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ABSTRACT

In idealized models of the extratropical troposphere, both b and surface friction can control the equili-

brated scales of baroclinic eddies by stopping the inverse cascade. A scaling theory on how surface friction

alone sets these scales was proposed by Held in 1999 in the case of a quadratic drag law. However, the theory

breaks down when friction is modeled by linear damping, and there are other reasons to suspect that it is

oversimplified. An ideal system to test the theory is the homogeneous two-layer quasigeostrophic model in

the b 5 0 limit with quadratic damping. This study investigates some numerical simulations of the model to

analyze two causes of the theory’s breakdown. They are 1) the asymmetry between two layers due to con-

finement of friction to the lower layer and 2) deviation from a spectrally local inverse energy cascade due to

the spread of wavenumbers over which energy is input into the barotropic mode. The former is studied by

comparing the simulations with drag appearing asymmetrically or symmetrically between the two layers. The

latter is addressed with a heuristic modification of the theory. A regime where eddies equilibrate without an

inverse cascade is also examined. A comparison is then made between quadratic and linear drag simula-

tions. The connection to a competing theory based on the dynamics of equivalent barotropic vortices with

thermal signatures is further discussed. Finally, we present an example of an inhomogeneous statistically

steady state to argue that the diffusivity obtained from the homogeneous model has relevance to more

realistic configurations.

1. Introduction

Ever since Phillips (1956)’s pioneering work, the qua-

sigeostrophic two-layer model has repeatedly proven it-

self to be useful for understanding the baroclinic eddy

dynamics in the extratropical troposphere. To better

study how eddy statistics depend on mean flows, the

model can be further simplified with a fixed background

zonal flow with vertical shear that is independent of lat-

itude and that assumes the deviations from this flow to be

horizontally homogeneous. This is known as the homo-

geneous quasigeostrophic two-layer model, and it has

also provided some insights into the dependence of

eddy amplitudes and eddy fluxes on the background

state (Haidvogel and Held 1980; Larichev and Held

1995, hereafter LH95; Held and Larichev 1996;

Thompson and Young 2006, hereafter TY06, 2007).

However, the flows in this idealized system are still

complex enough to prevent us from fully understanding

the control of eddy scales by the parameters of interest.

One such parameter is the meridional gradient of

Coriolis parameter b. The presence of b introduces

flow anisotropy, Rossby waves, coherent structure as

zonal jets, and asymmetry between the two layers.

These complexities have raised challenging questions

as well as stimulated theories that attempt to address

them from different perspectives. Yet the theories

differ from each other, and a general consensus has not

been reached (Held and Larichev 1996; Lapeyre and

Held 2003; Thompson and Young 2007; Chai 2016).

To test our understanding of the homogeneous qua-

sigeostrophic two-layer model, reconciling these theo-

ries is important. It is nonetheless also very difficult.

To reduce the problem to a smaller one in which we can

likely make progress, we focus on the homogeneous

quasigeostrophic two-layer model in the limit of b 5 0.Corresponding author: Chiung-Yin Chang, cychang@princeton.edu
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At the very least, eliminating b enables us to gain a

better sense of the extent of complexities that are not

directly associated with b. In particular, large-scale

surface friction and its roles in affecting the eddy sta-

tistics often receive less attention when b is present.

For a strongly baroclinically unstable flow, the scale of

energy containing eddies is determined by the mecha-

nism stopping the barotropic inverse energy cascade

(Rhines 1977; Salmon 1978, 1980). This can either be

b or friction (or both), but it is often assumed that b is

large enough to stop the cascade, that is, channel the

energy into zonal flows that do not contribute to me-

ridional transport, before friction becomes significant

(e.g., Rhines 1975). To make further progress in un-

derstanding how the cascade is terminated when both

are present, we need to better understand how friction

alone stops the cascade. This understanding will help us

determine if this limiting case might itself have some

relevance in some atmospheric (and oceanic) circula-

tions of potential interest.

In the attempt to assess the importance of surface

friction in this respect, Held (1999, hereafter H99)

proposed a scaling theory to estimate the eddy scales

when the cascade stopping mechanism is nonlinear

(quadratic) friction. The friction in the atmospheric

planetary boundary layer is typically parameterized

as a quadratic drag. When imposing quadratic drag on

layer models of the sort considered here, one needs to

divide the nondimensional drag coefficient CD in the

surface stress law by the depth of the lowest model

layer H, since it is only in this combination that the

surface stress is felt by the model. This results in an

inverse frictional length, L21
D [CDH

21. The strength

of this type of frictional damping is then determined by

LD. If the large-scale drag is responsible for essentially

all of the dissipation of kinetic energy «d, then we ex-

pect that «d is scaled as

«
d
;L21

D V3 , (1)

where V is a characteristic velocity scale. According to

LH95, if the two-layer baroclinic turbulence is suffi-

ciently unstable so that kinetic energy is mostly baro-

tropic, V can be thought as the typical velocity in the

barotropic flow at the energy-containing eddy length

scale L. Suppose that the barotropic energy spectrum is

well approximated by Kolmogorov’s inertial range the-

ory, thenV can be solely determined byL and the rate of

inverse energy cascade «c via dimensional analysis,

V;L1/3«1/3c . (2)

Given «d ’ «c, Eqs. (1) and (2) together indicate that, if

the cascade is stopped by quadratic drag alone, the

energy-containing eddy length scale should be propor-

tional to the frictional length:

L;L
D
, (3)

which is the same as the eddy scaling for two-dimensional

turbulence stirred at small scales and damped by qua-

dratic drag (Grianik et al. 2004). Building on this scaling

relation, one can further estimate an eddy diffusivity

D from mixing-length theory:

D;VL . (4)

If the eddy heat fluxes are mostly due to the passive

mixing of temperature (the baroclinic streamfunction

in the two-layer model) by the energy-containing baro-

tropic eddies and therefore are diffusive-like, the avail-

able potential energy production «p in the homogeneous

quasigeostrophic two-layer model can be expressed as

«
p
;DU2l22 , (5)

where U is the imposed vertical shear (proportional to

temperature gradient) and l is the radius of deformation

(prescribed in a quasigeostrophic model). One factor

of U in this expression arises from the temperature

gradient in the expression for available potential energy

generation; the other arises from expressing the eddy

heat flux as a diffusivity times a temperature gradient.

Provided that «p ’ «d, Eqs. (1), (2), (4), and (5) together

also suggest that

V;L
D
Ul21 , (6)

D;L2
DUl21 . (7)

This theory can therefore predict how the characteris-

tic eddy length, velocity, and diffusivity change with LD.

To see thismore clearly,we can also nondimensionalizeEqs.

(3), (6), and (7) with U and l. This nondimensionalization

has the effect of clarifying the difference between this theory

and Stone’s (1972), in which l andU are assumed to be the

scales forL andV. The H99 scaling predicts thatLl21 and

VU21 are both proportional toLDl
21, which is ameasure

of the strength of inverse cascade. A corollary of this

result is that an inverse cascade is only expected when

LD is larger than l.

Another way of stating the above prediction is that the

extent of an inverse energy cascade depends on the ratio

of two dimensionless numbers: the Prandtl ratio f /N

and the nondimensional drag coefficient CD. Recall

L21
D [CDH

21 and suppose that the same H appears in

the definition of l[NH/f (while they do not need to be

the same in general), then the ratio LDl
21 5 (f /N)C21

D .
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For the typical atmospheric values, f /N’ 1022. If

CD ’ 1023 such as over the oceans, this theory suggests

that there should be a significant inverse energy cascade;

in contrast, if CD ’ 1022 such as over the land surface,

there should be little cascade. The relevance of this ratio

of the nondimensional drag coefficient and the Prandtl

ratio for whether or not the eddies are strongly damped

in this sense is therefore an interesting implication of

this scaling argument.

