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Abstract. The standard public health intervention for controlling the
spread of highly contagious diseases, such as measles, is to vaccinate a
large fraction of the population. However, it has been shown that in some
parts of the United States, even though the average vaccination rate is
high, geographical clusters of undervaccinated populations are emerging.
Given that public health resources for response are limited, identifying
and rank-ordering critical clusters can help prioritize and allocate scarce
resources for surveillance and quick intervention.

We quantify the criticality of a cluster as the additional number of infec-
tions caused if the immunization rate in a cluster reduces. This notion of
criticality has not been studied before, and, based on clusters identified
in prior research, we show that the current underimmunization rate in
the cluster, and its criticality are not correlated. We apply our meth-
ods to a population model for the state of Minnesota, where we find
undervaccinated clusters with significantly higher criticality than those
obtained by other natural heuristics.

1 Introduction

Many highly contagious childhood diseases, such as measles, can be prevented
by vaccination. Thus, it is worrisome that large disease outbreaks have occurred
in recent years, such as the measles outbreaks in the Pacific Northwest in 2019,
in New York City in 2018, and in Minnesota in 2017—this is despite high vacci-
nation coverage in the US—e.g., ∼ 95% for MMR, the measles vaccine.

One of the reasons for the emergence of underimmunized geographical clus-
ters, such as in California [15] and Minnesota [5], is misperceptions about the
side effects of vaccines [2]. The typical response by public health agencies is to
monitor clusters where immunization rates are falling, run active information
campaigns, and engage community leaders.

Analyzing public school immunization records, Cadena et al. [5] identify six
clusters in Minnesota that are statistically significant in terms of lower immuniza-
tion rates relative to the statewide level. However, implementing public health
interventions in all these clusters would be costly and time-consuming for public
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health agencies, which motivates the following question: which of these clus-
ters pose the most risk, and should be prioritized for treatment? A
similar question was raised by Metcalf et al. [18], who stated that “[t]here is
also a need to understand under what conditions such clusters become at risk
for epidemic spread, and the risk they pose to surrounding groups where vaccine
coverage may be high.” It is useful to consider not only clusters in which the rates
are presently low, but also the clusters that would pose a risk if fewer people
within them were vaccinated. We develop a method to address these important
public health policy questions. Our contributions are summarized below.

Fig. 1. Critical sets in Minnesota discovered using our meth-
ods. These are contiguous regions that lead to large simulated
measles outbreaks if left undervaccinated.

1. Formalizing crit-
icality. We formal-
ize the notion of crit-
icality of a subset
S ⊆ V in a so-
cial contact network
G = (V,E), as
the expected number
of additional infec-
tions that would oc-
cur if the immuniza-
tion rate within S
is “low” compared to
the statewide rate.
Extending this no-
tion, we introduce the
MaxCrit problem: find
a cluster S, which is
(1) contiguous in space and (2) has the maximum criticality. The spatial prox-
imity is motivated by the structure of clusters identified in [15, 2, 5], which are
small and connected—this is desirable from a public health response perspective,
since interventions involve field work. Spatial clustering can also help identify
common risk factors, such as vulnerable communities and neighborhoods [3]. We
estimate the criticality of a given cluster using a detailed agent-based simulation
of the spread of measles in a population. However, solving the MaxCrit problem
turns out to be a computationally challenging, and we design a greedy algorithm
ApproxMaxCrit for this problem.

2. Application. We study the phenomenon of criticality on a detailed popu-
lation and contact network model for the state of Minnesota. We compute the
criticalities of the significant underimmunized clusters reported in [5]. Quite sur-
prisingly, we find that: (1) the cluster with the lowest vaccination rate among
these is not the most critical, and (2) the criticality of the cluster computed
using our algorithm is more than 10 times that of any of the clusters identified
by [5]. We solve the MaxCrit problem and find clusters with very high criticality,
compared to heuristics commonly considered for public health interventions. Our
algorithm also achieves over 25% higher criticality for the objective compared
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to all the baselines. Our methods can also combine social and demographic data
for these clusters, available from the US Census, so they can be characterized,
which may further guide targeted interventions. The critical clusters shown in
Figure 1 involve people with lower than average income and age (Section 4).

