
from H™ to itself) with m as in the main theorems.

Since the operator is differentiable with respect to € we obtain that the solution produced
depends analytically (resp. differentially) on parameters.

5. The case of complex . The phenomenon of monodromy

The previous analysis has shown that the leading term in the solution (2.2) is a constant. Note
that we have shown that || V||, is much smaller than |a|.

The leading effect is the equation (2.7), which is an algebraic equation. The study of the
algebraic equation is much more natural when all the variables are complex. Allowing complex
values for a makes superfluous to distinguish between odd and even /, but it emphasizes that
we can get more solutions.

Note that all the other arguments that we have developed to compute the correction V work
just as well when they are complex valued.

An elementary remark is that if we consider a closed path in the € plane ¢ = aexp2it,
t € [0, 1], a € R, we see that the solutions move only in a segment

a=(—F(0)a)"/ exp2mis), s € [0,1/1].

Hence, if we continue a while we vary ¢ along a circle, the a does not come to the same value.
If we repeat the path above / times (¢ = acexp 2it, t € [0, []), then a gets back to the original
value. This is the phenomenon of monodromy.

When we consider the nonlinear problem, we observe that we can not apply the contrac-
tion argument if g is close to the imaginary axis. On the other hand, in a region of the form
|Im(g)| < C|Re(¢)|, we obtain that dist(a,iR) is comparable with |¢|'/’. These regions in
complex ¢ are geometrically a ball with 2/ cones removed.

In these regions, the argument developed in this paper applies and we get the results. The
solutions depend differentially and they are a small deformation of the solutions. Hence the
space of the solutions contains a branch surface (minus some cuts).

Monodromy has appeared in other problems in degenerate perturbation theory
[dILT94, JdILZ99], but the regions excluded are a more elaborate since the analysis is more
elaborate.

We note that the fact that for complex ¢ we get several solutions at a distance O(|¢|'/'). This
shows that one cannot hope to obtain contraction in larger balls by methods that work also for
complex valued functions such as the soft methods employed here.
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6. Higher dimensional phase space

In this section, we consider the existence of response solutions for the n-dimensional quasi-
periodically forced system:

X = o(x) + h(wt, x) + f (wt, x), 6.1)
where ¢ : R" — R” is a homogeneous function of degree /, i.e.
dOx) = No(x), NeER,, x €R", (6.2)

and & vanishes to order (/ + 1) in x. Of course, one important example of homogeneous func-
tions is the polynomials all of whose terms have degree /, but there are other functions. The
polynomials are precisely those that are (/ + 1) times differentiable at the origin, but it is nat-
ural to consider functions which are not differentiable at the origin. We note that the form
(6.1) appears naturally when we are considering functions and expanding them in Taylor
polynomials. We keep the lowest degree.

Note that the range of ¢ will be always a cone. We note also that for a homogeneous function,
taking derivatives of (6.2), we have Euler’s formula:

(DP)(Ax) = X'D(). 6.3)

_ The strategy is very similar to the one used when n = 1. We assume (2.6) (in the sense that
f(0) = f;(0)with f;(0) # 0(j = 1,2,...,n)) and that

£(0) € interior(range(¢)),
or (6.4)
— f(0) € interior(range(¢)).

In the first case of (6.4), we will obtain results for all 0 < —e < 1 and in the second case,
we will obtain results for 0 < £ < 1. Of course, both cases can happen at the same time. We
will introduce the following notation, for a positive constant &,

[0, €0)
I = (_60’0]

(_805 E\0)

depending on whether only the first of (6.4) is true, only the second of (6.4) is true or both of
(6.4) are true.

We indicate that the assumption (6.4) is an analogue in higher dimensions of the assumption
(2.6) in the one dimensional phase space case.

Using (6.4) in the second case, we will be able to find ay € R" such that ¢(ag) = —f (0) and
hence, a = e/!ay satisfies P(a) = —6}_‘(0) for positive €. Analogously, in the first case of (6.4),
we get a defined for negative . For simplicity of notation, we will only discuss the second case
from now on. One can obtain the other case by changing € to —e.