There have been some numerical studies on how eddy

scales depend on quadratic drag (in the absence of b),

but none of their simulations fully support H99’s eddy

scaling or the suppression of inverse cascade when

drag becomes sufficiently large (Arbic and Scott 2008;

Jansen et al. 2015). A possible explanation for this

simulation-theory inconsistency is that the theory fails

to distinguish the diverse velocity scales in the two-

layer system. It oversimplifies the difference between

the velocity scale relevant for frictional dissipation

[in Eq. (1)] and the velocity scale relevant for inverse

cascade [in Eq. (2)]. Compared to the two-dimensional

system, this additional level of complexity may be at-

tributed to the layer asymmetry caused by friction only

appearing in the bottom layer. If friction appears sym-

metrically between the two layers, eddy statistics in the

two layers would be identical. This, along with the fact

that most kinetic energy is barotropic when friction is

weak, implies all the velocities should scale closely with

each other. However, even if the eddy statistics in the

two layers are indeed identical, the two-layer system

still has 2 degrees of freedom in the vertical. Inter-

actions between barotropic and baroclinic modes can

still result in eddy statistics of the barotropic mode in

this two-layer system differing considerably from eddy

statistics of a two-dimensional system [i.e., Eq. (2) may

be invalid]. If the theory fails only because of the layer

asymmetry, improving the theory would only re-

quire an extra consideration on the bottom heavi-

ness of friction. If it also has to do with the latter, we

would need to reassess the assumptions in LH95

more fundamentally.

In fact, if one had considered the case of linear drag

and tried to use the assumptions made in LH95 to

derive a scaling theory that is analog to H99’s theory

for quadratic drag, one would have arrived at a con-

clusion that the linear drag (alone) cannot halt the

inverse energy cascade and the system would not

equilibrate. In such a scenario, there would be no sta-

tistically steady state unless the effect of finite domain

size is considered. A related aspect of why LH95 the-

ory with linear dampingmay be invalid has indeed been

addressed in TY06, who studied the simulations that

are conducted with the model configuration similar to

LH95 and with the bottom linear drag strong enough to

prevent the eddy mixing length reaching the domain

size. They have found that the model did equilibrate

with well-defined eddy statistics. Also, different from

what is expected by LH95, most temperature anoma-

lies are seen to be concentrated in the cores of the

coherent vortices persisting in the domain. This leads

them to argue that the heat transport is due to the drift

of these vortices, rather than temperatures being pas-

sively mixed by the barotropic eddies. It therefore

questions the relevance of the ‘‘dual cascade’’ picture on

which LH95 and H99 are based.

The goal of this study is to determine whether and

how these different complexities lead to the break-

down ofH99’s theory, and we consider the homogeneous

quasigeostrophic two-layer model in the limit of b5 0

with quadratic drag as the ideal system to tackle the

problem. To study how the layer asymmetry caused

by the bottom friction affects the eddy scaling, we con-

duct numerical simulations with two types of frictional

damping: one with quadratic drag appearing in the

bottom layer only (referred to as asymmetric drag) and

the other with quadratic drag appearing symmetrically

between the two layers (referred to as symmetric drag).

In section 2, we diagnose the eddy scales in these two

sets of simulations and compare their dependence on

the nondimensional damping strength to discern the

differences resulting from layer asymmetry. Since the

layer asymmetry is completely removed in the sym-

metric drag configuration, we can also test its eddy

scaling with H99’s theoretical prediction more cleanly

to isolate the other complexities related to the uncer-

tainties in the theory. The observed deviations of

symmetric drag simulations from the prediction has

motivated a heuristic theory that is modified from

LH95’s assumptions to take the spectral nonlocality

of barotropic energy input into account. We present

this modified theory in section 3 and check it with the

asymmetric drag simulations in section 4 to verify

whether the complexity due to the spectral nonlocality

can be well separated from the complexity due to the

layer asymmetry. We also investigate the strong sym-

metric drag regime where the eddies equilibrate without

an inverse cascade. The eddy scaling and the sensitivity

of equilibrated eddy statistics to initial conditions in this

regime are explained (section 5).

Built on these quadratic drag results, we then discuss

how the modified theory, because of the departure from

H99 scaling, can make a well-defined prediction for

the case with linear damping (section 6). After clari-

fying the relations between quadratic and linear drag,

we are eventually better posited to address the question

why the modified scaling, which is still based on the
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LH95’s physical picture, can be useful despite its

apparent conflict with TY06’s findings. We discuss this

issue in section 7. Finally, we show an example of a series

of simulations in an inhomogeneous channel model with

b 5 0 to illustrate that the diffusivity obtained from the

homogeneous model can be used to predict the behavior

of the baroclinic unstable jets in these inhomogeneous

simulations (section 8). We conclude with the discussion

of some implications and remaining questions on un-

derstanding the baroclinic eddy scales in more compli-

cated and realistic flows (section 9).

2. Asymmetric versus symmetric drag simulations

We set up the homogeneous two-layer quasigeo-

strophic model in a way that closely resembles the one

investigated by LH95. The model solves the same set

of the equations as in LH95 [cf. their Eqs. (1)–(3)] ex-

cept for the replacement of the large-scale dissipation in

the linear drag form with the quadratic drag form de-

scribed in Grianik et al. (2004). Themodel equations are

presented in the appendix along with details of the nu-

merics. As noted there, the value ofU is irrelevant in the

case with quadratic drag since there are no time scales,

only length scales, defined by the model [changing

U only has the effect of renormalizing velocities as

shown in Arbic and Scott (2008)]. Following LH95’s

notations, we express the model parameters in the

length unit as wavenumbers (k; the first wavenumber

k 5 1 is the wavenumber of the domain length): kd

denotes the wavenumber of l and cD denotes the

wavenumber ofLD. Hence, the single nondimensional

parameter characterizing the system is cDk
21
d , whose

physical meaning is essentially the nondimensional

damping strength. Varying the value of cDk
21
d , we

conduct a series of model simulations (Fig. 1). We

initialize the model from infinitesimal perturbations

in the streamfunction field, and we compute the eddy

statistics from the time series of the statistically steady

state. These eddy statistics include the characteristic

eddy length scale L, velocity V, and diffusivity D that

we have introduced in section 1 and will now be more

precisely defined in the same way as TY06:

L[ ht2i1/2U21 , (8a)

V[ h(›
x
c)2i1/2 , (8b)

D[ h(›
x
c)tiU21 , (8c)

where c and t are the barotropic and baroclinic

streamfunction, respectively, and the angle brackets

refer to domain average. The diagnosed eddy scales

(nondimensionalized by U and kd) are plotted in Fig. 2

as a function of cDk
21
d . The results of asymmetric drag

are shown in red and the results of symmetric drag

are shown in black. Different symbols indicate slightly

different model settings with different domain sizes

and resolutions (Fig. 1), which are examined to ensure

the results are to a large extent not affected by the

choice of these additional parameters with less physical

interest. Also, we note that the asymmetric drag results

are purposely plotted at cDk
21
d /2 as opposed to cDk

21
d

for a reason that we explain shortly, and this does not

change the interpretation of the scaling relations.

We first draw the attention to the asymmetric drag

results. As shown in Fig. 2, all the eddy scales in the

asymmetric drag simulations decrease with increas-

ing cDk
21
d when cDk

21
d is small. When cDk

21
d gets closer

to 100, this decreasing trend slows down, so the eddy

scales can be described as exhibiting an exponential

dependence over a limited range of damping. The case

of cDk
21
d 5 100 seems to be an interesting transition

point where both L and V reach their minimum. As

cDk
21
d continues to increase from 100, L and V become

larger again while D still keeps decreasing. Here the

bottom flows are strongly damped by friction and most

kinetic energy is stored in the top layer. The strong

asymmetry between the two layers led Arbic and Scott

(2008) to argue that the theory based on barotropic–

baroclinic decomposition is less relevant in this limit.