Finally, due to lack of publicly available high-resolution, geo-located outbreak
data, there is no easy way to validate our results, but we note that one of the
clusters we found to be critical lies in the Minneapolis metropolitan area where
a large measles outbreak occurred in 2017 [10].

Social impact. Our method for finding critical sets, applied to detailed popula-
tion and contact network models, provides an operational tool for public health
agencies to prioritize their limited surveillance and public outreach resources to-
wards the most critical clusters. Our results imply that it is important to not
only identify the undervaccinated clusters as in [5], but also determine which
among them will likely cause an outbreak or an epidemic.

2 Preliminaries

2.1 Disease spread on a social contact network
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Fig. 2. Notation example. The 5 circle
nodes (a–e) form a social contact network.
Each node resides in a block group ri, and
these block groups form the block group
graph HR, where an edge represents that
the block groups are adjacent on the map.

Let V denote a population, and let
G = (V,E) be a contact graph on
which a disease can spread. A person
or node v ∈ V can propagate the dis-
ease to its neighbors. There is an edge
between two people if they come into
close proximity during a typical day.
Additionally, each person v is asso-
ciated with a geographical location—
i.e., their place of residence—denoted
by loc(v); we will consider such loca-
tions at the resolution of census block
groups. LetR denote the geographical
area where the nodes V are located—
for example, the state of Minnesota—
and let R = {r1, . . . , rN} be a decomposition of R into census block groups.
For a block group ri ∈ R, we use V (ri) to denote the set of nodes associated
with location ri; that is, those with loc(v) ∈ ri. Analogously, for a set of block
groups or region R ⊂ R, let V (R) = ∪ri∈RV (ri) be the set of nodes located
within R. We consider a graph HR = (R, ER) on the set of block groups, where
two block groups are connected if they are geographically contiguous, i.e., they
are adjacent on a map. In particular, we are interested in connected subgraphs
of HR. We use Conn(R) to denote all the subsets R ⊂ HR that are spatially
connected. These definitions are illustrated in Figure 2.

For u, v ∈ R, let distHR(u, v) denote the distance between u and v in the
graph HR, which is equal to the length of the shortest path between them. The
ball centered at v, with radius ` is defined as BHR(v, `) = {u : dist(u, v) ≤ `},
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which is the set of all nodes within distance ` of v. When the graph is clear from
the context, we drop it from the subscript in the notation for B(·) and dist(·).
Disease model. We use an SEIR model for diseases like measles [1], where a
node is in one of four states: Susceptible (S), Exposed (E), Infected (I), and
Recovered/Removed (R). Measles is highly contagious; an infected node spreads
the disease to each susceptible neighbor with high probability. In our simulations,
we assume a transmission probability of 1, but our methods extend to the more
general case. If a node is vaccinated, it does not get infected. We assume 100%
vaccine efficacy, but this assumption is not crucial for our methodology.

Let γ denote the average region-wide vaccination rate—around 0.97 in Min-
nesota. Let x be a vaccination or intervention vector: xi ∈ [0, 1] denotes the
probability that node (i.e., person) i is vaccinated (so xi = γ, by default). Let
SrcA denote the source of the infection or initial conditions of the disease pro-
cess: this could be one or a small number of nodes from a region A ⊂ R, which
initially get infected. We use #inf(x, SrcA) to denote the expected number of
infections given an intervention x and initial conditions SrcA. When SrcA is clear
from the context, we simply use #inf(x).

2.2 Criticality

For a vaccination vector x, let xS denote the corresponding intervention where a
subset S ⊂ V of nodes is undervaccinated. That is, xS

i = xi for i 6∈ S and xS
i = γ′

for i ∈ S, where γ′ is much lower than γ, the region-wide vaccination rate.
Without loss of generality, we consider γ′ = 0 for mathematical convenience.

