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ABSTRACT

In idealized models of the extratropical troposphere, both 8 and surface friction can control the equili-
brated scales of baroclinic eddies by stopping the inverse cascade. A scaling theory on how surface friction
alone sets these scales was proposed by Held in 1999 in the case of a quadratic drag law. However, the theory
breaks down when friction is modeled by linear damping, and there are other reasons to suspect that it is
oversimplified. An ideal system to test the theory is the homogeneous two-layer quasigeostrophic model in
the B = 0 limit with quadratic damping. This study investigates some numerical simulations of the model to
analyze two causes of the theory’s breakdown. They are 1) the asymmetry between two layers due to con-
finement of friction to the lower layer and 2) deviation from a spectrally local inverse energy cascade due to
the spread of wavenumbers over which energy is input into the barotropic mode. The former is studied by
comparing the simulations with drag appearing asymmetrically or symmetrically between the two layers. The
latter is addressed with a heuristic modification of the theory. A regime where eddies equilibrate without an
inverse cascade is also examined. A comparison is then made between quadratic and linear drag simula-
tions. The connection to a competing theory based on the dynamics of equivalent barotropic vortices with
thermal signatures is further discussed. Finally, we present an example of an inhomogeneous statistically
steady state to argue that the diffusivity obtained from the homogeneous model has relevance to more
realistic configurations.

1. Introduction However, the flows in this idealized system are still
complex enough to prevent us from fully understanding
the control of eddy scales by the parameters of interest.
One such parameter is the meridional gradient of
Coriolis parameter 8. The presence of B introduces
flow anisotropy, Rossby waves, coherent structure as
zonal jets, and asymmetry between the two layers.
These complexities have raised challenging questions
as well as stimulated theories that attempt to address
them from different perspectives. Yet the theories
differ from each other, and a general consensus has not
been reached (Held and Larichev 1996; Lapeyre and
Held 2003; Thompson and Young 2007; Chai 2016).
To test our understanding of the homogeneous qua-
sigeostrophic two-layer model, reconciling these theo-
ries is important. It is nonetheless also very difficult.
To reduce the problem to a smaller one in which we can
likely make progress, we focus on the homogeneous
Corresponding author: Chiung-Yin Chang, cychang@princetonedu  quasigeostrophic two-layer model in the limit of 8 = 0.

Ever since Phillips (1956)’s pioneering work, the qua-
sigeostrophic two-layer model has repeatedly proven it-
self to be useful for understanding the baroclinic eddy
dynamics in the extratropical troposphere. To better
study how eddy statistics depend on mean flows, the
model can be further simplified with a fixed background
zonal flow with vertical shear that is independent of lat-
itude and that assumes the deviations from this flow to be
horizontally homogeneous. This is known as the homo-
geneous quasigeostrophic two-layer model, and it has
also provided some insights into the dependence of
eddy amplitudes and eddy fluxes on the background
state (Haidvogel and Held 1980; Larichev and Held
1995, hereafter LH95; Held and Larichev 1996;
Thompson and Young 2006, hereafter TY06, 2007).
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At the very least, eliminating 8 enables us to gain a
better sense of the extent of complexities that are not
directly associated with B. In particular, large-scale
surface friction and its roles in affecting the eddy sta-
tistics often receive less attention when 8 is present.
For a strongly baroclinically unstable flow, the scale of
energy containing eddies is determined by the mecha-
nism stopping the barotropic inverse energy cascade
(Rhines 1977; Salmon 1978, 1980). This can either be
B or friction (or both), but it is often assumed that 3 is
large enough to stop the cascade, that is, channel the
energy into zonal flows that do not contribute to me-
ridional transport, before friction becomes significant
(e.g., Rhines 1975). To make further progress in un-
derstanding how the cascade is terminated when both
are present, we need to better understand how friction
alone stops the cascade. This understanding will help us
determine if this limiting case might itself have some
relevance in some atmospheric (and oceanic) circula-
tions of potential interest.

In the attempt to assess the importance of surface
friction in this respect, Held (1999, hereafter H99)
proposed a scaling theory to estimate the eddy scales
when the cascade stopping mechanism is nonlinear
(quadratic) friction. The friction in the atmospheric
planetary boundary layer is typically parameterized
as a quadratic drag. When imposing quadratic drag on
layer models of the sort considered here, one needs to
divide the nondimensional drag coefficient Cp in the
surface stress law by the depth of the lowest model
layer H, since it is only in this combination that the
surface stress is felt by the model. This results in an
inverse frictional length, L' = CpH™!. The strength
of this type of frictional damping is then determined by
Lp. If the large-scale drag is responsible for essentially
all of the dissipation of kinetic energy ¢4, then we ex-
pect that g, is scaled as

sd~L51V3, 1)

where V is a characteristic velocity scale. According to
LHY5, if the two-layer baroclinic turbulence is suffi-
ciently unstable so that kinetic energy is mostly baro-
tropic, V can be thought as the typical velocity in the
barotropic flow at the energy-containing eddy length
scale L. Suppose that the barotropic energy spectrum is
well approximated by Kolmogorov’s inertial range the-
ory, then V can be solely determined by L and the rate of
inverse energy cascade ¢, via dimensional analysis,

V~L"Pel, )

Given g4 =~ g, Egs. (1) and (2) together indicate that, if
the cascade is stopped by quadratic drag alone, the

Brought to you by PRINCETON UNIVERSITY LIBRARY | Unauthenticated | Downloaded 08/25/21 06:44 PM UTC

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 76

energy-containing eddy length scale should be propor-
tional to the frictional length:

L~L,, 3)
which is the same as the eddy scaling for two-dimensional
turbulence stirred at small scales and damped by qua-
dratic drag (Grianik et al. 2004). Building on this scaling
relation, one can further estimate an eddy diffusivity
D from mixing-length theory:

D~VL. (4)

If the eddy heat fluxes are mostly due to the passive
mixing of temperature (the baroclinic streamfunction
in the two-layer model) by the energy-containing baro-
tropic eddies and therefore are diffusive-like, the avail-
able potential energy production g, in the homogeneous
quasigeostrophic two-layer model can be expressed as

e,~ DU\, 5)

where U is the imposed vertical shear (proportional to
temperature gradient) and A is the radius of deformation
(prescribed in a quasigeostrophic model). One factor
of U in this expression arises from the temperature
gradient in the expression for available potential energy
generation; the other arises from expressing the eddy
heat flux as a diffusivity times a temperature gradient.
Provided that €, ~ g4, Eqs. (1), (2), (4), and (5) together
also suggest that

V~L, U\, (6)
D~L3U\". (7)

This theory can therefore predict how the characteris-
tic eddy length, velocity, and diffusivity change with L.
To see this more clearly, we can also nondimensionalize Egs.
(3), (6), and (7) with U and A. This nondimensionalization
has the effect of clarifying the difference between this theory
and Stone’s (1972), in which A and U are assumed to be the
scales for L and V. The H99 scaling predicts that LA ™! and
VU~" are both proportional to LpA ™!, which is a measure
of the strength of inverse cascade. A corollary of this
result is that an inverse cascade is only expected when
Lp is larger than A.

Another way of stating the above prediction is that the
extent of an inverse energy cascade depends on the ratio
of two dimensionless numbers: the Prandtl ratio f/N
and the nondimensional drag coefficient Cp. Recall
L,'=CpH™! and suppose that the same H appears in
the definition of A = NH/f (while they do not need to be
the same in general), then the ratio LpA~! = (f/IN)Cp'.
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For the typical atmospheric values, f/N~1072. If
Cp ~ 1073 such as over the oceans, this theory suggests
that there should be a significant inverse energy cascade;
in contrast, if Cp ~ 1072 such as over the land surface,
there should be little cascade. The relevance of this ratio
of the nondimensional drag coefficient and the Prandtl
ratio for whether or not the eddies are strongly damped
in this sense is therefore an interesting implication of
this scaling argument.

There have been some numerical studies on how eddy
scales depend on quadratic drag (in the absence of B),
but none of their simulations fully support H99’s eddy
scaling or the suppression of inverse cascade when
drag becomes sufficiently large (Arbic and Scott 2008;
Jansen et al. 2015). A possible explanation for this
simulation-theory inconsistency is that the theory fails
to distinguish the diverse velocity scales in the two-
layer system. It oversimplifies the difference between
the velocity scale relevant for frictional dissipation
[in Eq. (1)] and the velocity scale relevant for inverse
cascade [in Eq. (2)]. Compared to the two-dimensional
system, this additional level of complexity may be at-
tributed to the layer asymmetry caused by friction only
appearing in the bottom layer. If friction appears sym-
metrically between the two layers, eddy statistics in the
two layers would be identical. This, along with the fact
that most kinetic energy is barotropic when friction is
weak, implies all the velocities should scale closely with
each other. However, even if the eddy statistics in the
two layers are indeed identical, the two-layer system
still has 2 degrees of freedom in the vertical. Inter-
actions between barotropic and baroclinic modes can
still result in eddy statistics of the barotropic mode in
this two-layer system differing considerably from eddy
statistics of a two-dimensional system [i.e., Eq. (2) may
be invalid]. If the theory fails only because of the layer
asymmetry, improving the theory would only re-
quire an extra consideration on the bottom heavi-
ness of friction. If it also has to do with the latter, we
would need to reassess the assumptions in LH95
more fundamentally.