They assumed instead that the inverse cascade occurs

in the top layer and closed the theory with a diagnostic

relation based on the primary balance in the bottom

layer potential vorticity equation. These revised as-

sumptions result in a new set of scaling laws, D; c21/5
D

and L; c1/5D . We find that it fits qualitatively to our

simulations and apparently explains why the simulated

D and L have opposite dependence on cDk
21
d . This

reaffirms the crucial role played by layer asymmetry in

this regime.

As a strong contrast, all the eddy scales in the sym-

metric drag simulations decrease monotonically when

cDk
21
d increases within the explored range. In the limit of

small cDk
21
d , the symmetric drag results coincide with

the asymmetric drag results. This is because most kinetic

energy is barotropic and is equally partitioned between

the two layers. The damping appearing in only the

bottom layer is equivalent to the effective damping

appearing in both layers but with a half of the damping

strength (i.e., cDk
21
d ). Hence, they are better aligned

with each other when we shift the asymmetric drag

results from cDk
21
d to cDk

21
d /2. As cDk

21
d increases, un-

like the exponential relation seen in asymmetric drag

simulations, eddy scales for symmetric drag simply fol-

low a power-law dependence on cDk
21
d until cDk

21
d
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reaches about 100. Beyond this value, another power-

law relation with a different slope is observed. The

latter marks a new dynamical regime where the so-

lution equilibrates without an inverse cascade. We

analyze these simulations in more details in section 5.

Based on the above results, we can now summarize

the impact of layer asymmetry on eddy scaling into a

few key findings. First, the asymmetry between the

two layers as well as its impact is amplified when the

damping is stronger. Second, the layer asymmetry is

responsible for replacing a simple power-law scaling

(as would have been predicted by the theory) with a

more complicated transition between two different

scaling regimes that in between could be approxi-

mated as exponential. Third, the layer asymmetry al-

lows the inverse cascade to continue to occur in the

upper layer even when cDk
21
d exceeds one. After iso-

lating the sources of complexity by comparing the

asymmetric and symmetric drag simulations, we next

examine the remaining complexities via comparing

the symmetric drag simulations to the theoretical

prediction by H99.

3. Symmetric drag simulations versus
theoretical prediction

Without layer asymmetry, the two-layer system

with symmetric drag seems more comparable to the

two-dimensional system. It can therefore help better

clarify the differences between the two systems that

the theories of H99 and LH95 may have overlooked.

Looking at the symmetric drag results in Fig. 2, we

notice that for cDk
21
d , 100 the nondimensional char-

acteristic scales of eddies can all be expressed as;c2m
D .

The exponent m estimated from the least-squared

fit using the data of kd 5 50 simulations is indicated

in Fig. 2. These estimates are smaller than predicted

by Eqs. (3), (6), and (7): L; c20:58
D , V; c20:78

D , and

D; c21:24
D versusL; c21

D ,V; c21
D , andD; c22

D (we note

that the wavenumber cD is inversely proportional to

the length-scale LD). The simulated eddy scaling de-

pendence on the damping strength is consistently weaker

than the theoretical prediction, so some assumptions in

the theory must be violated.

To address this discrepancy, we believe a good start-

ing point is to recognize that L and V scale differently

with cDk
21
d . The fact that L and V are not proportional

to each other contradicts an important implication by

LH95, that is the eddy time scale (T[LV21) should

scale with inverse Eady growth rate:

T; (Uk
d
)21 . (9)

Since U and kd are fixed in each set of our simulations,

Eq. (9) requires L and V to change proportionally if the

theory of LH95 holds well. Equation (9) can be derived

from Eqs. (2), (4), and (5) together with «c ’ «p. Using

the definitions of L and V in Eq. (8), Eq. (9) can also be

phrased as a constraint on the partitioning between

barotropic kinetic energy (hEci’V2) and baroclinic

available potential energy [hEti5 (LUkd)
2] of isotropic

eddies,

hE
c
i/hE

t
i; const . (10)

Evidently, because L and V change differently with

cDk
21
d , this energy ratio varies and in fact increases

along with L in the simulations. A similar relation

between hEci/hEti and L is documented by LH95 for

their bottom linear drag simulations, where they also

found that hEci/hEti increases as energy containing

wavenumber becomes smaller. They have connected

this behavior to the observed shape of the energy spectra.

In their simulations, they recognized that the slope of

barotropic energy spectrum is slightly steeper than 25/3

and the slope of baroclinic energy spectrum is slightly

flatter than 25/3 (cf. their Fig. 4). This deviation from

Kolmogorov’s theory is likely associated with a wide

spread of energy injection from baroclinic to barotropic

mode inwavenumber space. Taking the barotropic energy

input’s spectral nonlocality into account, they proposed

a qualitative argument to explain the length-scale de-

pendence of energy ratio.Wehave attempted tomake this

argument more quantitative to explain the weaker cD

FIG. 1. A summary of the parameter settings for each set of

numerical simulations: (from left to right) the chosen form of large-

scale friction, maximum wavenumber resolved kmax, wavenumber

of deformation radius kd, initial condition (IC), and the explored

range of nondimensionalized damping strength. For initial

condition, ‘‘I’’ refers to the simulations integrated from the

infinitesimal perturbations prescribed in the same way as

LH95, and ‘‘S’’ refers to the simulations integrated from the

simulated streamfunction field taken from the cDk
21
d 5 1021 run

that is integrated from the first initial condition to a statistically

steady state.
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dependence of eddy scales that is observed in our

simulations.

To illustrate how this argument based on spectral

nonlocality modifies the original scaling, we follow

LH95’s derivation to first obtain its modification to

Eq. (9). The essence of this argument is to allow an

underdetermined wavenumber k dependence in baro-

tropic energy spectrum Ec(k). The theory of LH95

originally assumes that energy transfer from baro-

clinic to barotropic mode is confined at kd (Rhines

1977; Salmon 1978, 1980) so a Kolmogorov’s inertial

range exists and we expect Ec(k); «2/3c k25/3, where

barotropic cascade energy flux «c is independent of k.

With the single dominant scale approximation, this

directly leads to Eq. (2). However, if energy input is

broadly spread among a range of wavenumbers and

the local cascade energy flux picks up local energy

injection as energy moves to smaller wavenumber, we

may assume locally

«
c
(k)5 «

c0
kx
dk

2x , (11)

with x. 0 (we normalize k by kd so that «c0 has the unit

of energy flux); themodified barotropic energy spectrum

would therefore become

E
c
(k); «2/3c0 k

2x/3
d k2(512x)/3 . (12)

Then supposing that the baroclinic mode still acts

like a passive tracer that is advected by the baro-

tropic mode, the baroclinic energy spectrum would

still follow Et(k); «tT(k)k
21, where the baroclinic

cascade energy flux «t is constant and local eddy

turnover time T(k) is determined by the advection

field. With the modified barotropic energy spectrum,

T(k); [«2/3c0 k
2x/3
d k2(22x)/3]

21/2
, the modified baroclinic en-

ergy spectrum becomes

E
t
(k); «

t
«21/3
c0 k2x/3

d k2(52x)/3 . (13)

Therefore, x. 0 implies a steeper barotropic energy

spectrum and a flatter baroclinic energy spectrum.