We note that, because of (6.3),

(Do) (a) = '~ 'De(ay). (6.5)
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We will make the assumption that
Spec(Dg(ap)) NiR = (. (6.6)
Hence,

sup|| (it — Dp(ag)) | < oo.
teR

And, using (6.5) we have

sup||(it — Dp(a))™"|| = sup||(it — ' ~"/'D(ag))~"|| < Ce~ "1,
teR teR

If we define, as before £,, we have
el < ce

Since the composition estimates are the same for higher dimensional vectors as in the case
of one dimensional vectors, we follow exactly the proof of theorems 8 and 12 and obtain:

Theorem 14. Consider the equation (6.1) with h vanishing to order (I + 1) and f satisfying
(2.6) and (6.4).

Assume that ¢ is homogeneous of degree 1, i.e. (6.2). B

Iff, h are analytic, f(0,0) € H" withp > 0,m > d,and || f (8, 0)|| ,n is small enough, then
Jorall € € I, we obtain a solution of (6.1) of the form (2.2) in H™. _

Iff.hare C"P(p = 1,2,...), f(0,0) € H" withm > d /2, and || f (0, 0)||,n is small enough,
then for all ¢ € Z, we obtain a solution of (6.1) of the form (2.2) in H™.

Moreover, the solution of (6.1) is locally unique.

Remark 15. We note that the method can be generalized to the case that ¢(x) is not a homo-
geneous function. The key is that we can solve ¢(a) = —¢f(0) and that we can get bounds of
l[Gir = Dp(a)) |-

This is possible under several sets of conditions, such as ¢ being the sum of homogeneous
functions, etc. We will not explore these possibilities.

7. Results when the average forcing vanishes

Both in our previous treatment and in [SS18], the assumption (2.6) plays an important role.
In this section, we present some results without this assumption. We will, however need other
assumptions, such as Diophantine condition.

According to the heuristic principles we described in section 2.1, the constant a from solv-
ing a + 5]_‘(0) = 0 is the dominant part in (2.4). This is based on the condition ]_‘(0) #£0.
In this part, we remove this condition;Therefore, we need to take the function V from solv-
ing the homological equation 0,V = f(6,0) as the dominant part in (7.3). To deal with this
equation we need some non-resonance assumptions, see (7.10), which are much weaker than
Brjuno assumptions, for analytic case, and (7.16), which is the standard Diophantine assump-
tions, for finitely differentiable case.

As we will see, our results have different assumptions depending on whether/ =2 or/ > 2.
The difference between the two ranges of / is real and not an artifact of the methods since the
solutions are somewhat different.

Since the method is mainly algebraic manipulations and contractions, it also leads easily to
results when the average is not zero but it is small compared with other quantities that appear.
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This goes in the opposite direction of the results in the previous sections where we assumed that
other quantities are small compared with the average. We note that the solutions we produce
in both cases are qualitatively different in the two regimes so that it seems clear that there is
some bifurcation, but we do not know how to formulate this precisely, much less to develop a
theory.

71. Formulation of results in the zero average forcing case

71.1. Description of the method for| > 2. In this section we will describe the method we pro-
pose in an informal way. We will ignore for the moment, precise definitions of spaces and
formulating precisely the hypotheses. This will be done immediately afterward, after the steps
to be taken are clarified. The informal assumption will clarify the reasons for our choices.

We assume that in (1.1), we have f(0) = 0. We will try to find solutions of the form

x(t) = eV(wt) + U(wt). (7.1)
We choose V to solve the (dominant) equation
wdpV = £(6,0). (7.2)

In the analytic case, to solve (7.2), whose small divisor is i(k - w), we need to impose some
non-resonance conditions. As a matter of fact, we take

k- w| = exp(—n|k|).

See (7.10) in the following part for more details. With the estimate (7.10), by shrinking the
complex domain p to (p — 1) we can guarantee the solution to this equation is controllable. As
for finitely differentiable case, since there is no complex domain, we have to lose the regularity
m. In this case the condition (7.10) is not enough, we need the standard Diophantine condition
(7.16).

Notice that the Diophantine conditions (7.10) are much weaker than the assumptions in
KAM theory. The reason is that in our case, we only need to solve small divisor equations
twice. Hence, we can afford that they have a more drastic effect than in KAM theory
where one needs to solve infinitely many small divisor equations as part of an iterative process.
In our case, we solve small divisor equations only to set up a contraction argument.

Also, we note that the solutions of (7.2) will never be unique since we can add a constant.
In what follows, we will assume that we have chosen the V and transform the equation for the
fluctuation accordingly. We will not revisit the choice of V' (except at the end of the discussion
in section 7.1.2, where we will find that there is an advantage in choosing the constant so that
21 +2V #0).

