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RESPONSE SOLUTIONS TO QUASI-PERIODICALLY FORCED
SYSTEMS, EVEN TO POSSIBLY ILL-POSED PDES, WITH STRONG

DISSIPATION AND ANY FREQUENCY VECTORS∗

FENFEN WANG† AND RAFAEL DE LA LLAVE‡

Abstract. We consider several models (including both multidimensional ordinary differential
equations (ODEs) and partial differential equations (PDEs), possibly ill-posed), subject to very
strong damping and quasi-periodic external forcing. We are interested in studying response solu-
tions (i.e., quasi-periodic solutions with the same frequency as the forcing). Under some regularity
assumptions on the nonlinearity and forcing, without any arithmetic condition on the forcing fre-
quency ω, we show that the response solutions indeed exist. Moreover, the solutions we obtained
possess optimal regularity in ε (where ε is the inverse of the coefficients multiplying the damping)
when we consider ε in a domain that does not include the origin ε = 0 but has the origin on its
boundary. We also show that response solutions are continuous in ε at 0. However, in general, the
solutions may fail to be differentiable with respect to ε at ε = 0. In this paper, we allow multidi-
mensional systems and we do not require that the unperturbed equations under consideration are
Hamiltonian. One advantage of the method in the present paper is that it gives results for analytic,
finitely differentiable and low regularity forcing, and nonlinearity, respectively. As a matter of fact,
we do not even need that the forcing is continuous. Notably, we obtain results when the forcing is in
L2 space and the nonlinearity is just Lipschitz as well as in the case that the forcing is in H1 space
and the nonlinearity is C1+Lip. In the proof of our results, we reformulate the existence of response
solutions as a fixed point problem in appropriate spaces of smooth functions.

Key words. strong dissipation, response solutions, singular perturbations

AMS subject classifications. 34D15, 35L05, 35B65, 42B30, 47H10, 70k75

DOI. 10.1137/19M1272159

1. Introduction. In recent times, there has been much interest in the study of
response solutions (i.e., solutions which have the same frequency as the forcing term)
for nonlinear mechanical systems subject to strong damping (i.e., systems in which
the term describing the damping contains a factor ε−1 with ε being a small parameter)
and quasi-periodic external forcing. The mechanical systems under consideration are
second order equations with respect to the time derivative and the damping is the
term which corresponds to the time derivative of first order (see (1.1) and (1.2) below);
this is a singular perturbation in ε. For more information in this field, we refer to
[Bal94, Gen10a, CCCdlL17] and references therein.

We are interested in finding response solutions for two classes of equations. We
first consider an ODE model of the form

xtt +
1

ε
xt + g(x) = f(ωt), x ∈ R

n.(1.1)
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3150 FENFEN WANG AND RAFAEL DE LA LLAVE

Equation (1.1) is referred to as a varactor equation in the literature [Gen10a, CCdlL13,
CFG14, GMV17, GV17].

We also consider PDE models. One particular example is obtained from the
Boussinesq equation (derived in the paper [Bou72]) by adding a singular friction
proportional to the velocity:

utt +
1

ε
ut − βuxxxx − uxx = (u2)xx + f(ωt, x), x ∈ T = R/2πZ,(1.2)

where β > 0 is a parameter. Of course, (1.2) will be supplemented with periodic
boundary conditions. We note that the positive sign of β makes (1.2) ill-posed. That
is, there are many initial conditions that do not lead to solutions. It is, however,
possible that there is a systematic way to construct many special solutions, for some
ill-posed Boussinesq equations, which are physically observed (we refer to the papers
[dlL09, dlLS19, CdlL19a, CdlL19b]).

In both (1.1) and (1.2), ε > 0 is a small parameter and ω ∈ Rd \ {0} with
d ∈ N+ := N \ {0}. The forcing f is quasi-periodic with respect to time t. Note that
in the PDE (1.2), the forcing may depend on the space variable. At this moment, we
think of the forcing as a quasi-periodic function taking values in a space of functions.

In (1.1), one considers the nonlinearity g as a function from Rn to Rn with n ∈ N+

and the forcing f as a function from Td to Rn. We will obtain several results depending
on the regularity assumed for f and g. First, we will consider that the functions f and
g are real analytic in the sense that they take real values for real arguments, which
are what appear in physical applications, with ε ∈ R+. We will also consider highly
differentiable functions f and g, such as f ∈ Hm (m > d

2 ) and g is Cm+l (l = 1, 2, . . .).
In addition, we will obtain results for rather irregular functions f and g. For example,
the forcing f is in the L2 space, the nonlinearity g is just Lipschitz or f is in the H1

space, g is C1+Lip.
In (1.2), we consider the function f : Td × T → R. Analogously to the case

of (1.1), we will present results for f being real analytic and finitely differentiable
with high regularity. Note that in the study of the PDE model (1.2), we will just
focus on the physically relevant case of a specific nonlinearity (u2)xx. It is possible
to discuss general nonlinearities in a regularity class, but being unaware of a physical
motivation, we leave these generalizations to the readers. We emphasize that the
nonlinearity (u2)xx in (1.2) is unbounded from one space to itself, but the fixed point
problem we consider overcomes this problem since there will be smoothing factors.