An immediate result that follows this modification,

supposing the bulk energies predominantly reside at

a single wavenumber that is associated with L and

«c0 ’ «t, is that

FIG. 2. Eddy scales in the asymmetric and symmetric drag sim-

ulations: (from top to bottom) eddy length scaleL, velocity scaleV,

and diffusivity D as a function of damping strength cDk
21
d . Simu-

lations with the asymmetric drag are red and with the symmetric

drag are black. The different symbols refer to the model settings

with different domain sizes and spectral resolutions (see Fig. 1).

For an easier comparison, all the asymmetric drag results are

shifted by a factor of 2 along x axis, i.e., from cDk
21
d to cDk

21
d /2

(which would be the effective drag if the drag was symmetric). In

each panel, the top-left solid line indicates the power-law scaling

estimated from a least-squared fit of the data in the kd 5 50,

cDk
21
d , 100 symmetric drag simulations; the bottom-right solid

 
line indicates the power-law scaling predicted by H99’s theory; and

the top-right dashed line indicates the scaling proposed by Arbic

and Scott (2008) in the strong asymmetric drag limit.
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hE
c
i/hE

t
i; (Lk

d
)x , (14)

and the ratio between barotropic kinetic energy and

baroclinic available potential energy should increase

with L. With the definition of T, we obtain a modified

scaling replacing Eq. (9):

T; (Lk
d
)2x/2(Uk

d
)21 . (15)

Compared with Eq. (9), Eq. (15) suggests T is no longer

a constant and depends on L and x, which measures

the broadness of energy input in the barotropic energy

spectrum. Combining Eq. (15) with Eqs. (1), (4), and (5)

gives themodified power-law dependence of eddy scales

on cD:

L; c
21/(11x)
D , (16a)

V; c
2(21x)/[2(11x)]
D , (16b)

D; c
2(41x)/[2(11x)]
D . (16c)

Hence, x. 0 also implies a weaker cD dependence for

L, V, and D.

To see if this modified scaling applies to our simula-

tions, we estimate x using Eq. (16) with the simulated

scaling relation L; c20:58
D to obtain x’ 0:72. This esti-

mate is then compared with the slopes of energy spectra

to verify the self-consistency of the assumptions we have

made on the spectral slopes. From Eqs. (12) and (13),

we expect

[E
c
(k)k5/3]3/2 ; k2x , (17a)

[E
t
(k)k5/3]3 ; kx (17b)

near the energy-containing scale. These simulated

spectra {[Ec(k)k
5/3]3/2 and [Et(k)k

5/3]3} are plotted in

the first and second rows of Fig. 3. Although a single

slope assumption does not fit to their shapes that well,

x’ 0:72 at least matches qualitatively to the observed

bulk spectral slopes (for simplicity, only the set of kd 5 50

simulations is shown).

In the third and fourth rows of Fig. 3, the simulated

barotropic energy spectrum Ec(k) and the simulated

barotropic energy flux «c(k) (calculated as described in

LH95’s Fig. 4) are further examined. To connect Ec(k)

back to «c(k), we have compared the simulated Ec(k)

with the prediction Cc«c(k)
2/3k25/3 computed from the

simulated «c(k) and the universal constant Cc 5 7 cho-

sen to give a reasonable fit. The latter is a good ap-

proximation for the former in the range of wavenumbers

between the energy-containing scale (the peak of the

spectrum) and kd 5 50, confirming that energy level at

these wavenumbers is solely determined by the local

upscale cascade. The observed steepness of the spectral

slope from 25/3 is then due to the k dependence in

«c(k), which if to be approximated by k2x [i.e., Eq. (11)]

is roughly consistent with the estimated x’ 0:72.

Looking closely at the simulated «c(k), we shall note

that its spectrum is actually not so well described as k2x.

If all the energy is both input at a single wavenumber

and then removed at a single smaller wavenumber,

«c(k) would be flat between these two wavenumbers.

Instead, the actual spectral slope varies smoothly from

negative to positive as k decreases. Both barotropic

energy input due to triad interactions involving the

baroclinic mode, whose spectral structures look very

similar to the ones reported in LH95 (cf. their Figs. 4

and 5), and the energy removal by quadratic frictional

dissipation are nonlocal in wavenumber space, with

the former dominant in the region of most interest,

producing a negative slope. There is therefore no obvious

physical basis for the use of the simple power-law ap-

proximation (i.e., k2x) as compared to a more general

functional shape that can better describe the «c(k)

spectrum. We emphasize that k2x in Eq. (11) is thus

better regarded as a heuristic assumption that we choose

for its simplicity and effectiveness to study the com-

plexities that lead to the deviations from the original

theoretical prediction.

We also note that in the above derivation for Eq. (16) we

have ignored the change of the correlation between baro-

tropic velocity and baroclinic streamfunction [r[D/(VL)]

as a way to violate Eq. (4). From the estimated scaling

fits (i.e., ;c2m
D ) in Fig. 2, we can obtain r; c0:12D . The

dependence of r on cD could bring in uncertainty that

leads to different estimates of x when we fit the sim-

ulated V and D using Eq. (16) instead: x’ 0:79 from

simulated V and x’ 1:03 from simulatedD. While this

uncertainty range seems large for x itself, it translates

into much smaller ones in the estimated scaling ex-

ponents in Eq. (16) because of the specific way they

depend on x. Its effect on the scaling argument is thus

weak compared to the effects of the modified spectral

slopes described above.

4. Asymmetric drag simulations versus
modified prediction

When analyzing the spectra of the symmetric drag

simulations, we have also checked the spectra of the

asymmetric drag simulations. A finding from this anal-

ysis is that there is no obvious difference between the

spectral slopes of the two sets of simulations (Fig. 3).

This makes us suspect that the broad energy input in the

barotropic energy spectrum remains as a key source of
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FIG. 3. Deviations of the simulated spectrum shapes from the theory in the (left) symmetric and (right)

asymmetric drag simulations (kd 5 50 only): (from top to bottom) compensate spectra of barotropic energy

[Ec(k)k
5/3]3/2, compensate spectra of baroclinic available potential energy [Et(k)k

5/3]3, barotropic energy spectra

Ec(k) (solid) vs the corresponding predictions by Cc«c(k)
2/3
k25/3 (dashed), and barotropic energy flux spectra

«c(k). In each panel, the spectra for the cDk
21
d 5 1021 and cDk

21
d 5 1022 simulations are colored, with the rest of

the cases plotted in gray. We have chosen Cc 5 7 to obtain an overall reasonable fit for both sets of simulations,

but we notice that this results in a slight overestimation for the symmetric drag simulations and a slight un-

derestimation for the asymmetric drag simulations (for reasons unclear to us). The black solid line indicating the

slope k2x or kx with x’ 0:72 is estimated from the simulated L using Eq. (16) (see text for more details).
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complexity in the asymmetric drag simulations and its

effect may be largely separated from the effects of layer

asymmetry. If we try to estimate x in the modified

scaling prediction for the asymmetric drag simula-

tions, the resulted x value is then hopefully similar

to the one for the symmetric drag.

To test the hypothesis, we cannot estimate x from

Eq. (16). This is because Eq. (16) is derived from Eq. (1)

and that Eq. (1) with V defined in Eq. (8) does not hold

with asymmetric friction. We instead estimate x directly

from Eq. (15), the scaling relation between T and L,

without a reference to cD. The simulated T itself turns

out to be more sensitive to domain size and resolution

than L and V individually, but their impact on the

scaling is small. For simplicity, we only show T for the

sets of kd 5 50 simulations in Fig. 4. Indeed, plotting T

against L reveals that the asymmetric and symmetric

drags behave more or less the same: T scales with L in

a similar manner regardless the complexities of layer

asymmetry. Fitting the data from both the asymmetric

and symmetric results gives T;L20:36 and x’ 0:72,

which is consistent with the estimate from the symmetric

results alone.