We define the criticality of a set S ⊂ V as the expected number of additional
infections that occur if S is not vaccinated, with respect to some initial condition
SrcA. Since we are interested in finding spatial clusters of high criticality, we
focus on S = V (R) for a connected region R ∈ Conn(R). Then, we define the
criticality of a region as

crit(R,x, SrcA) = #inf(xR, SrcA)−#inf(x, SrcA),

which is the expected number of extra infections if nodes in the region R are
undervaccinated. In order to simplify the notation, we will drop x and Src from
the inputs to crit(·), whenever it is clear from the context.

2.3 Problem Formulation

Modeling considerations. In practice, public health interventions involve in-
tensive field work, and they are most effective when focused within small, lo-
calized geographical regions. Therefore, we aim to find regions that have high
criticality and are small in size. In modeling terms, this can be accomplished
by adding a size parameter k, which can be tuned based on the available public
health resources. Given the discussion above, we pose the task of finding spatial
clusters of high criticality as the following optimization problem.
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Problem 1 (MaxCrit(G,HR, k)). Given an instance (G,HR, k), find a connected
region R ∈ Conn(R) of size at most k that maximizes criticality over all choices
of source:

R = argmaxR′∈Conn(R),|R′|≤kcrit(R
′,x, SrcR′)

In words, the MaxCrit problem involves maximizing over all possible choices
of the sources SrcR′ in the cluster R′. From a public health perspective, our
problem models the following question: what is the most critical cluster of size
k if the disease starts within the undervaccinated cluster itself? An obvious
question is how should the parameter k be chosen. This can depend on a number
of factors, such as availability of medical resources, jurisdiction constraints, social
and ethical considerations, location of under-served communities etc. [7].

3 Our approach

MaxCrit is closely related to the Influence Maximization problem [12]. The influ-
ence function is known to be submodular—informally, this means that the func-
tion has a diminishing returns property, as a result of which, a greedy algorithm
gives a good approximation. We show that the crit function is also submodular
by following the approach of Kempe et al. [12]. However, a crucial difference in
our case is that the decision space is restricted to sets S that are connected.
We design algorithm ApproxMaxCrit (as discussed in [4]), by adapting the
technique of Kuo et al. [13], who give an Ω(1/

√
k) approximation algorithm to

find a connected subset of size k that maximizes a submodular function.

4 Experimental results

Our experiments focus on the following questions:

1. Relationship between criticality and underimmunization. Is the crit-
icality of a cluster directly correlated with its underimmunization rate?

2. Finding critical clusters. Can we find highly critical regions with our
methods? How do they compare to standard public health heuristics?

3. Characteristics of critical clusters. What are the demographic proper-
ties of critical clusters? Where are they located?

Dataset and disease model. Simulation of an infectious disease epidemic that
spreads through physical proximity requires social contact networks in which an
edge represents physical contact between two people. Such networks cannot be
constructed easily because of the difficulty in tracking contacts for a large set of
people throughout the day. This has been recognized as a significant challenge
in the public health community, and multiple methods have been developed to
construct realistic contact network models by integrating diverse public datasets
(e.g., US Census, land use, and activity surveys) and commercial data (e.g., from
Dun & Bradstreet on location profiles). We use agent-based models developed
by the approach of [8]; see also [17, 9] for network models developed by other
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public health groups. Multiple such network models were evaluated in a study
by the Institute of Medicine [11].

Here, we focus on the population of Minnesota (MN) with 5, 048, 920 indi-
viduals in total, aggregated into 4,082 census block groups from the 2010 U.S.
census. We consider an SEIR stochastic model for measles, as described in Sec-
tion 2. The criticality of a region R of block groups is assessed by leaving every
individual inside R unvaccinated; everybody else in the population is vaccinated
with probability 0.97, which is the statewide vaccination rate. We also use the
underimmunized clusters in MN computed by [5] in our analysis here.