From the physical point of view, the parameter ε is real. However, it is natural to
consider ε in a complex domain when we consider our problem in an analytic setting.
It is important to notice that the complex domain we choose does not include the
origin but accumulates on it. Indeed, the solutions fail to be differentiable at ε = 0
in the generality considered in the present paper (see Remark 20). However, we will
show that the response solutions depend continuously on ε at ε = 0.

1.1. Some remarks on the literature. The problem of the response solutions
for dissipative systems has been studied by several methods. One method is based on
developing asymptotic series and then show that they can be resummed using com-
binatorial arguments, which are established using the so-called tree formalism. This
can be found in the literature [GBD05, GBD06, Gen10a, Gen10b]. Recent papers
developing this method are [GMV17, GV17]. We point out that one important nov-
elty of the papers [GMV17, GV17] is that no arithmetic condition is required in the
frequency of the forcing. A later method is to reduce the existence of response solu-
tions to a fixed point problem, which is analyzed in a ball in an appropriate Banach
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space, centered in the solution predicted by the asymptotic expansion. In this direc-
tion, we refer to [CCdlL13, CCCdlL17] and references therein. Note that the papers
[CCdlL13, CCCdlL17] considered the perturbative expansion to low orders on ε and
obtained a reasonably approximate solution in a neighborhood of ε = 0. Neverthe-
less, to obtain the asymptotic expansions, one needs to solve equations involving small
divisors and assume some nondegeneracy conditions. Note that the small divisors as-
sumed in [CCdlL13, CCCdlL17] are weaker than the Diophantine conditions in KAM
theory. In this paper, we will not assume any small divisors conditions since we do
not attempt to get the approximate solution through an asymptotic expansion.

Since the literature is growing, it is interesting to systematically compare results.
There are several figures of merit for results on the existence of response solutions:

(1) the arithmetic properties required in the external forcing frequency, such as
Diophantine condition, Bryuno condition, or even weaker conditions, etc.;

(2) the analyticity domain in ε established. Since we do not expect that the
asymptotic series converges, this domain does not include a ball centered
at the origin. We emphasize that the shape of this analyticity domain is
very important to study properties of the asymptotic series. Having a par-
abolic domain shows that the asymptotic series is unique and it is also re-
lated to Borel summability. In this paper, we only establish wedge domains,
but under extra Diophantine assumptions, parabolic domains established in
[CFG13, CCdlL13, CCCdlL17] and Borel summability methods are consid-
ered in [GBD05, GBD06]. It seems that the optimal regularity domain is
related to the Diophantine properties assumed. In this paper, we do not
assume any Diophantine conditions and the solutions may fail to be differen-
tiable at ε = 0. See Remark 20;

(3) whether the method gives some asymptotic expansions for the solutions;
(4) whether the method can deal with the forcing function f which has low reg-

ularity (e.g., f ∈ L2 or f ∈ H1) and the nonlinearity function g of low
regularity (the case of piecewise differentiable functions appears in some ap-
plications);

(5) the generality of the models considered (e.g., whether the method requires
that the system be Hamiltonian, reversible, etc.);

(6) smallness conditions imposed on functions f and g;
(7) the conditions required for the linear part of g, such as its eigenvalues are

nonzero. We do not know whether our method can deal with the case of
noninvertible A in the generality considered here. Research on extending the
method to the case of degenerate fixed points is studied in [CdlLW19].

Notice that all these figures of merit cannot be accomplished at the same time.
Obtaining more conclusions on the solutions (e.g., the existence of asymptotic expan-
sions) will require more regularity and some arithmetic conditions on the frequency.
Especially, allowing zero eigenvalues of the linear part of g is another issue which
would deserve further investigation.

1.2. The method in the present paper. From the strictly logical point of
view, our paper and [GMV17, GV17] are completely different even if they are moti-
vated by the same physical problem for the model (1.1). More precisely, the present
paper deals with not only the analytic setting but also the finitely differentiable case
and even just the Lipschitz problem by the method of the fixed point theorem. In
contrast, the papers [GMV17, GV17] apply resummation methods to establish the
existence of response solutions under analytic conditions.
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In the multidimensional case of (1.1), compared with [GMV17], the methods pre-
sented in this paper do not need that the oscillators without dissipation are Hamil-
tonian or that the linearization of g at the origin (denoted by A, which is an n × n
matrix) is positive definite. Further, we do not assume that the matrix A is diagonal-
izable or symmetric. We allow Jordan blocks that appear naturally in the problems
at resonance case appearing in [BG15, Gaz15].