In this section, we will assume that / > 2. As we will see in section 7.1.2, the case [ = 2
leads to a different answer with different non-resonance conditions.

We will find it convenient to introduce some notation for the expansions of g in the second
variable (of course, this is just continuing the expansion of the forcing f, but we will keep the
notation g we used before)

g(e’ x) = gl(e)x + g>(9’ x)’

where, of course, g.(0,0) =0, D,g.(0,0) = 0.
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Once we have chosen the function V solving (7.2), x(¢) given by (7.1) solves (1.1) if and
only if U solves
WU = (U V) + h(0,U + V) 4+ eg1(O)(U + €V) + eg-(0, U + V).
(7.3)
We will see that the main part of the equation (7.3) is the following:

MU = woylU — eg1(0)U.

As indicated in the sketch of the strategy, we will try to invert M to formulate (7.3) as a fixed
point equation.
As we will see more precisely in lemma 20, the operator M can be inverted provided that

& 70 (7.4)

as well as some very weak Diophantine equations and we can obtain bounds in the Sobolev
spaces we have used in the previous sections. Then, the equation (7.3) is equivalent to

U=M"((U+eV) +hO,U+eV)+81(0)V +cg-(0,.U +eV)), (1.5

which is of a form very similar to (2.10).

Once we have the estimates for M, the Lipschitz properties of the nonlinear terms can be
estimated rather easily when [ > 2. As it turns out, the term (U + £V’ has very small Lipschitz
constant when / is larger. When / = 2, we will have to rearrange the equations a bit more. See
section 7.1.2.

Remark 16. It is a natural question to ask what will happen if the average forcing is zero
and (7.4) fails. It seems plausible that one can make progress identifying other leading terms
which will have to vanish and solve the auxiliary equation. Eliminating the assumption (2.6)
seems to bring in the qualitatively different assumption (7.10), but higher order non-resonance
seems to bring no new phenomenon.

71.2. Description of the method for | = 2. As before, we start by a heuristic description of the
method. We will keep as much of the notation introduced in section 7.1.1.

As we will see, the conditions we need are different since the dominant terms that we need
to consider are different.

In the case [ = 2, we will rewrite (7.3) (which is equivalent for (1.1) with the notations
introduced)

WU = U* + 2eVU + *V? + h(0, U + €V)
+ 810U+ V() +eg-(0,U 4+ V(0)) (7.6)
which is equivalent to:
(w0 — (eg1(0) +2eV) U
= U+ V2 4+h0,U+ V) +2g1(0)V +eg-(0, U +eV(0)). (1.7)
We proceed to invert the operator A/ defined by
NU = (wdy — (eg1(0) +2eV)H U
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which can be done in the same way as we inverted M since they are operators of the same
form. The difference of M and N is that A/ contains an extra multiplication term. Then, the
equation (7.7) can be transformed into

U=N""(U*+V*+h0,U+eV)+eg1(0)V +eg-(0,U +V(0))) .
(7.8)

Following the procedure in lemma 20, the operator A can be inverted provided that we have
that

21 +2V #0. (7.9)

The equation (7.9) appears for the same reasons as (7.4). We note however that (7.9) can
always be arranged if we choose, from the beginning the V solving (7.2) taking advantage of
the lack of uniqueness of solutions of (7.2). Adding an arbitrary constant to them is always
possible, so that (7.9) can always be satisfied.

Of course, the choice of V will affect some of the details of subsequent calculations and it
will affect the value of £y which determines the maximum size of the perturbations allowed
but will not affect the qualitative arguments.

Remark 17. The reason why the case / = 2 is special is because the linear approximation
of Uin (U + ¢V)' for general [ is Ie'='V!=1. We see that in the case that / = 2 this is a term of
order ¢ of the same order of magnitude as €g;, When [ > 2, the linear in U approximation of
(U + €V)! is much smaller than the €g;.

72. Precise formulation of the main results in the zero average case

Theorem 18.  Consider the differential equation of the form (1.1) with h vanishing to order
(I4+ 1)yand f(0)=0.

Assume that:

e f,hare analytic, f(@, 0) € H" with p > 0,m > d, and ||]~’(¢9, 0)|| pom is small enough.

o The frequency w satisfies (7.10) with some n > 0 smaller than p.

o [n the case that | > 2, the average of g, is not zero.