Baseline Methods We compare our algorithms with two heuristics used in
public health and a naive random baseline.

1. Population. Find a cluster of size k with the largest total population.
The motivation behind this heuristic is leaving as many people as possible
unvaccinated.

2. Vulnerability. The vulnerability of an individual is the probability that
this person will get infected when the disease is left to propagate with no
intervention—i.e., xv = 0 for all nodes. This baseline finds a cluster of size
k with as large total vulnerability as possible, thus prioritizing individuals
who are most likely to get infected.

3. Random. Find a connected cluster of size k by doing a random walk on the
auxiliary graph HR.

1. Relationship between criticality and underimmunization We com-
pute the criticality of the four most significant underimmunized clusters in MN,
as identified by authors in [5]. The clusters are numbered 1–4 based on their
statistical significance with respect to underimmunization rates, so that cluster
1 is more significant than cluster 4. However, as shown in Figure 3 (left), it seems
clear that the outbreak size of cluster 4 is much higher than that of cluster 1—
the 95th percentile value for the number of infections in cluster 4 is almost four
times that of cluster 1. The results show that criticality is not directly correlated
with the level of underimmunization. Instead, network structure plays a more
important role in determining the criticality.

2. Optimization power In Figure 3 (right), we show the criticality obtained by
ApproxMaxCrit compared to the three baseline methods as a function of k. As
expected, selecting subgraphs at random performs poorly and results in almost
no additional infections compared to the initial disease conditions. Surprisingly,
Vulnerability does not perform much better than Random. It is also interest-
ing that the population-based heuristic does not have monotonic improvement
with k. Even though the subgraph of size 9 has 55,800 inhabitants, the smaller
subgraph of size 5 with a population of 34,000 leads to a much larger outbreak.
Overall, the Population heuristic has better performance among the baselines,
and it even surpasses our algorithm for k = 5. However, ApproxMaxCrit ex-
hibits notably better performance in general. The maximum improvement on
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Fig. 3. Left: Distributions of the number of infections resulting from an outbreak start-
ing in each of four underimmunized clusters in MN identified in [5]. Right: Comparison
of algorithms for the MaxCrit problem as a function of the solution size k.

criticality occurs on the 9-node cluster, where our method finds a cluster that
leads to 4 times more infections than the Population baseline.

Another important quantity is the probability of having a large outbreak.
In Figure 4, we show the distribution of criticality values for each method over
100 simulations of the disease model. We observe that even the largest out-
breaks caused by Vulnerability and Random are much smaller than those
of ApproxMaxCrit and the Population baseline. We also note that the
population-based clusters have larger variance in criticality and can result in
larger outbreaks than those from our algorithm. This suggests that if the goal
for a public health department is to prevent the worst-case scenario, then inter-
vening the most-populated areas is a good heuristic. However, in doing so, one
could miss smaller regions that, on average, are likely to infect more people.
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Fig. 4. Criticality scores over 100 runs of the disease model for each method evaluated

3. Critical clusters and demographics We compare the distribution of age
and income in the cluster discovered by ApproxMaxCrit (k = 11) to that of
the entire state. We aggregate household income into “Low” (below $25,000),
“Medium” (between $25,000 and $75,000), and “High” (above $75,000). Ages
are binned into “Pre-school” (below 5 years old), “School” (between 5 and 18
years old), “Adult” (between 18 and 70 years old), and “Senior” (above 70 years
old). In Figure 5, we see the critical cluster has significantly more households of
low income compared to the entire state—19.6% to 34.9%. Similarly, children are
over-represented; 26.6% of the population are children in “School” age compared
to the average of 18.7%.