In fact, if one had considered the case of linear drag
and tried to use the assumptions made in LH9S5 to
derive a scaling theory that is analog to H99’s theory
for quadratic drag, one would have arrived at a con-
clusion that the linear drag (alone) cannot halt the
inverse energy cascade and the system would not
equilibrate. In such a scenario, there would be no sta-
tistically steady state unless the effect of finite domain
size is considered. A related aspect of why LH95 the-
ory with linear damping may be invalid has indeed been
addressed in TY06, who studied the simulations that
are conducted with the model configuration similar to
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LH95 and with the bottom linear drag strong enough to
prevent the eddy mixing length reaching the domain
size. They have found that the model did equilibrate
with well-defined eddy statistics. Also, different from
what is expected by LH95, most temperature anoma-
lies are seen to be concentrated in the cores of the
coherent vortices persisting in the domain. This leads
them to argue that the heat transport is due to the drift
of these vortices, rather than temperatures being pas-
sively mixed by the barotropic eddies. It therefore
questions the relevance of the “dual cascade” picture on
which LH95 and H99 are based.

The goal of this study is to determine whether and
how these different complexities lead to the break-
down of H99’s theory, and we consider the homogeneous
quasigeostrophic two-layer model in the limit of 8 = 0
with quadratic drag as the ideal system to tackle the
problem. To study how the layer asymmetry caused
by the bottom friction affects the eddy scaling, we con-
duct numerical simulations with two types of frictional
damping: one with quadratic drag appearing in the
bottom layer only (referred to as asymmetric drag) and
the other with quadratic drag appearing symmetrically
between the two layers (referred to as symmetric drag).
In section 2, we diagnose the eddy scales in these two
sets of simulations and compare their dependence on
the nondimensional damping strength to discern the
differences resulting from layer asymmetry. Since the
layer asymmetry is completely removed in the sym-
metric drag configuration, we can also test its eddy
scaling with H99’s theoretical prediction more cleanly
to isolate the other complexities related to the uncer-
tainties in the theory. The observed deviations of
symmetric drag simulations from the prediction has
motivated a heuristic theory that is modified from
LH95’s assumptions to take the spectral nonlocality
of barotropic energy input into account. We present
this modified theory in section 3 and check it with the
asymmetric drag simulations in section 4 to verify
whether the complexity due to the spectral nonlocality
can be well separated from the complexity due to the
layer asymmetry. We also investigate the strong sym-
metric drag regime where the eddies equilibrate without
an inverse cascade. The eddy scaling and the sensitivity
of equilibrated eddy statistics to initial conditions in this
regime are explained (section 5).

Built on these quadratic drag results, we then discuss
how the modified theory, because of the departure from
H99 scaling, can make a well-defined prediction for
the case with linear damping (section 6). After clari-
fying the relations between quadratic and linear drag,
we are eventually better posited to address the question
why the modified scaling, which is still based on the
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LHO95’s physical picture, can be useful despite its
apparent conflict with TY06’s findings. We discuss this
issue in section 7. Finally, we show an example of a series
of simulations in an inhomogeneous channel model with
B = 0 to illustrate that the diffusivity obtained from the
homogeneous model can be used to predict the behavior
of the baroclinic unstable jets in these inhomogeneous
simulations (section 8). We conclude with the discussion
of some implications and remaining questions on un-
derstanding the baroclinic eddy scales in more compli-
cated and realistic flows (section 9).

2. Asymmetric versus symmetric drag simulations

We set up the homogeneous two-layer quasigeo-
strophic model in a way that closely resembles the one
investigated by LH95. The model solves the same set
of the equations as in LH9S [cf. their Egs. (1)-(3)] ex-
cept for the replacement of the large-scale dissipation in
the linear drag form with the quadratic drag form de-
scribed in Grianik et al. (2004). The model equations are
presented in the appendix along with details of the nu-
merics. As noted there, the value of U is irrelevant in the
case with quadratic drag since there are no time scales,
only length scales, defined by the model [changing
U only has the effect of renormalizing velocities as
shown in Arbic and Scott (2008)]. Following LH95’s
notations, we express the model parameters in the
length unit as wavenumbers (k; the first wavenumber
k = 1 is the wavenumber of the domain length): k,
denotes the wavenumber of A and c¢p denotes the
wavenumber of L. Hence, the single nondimensional
parameter characterizing the system is cpk; !, whose
physical meaning is essentially the nondimensional
damping strength. Varying the value of cpk;!, we
conduct a series of model simulations (Fig. 1). We
initialize the model from infinitesimal perturbations
in the streamfunction field, and we compute the eddy
statistics from the time series of the statistically steady
state. These eddy statistics include the characteristic
eddy length scale L, velocity V, and diffusivity D that
we have introduced in section 1 and will now be more
precisely defined in the same way as TY06:

L= <Tz>1/2U71, (8a)
V=(0)", (8b)
D={()m)U", (8¢)

where ¢ and 7 are the barotropic and baroclinic
streamfunction, respectively, and the angle brackets
refer to domain average. The diagnosed eddy scales
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(nondimensionalized by U and k) are plotted in Fig. 2
as a function of cpk;;!. The results of asymmetric drag
are shown in red and the results of symmetric drag
are shown in black. Different symbols indicate slightly
different model settings with different domain sizes
and resolutions (Fig. 1), which are examined to ensure
the results are to a large extent not affected by the
choice of these additional parameters with less physical
interest. Also, we note that the asymmetric drag results
are purposely plotted at cpk;!/2 as opposed to cpk;!
for a reason that we explain shortly, and this does not
change the interpretation of the scaling relations.

We first draw the attention to the asymmetric drag
results. As shown in Fig. 2, all the eddy scales in the
asymmetric drag simulations decrease with increas-
ing cpk;! when cpk; ! is small. When cpk; ' gets closer
to 10°, this decreasing trend slows down, so the eddy
scales can be described as exhibiting an exponential
dependence over a limited range of damping. The case
of cpk;!' =10" seems to be an interesting transition
point where both L and V reach their minimum. As
chgl continues to increase from 10°, L and V become
larger again while D still keeps decreasing. Here the
bottom flows are strongly damped by friction and most
kinetic energy is stored in the top layer. The strong
asymmetry between the two layers led Arbic and Scott
(2008) to argue that the theory based on barotropic—
baroclinic decomposition is less relevant in this limit.
They assumed instead that the inverse cascade occurs
in the top layer and closed the theory with a diagnostic
relation based on the primary balance in the bottom
layer potential vorticity equation. These revised as-
sumptions result in a new set of scaling laws, D ~ ¢!
and L ~c}’. We find that it fits qualitatively to our
simulations and apparently explains why the simulated
D and L have opposite dependence on cpkj!. This
reaffirms the crucial role played by layer asymmetry in
this regime.

As a strong contrast, all the eddy scales in the sym-
metric drag simulations decrease monotonically when
cpk; ! increases within the explored range. In the limit of
small cpk}!, the symmetric drag results coincide with
the asymmetric drag results. This is because most kinetic
energy is barotropic and is equally partitioned between
the two layers. The damping appearing in only the
bottom layer is equivalent to the effective damping
appearing in both layers but with a half of the damping
strength (i.e., cpk;'). Hence, they are better aligned
with each other when we shift the asymmetric drag
results from cpk)! to cpk;'/2. As cpk;! increases, un-
like the exponential relation seen in asymmetric drag
simulations, eddy scales for symmetric drag simply fol-
low a power-law dependence on cpk;' until cpk;’
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Form of Friction Kinax ky 1C Damping Strength
1073 < epky! < 10°

1073 < cpky ' < 10°

asym. quadratic 128
sym. quadratic 128 50 1

asym. quadratic 256 100 I 107 < cpky ' < 10705

+ + OO

sym. quadratic 256 100 I 1074 < cpky' <1073

x asym. quadratic 128 10 1 10715 < epky ! < 107

X sym. quadratic 128 10 | 10719 < CDk‘;l < 10%
A sym. quadratic 128 10 S 107! < chjl <102

O asym. linear 128 50 I 107! < wky'U~ < 100
O sym. linear 128 50 I 107! <k 'UT < 100

FIG. 1. A summary of the parameter settings for each set of
numerical simulations: (from left to right) the chosen form of large-
scale friction, maximum wavenumber resolved k.., Wavenumber
of deformation radius k&, initial condition (IC), and the explored
range of nondimensionalized damping strength. For initial
condition, “‘I"’ refers to the simulations integrated from the
infinitesimal perturbations prescribed in the same way as
LHO9S5, and ““S” refers to the simulations integrated from the
simulated streamfunction field taken from the cpk;! = 107! run
thatis integrated from the first initial condition to a statistically
steady state.

reaches about 10°. Beyond this value, another power-
law relation with a different slope is observed. The
latter marks a new dynamical regime where the so-
lution equilibrates without an inverse cascade. We
analyze these simulations in more details in section 5.