Then, for all € € T, we obtain a solution of (1.1) of the form (7.1) in H"~"".
We also have that if f, h are C"P(p=1,2,..), f(6,0) € H" withm > d/2 and w satisfies
(7.16) with some T satisfying d — 1 < T < m, then we obtain a solution in H" .

Since the proof is based on contraction mappings, we also obtain local uniqueness and
smooth dependence on parameters. We leave the straightforward formulation to the reader.

73. Some auxiliary lemmas

In this section, we present some auxiliary lemmas motivated by the sketch of the arguments
indicated in sections 7.1.1 and 7.1.2. They will allow to carry out all the estimates required in
the sketch and make it rigorous.

Lemma 19. For some p,n > 0, if the frequency vector w satisfies
lk-w| >~ exp(—nlk|), fork € Z¢\ {0}, (7.10)
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with 0 < v < 1, then, for p > n, we have that if f € H”" has zero average, then there is a
unique solution V of zero average of the equation

w- GV = f. (7.11)
Moreover, we have V € H’ =" and
IVIlp—nm <A F lpm- (7.12)

Proof. The proofis obvious if we realize that the equation (7.11) is equivalent to the Fourier
coefficients of V as the following:

ik-w)Vy = fr, fork ez,

This determines V; when k # 0 and normalizing V to zero average gives V = 0. Then, (7.12)
establishes since the norm of V in the space H”~ """ is read off the size of the Fourier coefficients
of V. -

Lemma 20. Forp,v,n > 0with p > nand m > d, let w satisfy (7.10) and 3 # 0 be a real
constant.

If o € H”" have zero average, then, for any f& H’~ "™, there is a unique solution
Ve HP7'M" solving

W+ B+eV=Ff. (7.13)

Furthermore, we have

IV llp=nan < [BI7 1L p=n €xpQ2y ol ). (7.14)

Remark 21. Note that the lemma 20 would be immediate under the extra assumption that
|77 ||l p-tym sufficiently small. In such a case we could invert the operator (w9 + 3) using
Fourier series and then use the Neumann series to invert (w0y + 3 + ¢). For our applications,
it is desirable not to make the extra assumption.

Remark 22. Equations of the form (7.13) are called ‘twisted cohomology equations’ in
[Her83], which also develops techniques to solve them.
There are several interesting variants of (7.13) estimates.

Proof. The proofis very similar to the integrating factor method in linear ordinary differen-
tial equations.

We find T solving wdy' = ¢ (as in the case of the integrating factor, we remark that such
T is unique up to an additive constant).

By lemma 19, we have

Il p-an <A™l ll
and, by the Banach algebra properties of the Sobolev norm,
1 exp@)ll -y < exp(y ol pn)-
Then, multiplying (7.13) by exp(I'), we obtain that it is equivalent to
[ exp(T) = exp(D)wV + BV expI’) 4+ exp(T)(wdpI)V
= (w- 0y + B) (exp(I)V).
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Hence, using that the operator w - Jy + £ is invertible and so are the operators of multipli-
cation by exp(£I"), one has

V =exp(—T)(w -0y + B)"'f exp(T). (7.15)
From (7.15), the estimates claimed in (7.14) follow immediately. O

Remark 23. In case that § = 0, to use formula (7.15) we need to assume that exp(I") f has
average zero. This shows that in this case we will require different arguments.

Remark 24. Note that lemmas 19 and 20 are aimed at the analytic functions. When we
consider our problem in finitely differentiable setting, we need to assume that the frequency w
satisfies

lk-w| =k, forkez\ {0} (7.16)

withd — 1 <7 <mand 0 <y < 1 (the condition 7 > d — 1 guarantees that the set whose
elements are the frequencies satisfying (7.16) is of positive Lebesgue measure). Then, for
feH", m> % has zero average, there is a unique solution V.€ H"™" of zero average of the
equation

w - ac)V = f
satisfying
[VIim-r <1 - (7.17)

Moreover, for ¢ € H™™ " have zero average, then, for any f € H™ 7, there is a unique solution
V € H" 7 solving

(WO +B+pV=Ff
with

IVl < ABI7H L lln—r exp@y 10 ]lm)-

74. Proof of the results in the zero average forcing case

We only present the detailed proof of theorem 18 in analytic case. The finitely differentiable
case is similar.

74.1. The case | > 2. In the case [ > 2, we will consider the equation (7.5) and check the
hypotheses of the contraction mapping principle for the operator on the right.