Considering that T defined using V in Eq. (8) may

have little relevance when the asymmetry becomes too

strong, we have also tried avoiding V in the calculations

by examining the simulated relation ofD andL directly.

As seen in Fig. 4, D has a simple power-law depen-

dence onL, and this dependence is very similar between

symmetric drag and asymmetric drag simulations. A

fit of the simulatedD on L gives D;L2:19. This result

underscores that, while we cannot identified the rel-

evant eddy velocity responsible for mixing in asym-

metric drag simulations, at the very least D itself

scales as L to some exponent that is close to (and thus

can potentially be predicted by) the one for symmetric

drag simulations.

Therefore, the moderate success of the modified scal-

ing in predicting the symmetric as well as asymmetric

drag results suggests the complexities due to the spectral

nonlocality can be superposed on the complexities due

to the layer asymmetry. The layer asymmetry affects the

ability of drag to stop the cascade and results in different

L between asymmetric and asymmetric drag simula-

tions, but it does not change the scaling relations be-

tween L and other eddy statistics. Instead, the latter is

primarily controlled by the effect of spectral nonlocality

of barotropic energy input.

5. Equilibration without an inverse cascade

In this section, we investigate the distinct regime

in the model with symmetric damping where the flows

equilibrate without an inverse cascade. The fact that

there is no inverse cascade can be told from the re-

sults in Fig. 2 that Lkd is about the same as or even

smaller than 100 in the symmetric drag simulations

when cDk
21
d . 100. However, some seeming contra-

dictions appear in this finding. The disappearance

of inverse cascade when cDk
21
d . 100 is predicted by

H99’s theory, which argues that the friction becomes

strong enough to directly stop the inverse cascade at

the scale of deformation radius. Without an inverse

cascade, Stone’s (1972) quasi-linear theory predicts

that eddy scales and amplitudes would be determined by

the properties of linear unstable modes and the given

basic state. Therefore, they should be independent

of the frictional strength. In these simulations, L, the

meridional length scale of eddy mixing, can none-

theless become much smaller than kd when the fric-

tion strengthens, and V and D can also be smaller

than U and Uk21
d , respectively. Surprisingly, the eddy

scaling in this regime matches the theoretical pre-

diction by H99 [i.e., Eqs. (3), (6), and (7)]. We here

explain how these counterintuitive results emerge by

examining the equilibration mechanism of these flows.

To study how the two-layer system equilibrates with a

strong symmetric quadratic drag, we have taken a close

look at the instantaneous streamfunction in these sim-

ulations. The simulated streamfunction has no me-

ridional structure and tends to lock to certain zonal

FIG. 4. Relations among eddy scales in the asymmetric and

symmetric drag simulations (kd5 50 only): relations of (top) eddy

time scale T and (bottom) eddy diffusivity D with eddy length

scale L. The slope of the black line is computed from the least

squares fit of the data from both the asymmetric and symmetric

drag simulations (i.e., all the data points shown in the plot).
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wavenumbers, indicating that the flows are dominated

by the baroclinically unstable modes with gravest me-

ridional wavenumber rather than isotropic eddies. This

also suggests that it is the friction alone that directly

stops the unstable modes from continuing to grow.

The nonlinear terms and secondary instabilities do

not have a chance to emerge so as to modulate the

meridional scale of eddies and make it comparable to

the zonal scale.

In addition to the instantaneous streamfunction fields,

we can also see the dominance of meridional velocity

y over zonal velocity u in the eddies and the dominance of

baroclinic over barotropic component in the kinetic en-

ergy partitioning (Fig. 5). Consequently, the eddy fluxes

can no longer be thought of as barotropic flows stirring

baroclinic streamfunction (as in H99). It is also less

meaningful to try to relate the zonal energy containing

scale to meridional mixing because the zonal scale has

no direct relation to the meridional scale. While

the zonal eddy scale is controlled by the wavelength

of linear unstable modes, the assumption that eddies

would be isotropic, which is implicitly included in

Stone (1972), does not apply to these simulations.

Thus, Stone’s (1972) theory is inapplicable here.

What the linear dynamics of baroclinic instability

controls here is instead the baroclinic eddy time scale

(Tt [L/Vt) defined by baroclinic meridional velocity

Vt. This time scale represents the inverse linear growth

rate of the system’s gravest unstable modes. Equating

Tt to the time scale of frictional damping (cDVt)
21

yields L; c21
D , which leads to a recovery of Eq. (3).

If we further consider that baroclinic kinetic energy

is proportional to the barotropic kinetic energy in

baroclinic waves, Vt ;V, then we can follow the same

derivation described in section 1 to regainEqs. (6) and (7).

Therefore, the eddy scaling in this regime is the same as

the H99’s prediction because of the same time-scale

constraint but with the eddy time scale determined by

linear instability rather than turbulent cascade.

Additionally, it is worth noting that since the flows

equilibrate directly with the gravest unstable modes, the

equilibrated eddy statistics are sensitive to initial con-

ditions. The simulations analyzed above are all inte-

grated from the infinitesimal perturbations and go

through the same linear baroclinic growth stage, so the

excited modes and Tt in these simulations are the same

(Fig. 5). To demonstrate the initial-condition de-

pendence, we have integrated another set of simu-

lations with varying cD. These new simulations are

initiated with the streamfunction field at the last

output time step of the cDk
21
d 5 1021 simulation in-

tegrated from infinitesimal perturbations until sta-

tistically steady state (i.e., from the set of simulations

analyzed in Fig. 2). They are then integrated until the

new statistically steady state is achieved. During this

transition, the flows initially occupied by isotropic

eddies and filaments gradually spin down and are

eventually taken over by the unstable modes. There-

fore, themeridional-to-zonal kinetic energy ratio is still

close to one. However, the unstable modes emerged

at the statistically steady state are different, in gen-

eral, so the ratio of baroclinic-to-barotropic kinetic

energy and Tt exhibit sensitivity to initial conditions

(Fig. 5).

6. Linear versus quadratic drag

While our analysis focus on the simulations with

the more geophysically relevant quadratic drag, it is

FIG. 5. Initial-condition dependence of steady state flow prop-

erties in the strong symmetric drag regime (kd5 10 only): (from top

to bottom) meridional kinetic energy (hy2i/2) to total kinetic en-

ergy (hu2 1 y2i/2) ratio, baroclinic kinetic energy (hKEti) to total

kinetic energy (hKEc 1KEti) ratio, and baroclinic time scale

(Tt defined as the ratio of eddy length-scale L and baroclinic me-

ridional velocity Vt) as a function of cDk
21
d . Two initial condi-

tions are considered: one with infinitesimal perturbations in

the streamfunction field as described in LH95 (crosses) and the

other as the steady-state streamfunction field taken from the

cDk
21
d 5 1021 simulation (triangles).
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the linear drag that is more commonly used in pre-

vious studies of this type. To better link our results to

this literature, we have conducted additional simu-

lations with linear drag. We plot the diffusivity D

diagnosed from these linear drag simulations along

with the ones from the quadratic drag simulations in

Fig. 6. The two set of simulations share the identical

setting except for the form of drag. The key distinc-

tion of a linear drag from a quadratic drag is that it

defines a time scale rather than a length scale. Its

strength is measured by the inverse damping time

scale (k as defined in LH95). To allow a straightfor-

ward comparison between two forms of drag, we de-

fine an effective damping time scale ke [ cDj=c2j for
the quadratic drag simulations, where j=c2j is the

bottom-layer rms velocity horizontally averaged over

the domain (an internal scale diagnosed from the sim-

ulations). With this definition, the results of quadratic

and linear collapse to a single line in Fig. 6, indicating

they share the same eddy-scale dependence on damping

strength.