Based on the above results, we can now summarize
the impact of layer asymmetry on eddy scaling into a
few key findings. First, the asymmetry between the
two layers as well as its impact is amplified when the
damping is stronger. Second, the layer asymmetry is
responsible for replacing a simple power-law scaling
(as would have been predicted by the theory) with a
more complicated transition between two different
scaling regimes that in between could be approxi-
mated as exponential. Third, the layer asymmetry al-
lows the inverse cascade to continue to occur in the
upper layer even when cpk! exceeds one. After iso-
lating the sources of complexity by comparing the
asymmetric and symmetric drag simulations, we next
examine the remaining complexities via comparing
the symmetric drag simulations to the theoretical
prediction by H99.

3. Symmetric drag simulations versus
theoretical prediction

Without layer asymmetry, the two-layer system
with symmetric drag seems more comparable to the
two-dimensional system. It can therefore help better
clarify the differences between the two systems that
the theories of H99 and LH95 may have overlooked.
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Looking at the symmetric drag results in Fig. 2, we
notice that for chgl < 10° the nondimensional char-
acteristic scales of eddies can all be expressed as ~cp.
The exponent p estimated from the least-squared
fit using the data of k, =50 simulations is indicated
in Fig. 2. These estimates are smaller than predicted
by Egs. (3), (6), and (7): L~cp>8, V ~c,*78, and
D ~cpt? versus L ~ ¢!, V ~cpl, and D ~ ¢j? (we note
that the wavenumber cp is inversely proportional to
the length-scale Lp). The simulated eddy scaling de-
pendence on the damping strength is consistently weaker
than the theoretical prediction, so some assumptions in
the theory must be violated.

To address this discrepancy, we believe a good start-
ing point is to recognize that L and V scale differently
with cpk;!. The fact that L and V are not proportional
to each other contradicts an important implication by
LH95, that is the eddy time scale (7= LV ~!) should
scale with inverse Eady growth rate:

T~ (Uk)™". 9)

Since U and k, are fixed in each set of our simulations,
Eq. (9) requires L and V to change proportionally if the
theory of LH95 holds well. Equation (9) can be derived
from Egs. (2), (4), and (5) together with &. =~ ¢,. Using
the definitions of L and V in Eq. (8), Eq. (9) can also be
phrased as a constraint on the partitioning between
barotropic kinetic energy ((E,)~ V?) and baroclinic
available potential energy [(E,) = (LUk,)’] of isotropic
eddies,

<E(/,>/<ET> ~ const. (10)
Evidently, because L and V change differently with
cpky!, this energy ratio varies and in fact increases
along with L in the simulations. A similar relation
between (E,)/(E,) and L is documented by LH95 for
their bottom linear drag simulations, where they also
found that (E,)/(E,) increases as energy containing
wavenumber becomes smaller. They have connected
this behavior to the observed shape of the energy spectra.
In their simulations, they recognized that the slope of
barotropic energy spectrum is slightly steeper than —5/3
and the slope of baroclinic energy spectrum is slightly
flatter than —5/3 (cf. their Fig. 4). This deviation from
Kolmogorov’s theory is likely associated with a wide
spread of energy injection from baroclinic to barotropic
mode in wavenumber space. Taking the barotropic energy
input’s spectral nonlocality into account, they proposed
a qualitative argument to explain the length-scale de-
pendence of energy ratio. We have attempted to make this
argument more quantitative to explain the weaker cp
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1071 4

asymmetric drag
1072 4 .
symmetric drag

1074 1073 1072 107! 10° 10t 102

T+
+
102 4 o

101 B

100 4

vu-1t

107" 4

1072 4

10—3 o

O kg=50 Kmax =128
+  Kkq=100 Kmax = 256
X kg =10 kmax =128

107! 100 10! 102
CDkgl

1074 1073 1072

F1G. 2. Eddy scales in the asymmetric and symmetric drag sim-
ulations: (from top to bottom) eddy length scale L, velocity scale V,
and diffusivity D as a function of damping strength cpk;!. Simu-
lations with the asymmetric drag are red and with the symmetric
drag are black. The different symbols refer to the model settings
with different domain sizes and spectral resolutions (see Fig. 1).
For an easier comparison, all the asymmetric drag results are
shifted by a factor of 2 along x axis, i.e., from cpk;! to cpk;'/2
(which would be the effective drag if the drag was symmetric). In
each panel, the top-left solid line indicates the power-law scaling
estimated from a least-squared fit of the data in the k, =50,
cpk;' <10° symmetric drag simulations; the bottom-right solid
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dependence of eddy scales that is observed in our
simulations.

To illustrate how this argument based on spectral
nonlocality modifies the original scaling, we follow
LH95’s derivation to first obtain its modification to
Eq. (9). The essence of this argument is to allow an
underdetermined wavenumber k dependence in baro-
tropic energy spectrum Ey(k). The theory of LH95
originally assumes that energy transfer from baro-
clinic to barotropic mode is confined at k; (Rhines
1977; Salmon 1978, 1980) so a Kolmogorov’s inertial
range exists and we expect Ej(k)~ej*k™>", where
barotropic cascade energy flux g, is independent of k.
With the single dominant scale approximation, this
directly leads to Eq. (2). However, if energy input is
broadly spread among a range of wavenumbers and
the local cascade energy flux picks up local energy
injection as energy moves to smaller wavenumber, we
may assume locally

sw(k) =g 0kuk™, (11)
with x > 0 (we normalize k by k, so that g has the unit
of energy flux); the modified barotropic energy spectrum
would therefore become

E.p(k) — Silgkfj)(/sk_(5+2x)/3 . (12)
Then supposing that the baroclinic mode still acts
like a passive tracer that is advected by the baro-
tropic mode, the baroclinic energy spectrum would
still follow E.(k)~ e,T(k)k™', where the baroclinic
cascade energy flux e, is constant and local eddy
turnover time 7'(k) is determined by the advection
field. With the modified barotropic energy spectrum,
T(k) ~ [e23K3%3k2C 5] the modified baroclinic en-
ergy spectrum becomes
E (k) ~ & ey kP k075, (13)
Therefore, x >0 implies a steeper barotropic energy
spectrum and a flatter baroclinic energy spectrum.
An immediate result that follows this modification,
supposing the bulk energies predominantly reside at
a single wavenumber that is associated with L and
€40 =~ &;, 18 that

«—

line indicates the power-law scaling predicted by H99’s theory; and
the top-right dashed line indicates the scaling proposed by Arbic
and Scott (2008) in the strong asymmetric drag limit.
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(ENE)~ (Lk,)". (14)
and the ratio between barotropic kinetic energy and
baroclinic available potential energy should increase
with L. With the definition of 7, we obtain a modified
scaling replacing Eq. (9):

T~ (Lk,)"(Uk,)™". (15)
Compared with Eq. (9), Eq. (15) suggests T is no longer
a constant and depends on L and x, which measures
the broadness of energy input in the barotropic energy
spectrum. Combining Eq. (15) with Egs. (1), (4), and (5)
gives the modified power-law dependence of eddy scales
on cp:

L~ (16a)
Vo~ C[—)(z+x)/[z(1 +x)] ’ (16b)
D~ c[—)(4+x)/[2(1+x)] . (160)

Hence, x >0 also implies a weaker c¢p dependence for
L,V,and D.

To see if this modified scaling applies to our simula-
tions, we estimate x using Eq. (16) with the simulated
scaling relation L ~ ¢,*® to obtain x ~0.72. This esti-
mate is then compared with the slopes of energy spectra
to verify the self-consistency of the assumptions we have
made on the spectral slopes. From Egs. (12) and (13),
we expect

[E, (kT2 ~ k7, (17a)

[E.(k)KP] ~ k* (17b)
near the energy-containing scale. These simulated
spectra {[E,(k)k**]’* and [E,(k)k’?]’) are plotted in
the first and second rows of Fig. 3. Although a single
slope assumption does not fit to their shapes that well,
x~(0.72 at least matches qualitatively to the observed
bulk spectral slopes (for simplicity, only the set of k; = 50
simulations is shown).