However, we note that our method for the analytic case involves smallness as-
sumptions in the forcing f but not in the nonlinear part (denoted by ĝ) of g. In
the setting of L2 and H1, we involve just smallness assumptions on ĝ but not f .
For the highly differentiable case (i.e., Hm, m > d

2 ), we choose either smallness as-
sumptions for f or ĝ, (see section 2.4 for more details). Explicitly, the smallness
conditions imposed in f or ĝ are determined by the eigenvalues of A and properties
of the nonlinearity. See section 5.3 and section 6.1.2 for a concrete presentation.

As a further application, we consider adding dissipative terms to the Boussi-
nesq equation of water waves in (1.2). Equation (1.2) is ill-posed in the sense that
not all initial conditions lead to solutions. Nevertheless, we construct response solu-
tions.

We note that the approach followed in [CCdlL13, CCCdlL17] has two steps. In
the first step, one constructed series expansions in ε that produced approximate so-
lutions. In a second step, one used a contraction mapping principle for an operator
defined in a small ball near the approximate solutions obtained in the first step. Of
course, this approach requires a very careful choice of the spaces in which the ap-
proximate solutions lie and the fixed point problems are formulated. One important
consideration is that the spaces are chosen such that the operators involved map the
spaces into themselves. Since some of the operators involved are diagonal in Fourier
series, it is important that the norms can be read off from the Fourier coefficients.
It will also be convenient that there are Banach algebra properties and properties of
composition operators in the chosen space. This allows us to control the nonlinear
terms easily. We have to say that it is the idea in [CCdlL13, CCCdlL17] that inspires
our present treatment for (1.1) and (1.2).

To motivate the procedure adopted in this paper, we note that in the method
of [CCdlL13, CCCdlL17], the fixed point part does not depend on any arithmetic
condition on the forcing frequency. We will modify slightly the fixed point part to get
response solutions analytic with respect to the parameter ε, for the analytic models
(1.1) and (1.2), when ε ranges over a complex domain without any circle centered at
the origin ε = 0. Our method (very different from resumming expansions) consists in
transforming the original equations (1.1) and (1.2) into the fixed point equations (see
(2.9) and (7.7), respectively). The main observation that allows us to solve the fixed
point equations is that we are allowed to use the strong dissipation in the contraction
mapping principle.

Our method also works for finitely differentiable problems. In such a case, we will
introduce Sobolev spaces, in which the norms of functions are measured by the size
of the Fourier coefficients. The solutions obtained, for (1.1) and (1.2) in the finitely
differentiable setting, still possess the corresponding regularity in ε when ε ranges
over a real domain without any circle centered at the origin ε = 0.

We think that the regularity results obtained in this paper are close to optimal.
As for the optimality for the domain, we find that there exist arbitrarily small values
of ε for which the operator we constructed is not a contraction and the method of the
proof breaks down. Therefore, we conjecture that this is optimal and that indeed,
regular solutions do not exist for these small parameter values and general forcing
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and nonlinearity. We also show, in Remark 20, that, in both analytic and finitely
differentiable cases, there are examples in which the solution is not differentiable at
ε = 0 when we remove the Diophantine condition on ω.

The lack of differentiability at ε = 0 is a reflection of the problem being a singular
perturbation. In the case considered here that there are no nonresonance conditions
on the frequency, the problem is more severe than in previously considered cases.

1.3. Some possible generalization. Our method could deal easily with the
general case with the form

pxtt +
1

ε
qxt + g(x, ωt) = f(ωt), x ∈ R

n,(1.3)

where p, q are diagonal constant matrices and g(x, ωt) = Ax+ ĝ(x, ωt), where A is a
matrix in Jordan block form and ĝ : Rn × Td → Rn is sufficiently regular. We leave
the easy details to the interested readers. See Remark 17, which gives some simplified
calculations after we have carried out the case in (1.1).

1.4. Organization of this paper. Our paper is organized as follows. In sec-
tion 2, we present the idea of reformulating the existence of response solutions for
(1.1) as a fixed point problem. To solve this fixed point equation, in section 3, we give
the precise function spaces that we work in and we list their important properties,
such as Banach algebra properties and the regularity of the composition operators.
We state our three main results in the analytic case, the highly differentiable case, and
with low regularity, respectively, in section 4. Section 5 is mainly devoted to the proof
of our analytic result by the contraction mapping principle. In the process, we need
to pay more attention to the invertibility of operators and regularity of composition
operators. In section 6, we prove our regular result in the finitely differentiable case
by combining the contraction argument with the implicit function theorem. Section 7
is an application to the ill-posed PDE model (1.2) by the similar idea used for the
ODE model (1.1).