The possibility to map the linear to quadratic drag

simulations further suggests that the scaling relations

and theoretical consideration in this study may also help

explain the dependence on linear drag, such as why the

linear drag itself can stop the cascade alone (Smith and

Vallis 2002). If we take the theory with the modified

spectral slopes described in section 3, but in addition use

the approximation cD ; kV21 in the expression for V in

Eq. (16), we get

V; k2(21x)/x . (18)

As expected, this is indeterminate for x 5 0 (the H99

scaling) but is well defined for x. 0. Substituting this

scaling for V into the expression for L and D, we find

L; k22/x , (19)

D; k2(41x)/x . (20)

For x’ 1:03 estimated from theD of symmetric quadratic

drag simulations in section 3, this impliesD;k24:88. This

scaling is indicated with the sloping line in Fig. 6 and is

close to the least-squared estimate obtained from the

symmetric linear drag simulations, D; k24:52. The rea-

sonable fit to the simulated results suggests that this way

of describing the results in terms of a modified spectral

slope is consistent between the simulations with two

forms of drag.

There is however a particular aspect of which the

linear drag acts differently from the quadratic drag.

While in strong symmetric quadratic drag simulations

the eddies equilibrate linearly, they are damped to zero

in strong symmetric linear drag simulations when the

inverse damping time scale is larger than the growth

rate of the most unstable modes. (With linear potential

vorticity damping, i.e., with equal damping of winds

and temperature, stabilization occurs precisely when

the damping is larger than the growth rate of most un-

stable inviscidmode, but equal frictional damping in both

layers with no thermal damping is sufficient to produce

the same qualitative result.) In contrast, quadratic

damping can never stabilize a flow that is unstable in the

absence of the damping, since the strength of the damping

is infinitesimal when the wave is infinitesimal. It only in-

terferes with the baroclinic instability once the wave

grows sufficiently that the damping time scale and the

time scale of baroclinic growth become comparable.

7. A comparison with TY06

The modified scaling argument present in this

study shares with LH95 the same physical picture for

eddy heat fluxes, which are interpreted as generated

by the stirring of background mean temperature

(baroclinic streamfunction) gradient by the baro-

tropic energy-containing eddies. We have proposed

that focusing on the spectral shapes and their de-

parture from Kolmogorov’s scaling is a useful way of

obtaining modified scaling to fit our simulations, with

quadratic symmetric, quadratic asymmetric, linear

symmetric, and linear asymmetric drags. However,

its relevance to the linear asymmetric drag case is

confusing given the findings in TY06, where the eddy

heat fluxes are described as due to the systematic

meridional drift of coherent vortices carrying tem-

perature signatures.

FIG. 6. Eddy scales in the linear and quadratic drag simula-

tions: diffusivity D diagnosed from linear (squares) and qua-

dratic (circles) drag simulations as a function of linear damping

strength (kk21
d U21). The two sets of simulations are mapped to

each other by comparing k to the effective linear damping

strength ke (defined in the text) for the quadratic drag simula-

tions. LH denotes for the run that shares the same parameter

setting as the case I simulation in LH95. The solid line indicates

the scaling prediction discussed in the text.
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In TY06’s analyses, they described a strong anti-

correlation between the instantaneous baroclinic stream-

function t and barotropic vorticity =2c (cf. their Fig. 4) to

emphasize this role of vortices in heat transport. Similar

to those shown in TY06, in Fig. 7, we present scatterplots

of t and =2c (normalized by kd and U) along with the

snapshots of the two fields that are used to generate these

scatterplots (to allow the finer structure in the snapshots

to be recognized more easily, only one-ninth of the entire

domain is shown). We have examined all our simula-

tions and have selected two of them as examples for

this purpose. The two selected simulations are both

with linear damping: the one with asymmetric drag has

kk21
d U21 5 0:25 and the one with symmetric drag has

kk21
d U21 5 0:16. We choose the former as it is among

our simulations most comparable to the simulation

shown in Fig. 4 of TY06. Accordingly, we then choose

the later case that uses symmetric drag and has similar

eddy scales (e.g., the simulated D for the two cases are

similar as shown in Fig. 6).

For the asymmetric drag case, we see a scatterplot

similar to the one shown in TY06 with the data partly

organized into a few branches that correspond to indi-

vidual vortices. It also confirms the presence of the an-

ticorrelation between t and =2c as identified by TY06.

When we look at the scatterplot of the symmetric drag

FIG. 7. (top) Scatterplots of baroclinic streamfunction t and barotropic vorticity =2c and (middle),(bottom)

snapshots of the two fields: (left) a simulation using linear asymmetric drag with kk21
d U21 5 0:25 and (right)

another using linear symmetric drag with kk21
d U21 5 0:16 are shown to compare with the simulations

of TY06.
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case, there is however no evidence that t and =2c are

correlated. The disappearance of the anticorrelation

does not imply the disappearance of the coherent vor-

tices, though. For both simulations, we have observed a

hierarchy of vortices with different sizes in the snapshots

of =2c that look indistinguishable. Only when turning to

the t field, their differences start to be revealed. For the

asymmetric drag case, the vortex structures are vivid in

t, with the warm core anticyclonic signature expected.

By contrast, it is more difficult to identify the vortices in

the symmetric drag case’s t field. Even if they exists, the

sign of t and=2c at their cores is not systematic. Instead,

there is a cluster of data around the origin in the t2=2c

scatterplots, corresponding to the long thin filaments

occupying most of the domain and seen in both =2c

and t fields. In this regard, a nonnegligible portion of

t anomalies is not within the vortices but is within

the filaments aroused from the baroclinic forward cas-

cade. One key to reconcile these two viewpoints would

therefore be an understanding of the partitioning of the

heat transport between vortices and passive filaments.

The simplest explanation for the thermal structure

of the vortices described in TY06 is that the lower-

level winds in the vortices that would otherwise be

barotropic are damped by friction, creating top-heavy

equivalent barotropic vortices. Consistent with thermal

wind, this results inwarm-core anticyclones and cold-core

cyclones. Given these thermal signatures, the vortex

dynamics in the presence of the mean thermal wind

becomes a candidate for organizing heat transfer, in

competitionwith the passive tracer–like advection of the

temperature field. Yet, in the case of symmetric damp-

ing, there is no reason to expect this kind of equivalent

barotropic structure. By symmetry, the eddy kinetic

energies in the two layersmust have identical statistics in

this case. This may explain why we only observe the

anticorrelation of t and =2c in the asymmetric but

symmetric drag case. Moreover, in our results, the

scaling relationships for diffusivity and the eddy scales

look identical in the symmetric and asymmetric drag

cases in the limit of weak damping (Figs. 2 and 6). If the

vortices in the symmetric drag cases can have no sys-

tematic temperature signal, a vortex-dominated heat

flux is difficult to visualize. By implication, if we plau-

sibly want the very similar results with asymmetric drag

to have the same physical explanation as in the symmetric

drag case, it seems justified to consider both as dominated

by the same dynamics when damping is weak.

For stronger damping, there are clearly important

differences between the symmetric and asymmetric

drag cases (Figs. 2 and 6). When the nondimensional

damping strength is larger than one, the flows are at

another limit described in Arbic and Scott (2008)

and Arbic and Flierl (2004). Our current speculation

is that TY06 dynamics is relevant for intermediate

values of the damping strength in the asymmetric

drag case, interpolating between that limit of strong

damping and the weak damping regime for which the

scaling relations discussed here are relevant. (We

restrict our discussion to cases in which the domain

size is not a relevant parameter.) This intermediate

regime is very important, being in a meteorological

and oceanic relevant parameter range (H99; Arbic and

Scott 2008). The analysis in TY06 likely provides more

insights to the dynamics in this regime, even though we

cannot at this time offer a coherent theory that simul-

taneously covers all of these regimes.