In the third and fourth rows of Fig. 3, the simulated
barotropic energy spectrum Ey(k) and the simulated
barotropic energy flux g, (k) (calculated as described in
LH95’s Fig. 4) are further examined. To connect Ey (k)
back to g,(k), we have compared the simulated E, (k)
with the prediction C,e,(k)**k~53 computed from the
simulated &,(k) and the universal constant Cy, =7 cho-
sen to give a reasonable fit. The latter is a good ap-
proximation for the former in the range of wavenumbers
between the energy-containing scale (the peak of the
spectrum) and k,; = 50, confirming that energy level at
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these wavenumbers is solely determined by the local
upscale cascade. The observed steepness of the spectral
slope from —5/3 is then due to the k dependence in
gy (k), which if to be approximated by k™ [i.e., Eq. (11)]
is roughly consistent with the estimated x ~ 0.72.

Looking closely at the simulated g,(k), we shall note
that its spectrum is actually not so well described as k™.
If all the energy is both input at a single wavenumber
and then removed at a single smaller wavenumber,
ey(k) would be flat between these two wavenumbers.
Instead, the actual spectral slope varies smoothly from
negative to positive as k decreases. Both barotropic
energy input due to triad interactions involving the
baroclinic mode, whose spectral structures look very
similar to the ones reported in LH95 (cf. their Figs. 4
and 5), and the energy removal by quadratic frictional
dissipation are nonlocal in wavenumber space, with
the former dominant in the region of most interest,
producing a negative slope. There is therefore no obvious
physical basis for the use of the simple power-law ap-
proximation (i.e., k™) as compared to a more general
functional shape that can better describe the &(k)
spectrum. We emphasize that k™ in Eq. (11) is thus
better regarded as a heuristic assumption that we choose
for its simplicity and effectiveness to study the com-
plexities that lead to the deviations from the original
theoretical prediction.

We also note that in the above derivation for Eq. (16) we
have ignored the change of the correlation between baro-
tropic velocity and baroclinic streamfunction [r = D/(VL)]
as a way to violate Eq. (4). From the estimated scaling
fits (i.e., ~cp") in Fig. 2, we can obtain r ~ ¢%!%. The
dependence of r on cp could bring in uncertainty that
leads to different estimates of x when we fit the sim-
ulated V and D using Eq. (16) instead: x ~0.79 from
simulated V and x ~ 1.03 from simulated D. While this
uncertainty range seems large for x itself, it translates
into much smaller ones in the estimated scaling ex-
ponents in Eq. (16) because of the specific way they
depend on x. Its effect on the scaling argument is thus
weak compared to the effects of the modified spectral
slopes described above.

4. Asymmetric drag simulations versus
modified prediction

When analyzing the spectra of the symmetric drag
simulations, we have also checked the spectra of the
asymmetric drag simulations. A finding from this anal-
ysis is that there is no obvious difference between the
spectral slopes of the two sets of simulations (Fig. 3).
This makes us suspect that the broad energy input in the
barotropic energy spectrum remains as a key source of
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FIG. 3. Deviations of the simulated spectrum shapes from the theory in the (left) symmetric and (right)
asymmetric drag simulations (k; = 50 only): (from top to bottom) compensate spectra of barotropic energy
[E,,,(k)k5/3]3/2, compensate spectra of baroclinic available potential energy [E,(k)k**]*, barotropic energy spectra
E, (k) (solid) vs the corresponding predictions by C¢s¢(k)2/3k‘5/3 (dashed), and barotropic energy flux spectra
&,(k). In each panel, the spectra for the cpk;' =107! and cpk;! = 102 simulations are colored, with the rest of
the cases plotted in gray. We have chosen C;, =7 to obtain an overall reasonable fit for both sets of simulations,
but we notice that this results in a slight overestimation for the symmetric drag simulations and a slight un-
derestimation for the asymmetric drag simulations (for reasons unclear to us). The black solid line indicating the
slope k™ or k* with x ~0.72 is estimated from the simulated L using Eq. (16) (see text for more details).
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complexity in the asymmetric drag simulations and its
effect may be largely separated from the effects of layer
asymmetry. If we try to estimate x in the modified
scaling prediction for the asymmetric drag simula-
tions, the resulted x value is then hopefully similar
to the one for the symmetric drag.

To test the hypothesis, we cannot estimate x from
Eq. (16). This is because Eq. (16) is derived from Eq. (1)
and that Eq. (1) with V defined in Eq. (8) does not hold
with asymmetric friction. We instead estimate x directly
from Eq. (15), the scaling relation between T and L,
without a reference to cp. The simulated T itself turns
out to be more sensitive to domain size and resolution
than L and V individually, but their impact on the
scaling is small. For simplicity, we only show T for the
sets of k; = 50 simulations in Fig. 4. Indeed, plotting T
against L reveals that the asymmetric and symmetric
drags behave more or less the same: T scales with L in
a similar manner regardless the complexities of layer
asymmetry. Fitting the data from both the asymmetric
and symmetric results gives T~ L% and x~0.72,
which is consistent with the estimate from the symmetric
results alone.

Considering that T defined using V in Eq. (8) may
have little relevance when the asymmetry becomes too
strong, we have also tried avoiding V in the calculations
by examining the simulated relation of D and L directly.
As seen in Fig. 4, D has a simple power-law depen-
dence on L, and this dependence is very similar between
symmetric drag and asymmetric drag simulations. A
fit of the simulated D on L gives D ~ L?!°, This result
underscores that, while we cannot identified the rel-
evant eddy velocity responsible for mixing in asym-
metric drag simulations, at the very least D itself
scales as L to some exponent that is close to (and thus
can potentially be predicted by) the one for symmetric
drag simulations.

Therefore, the moderate success of the modified scal-
ing in predicting the symmetric as well as asymmetric
drag results suggests the complexities due to the spectral
nonlocality can be superposed on the complexities due
to the layer asymmetry. The layer asymmetry affects the
ability of drag to stop the cascade and results in different
L between asymmetric and asymmetric drag simula-
tions, but it does not change the scaling relations be-
tween L and other eddy statistics. Instead, the latter is
primarily controlled by the effect of spectral nonlocality
of barotropic energy input.

5. Equilibration without an inverse cascade

In this section, we investigate the distinct regime
in the model with symmetric damping where the flows
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FIG. 4. Relations among eddy scales in the asymmetric and
symmetric drag simulations (k, = 50 only): relations of (top) eddy
time scale T and (bottom) eddy diffusivity D with eddy length
scale L. The slope of the black line is computed from the least
squares fit of the data from both the asymmetric and symmetric
drag simulations (i.e., all the data points shown in the plot).

equilibrate without an inverse cascade. The fact that
there is no inverse cascade can be told from the re-
sults in Fig. 2 that Lk, is about the same as or even
smaller than 10° in the symmetric drag simulations
when chcjl >10°. However, some seeming contra-
dictions appear in this finding. The disappearance
of inverse cascade when cpk;' >10" is predicted by
H99’s theory, which argues that the friction becomes
strong enough to directly stop the inverse cascade at
the scale of deformation radius. Without an inverse
cascade, Stone’s (1972) quasi-linear theory predicts
that eddy scales and amplitudes would be determined by
the properties of linear unstable modes and the given
basic state. Therefore, they should be independent
of the frictional strength. In these simulations, L, the
meridional length scale of eddy mixing, can none-
theless become much smaller than k; when the fric-
tion strengthens, and V and D can also be smaller
than U and Uk !, respectively. Surprisingly, the eddy
scaling in this regime matches the theoretical pre-
diction by H99 [i.e., Egs. (3), (6), and (7)]. We here
explain how these counterintuitive results emerge by
examining the equilibration mechanism of these flows.

To study how the two-layer system equilibrates with a
strong symmetric quadratic drag, we have taken a close
look at the instantaneous streamfunction in these sim-
ulations. The simulated streamfunction has no me-
ridional structure and tends to lock to certain zonal
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wavenumbers, indicating that the flows are dominated
by the baroclinically unstable modes with gravest me-
ridional wavenumber rather than isotropic eddies. This
also suggests that it is the friction alone that directly
stops the unstable modes from continuing to grow.
The nonlinear terms and secondary instabilities do
not have a chance to emerge so as to modulate the
meridional scale of eddies and make it comparable to
the zonal scale.

In addition to the instantaneous streamfunction fields,
we can also see the dominance of meridional velocity
v over zonal velocity u in the eddies and the dominance of
baroclinic over barotropic component in the kinetic en-
ergy partitioning (Fig. 5). Consequently, the eddy fluxes
can no longer be thought of as barotropic flows stirring
baroclinic streamfunction (as in H99). It is also less
meaningful to try to relate the zonal energy containing
scale to meridional mixing because the zonal scale has
no direct relation to the meridional scale. While
the zonal eddy scale is controlled by the wavelength
of linear unstable modes, the assumption that eddies
would be isotropic, which is implicitly included in
Stone (1972), does not apply to these simulations.
Thus, Stone’s (1972) theory is inapplicable here.