2. The formulation for (1.1). In this section, we give an overview of our
treatment for ODE model (1.1), which can be rewritten as

εxtt + xt + εg(x) = εf(ωt), x ∈ R
n,(2.1)

where, as indicated before, the mappings are g : Rn → Rn, f : Td → Rn. We
will reduce the existence of response solutions of (2.1) to an equivalent fixed point
problem. To this end, it is crucial to make some assumptions for (2.1).

2.1. Preliminaries. For the analytic or highly differentiable functions f and g
defining (2.1), we make the following assumptions.

Assumption 1. The average of f is 0 and g(0) = 0. Denote A = Dg(0), which is
an n× n matrix, the spectrum λj (j = 1, . . . , n) of A is real, and λj 6= 0.

Actually, we could weaken the assumptions on the regularity of the function g
when considering low regularity results (e.g, L2 or H1). As we will see in section 6.2,
instead of assuming g is differentiable, we just assume the following.

Assumption 2. g is Lipschitz in Rn and it can be expressed in the form

g(x) = Ax+ ĝ(x),
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where A is an n × n matrix and its spectra are real and nonzero. Moreover, the
nonlinear part ĝ satisfies that Lip(ĝ) is sufficiently small, depending on the spectral
properties of A (the eigenvalues and the Jordan normal form) and the number theo-
retic properties of ω. We make explicit the Lipschitz constant in all steps. See (6.7)
for more details.

Note that in the assumptions stated above we are not including that the matrix A
is diagonalizable. Nondiagonalizable matrices appear naturally when considering os-
cillators at resonance, which is often a design goal in several applications in electronics
or appear in mechanical systems with several nodes.

We emphasize that Assumption 2 involves an assumption on ĝ for all values of its
argument. This is needed when we consider solutions in L2 which may be unbounded.

It is important to note also that once we have established the conclusion for g un-
der Assumption 2, we can accommodate several physical situations such as piecewise
linear nonlinearity with small breaks.

Without loss of generality, we assume that

(2.2) k · ω 6= 0 for k ∈ Z
d \ {0}.

Indeed, if there is a k0 ∈ Zd \ {0} such that k0 · ω = 0, we could reformulate the
forcing with only (d− 1)-dimensional variables which are orthogonal to k0.

The condition (2.2) is called the nonresonance condition. If the nonresonance
condition (2.2) is satisfied, then the set {ωt}t∈R is dense on the torus Td.

2.2. Quasi-periodic solutions, hull functions. In this paper, we are inter-
ested in finding quasi-periodic solutions with frequency ω ∈ Rd \ {0}. They are
functions of time t with the form

(2.3) xε(t) = Uε(ωt)

for a suitable function Uε : T
d → Rn, indexed by the small parameter ε. The function

Uε is often called the hull function. Substituting (2.3) into (2.1) and using that
{ωt}t∈R is dense in Td, we obtain that (2.1) holds for a continuous function x if and
only if the hull function Uε satisfies

(2.4) ε (ω · ∂θ)2 Uε(θ) + (ω · ∂θ)Uε(θ) + εg(Uε(θ)) = εf(θ).

Hence, our treatment for (2.1) will be based on finding Uε which solves (2.4). We will
manipulate (2.4) to reformulate it as a fixed point equation that can be solved by the
contraction argument.

The equation we will solve (2.4) involves a parameter ε (the inverse of the co-
efficient multiplying the damping). We will obtain solutions with delicate regularity
in ε, which are objects in a space of functions. Precisely, in the analytic case (see
section 5), we will get a solution Uε of (2.4) depending analytically on ε when ε ranges
on a complex domain Ω which does not include the origin ε = 0 but so that the origin
is in the closure of Ω. In the finitely differentiable case (see section 6), the solution

Uε is differentiable in ε when ε is in a real domain Ω̃ which does not also include zero
but includes it in its closure.

However, when we consider the regularity for the solution Uε of (2.4) as ε goes to
0 along the set Ω, we get that Uε is continuous in ε at 0 in the topologies used in the
fixed point problem (see Lemma (21)). Moreover, we will show that, in the generality
considered in this paper, there are cases in which the solution is not differentiable at
ε = 0 (see Remark 20).
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Later, we will develop analogous procedures for the PDE model (1.2) (see sec-
tion 7). We anticipate that the treatment is inspired by this section presenting the
formulation for the ODE model (1.1). The unknowns will not take values in Rn, but
rather will take values in a Banach space of functions. In addition, the PDF (1.2)
is ill-posed and its nonlinearity is unbound, which make us do some more drastic
rearrangement for its fixed point equation.