8. Homogeneous and inhomogeneous comparison

It is natural to question how these homogeneous

turbulence results carry over to inhomogeneous flows.

As the first step, we have explored an inhomogeneous

two-layer quasigeostrophic model with channel geom-

etry. The equation of the model is
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i
)52k
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where qi 5=2ci 1 (21)i(c1 2c2)/(2l
2) is potential

vorticity and ci is streamfunction for upper (i 51)

and lower (i 5 2) layers; D (cD) represents the qua-

dratic drag in the same form as Eq. (A4) and n=6c

is the hyperviscosity term. Except the hyperviscos-

ity term, the inhomogeneous model is only distinct

from the homogeneous model in that its baroclinic

streamfunction [t5 (c1 2c2)/2] is relaxed to a zon-

ally symmetric profile that produces a baroclinic jet. As

this thermal relaxation is controlled by the inverse ther-

mal damping time scale kT and the thermal equilibrium

profile tE, we can construct a diffusive model (in the di-

rection y) of the form
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where De is the effective dimensional diffusivity in the

form De(y)52›yt(y)ld and d is the nondimensional

diffusivity measured from the homogeneous model.

That is, given that the two models have the same non-

dimensional frictional damping strength (i.e., cDk
21
d 5

cDl), we can obtain d5DkdU
21 from the simulated

diffusivity D, kd, and U in the corresponding homoge-

neous model simulation to solve Eq. (22) for the equil-

ibrated temperature and eddy heat flux.
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Figure 8 shows how the eddy heat fluxes predicted

by this diffusive model compare to the inhomoge-

neous model simulations with the parameters b5 0,

l5
ffiffiffi
2
p 21

700 km, k21
T 5 20 days, tE 52UEs tanh(y/s),

and UE 5 20m s21. These are chosen to be mostly the

same as in Zurita-Gotor et al. (2014), and the eddy

heat fluxes are also shown in the temperature (u)

unit (K) through the conversion u[ tc21
0 u0 with u0 5

290K and c0 5 2:453 108 m2 s21. The inhomogeneous

model’s resolution and domain size in the zonal di-

rection are also kept the same as the homogeneous

model after nondimensionalized. This is to ensure the

results are not affected by these model details. Evi-

dently, the diffusive model successfully predicts the

eddy heat flux’s meridional structure both when the

radiative equilibrium width of baroclinic jet s and

when the frictional (quadratic) damping strength cD
are varied.

This comparison has previously been provided by

Pavan and Held (1996) with nonzero b and linear

damping (cf. their Fig. 9). Our case with zero b is even

simpler in the sense that there is no ambiguity

whether to diffuse temperature or potential vorticity,

since the temperature and the potential vorticity in

both layers are all proportional to each other in this

limit of the homogeneous model. In the inhomoge-

neous model simulations we analyzed, the eddy mo-

mentum fluxes are also negligible. Consistent with

Pavan and Held (1996), our result again supports the

relevance of homogeneous scaling for inhomoge-

neous flows. We note that, as in Pavan and Held

(1996), thermal damping has been added to the

homogeneous model when calculating d as this is an

essential feature of how the inhomogeneous model is

forced. Since the thermal damping is not included in

the homogeneous simulations analyzed in the pre-

vious sections, the d obtained from the homogeneous

simulations with thermal damping in general is dif-

ferent from those without thermal damping and re-

ported in Fig. 2. In the case considered here, it has a

very modest effect on the eddy scales and fluxes, so

d remains close to the value that we have shown there.

Yet some systematic deviations from the homogeneous

predictions, possibly due to this extra parameter or

other subtle differences between the two models, are

under investigation.

9. Discussion and conclusions

We have studied the statistically steady state solutions

of a b 5 0 homogeneous two-layer quasigeostrophic

model with quadratic drag. In this model, the statistically

steady state is a function of a single parameter, the ratio

of a frictional length-scale LD 5C21
D H (where CD is the

nondimensional coefficient in the surface stress and H is

the depth of the layer to which the stress applied) and the

radius of deformation l5NH/f , or, equivalently in terms

of our model notations, the ratio of their wavenumbers:

cDk
21
d . We have run the model with a range of cDk

21
d in

the attempt to understand the aspects of its dynamics that

complicate the eddy scaling theory proposed by H99.

The first aspect we focus on are the asymmetry be-

tween upper and lower layers caused by the presence of

drag in the lower layer only. This layer asymmetry in

FIG. 8. Eddy heat fluxes in the channel model simulations: the meridional structure of eddy heat fluxes simulated

from the channel model [Eq. (21); solid] and the predictions by a diffusive energy balancemodel with the diffusivity

predicted by our homogeneous model simulations [Eq. (22); dashed]. Two sets of simulations are examined: one

with varying jet width at radiative equilibrium s and one with varying frictional quadratic damping strength cD.

(left) The first set of simulations has a fixed cDl5 1021 and sl21 5 1, 2, 4, 8; (right) the second set of simulations

has a fixed sl21 5 8 and cDl5 1021, 1020:5, 100, 100:5, where l is deformation radius. The other model parameters

is described in the text.
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drag makes the flow equivalent barotropic. Therefore,

when the damping is stronger, while both asymmetric

and symmetric drag become more efficient at stopping

the inverse cascade, the former is relatively more in-

efficient than the latter. Eddy scales are then de-

creasing less slowly with the damping strength in the

cases with asymmetric than with symmetric drag.

On the other hand, when the damping is weak and the

flow is largely barotropic, there is little difference be-

tween models with asymmetric or symmetric drag, as

long as one rescales the strength of the damping so that

the barotropic flow is damped at the same strength in

each case.

In the second aspect, we argue that the spectrally

nonlocal baroclinic-to-barotropic energy transfer results

in the deviation from Kolmogorov’s inertial range the-

ory, which is a central assumption in LH95 that is then

considered in H99. A modest modification on this as-

sumption and thenH99’s scaling by assuming barotropic

spectral energy flux has a wavenumber dependence

k2x is adopted to explain the observed weaker power-

law dependence of eddy scales on the damping strength

(L; c20:58
D , V; c20:78

D , and D; c21:24
D ). We do not pro-

vide a theory for x, but find that this expression, with

x’ 0:72 directly estimated from the simulations, gives

self-consistent fits to the simulations, although some

uncertainty exists on how it is best estimated. We also

confirm that the same modified scaling applies to both

the symmetric and asymmetric drag simulations

when the damping is weak, so the complexity related

to the spectral nonlocality can be largely distin-

guished from the one related to the layer asymmetry.

Finally, with sufficiently strong symmetric damping a

regime is found in which the equilibrated flows are

dominated by the linear unstable modes directly sta-

bilized by friction, so the linear dynamics controls the

eddy scaling and the solutions are initial-condition

dependent.

In addition to quadratic drag, we examine the ho-

mogeneous model simulations with linear drag and find

that their eddy scales are very similar to those in the

quadratic drag simulations once a proper relation be-

tween the damping strengths of the two forms of drag is

defined. Because of this simplicity, the modified scaling

for the quadratic drag case also predicts the scaling for

the linear drag case, which resolves the problem of the

original theories of LH95 and H99 that struggle to

provide a well-defined prediction when the halting

mechanism is linear drag. After that, we discuss the

alternative approach of TY06, in which heat transport

in their bottom linear drag simulations is found to be

due to the drift of vortices with systematic temperature

signatures. This is also observed in our asymmetric

drag simulations. However, the similarity in the be-

havior of our model with symmetric and asymmetric

drags when the damping is weak makes it hard to in-

terpret our results in this fashion, since the model with

symmetric drag produces vortices with no systematic

temperature signals. Therefore, we leave this issue

unresolved.