What the linear dynamics of baroclinic instability
controls here is instead the baroclinic eddy time scale
(T, = L/V,) defined by baroclinic meridional velocity
V.. This time scale represents the inverse linear growth
rate of the system’s gravest unstable modes. Equating
T, to the time scale of frictional damping (cpV,)
yields L ~ cp!, which leads to a recovery of Eq. (3).
If we further consider that baroclinic kinetic energy
is proportional to the barotropic kinetic energy in
baroclinic waves, V, ~ V, then we can follow the same
derivation described in section 1 to regain Egs. (6) and (7).
Therefore, the eddy scaling in this regime is the same as
the H99’s prediction because of the same time-scale
constraint but with the eddy time scale determined by
linear instability rather than turbulent cascade.

Additionally, it is worth noting that since the flows
equilibrate directly with the gravest unstable modes, the
equilibrated eddy statistics are sensitive to initial con-
ditions. The simulations analyzed above are all inte-
grated from the infinitesimal perturbations and go
through the same linear baroclinic growth stage, so the
excited modes and T, in these simulations are the same
(Fig. 5). To demonstrate the initial-condition de-
pendence, we have integrated another set of simu-
lations with varying cp. These new simulations are
initiated with the streamfunction field at the last
output time step of the cpk,! =10"! simulation in-
tegrated from infinitesimal perturbations until sta-
tistically steady state (i.e., from the set of simulations
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FIG. 5. Initial-condition dependence of steady state flow prop-
erties in the strong symmetric drag regime (k; = 10 only): (from top
to bottom) meridional kinetic energy ((¢?)/2) to total kinetic en-
ergy ((#? +v?)/2) ratio, baroclinic kinetic energy ((KE,)) to total
kinetic energy ((KE, + KE,)) ratio, and baroclinic time scale
(T, defined as the ratio of eddy length-scale L and baroclinic me-
ridional velocity V) as a function of cpk;'. Two initial condi-
tions are considered: one with infinitesimal perturbations in
the streamfunction field as described in LH95 (crosses) and the
other as the steady-state streamfunction field taken from the
cpk;! =107 simulation (triangles).

analyzed in Fig. 2). They are then integrated until the
new statistically steady state is achieved. During this
transition, the flows initially occupied by isotropic
eddies and filaments gradually spin down and are
eventually taken over by the unstable modes. There-
fore, the meridional-to-zonal kinetic energy ratio is still
close to one. However, the unstable modes emerged
at the statistically steady state are different, in gen-
eral, so the ratio of baroclinic-to-barotropic kinetic
energy and 7T, exhibit sensitivity to initial conditions

(Fig. 5).

6. Linear versus quadratic drag

While our analysis focus on the simulations with
the more geophysically relevant quadratic drag, it is
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the linear drag that is more commonly used in pre-
vious studies of this type. To better link our results to
this literature, we have conducted additional simu-
lations with linear drag. We plot the diffusivity D
diagnosed from these linear drag simulations along
with the ones from the quadratic drag simulations in
Fig. 6. The two set of simulations share the identical
setting except for the form of drag. The key distinc-
tion of a linear drag from a quadratic drag is that it
defines a time scale rather than a length scale. Its
strength is measured by the inverse damping time
scale (k as defined in LH95). To allow a straightfor-
ward comparison between two forms of drag, we de-
fine an effective damping time scale «, = cp|Vi,| for
the quadratic drag simulations, where |Vi,| is the
bottom-layer rms velocity horizontally averaged over
the domain (an internal scale diagnosed from the sim-
ulations). With this definition, the results of quadratic
and linear collapse to a single line in Fig. 6, indicating
they share the same eddy-scale dependence on damping
strength.

The possibility to map the linear to quadratic drag
simulations further suggests that the scaling relations
and theoretical consideration in this study may also help
explain the dependence on linear drag, such as why the
linear drag itself can stop the cascade alone (Smith and
Vallis 2002). If we take the theory with the modified
spectral slopes described in section 3, but in addition use
the approximation ¢p ~ «V ! in the expression for V in
Eq. (16), we get

V ~ K—(2+x)/x. (18)
As expected, this is indeterminate for x = 0 (the H99
scaling) but is well defined for x > 0. Substituting this
scaling for V into the expression for L and D, we find

L~k2x, (19)

D ~ i~ 4ok (20)
For x =~ 1.03 estimated from the D of symmetric quadratic
drag simulations in section 3, this implies D ~ k~*%. This
scaling is indicated with the sloping line in Fig. 6 and is
close to the least-squared estimate obtained from the
symmetric linear drag simulations, D ~ k~*%2. The rea-
sonable fit to the simulated results suggests that this way
of describing the results in terms of a modified spectral
slope is consistent between the simulations with two
forms of drag.

There is however a particular aspect of which the
linear drag acts differently from the quadratic drag.
While in strong symmetric quadratic drag simulations
the eddies equilibrate linearly, they are damped to zero
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F1G. 6. Eddy scales in the linear and quadratic drag simula-
tions: diffusivity D diagnosed from linear (squares) and qua-
dratic (circles) drag simulations as a function of linear damping
strength (kk;'U™'). The two sets of simulations are mapped to
each other by comparing k to the effective linear damping
strength «, (defined in the text) for the quadratic drag simula-
tions. LH denotes for the run that shares the same parameter
setting as the case I simulation in LH95. The solid line indicates
the scaling prediction discussed in the text.

in strong symmetric linear drag simulations when the
inverse damping time scale is larger than the growth
rate of the most unstable modes. (With linear potential
vorticity damping, i.e., with equal damping of winds
and temperature, stabilization occurs precisely when
the damping is larger than the growth rate of most un-
stable inviscid mode, but equal frictional damping in both
layers with no thermal damping is sufficient to produce
the same qualitative result.) In contrast, quadratic
damping can never stabilize a flow that is unstable in the
absence of the damping, since the strength of the damping
is infinitesimal when the wave is infinitesimal. It only in-
terferes with the baroclinic instability once the wave
grows sufficiently that the damping time scale and the
time scale of baroclinic growth become comparable.

7. A comparison with TY06

The modified scaling argument present in this
study shares with LH95 the same physical picture for
eddy heat fluxes, which are interpreted as generated
by the stirring of background mean temperature
(baroclinic streamfunction) gradient by the baro-
tropic energy-containing eddies. We have proposed
that focusing on the spectral shapes and their de-
parture from Kolmogorov’s scaling is a useful way of
obtaining modified scaling to fit our simulations, with
quadratic symmetric, quadratic asymmetric, linear
symmetric, and linear asymmetric drags. However,
its relevance to the linear asymmetric drag case is
confusing given the findings in TY06, where the eddy
heat fluxes are described as due to the systematic
meridional drift of coherent vortices carrying tem-
perature signatures.
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FIG. 7. (top) Scatterplots of baroclinic streamfunction  and barotropic vorticity V*y and (middle),(bottom)
snapshots of the two fields: (left) a simulation using linear asymmetric drag with kk;' U~ = 0.25 and (right)
another using linear symmetric drag with kk;'U"! =0.16 are shown to compare with the simulations

of TYO06.

In TYO06’s analyses, they described a strong anti-
correlation between the instantaneous baroclinic stream-
function 7 and barotropic vorticity V>4 (cf. their Fig. 4) to
emphasize this role of vortices in heat transport. Similar
to those shown in TY06, in Fig. 7, we present scatterplots
of r and V* (normalized by k, and U) along with the
snapshots of the two fields that are used to generate these
scatterplots (to allow the finer structure in the snapshots
to be recognized more easily, only one-ninth of the entire
domain is shown). We have examined all our simula-
tions and have selected two of them as examples for
this purpose. The two selected simulations are both
with linear damping: the one with asymmetric drag has
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kk;'U~!=0.25 and the one with symmetric drag has
kk;'U~' =0.16. We choose the former as it is among
our simulations most comparable to the simulation
shown in Fig. 4 of TY06. Accordingly, we then choose
the later case that uses symmetric drag and has similar
eddy scales (e.g., the simulated D for the two cases are
similar as shown in Fig. 6).