2.3. Formulation of the fixed point problem. In this part, we just present
the formal manipulations. The precise setup will follow, but it is natural to pres-
ent first the formal manipulations since the rigorous setting is chosen to make them
precise.

Our goal is to transform (2.4) into an equivalent fixed point problem. We rewrite
(2.4) as

ε (ω · ∂θ)2 Uε(θ) + (ω · ∂θ)Uε(θ) + εAUε(θ) = εf(θ)− εĝ(Uε(θ)),(2.5)

where A = Dg(0) and
ĝ(x) = g(x)−Ax.

Note that, in both the analytic case and the highly differentiable case, we use
Assumption 1. It is obvious that

(2.6) ĝ(0) = 0, Dĝ(0) = 0,

namely,
ĝ(x) = O(x2), Dĝ(x) = O(x),

where O(x) denotes the same order as x. As a consequence, Dĝ is small (in many
senses) in a small neighborhood of the origin x = 0. We could also assume that Dĝ is
globally small in the whole of Rn. This is trivial in the sense of complex analyticity by
Liouville’s theorem. When g is just Lipschitz, we need that Lip(ĝ) is globally small,
namely, Assumption 2.

Based on (2.5) and denoting by Id the n × n identity matrix, we introduce the
linear operator Lε as

(2.7) Lε = ε (ω · ∂θ)2 Id+ (ω · ∂θ) Id+ εA

defined on n-dimensional periodic functions of θ ∈ Td. Then, (2.5) can be rewritten
as

(2.8) Lε(Uε(θ)) = εf(θ)− εĝ(Uε(θ)).

As shown in section 5.1, the linear operator Lε is boundedly invertible in the
special space Hρ,m defined in section 3 when ε ranges in a suitable complex domain.
This allows (2.8) to be transformed into a fixed point problem as

(2.9) Uε(θ) = εL−1
ε [f(θ)− ĝ(Uε(θ))] ≡ Tε(Uε)(θ),

where we have introduced the operator Tε. For a fixed ε, we can obtain a solution
Uε for (2.9) by the contraction mapping principle. Further, we want to get a solution
Uε possessing optimal regularity in ε. This can be achieved by considering operator
Tε above in a function space consisting of functions regular in ε (see section 5.2 for
the analytic case and section 6.1.1 for the highly differentiable case). Specially, in the
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highly differentiable case, we will use the classical implicit function theorem (we refer
to the references [Die69, LS90, KP13]) to get the regular results.

Two subtle points appear in the above strategy used in (2.9). One is the invert-
ibility of the linear operator Lε and the bound of its inverse. Another is the regularity
of the composition operator ĝ ◦ Uε.

Fortunately, we observe that the linear operator Lε is diagonal in the basis of
Fourier functions. This suggests that we use some variants of Sobolev (or Bergman)
spaces which provide analyticity—or in the low regularity case L2 or H1. Hence, it
will be useful that the spaces we consider have norms that can be estimated very
easily by estimating the Fourier coefficients. The estimates of the Fourier coefficients
involve the assumptions that the eigenvalues of A are real and nonzero and that the
range of ε is restricted to a domain not including the origin ε = 0 but accumulating
at this origin. (See section 5.1.2 for details.)

For the estimates of nonlinear terms, we need that the composition operator ĝ◦Uε

is smooth and considered as a mapping acting on the spaces under consideration. The
regularity of the composition on the left by a smooth function acting on variants of
Sobolev spaces have been widely studied [Mar74, AZ90, IKT13]. In section 3, we will
present the precise spaces and some properties in these spaces used to implement our
program.

2.4. Some heuristic considerations on the smallness conditions required
for the present method. Recall the fixed point equation (2.9); the operator we
consider has the structure

U = εL−1
ε f − εL−1

ε ĝ(U) ≡ Tε(U).

To solve it by iteration, roughly, we need that the map U 7→ εL−1
ε ĝ◦U is a contraction

in a domain that contains a ball around εL−1
ε f . Of course, the notions of contraction

and smallness depend on the spaces we choose. The results of existence of solutions
U are sharper if we consider spaces of more regular functions and the results of local
uniqueness are sharper if we consider spaces of less regular functions.

Both the contraction properties of εL−1
ε ĝ◦U and the smallness properties of εL−1

ε f
are formulated in appropriate norms (which change with the regularity considered).
As we will see in section 5.1, the operator εL−1

ε can be bounded in appropriate
norms, which allows us to just consider the smallness of f and the properties of the
composition ĝ ◦ U .