We find critical clusters in different regions over Minnesota. Figure 1 shows
the top 10 non-overlapping clusters discovered using ApproxMaxCrit. The
most critical cluster—with over 5,000 infections—is located on the rural northern
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Fig. 5. Average income (top) and age (bottom) in the entire state (left) and in the
cluster discovered by ApproxMaxCrit (right). There are more children in school age
and lower income households in the discovered critical cluster.

part of the state, spanning the Leech Lake and Red Lake reservations. We note
that this cluster results in the largest spread despite having a relatively small
population of 14,910 people compared to clusters in urban regions. For example,
the second most critical cluster—north of Minneapolis—has 48,889 inhabitants.

In addition to analyzing the most critical cluster, we look at the top-5 non-
overlapping clusters discovered by ApproxMaxCrit. These correspond to dif-
ferent choices of root on the k-MaxST algorithm. In Table 1, we report the total
population size, criticality, and percentage of infections to the total population
of the cluster—i.e., criticality / population. Note that this latter number could
be larger than 1, since there are infections outside the cluster. As we discussed
before, the top region leads to a large spread (41% of its population size) despite
having less inhabitants than the successive clusters. The second cluster has very
similar criticality score, but in a more urban region.

Table 1. Population and criticality in the top 5 clusters found by ApproxMaxCrit

Rank Population Criticality % population

1 14,910 6,138 41.2%
2 48,889 6,093 12.5%
3 23,391 1,388 5.9%
4 15,731 647 4.1%
5 9,936 372 4.7%

Finally, we repeat our experiments for MaxCrit on the Minneapolis area
instead of the entire state. The most critical cluster covers Brooklyn Park, where
measles outbreaks occurred in 2017 and 20195. However, we emphasize the need
for domain-expert analysis to better interpret and make use of these results.

5 Related Work

Mathematical models have played an important role in epidemiology for over a
century [1]. Traditionally, epidemiological models have been differential equation
models, which assume very simplistic mixing patterns of the underlying popu-
lation. In the last decade, several research groups have developed agent-based
methods using complex networks as a way to model more realistic mixing [8, 17,
9, 16]. Such methods have been used for policy analysis by local and national
government agencies [11]. We use this paradigm in our work.

5 https://tinyurl.com/y359zapv
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All prior work on undervaccinated clusters has been restricted to identifying
these clusters. For instance, [15] analyze health records of children in Northern
California to identify significant clusters of underimmunization and vaccine re-
fusal using spatial scan statistics. However, such methods are not directly useful
for the question of identifying critical clusters, which is our focus. There is a
large body of work related to outbreak detection in networks. [6] use the “friend
of random people” effect to monitor a subset of people and infer characteristics
of the epidemic curve for the entire population. [14] study early detection of dif-
ferent kinds of events—e.g., in social networks. However, these approaches have
been focused on either just detecting that some event (e.g., start of an infection)
has occurred or the epidemic characteristics for the entire region. Instead, we
are interested in finding regions that would lead to a big number of infections if
left unvaccinated.

6 Conclusions
Prior research has identified geographical clusters of undervaccinated popula-
tions in many states. However, the potential risk of causing large outbreaks
from such clusters is not well understood, and actionable response requires a
way to prioritize the threat from these undervaccinated clusters. Public health
response (e.g., surveillance and field work) is very costly, and therefore, a method
to quantify such risk is an important public health contribution.

This research makes several contributions: (i) we formalize the problem MaxCrit
for finding critical clusters for highly contagious diseases that can be prevented
by vaccination, and that will lead to large outbreaks if left unvaccinated; (ii)
we combine a detailed agent-based model of Minnesota and its social contact
network with a disease model to compute a realistic measure of clusters’ critical-
ity; (iii) we find clusters that have higher criticality than discovered by baseline
methods; (iv) we characterize the clusters, and (v) we provide a way to prioritize
intervention based on the availability of resources.

This research has a broader applicability than just the spread of measles
and infectious diseases. Other societal problems that have a component of social
connectedness and propagation potential e.g. depression, addiction, suicides etc.
can also be studied with this methodology.
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