For the asymmetric drag case, we see a scatterplot
similar to the one shown in TYO06 with the data partly
organized into a few branches that correspond to indi-
vidual vortices. It also confirms the presence of the an-
ticorrelation between 7 and V% as identified by TY06.
When we look at the scatterplot of the symmetric drag
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case, there is however no evidence that 7 and V> are
correlated. The disappearance of the anticorrelation
does not imply the disappearance of the coherent vor-
tices, though. For both simulations, we have observed a
hierarchy of vortices with different sizes in the snapshots
of V? that look indistinguishable. Only when turning to
the 7 field, their differences start to be revealed. For the
asymmetric drag case, the vortex structures are vivid in
7, with the warm core anticyclonic signature expected.
By contrast, it is more difficult to identify the vortices in
the symmetric drag case’s 7 field. Even if they exists, the
sign of 7 and V2 at their cores is not systematic. Instead,
there is a cluster of data around the origin in the 7 — V¢
scatterplots, corresponding to the long thin filaments
occupying most of the domain and seen in both Vi
and 7 fields. In this regard, a nonnegligible portion of
7 anomalies is not within the vortices but is within
the filaments aroused from the baroclinic forward cas-
cade. One key to reconcile these two viewpoints would
therefore be an understanding of the partitioning of the
heat transport between vortices and passive filaments.

The simplest explanation for the thermal structure
of the vortices described in TYO06 is that the lower-
level winds in the vortices that would otherwise be
barotropic are damped by friction, creating top-heavy
equivalent barotropic vortices. Consistent with thermal
wind, this results in warm-core anticyclones and cold-core
cyclones. Given these thermal signatures, the vortex
dynamics in the presence of the mean thermal wind
becomes a candidate for organizing heat transfer, in
competition with the passive tracer—like advection of the
temperature field. Yet, in the case of symmetric damp-
ing, there is no reason to expect this kind of equivalent
barotropic structure. By symmetry, the eddy kinetic
energies in the two layers must have identical statistics in
this case. This may explain why we only observe the
anticorrelation of 7 and V% in the asymmetric but
symmetric drag case. Moreover, in our results, the
scaling relationships for diffusivity and the eddy scales
look identical in the symmetric and asymmetric drag
cases in the limit of weak damping (Figs. 2 and 6). If the
vortices in the symmetric drag cases can have no sys-
tematic temperature signal, a vortex-dominated heat
flux is difficult to visualize. By implication, if we plau-
sibly want the very similar results with asymmetric drag
to have the same physical explanation as in the symmetric
drag case, it seems justified to consider both as dominated
by the same dynamics when damping is weak.

For stronger damping, there are clearly important
differences between the symmetric and asymmetric
drag cases (Figs. 2 and 6). When the nondimensional
damping strength is larger than one, the flows are at
another limit described in Arbic and Scott (2008)
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and Arbic and Flierl (2004). Our current speculation
is that TY06 dynamics is relevant for intermediate
values of the damping strength in the asymmetric
drag case, interpolating between that limit of strong
damping and the weak damping regime for which the
scaling relations discussed here are relevant. (We
restrict our discussion to cases in which the domain
size is not a relevant parameter.) This intermediate
regime is very important, being in a meteorological
and oceanic relevant parameter range (H99; Arbic and
Scott 2008). The analysis in TYO06 likely provides more
insights to the dynamics in this regime, even though we
cannot at this time offer a coherent theory that simul-
taneously covers all of these regimes.

8. Homogeneous and inhomogeneous comparison

It is natural to question how these homogeneous
turbulence results carry over to inhomogeneous flows.
As the first step, we have explored an inhomogeneous
two-layer quasigeostrophic model with channel geom-
etry. The equation of the model is

aq, (T—7,) ,
—t J(lpl" Q,) = _KT(_l) —E + 8,‘25[1’(CD) - Vvéllli >

at A2
(21)

where ¢q; = V2, + (=1)'(y; — ,)/(2A?) is potential
vorticity and ¢; is streamfunction for upper (i =1)
and lower (i = 2) layers; &(cp) represents the qua-
dratic drag in the same form as Eq. (A4) and vV
is the hyperviscosity term. Except the hyperviscos-
ity term, the inhomogeneous model is only distinct
from the homogeneous model in that its baroclinic
streamfunction [t = (; — ¥,)/2] is relaxed to a zon-
ally symmetric profile that produces a baroclinic jet. As
this thermal relaxation is controlled by the inverse ther-
mal damping time scale k7 and the thermal equilibrium
profile 7, we can construct a diffusive model (in the di-
rection y) of the form

aT(y)
oy

ar(y) _d
at  dy {De(y)

| <) -non. @
where D, is the effective dimensional diffusivity in the
form D.(y) = —d,7(y)Ad and d is the nondimensional
diffusivity measured from the homogeneous model.
That is, given that the two models have the same non-
dimensional frictional damping strength (i.e., cpk;' =
cp)), we can obtain d = Dk,U~" from the simulated
diffusivity D, k4, and U in the corresponding homoge-
neous model simulation to solve Eq. (22) for the equil-
ibrated temperature and eddy heat flux.



1640 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 76
Varying Jet Width Varying Frictional Damping Strength
oA 1=1,2,4,8 cpA=10"1,10793,109, 100>
350 350
—— simulated

= 3007 ---- predicted 3001
1]

€ 250 250 A
X

x 200 200 4
3

=

4{5‘ 150 1 150 1
2

>, 1001 100
O

8 50 4 50 4

0 T T T T T 0 T T
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
y (1000 km) y (1000 km)

FIG. 8. Eddy heat fluxes in the channel model simulations: the meridional structure of eddy heat fluxes simulated
from the channel model [Eq. (21); solid] and the predictions by a diffusive energy balance model with the diffusivity
predicted by our homogeneous model simulations [Eq. (22); dashed]. Two sets of simulations are examined: one
with varying jet width at radiative equilibrium o and one with varying frictional quadratic damping strength cp.
(left) The first set of simulations has a fixed cpA =107 and oA~ =1, 2, 4, 8; (right) the second set of simulations
has a fixed oA "' =8 and cpr = 1071, 10703, 10°, 10°3, where A is deformation radius. The other model parameters

is described in the text.

Figure 8 shows how the eddy heat fluxes predicted
by this diffusive model compare to the inhomoge-
neous model simulations with the parameters 8 =0,
A=+v2 '700km, k7! =20days, 7z = —Ugo tanh(y/o),
and Ur =20m s~ !. These are chosen to be mostly the
same as in Zurita-Gotor et al. (2014), and the eddy
heat fluxes are also shown in the temperature (6)
unit (K) through the conversion 6 = 7y, 19, with 6, =
290K and t, =2.45 X 103m?s~!. The inhomogeneous
model’s resolution and domain size in the zonal di-
rection are also kept the same as the homogeneous
model after nondimensionalized. This is to ensure the
results are not affected by these model details. Evi-
dently, the diffusive model successfully predicts the
eddy heat flux’s meridional structure both when the
radiative equilibrium width of baroclinic jet o and
when the frictional (quadratic) damping strength cp
are varied.

This comparison has previously been provided by
Pavan and Held (1996) with nonzero B8 and linear
damping (cf. their Fig. 9). Our case with zero B is even
simpler in the sense that there is no ambiguity
whether to diffuse temperature or potential vorticity,
since the temperature and the potential vorticity in
both layers are all proportional to each other in this
limit of the homogeneous model. In the inhomoge-
neous model simulations we analyzed, the eddy mo-
mentum fluxes are also negligible. Consistent with
Pavan and Held (1996), our result again supports the
relevance of homogeneous scaling for inhomoge-
neous flows. We note that, as in Pavan and Held
(1996), thermal damping has been added to the
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homogeneous model when calculating d as this is an
essential feature of how the inhomogeneous model is
forced. Since the thermal damping is not included in
the homogeneous simulations analyzed in the pre-
vious sections, the d obtained from the homogeneous
simulations with thermal damping in general is dif-
ferent from those without thermal damping and re-
ported in Fig. 2. In the case considered here, it has a
very modest effect on the eddy scales and fluxes, so
d remains close to the value that we have shown there.
Yet some systematic deviations from the homogeneous
predictions, possibly due to this extra parameter or
other subtle differences between the two models, are
under investigation.

9. Discussion and conclusions

We have studied the statistically steady state solutions
of a B = 0 homogeneous two-layer quasigeostrophic
model with quadratic drag. In this model, the statistically
steady state is a function of a single parameter, the ratio
of a frictional length-scale L, = CBIH (where Cp is the
nondimensional coefficient in the surface stress and H is
the depth of the layer to which the stress applied) and the
radius of deformation A = NH/f, or, equivalently in terms
of our model notations, the ratio of their wavenumbers:
cpk;'. We have run the model with a range of cpk;! in
the attempt to understand the aspects of its dynamics that
complicate the eddy scaling theory proposed by H99.

The first aspect we focus on are the asymmetry be-
tween upper and lower layers caused by the presence of
drag in the lower layer only. This layer asymmetry in
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drag makes the flow equivalent barotropic. Therefore,
when the damping is stronger, while both asymmetric
and symmetric drag become more efficient at stopping
the inverse cascade, the former is relatively more in-
efficient than the latter. Eddy scales are then de-
creasing less slowly with the damping strength in the
cases with asymmetric than with symmetric drag.
On the other hand, when the damping is weak and the
flow is largely barotropic, there is little difference be-
tween models with asymmetric or symmetric drag, as
long as one rescales the strength of the damping so that
the barotropic flow is damped at the same strength in
each case.