It is clear that we can trade off some of the smallness assumptions in ĝ and f .
If we are willing to make global assumptions of smallness on ĝ, we do not need any
smallness assumption on f . If, on the other hand, we assume that ĝ is smooth and
ĝ(0) = Dĝ(0) = 0, we have that ĝ is small (in many senses) in a small neighborhood
at the origin x = 0. From this point of view, it is necessary to impose a smallness
condition on f in this small neighborhood.

There are some caveats to these arguments.
In the analytic case, assuming that Dĝ is small globally (even bounded) in the

whole complex space Cn, Liouville’s theorem shows that it is constant, namely, ĝ is
linear. This makes our result true, but it is trivial and we will not state it. Of course,
Liouville’s theorem is only a concern for analytic results.

In the low regularity cases (e.g., L2 or H1 when d ≥ 2), the range of f may be
the whole of Rn, hence we need to make global assumptions on smallness in ĝ. In the
highly differentiable case (e.g., Hm, m > d

2 ), we prove our results under two types of
smallness assumptions (See section 6.1.)
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We also advance that in the case of H1 regularity, the contraction argument we
use will be somewhat more sophisticated. (See section 6.2.)

3. Function spaces.

3.1. Choice of spaces. To implement the fixed point problem outlined in sec-
tion 2, we need to precisely define function spaces with appropriate norms. The
discussion in section 5 will make clear, it is very convenient that the norms can be
expressed in terms of the Fourier coefficients of functions. In such a case, the inverse
of the linear operator Lε can be easily estimated just by estimating its Fourier co-
efficients. We are allowed to choose a special base in such a way that the Fourier
coefficients of the multiplier operator Lε have the Jordan standard form. (See sec-
tion 5.1.1.)

We also need the spaces to possess other properties allowing us to control the
composition ĝ ◦ U in (2.9) with ease, such as Banach algebras properties under mul-
tiplication and the properties of the composition operators.

In this section, we use the same notations for Banach spaces as in [dlL09, CCdlL13,
dlLS19].

For ρ ≥ 0, we denote

T
d
ρ =

{
θ ∈ C

d/(2πZ)d : Re(θj) ∈ T, |Im(θj)| 6 ρ, j = 1, . . . , d
}
.

Then, we denote the Fourier expansion of a periodic function f(θ) on Td
ρ by

f(θ) =
∑

k∈Zd

f̂ke
ik·θ,

where k ·θ =
∑d

j=1 kjθj represents the Euclidean product in Cd and f̂k are the Fourier

coefficients of f . If f is analytic and bounded on Td
ρ, then the Fourier coefficients

satisfy the Cauchy bounds

|f̂k| ≤ max
θ∈Td

ρ

|f(θ)| · e−|k|ρ

with |k| =∑d
j=1 |kj |.

Definition 3. For ρ ≥ 0, m ∈ N+, we denote by Hρ,m the space of analytic
functions U in Td

ρ with finite norm

Hρ,m := Hρ,m(Td)

=

{
U : Td

ρ → C
n | ‖U‖2Hρ,m =

∑

k∈Zd

∣∣∣Ûk

∣∣∣
2

e2ρ|k|(|k|2 + 1)m < +∞
}
.

It is obvious that the space (Hρ,m, ‖ · ‖Hρ,m) is a Banach space and indeed a
Hilbert space. From the real analytic point of view, we consider the Banach space
Hρ,m of the functions that take real values for real arguments.

For ρ = 0, Hm(Td) := H0,m(Td) is the standard Sobolev space; we refer to the
references [Tay97, AF03] for more details. Moreover, when m > d

2 , by the Sobolev
embedding theorem (see Chapters 2 and 6 in [Tay97]), we obtain that Hm+l(Td) (l =
1, 2, . . .) embeds continuously into Cl(Td).

For ρ > 0, functions in the space Hρ,m are analytic in the interior of Td
ρ and

extend to Sobolev functions on the boundary of Td
ρ.
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Remark 4. As a matter of fact, when ρ > 0 and m > d, the space Hρ,m can
be identified with a closed space of the standard Sobolev space Hm(Td

ρ) consisting

of functions which are complex differentiable. The manifold Td
ρ has 2d real dimen-

sions so that, when m > d, the standard Sobolev embedding theorem shows that
Hρ,m+l (l = 1, 2, . . .) embeds continuously into Cl(Td

ρ). Since the uniform limit of com-
plex differentiable functions is also complex differentiable, we conclude that our space
is a closed space of the standard Sobolev space of Td

ρ considered as a 2d-dimensional
real manifold. Several variants of this idea appear already in Bergman spaces in
[RS75, RS80].