The operator M fits into lemma 20 by taking 8 = —<g71, ¢ = —&g;. Therefore we obtain
[M]|~' < Cyle|™!, where C; depends on g,,~. To simplify the notation, we still use C; to
represent all constants (may depend on [, ~, f, h but not depend on ¢).

Recall that (7.5) is an equation for U and that V has already been picked.

If we consider a ball of radius r with r < Ale|, (we henceforth fix A, so that all the constants
may depend on it), we can estimate the Lipschitz constants of the nonlinear terms in the right-
hand side of (7.5) with respect to the U variable as the following:

Lipy (U +¢V)) < Cile™,
Lip, (eh(0, U + V) < Ci e/,
Lip, (eg-(U 4+ £V)) < Ci|e]”.
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Note that the distance is measured in H”~""".

Hence, we obtain that, the right-hand side of (7.5) has a Lipschitz constant bounded by
Cile|. We choose |e| small enough so that we get a contraction by 1/10.

We also observe that for U = 0, the norm of the right-hand side of (7.5) is_bounded
from above by Cile|~'(|e|' + || + ||| £ (0, 0)| + |¢]*). Since we assume that |£(0,0)] is
small enough, we get the ball to map into itself.

74.2. Thecasel=2. The case ! = 2 is based on the analysis of the operator in the right-hand
side of (7.8).
This is actually easier than the case of / > 2. By lemma 20, we have that [|NV||~! < Cy e[~
The Lipschitz constant of most nonlinear terms in a ball or radius r = Ale| are estimated
the same. The only difference is that we have

Lip,(U*) < C1Ale|.

Hence, we have that the Lipschitz constant of the right-hand side of (7.5) in the ball of radius
Ale| can be made smaller than 1/10 by taking A small enough.

We also have that the || - || ,—,,» norm of the right-hand side of (7.5) at U = 0 can be esti-
mated by C; (|| ~'(|e]|£ (8, 0)| + |¢|?). Thus, by taking |¢| small enough, we can get that the
operator maps the ball into itself.

8. Application to degenerate oscillators (second order equations)

Remarkably similar methods can be applied to the study of degenerate oscillators (second order
equations).

%4+ 0% = x' + h(wt, x) + ef (wt, x) 8.1

where h, f are as in (1.1). Again, we aim to find solutions of the form (2.2).

Note that the equation (8.1) has two small parameters J, €. Depending on the relation among
them, we will have that the dominant solution has different forms.

In this paper, we only aim to demonstrate the possibilities of the method and will only do
one of the cases. We hope to come back to a more complete study.

A sample result is the following:

Theorem 25. Consider the equation (8.1) with h,f as in (1.1).
Assume that there exist a solving

a+ef(0)=0
and choose one of them.
Assume:
e (2.6).

e |IF 0, 0)|| p.m is small enough compared to |f(0)|.

[ ]
2 +20d7 ' >0.

Then, the same conclusions hold as in theorems 8 and 12.
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The proof is extremely similar to the study of (1.1). After we substitute (2.2) in (8.1) and
cancel @' + ££(0) we see that (2.2) is a solution of (8.1) if and only if V satisfies:

LV =58, V) +ef(0,0) + h(0,a + V(0)) + g0, a + V(0)). (8.2)
where

LV = [(w-09)* + 6w dp)—ld"] V.
If the operator L was invertible, (8.2) would be equivalent to

V=L (S(a, V) +2£(0,0) + h(f,a + V(0)) + eg(0.a + V(e))) . (83)

Note the similitude between (8.3) and (2.10). The only difference is the linear operator to be
inverted. _

Hence, we will need to study the invertibility of the operator £ and the norm of its inverse.
We note that the operator £ is diagonal in Fourier series and it amounts to multiplying the &
Fourier coefficient by

L= —(k-w)* +i0(k - w) — la'".

Hence, to estimate ||£ '], it suffices to estimate from below the minimum of |;|. Denoting
t = k- w, we have

|Zk|2 — (71‘2 o lal—l)z 4 (52[2
=+ A%+ 2" + PP
> |la[_1|2,

where the last inequality comes from the assumption that (6> + 2la’~ ') > 0.

Once we have that, we see that the operator in (8.3) satisfies exactly the same bounds as the
operator in (2.10) and the rest of the proof does not need any modification from the estimates
in the proof of theorem 8 (see (4.3) and (4.4)).
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