In the second aspect, we argue that the spectrally
nonlocal baroclinic-to-barotropic energy transfer results
in the deviation from Kolmogorov’s inertial range the-
ory, which is a central assumption in LH95 that is then
considered in H99. A modest modification on this as-
sumption and then H99’s scaling by assuming barotropic
spectral energy flux has a wavenumber dependence
k™" is adopted to explain the observed weaker power-
law dependence of eddy scales on the damping strength
(L~cp™8, V~cp0, and D ~ c;'*). We do not pro-
vide a theory for x, but find that this expression, with
x~(0.72 directly estimated from the simulations, gives
self-consistent fits to the simulations, although some
uncertainty exists on how it is best estimated. We also
confirm that the same modified scaling applies to both
the symmetric and asymmetric drag simulations
when the damping is weak, so the complexity related
to the spectral nonlocality can be largely distin-
guished from the one related to the layer asymmetry.
Finally, with sufficiently strong symmetric damping a
regime is found in which the equilibrated flows are
dominated by the linear unstable modes directly sta-
bilized by friction, so the linear dynamics controls the
eddy scaling and the solutions are initial-condition
dependent.

In addition to quadratic drag, we examine the ho-
mogeneous model simulations with linear drag and find
that their eddy scales are very similar to those in the
quadratic drag simulations once a proper relation be-
tween the damping strengths of the two forms of drag is
defined. Because of this simplicity, the modified scaling
for the quadratic drag case also predicts the scaling for
the linear drag case, which resolves the problem of the
original theories of LH9S and H99 that struggle to
provide a well-defined prediction when the halting
mechanism is linear drag. After that, we discuss the
alternative approach of TY06, in which heat transport
in their bottom linear drag simulations is found to be
due to the drift of vortices with systematic temperature
signatures. This is also observed in our asymmetric

Brought to you by PRINCETON UNIVERSITY LIBRARY | Unauthenticated | Downloaded 08/25/21 06:44 PM UTC

CHANG AND HELD

1641

drag simulations. However, the similarity in the be-
havior of our model with symmetric and asymmetric
drags when the damping is weak makes it hard to in-
terpret our results in this fashion, since the model with
symmetric drag produces vortices with no systematic
temperature signals. Therefore, we leave this issue
unresolved.

Last, following the approach of Pavan and Held
(1996), we compare a set of inhomogeneous channel
model simulations with bottom quadratic drag to the
solution of a diffusive energy balance model with its
diffusivity predicted by the homogeneous model. At
least for the cases that we have looked into, we obtain
some encouraging results. In fact, with 8 = 0, this is an
especially simple system to perform such a comparison,
in large part because eddy momentum fluxes play less
of a role here than in the case with nonzero S, resulting
in the absence of eddy-driven jets. Further study of this
comparison in this idealized system could shed light
on any fundamental limitations to the value of the
homogeneous limit.

Together these results help us to better interpret
H99’s estimate on the extent of inverse cascade con-
trolled by surface friction in idealized models of the
extratropical troposphere. Relative to Eq. (3)’s pre-
diction, accounting for spectral nonlocality helps the
cascade stop earlier, while introducing layer asymme-
try allows a larger cascade range. The two counter-
acting effects both operate at LpA ™' = (f/N)Cp! =~ 10,
the relevant regime for the extratropical troposphere
over oceans (f/N~10"2 and Cp~107%), so Eq. (3)
ends up being a fair estimate. If a higher surface
roughness, such as for the typical land surface value
(Cp ~107?), is considered, the prediction by Eq. (3)
may underestimate the eddy length scale at which the
surface friction halts the cascade. The eddy kinetic
energy and diffusivity may also be larger than ex-
pected. As it is a meteorological relevant regime, the
effects of friction being confined near the surface
clearly need a better quantification for a more precise
estimate. This is not addressed here and is a limitation
of this study.

Another limitation we emphasize is that the modified
scaling presented in this study is not a predictive theory
but rather an economical description, as we directly
estimate the wavenumber dependence of the baro-
tropic spectral energy flux (i.e., k™) from the simula-
tions. To understand how this flux is determined, one
would have to study the triad interactions and the as-
sociated spectral energy transfers into the barotropic
mode. Added on these uncertainties are also the somewhat
fuzzy connection assumed in LH95 between the
spectrally local and spectrally integrated properties,
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where the assumption that the energy containing
eddies producing the eddy heat flux can be described
by a single wavenumber (Smith and Vallis 2002), and
the variations of correlation between the barotropic
velocity and baroclinic streamfunction in the mixing-
length theory. Still, we are convinced that this modi-
fication of LH95’s scaling may capture some of the
important physics. The exponent of the simulated
power-law relation is reasonably well defined and the
spectral slope discrepancy between the simulations
and theory is qualitatively consistent between our
simulations and those reported by LH95. It at the very
least helps us to better connect the understanding
of two-layer baroclinic turbulence and of barotropic
turbulence.

These baroclinically unstable homogeneous models
are also potentially relevant to the ocean mesoscale
eddy parameterization problem. In this regard, it is
useful to compare our results to those in Jansen et al.
(2015). They have parameterized the eddy heat fluxes
in a two-layer primitive equation channel model using
an empirical fit to relate barotropic and bottom ki-
netic energies as a key assumption. In the limit of
B = 0, they use the constant eddy time-scale assump-
tion proposed by LH95 [i.e., Eq. (9)] to form a closure.
Their scheme takes into account layer asymmetry due
to the bottom drag (and the different layer depths) but
assumes no further adjustments to LH95’s scaling.
This assumption may be adequate for parameteriza-
tions in which there are many other uncertainties, but
the constant eddy time scale in LH9S5 is not supported
by our results. Jansen et al. (2015) has also found
some issues with LH95’s scaling when nonzero B is
included. There are a number of results in the liter-
ature, using a variety of models, that differ regarding
the utility of Held and Larichev (1996) theory, the
extension to nonzero 3 of the LH95’s scaling (Smith
and Vallis 2002; Barry et al. 2002; Lapeyre and Held
2003; Zurita-Gotor 2007; Thompson and Young 2007;
Jansen and Ferrari 2013; Jansen et al. 2015; Chai
2016). A natural question is then how much of the
mismatch to LH95’s theory with nonzero 8 can be
attributed to deficiencies that are already present
in the absence of B. Building on the results presented
here, we will address parts of this question in a sep-
arate study.

In the context of studies on eddy scaling in the ho-
mogeneous two-layer quasigeostrophic model, this
work resides at the simplest extreme on the model
hierarchy. In fact, we have taken an extra step back-
ward to investigate a more unrealistic model with
mechanical drag appearing symmetrically between
the two layers. This even simpler model configuration,
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in which all eddy statistics are identical in the two
layers, offers the potential for a cleaner comparison
between a self-stirred baroclinically unstable flow and
the stirred barotropic model. By studying this limit, we
have emphasized knowledge gaps between baroclinic
and barotropic turbulence. We believe that this is
a relevant limit in which to try to solidify our un-
derstanding of eddy statistics in these turbulent
baroclinically unstable flows and to provide a more
solid foundation for our understanding of more
realistic models.
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APPENDIX

Equations of the Model

Following the notations of LH95, the potential vor-
ticity (Q) equations for the two equal-depth layers are

00, +J(V,,0)=-vWQ,+7,, (Ala)
9,0, +I(¥,,0,)=-vV*Q,+7,,  (Alb)

where the subscripts 1 and 2 refer to the top and bottom
layers, respectively. The potential vorticity Q are related
to the total streamfunction ¥ by

Q, =V, + KV, -¥)2, (A2a)
0, =V, + K4V, —¥,)2, (A2b)

and ¥ contains a prescribed zonal mean part and an
eddy part that varies in time and space:

v =-Uy+ z/;l(x,y, 1),

W, = Uy + ¢, (x,y,1).

(A3a)
(A3b)

In the rhs of Eq. (A1), the subgrid-scale dissipation is
parameterized as a V® hyperviscosity and the large-
scale dissipation 7 is in a specific form of quadratic
drag that assumes the surface stress is parallel to
the eddy velocity (Grianik et al. 2004; Arbic and
Scott 2008):
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7= _CD[8X(|V¢1\GX¢1) + 3y(|V‘//1|8y¢1)]’ (Ada)
T, = —=cplo (Vi |o.4,) + Gy(|V¢2|3y¢2)]' (A4b)

Altogether, the set of equations has four parameters:
the wavenumber of deformation radius k,, the mean
vertical shear U, the hyperviscosity coefficient v, and
the wavenumber of frictional length c¢p. We choose to
nondimensionalize the equations by k; and U and
leave the two dimensionless parameters as vU™ 'k,
and chgl. In this study, we have assumed the solu-
tions (in the parameter space we explore) have no
dependence on vU k), since v is set adaptively
during the integration as described in Smith and
Vallis (2002) and we do not have an explicit control
on its value. This also assumes the solutions after
nondimensionalization is independent of U, which is
confirmed by Arbic and Scott (2008). The value of
U = 0.005 that we use is simply chosen for conve-
nience in the comparison with the LH95 simulations.