We also point out that the set of functions in Hρ,m which take real values for real
arguments is a closed set in Hρ,m (this set is also a linear space over the reals). Since
we will show that our operators map this set into itself, we get that the fixed point
we produce will be such that they give real values for real arguments.

3.2. Properties of the chosen spaces H
ρ,m above. We note several well-

known properties of the space Hρ,m defined in section 3.1, which will play a crucial
role in what follows.

Lemma 5 (interpolation inequalities). For any 0 ≤ i ≤ m, 0 ≤ ν ≤ 1, denote
s = (1− ν)i+ νm, then we have the following inequalities:

(1) Sobolev case: For f ∈ Hm, there exists a constant Ci,m > 0 depending only
on i,m such that

(3.1) ‖f‖Hs ≤ Ci,m · ‖f‖1−ν
Hi · ‖f‖νHm .

(2) Analytic case: For ρ > 0, g ∈ Hρ,m, there exists a constant Ci,ρ,m > 0
depending only on i, ρ,m such that

(3.2) ‖g‖Hρ,s ≤ Ci,ρ,m · ‖g‖1−ν
Hρ,i · ‖g‖νHρ,m .

The inequality (3.1) is the very standard Sobolev interpolation inequality in the
literature [Tay97, Zeh75]. Since, as mentioned before, the spaces Hρ,m(Td) can be
considered as a subspace of the standard Sobolev space in Td

ρ, we also have (3.2).

Lemma 6 (Banach algebra properties). We have the following properties in two
cases:

(1) Sobolev case (see [AF03, Tay97]): Let m > d
2 ; there exists a constant Cm,d > 0

depending only on m, d such that for u1, u2 ∈ Hm, the product u1 · u2 ∈ Hm

and

‖u1u2‖Hm ≤ Cm,d‖u1‖Hm‖u2‖Hm .

(2) Analytic case: For ρ > 0, m > d, there exists a constant Cρ,m,d > 0 depending
only on ρ,m, d such that for u1, u2 ∈ Hρ,m, the product u1 · u2 ∈ Hρ,m and

‖u1u2‖Hρ,m ≤ Cρ,m,d‖u1‖Hρ,m‖u2‖Hρ,m .

In particular, Hρ,m is a Banach algebra when ρ, m, d are as above.

To analyze the operator Tε defined in (2.9), we need to estimate the properties of
the composition operator ĝ◦U . The following properties are well-known consequences
of Gagliardo–Nirenberg inequalities.

Lemma 7 (composition properties). We have the following properties in the two
cases:
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(1) Sobolev case (see [Mar74, Tay97, IKT13]): Let g ∈ Cm(Rn, Rn) and assume
that g(0) = 0. Then, for u ∈ Hm(Td, Rn) ∩ L∞(Td, Rn), we have

‖g(u)‖Hm ≤ Cm (‖u‖L∞) (1 + ‖u‖Hm) ,

where Cm(η) = sup|x|≤η, α≤m |Dαg(x)|. Particularly, when m > d
2 (so that,

by the Sobolev embedding theorem Hm ⊂ L∞), if g ∈ Cm+2 and u, v, u+ v ∈
Hm, then

‖g ◦ (u+ v)− g ◦ u−Dg ◦ u · v‖Hm

≤ Cm,d (‖u‖L∞) (1 + ‖u‖Hm) ‖g‖Cm+2‖v‖2Hm

(3.3)

for some Cm,d > 0 depending on the norm of u.
(2) Analytic case: Let g : B → Cn with B being an open ball around the origin

in Cn and assume that g is analytic in B. Then, for u ∈ Hρ,m(Td
ρ, C

n) ∩
L∞(Td

ρ, C
n) with u(Td

ρ) ⊂ B, we have

‖g(u)‖Hρ,m ≤ Cρ,m (‖u‖L∞) (1 + ‖u‖Hρ,m) .

Moreover, when m > d,

‖g ◦ (u+ v)− g ◦ u−Dg ◦ u · v‖Hρ,m

≤ Cρ,m,d (‖u‖L∞) (1 + ‖u‖Hρ,m) ‖v‖2Hρ,m .

The complete proof of Lemma 7 can be found in Proposition 1 in [Mar74], Proposi-
tion 3.9 in [Tay97], or Proposition 2.20 in [IKT13]. To make our paper self-contained,
we just give a sketch of the ideas for the inequality (3.3), but refer the interested
readers to the references above.