Last, following the approach of Pavan and Held

(1996), we compare a set of inhomogeneous channel

model simulations with bottom quadratic drag to the

solution of a diffusive energy balance model with its

diffusivity predicted by the homogeneous model. At

least for the cases that we have looked into, we obtain

some encouraging results. In fact, with b5 0, this is an

especially simple system to perform such a comparison,

in large part because eddy momentum fluxes play less

of a role here than in the case with nonzero b, resulting

in the absence of eddy-driven jets. Further study of this

comparison in this idealized system could shed light

on any fundamental limitations to the value of the

homogeneous limit.

Together these results help us to better interpret

H99’s estimate on the extent of inverse cascade con-

trolled by surface friction in idealized models of the

extratropical troposphere. Relative to Eq. (3)’s pre-

diction, accounting for spectral nonlocality helps the

cascade stop earlier, while introducing layer asymme-

try allows a larger cascade range. The two counter-

acting effects both operate at LDl
21 5 (f /N)C21

D ’ 10,

the relevant regime for the extratropical troposphere

over oceans (f /N’ 1022 and CD ’ 1023), so Eq. (3)

ends up being a fair estimate. If a higher surface

roughness, such as for the typical land surface value

(CD ’ 1022), is considered, the prediction by Eq. (3)

may underestimate the eddy length scale at which the

surface friction halts the cascade. The eddy kinetic

energy and diffusivity may also be larger than ex-

pected. As it is a meteorological relevant regime, the

effects of friction being confined near the surface

clearly need a better quantification for a more precise

estimate. This is not addressed here and is a limitation

of this study.

Another limitation we emphasize is that the modified

scaling presented in this study is not a predictive theory

but rather an economical description, as we directly

estimate the wavenumber dependence of the baro-

tropic spectral energy flux (i.e., k2x) from the simula-

tions. To understand how this flux is determined, one

would have to study the triad interactions and the as-

sociated spectral energy transfers into the barotropic

mode. Added on these uncertainties are also the somewhat

fuzzy connection assumed in LH95 between the

spectrally local and spectrally integrated properties,
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where the assumption that the energy containing

eddies producing the eddy heat flux can be described

by a single wavenumber (Smith and Vallis 2002), and

the variations of correlation between the barotropic

velocity and baroclinic streamfunction in the mixing-

length theory. Still, we are convinced that this modi-

fication of LH95’s scaling may capture some of the

important physics. The exponent of the simulated

power-law relation is reasonably well defined and the

spectral slope discrepancy between the simulations

and theory is qualitatively consistent between our

simulations and those reported by LH95. It at the very

least helps us to better connect the understanding

of two-layer baroclinic turbulence and of barotropic

turbulence.

These baroclinically unstable homogeneous models

are also potentially relevant to the ocean mesoscale

eddy parameterization problem. In this regard, it is

useful to compare our results to those in Jansen et al.

(2015). They have parameterized the eddy heat fluxes

in a two-layer primitive equation channel model using

an empirical fit to relate barotropic and bottom ki-

netic energies as a key assumption. In the limit of

b 5 0, they use the constant eddy time-scale assump-

tion proposed by LH95 [i.e., Eq. (9)] to form a closure.

Their scheme takes into account layer asymmetry due

to the bottom drag (and the different layer depths) but

assumes no further adjustments to LH95’s scaling.

This assumption may be adequate for parameteriza-

tions in which there are many other uncertainties, but

the constant eddy time scale in LH95 is not supported

by our results. Jansen et al. (2015) has also found

some issues with LH95’s scaling when nonzero b is

included. There are a number of results in the liter-

ature, using a variety of models, that differ regarding

the utility of Held and Larichev (1996) theory, the

extension to nonzero b of the LH95’s scaling (Smith

and Vallis 2002; Barry et al. 2002; Lapeyre and Held

2003; Zurita-Gotor 2007; Thompson and Young 2007;

Jansen and Ferrari 2013; Jansen et al. 2015; Chai

2016). A natural question is then how much of the

mismatch to LH95’s theory with nonzero b can be

attributed to deficiencies that are already present

in the absence of b. Building on the results presented

here, we will address parts of this question in a sep-

arate study.

In the context of studies on eddy scaling in the ho-

mogeneous two-layer quasigeostrophic model, this

work resides at the simplest extreme on the model

hierarchy. In fact, we have taken an extra step back-

ward to investigate a more unrealistic model with

mechanical drag appearing symmetrically between

the two layers. This even simpler model configuration,

in which all eddy statistics are identical in the two

layers, offers the potential for a cleaner comparison

between a self-stirred baroclinically unstable flow and

the stirred barotropic model. By studying this limit, we

have emphasized knowledge gaps between baroclinic

and barotropic turbulence. We believe that this is

a relevant limit in which to try to solidify our un-

derstanding of eddy statistics in these turbulent

baroclinically unstable flows and to provide a more

solid foundation for our understanding of more

realistic models.

Acknowledgments. We thank Junyi Chai for sharing

the doubly periodic quasigeostrophic model code with

us and Tsung-Lin Hsieh for the help of model setup on

GFDL RDHPCS. We are grateful to Pablo Zurita-

Gotor for providing us the channel quasigeostrophic

model code and his insightful discussions. Comments

fromAlistair Adcroft, SteveGarner, and two anonymous

reviewers greatly improved the manuscript. CYC is

supported by NSF Grant AGS-1733818.

APPENDIX

Equations of the Model

Following the notations of LH95, the potential vor-

ticity (Q) equations for the two equal-depth layers are

›
t
Q

1
1 J(C

1
,Q

1
)52n=8Q

1
1D

1
, (A1a)

›
t
Q

2
1 J(C

2
,Q

2
)52n=8Q

2
1D

2
, (A1b)

where the subscripts 1 and 2 refer to the top and bottom

layers, respectively. The potential vorticityQ are related

to the total streamfunction C by

Q
1
5=2C

1
1 k2

d(C2
2C

1
)/2, (A2a)

Q
2
5=2C

2
1 k2

d(C1
2C

2
)/2, (A2b)

and C contains a prescribed zonal mean part and an

eddy part that varies in time and space:

C
1
52Uy1c

1
(x, y, t), (A3a)

C
2
5Uy1c

2
(x, y, t). (A3b)

In the rhs of Eq. (A1), the subgrid-scale dissipation is

parameterized as a =8 hyperviscosity and the large-

scale dissipation D is in a specific form of quadratic

drag that assumes the surface stress is parallel to

the eddy velocity (Grianik et al. 2004; Arbic and

Scott 2008):
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D
1
52c

D
[›

x
(j=c

1
j›

x
c
1
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y
(j=c

1
j›

y
c
1
)] , (A4a)

D
2
52c

D
[›

x
(j=c

2
j›

x
c
2
)1 ›

y
(j=c

2
j›

y
c
2
)] . (A4b)

Altogether, the set of equations has four parameters:

the wavenumber of deformation radius kd, the mean

vertical shear U, the hyperviscosity coefficient n, and

the wavenumber of frictional length cD. We choose to

nondimensionalize the equations by kd and U and

leave the two dimensionless parameters as nU21k7
d

and cDk
21
d . In this study, we have assumed the solu-

tions (in the parameter space we explore) have no

dependence on nU21k7
d, since n is set adaptively

during the integration as described in Smith and

Vallis (2002) and we do not have an explicit control

on its value. This also assumes the solutions after

nondimensionalization is independent of U, which is

confirmed by Arbic and Scott (2008). The value of

U 5 0.005 that we use is simply chosen for conve-

nience in the comparison with the LH95 simulations.
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