REFERENCES

Arbic, B. K., and G. R. Flierl, 2004: Baroclinically unstable
geostrophic turbulence in the limits of strong and weak
bottom Ekman friction: Application to midocean eddies.
J. Phys. Oceanogr., 34, 2257-2273, https://doi.org/10.1175/
1520-0485(2004)034<2257:BUGTIT>2.0.CO;2.

——, and R. B. Scott, 2008: On quadratic bottom drag, geostrophic
turbulence, and oceanic mesoscale eddies. J. Phys. Oceanogr.,
38, 84-103, https://doi.org/10.1175/2007JPO3653.1.

Barry, L., G. C. Craig, and J. Thuburn, 2002: Poleward heat
transport by the atmospheric heat engine. Nature, 415, 774—
777, https://doi.org/10.1038/415774a.

Chai, J.,2016: Understanding geostrophic turbulence in a hierarchy
of models. Ph.D. thesis, Princeton University, 211 pp.

Grianik, N., I. M. Held, K. S. Smith, and G. K. Vallis, 2004: The
effects of quadratic drag on the inverse cascade of two-
dimensional turbulence. Phys. Fluids, 16, 73-78, https://
doi.org/10.1063/1.1630054.

Haidvogel, D. B., and I. M. Held, 1980: Homogeneous quasi-
geostrophic turbulence driven by a uniform temperature gra-
dient. J. Atmos. Sci., 37, 2644-2660, https://doi.org/10.1175/
1520-0469(1980)037<2644:HQGTDB>2.0.CO;2.

Held, I. M., 1999: The macroturbulence of the troposphere. Tellus,
51, 59-70, https://doi.org/10.3402/tellusa.v51i1.12306.

——, and V. D. Larichev, 1996: A scaling theory for horizon-
tally homogeneous, baroclinically unstable flow on a beta
plane. J. Atmos. Sci., 53, 946-952, https://doi.org/10.1175/
1520-0469(1996)053<0946: ASTFHH>2.0.CO;2.

Brought to you by PRINCETON UNIVERSITY LIBRARY | Unauthenticated | Downloaded 08/25/21 06:44 PM UTC

CHANG AND HELD

1643

Jansen, M., and R. Ferrari, 2013: Equilibration of an atmosphere by
adiabatic eddy fluxes. J. Atmos. Sci., 70, 2948-2962, https:/
doi.org/10.1175/JAS-D-13-013.1.

——, A. J. Adcroft, R. Hallberg, and I. M. Held, 2015: Param-
eterization of eddy fluxes based on a mesoscale energy
budget. Ocean Modell., 92, 28-41, https://doi.org/10.1016/
j.ocemod.2015.05.007.

Lapeyre, G., and I. M. Held, 2003: Diffusivity, kinetic energy dis-
sipation, and closure theories for the poleward eddy heat flux.
J. Atmos. Sci., 60, 2907-2916, https://doi.org/10.1175/1520-
0469(2003)060<2907:DKEDAC>2.0.CO;2.

Larichev, V. D., and 1. M. Held, 1995: Eddy amplitudes and
fluxes in a homogeneous model of fully developed baroclinic
instability. J. Phys. Oceanogr.,25,2285-2297, https://doi.org/
10.1175/1520-0485(1995)025<2285:EAAFIA>2.0.CO;2.

Pavan, V., and I. M. Held, 1996: The diffusive approximation for
eddy fluxes in baroclinically unstable jets. J. Atmos. Sci., 53,
1262-1272, https://doi.org/10.1175/1520-0469(1996)053<1262:
TDAFEF>2.0.CO;2.

Phillips, N. A., 1956: The general circulation of the atmosphere:
A numerical experiment. Quart. J. Roy. Meteor. Soc., 82,
123-164, https://doi.org/10.1002/qj.49708235202.

Rhines, P. B., 1975: Waves and turbulence on a beta-plane.
J. Fluid Mech., 69, 417-443, https://doi.org/10.1017/
S0022112075001504.

——,1977: The dynamics of unsteady currents. Marine Modeling,
E. D. Goldberg et al., Eds., The Sea—Ideas and Observations
on Progress in the Study of the Seas, Vol. 6, John Wiley and
Sons, 189-318.

Salmon, R., 1978: Two-layer quasi-geostrophic turbulence in a
simple special case. Geophys. Astrophys. Fluid Dyn., 10, 25—
52, https://doi.org/10.1080/03091927808242628.

——, 1980: Baroclinic instability and geostrophic turbulence.
Geophys. Astrophys. Fluid Dyn., 15, 167-211, https://doi.org/
10.1080/03091928008241178.

Smith, K. S., and G. K. Vallis, 2002: The scales and equilibration
of midocean eddies: Forced-dissipative flow. J. Phys.
Oceanogr., 32, 1699-1720, https://doi.org/10.1175/1520-
0485(2002)032<1699: TSAEOM>2.0.CO;2.

Stone, P. H., 1972: A simplified radiative-dynamical model for the static
stability of rotating atmospheres. J. Atmos. Sci., 29, 405418, https:/
doi.org/10.1175/1520-0469(1972)029<0405: ASRDMF>2.0.CO:2.

Thompson, A. F., and W. R. Young, 2006: Scaling baroclinic eddy
fluxes: Vortices and energy balance. J. Phys. Oceanogr., 36,
720-738, https://doi.org/10.1175/JPO2874.1.

——,and ,2007: Two-layer baroclinic eddy heat fluxes: Zonal
flows and energy balance. J. Atmos. Sci., 64,3214-3231, https:/
doi.org/10.1175/J AS4000.1.

Zurita-Gotor, P., 2007: The relation between baroclinic adjustment and
turbulent diffusion in the two-layer model. J. Afmos. Sci., 64, 1284—
1300, https://doi.org/10.1175/J AS3886.1.

——, J. Blanco-Fuentes, and E. P. Gerber, 2014: The impact of
baroclinic eddy feedback on the persistence of jet variability
in the two-layer model. J. Atmos. Sci., 71, 410-429, https:/
doi.org/10.1175/JAS-D-13-0102.1.



https://doi.org/10.1175/1520-0485(2004)034<2257:BUGTIT>2.0.CO;2
https://doi.org/10.1175/1520-0485(2004)034<2257:BUGTIT>2.0.CO;2
https://doi.org/10.1175/2007JPO3653.1
https://doi.org/10.1038/415774a
https://doi.org/10.1063/1.1630054
https://doi.org/10.1063/1.1630054
https://doi.org/10.1175/1520-0469(1980)037<2644:HQGTDB>2.0.CO;2
https://doi.org/10.1175/1520-0469(1980)037<2644:HQGTDB>2.0.CO;2
https://doi.org/10.3402/tellusa.v51i1.12306
https://doi.org/10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2
https://doi.org/10.1175/JAS-D-13-013.1
https://doi.org/10.1175/JAS-D-13-013.1
https://doi.org/10.1016/j.ocemod.2015.05.007
https://doi.org/10.1016/j.ocemod.2015.05.007
https://doi.org/10.1175/1520-0469(2003)060<2907:DKEDAC>2.0.CO;2
https://doi.org/10.1175/1520-0469(2003)060<2907:DKEDAC>2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025<2285:EAAFIA>2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025<2285:EAAFIA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<1262:TDAFEF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<1262:TDAFEF>2.0.CO;2
https://doi.org/10.1002/qj.49708235202
https://doi.org/10.1017/S0022112075001504
https://doi.org/10.1017/S0022112075001504
https://doi.org/10.1080/03091927808242628
https://doi.org/10.1080/03091928008241178
https://doi.org/10.1080/03091928008241178
https://doi.org/10.1175/1520-0485(2002)032<1699:TSAEOM>2.0.CO;2
https://doi.org/10.1175/1520-0485(2002)032<1699:TSAEOM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1972)029<0405:ASRDMF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1972)029<0405:ASRDMF>2.0.CO;2
https://doi.org/10.1175/JPO2874.1
https://doi.org/10.1175/JAS4000.1
https://doi.org/10.1175/JAS4000.1
https://doi.org/10.1175/JAS3886.1
https://doi.org/10.1175/JAS-D-13-0102.1
https://doi.org/10.1175/JAS-D-13-0102.1