Since

g ◦ (u+ v)(θ)− g ◦ u(θ)−Dg ◦ u(θ) · v(θ)

=

∫ 1

0

∫ t

0

D2g ◦ (u+ sv)(θ) · v2(θ)dsdt,

we get the desired result by the facts that D2g ◦ (u+ tsv) ∈ Hm and its Hm norm is
bounded uniformly in (t, s) and that Hm is a Banach algebra under multiplication by
Lemma 6. The range of the derivative Dg is an n×n matrix, which can be identified
with Rn2

. Note that the dimension of the range of g does not play any role in our
arguments.

The proof of Lemma 7 is rather elementary in the analytic case.
As a matter of fact, Lemma 7 gives not only the composition operator is differen-

tiable but also presents a formula for the derivative. It is easy to check that the same
argument leads to higher derivatives of the composition operator if we assume more
regularity for the function g. More precisely, we have the following proposition.

Proposition 8 (regularity of composition operators). We have the results in
two cases:

(1) Sobolev case: Let m > d
2 . Then, the left composition operator

Cg : Hm(Td,Rn) → Hm(Td,Rn)

defined by
Cg[u](θ) = g(u(θ)),
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has the following properties:
If g ∈ Cm+1(Rn,Rn), then Cg is Lipschitz.
If g ∈ Cm+l+1(Rn,Rn) (l = 1, 2, . . .), then Cg is Cl. Moreover, the derivative
of the operator Cg is given by

(DCg[u]v)(θ) = Dg(u)v(θ).

(2) Analytic case: Let ρ > 0. Assume that m > d and g : B → Cn, where B is
an open ball around the origin in Cn and is analytic in B.
Let u0 ∈ Hρ,m be such that u0(T

d
ρ) ⊂ B. Then for all u in a neighborhood

U of u0 in Hρ,m, the operator Cg : U → Hρ,m is analytic. Moreover, for
v ∈ Hρ,m, the derivative of the operator Cg is given by

(DCg[u]v)(θ) = Dg(u)v(θ).

Proof. In fact, Lemma 7 shows that the operator Cg is C1 when g ∈ Cm+2. For
g ∈ Cm+l+1, we can proceed by induction. If we have proved the result for l and the
formula for the derivative, we obtain the case for l + 1. Indeed, if g ∈ Cm+l+1, we
have Cg is Cl. Then, for g ∈ Cm+l+2, Dg ∈ Cm+l+1, we get DCg is Cl by induction.
Namely, Cg is Cl+1.

In the analytic case, we start by observing that u(Td
ρ) ⊂ B is a compact set by the

Sobolev embedding theorem. Hence, it is at a bounded distance from the boundary
of B. If the neighborhood of u is sufficiently small, the range of all the functions will
also be contained in B. Then, we obtain our result by Lemma 7. We can also refer
to [CCCdlL17] for more details.

Note that, for the Sobolev case in Proposition 8, the regularity of Cg is not optimal;
we refer to [RS96, AZ90, IKT13] for more results. Note also that, for the analytic
case in Proposition 8, the result is not the most general result. There are results in
the case of regularity where the Sobolev embedding theorem does not give continuity.
In these cases, we need to pay more attention to the ranges of the functions. Since
the functions are differentiable in the complex sense, we obtain that the composition
operator Cg is differentiable in the complex sense by the chain rule to obtain the
derivative. Further, to get that the operator Cg is analytic, we just recall the Cauchy
result that also holds for functions whose arguments range over a complex Banach
space. See [HP74].

4. Statement of the main results. In this section, we state several results
for the model (2.1). These results are aimed at different regularities of the forcing f :
analyticity (Theorem 9), finite (but high enough) number of derivatives (Theorem 12),
and low regularity (Theorem 14).

Theorem 9. Consider the model (1.1). Suppose that f ∈ Hρ,m(Td) for some
ρ > 0, m > d and g is analytic in an open ball around the origin in the space Cn.

If Assumption 1 holds and ‖f‖Hρ,m is small enough, then, for ε ∈ Ω, where

(4.1) Ω := Ω(σ, µ) = {ε ∈ C : Re(ε) ≥ µ |Im(ε)|, σ ≤ |ε| ≤ 2σ}

with µ > µ0 for µ0 > 0 sufficiently large and σ > 0 sufficiently small, there is a unique
solution Uε ∈ Hρ,m(Td) for (2.4).

Furthermore, considering Uε as a function of ε, the mapping ε 7→ Uε : Ω →
Hρ,m(Td) is analytic.

In addition, when ε ∈ Ω and ε → 0 along the set Ω, the solution Uε → 0 and the
mapping ε 7→ Uε is continuous at ε = 0.
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Remark 10. The statement of Theorem 9 does not impose any Diophantine con-
dition on the forcing frequency ω. Since we do not expand the solution as a power
series in ε, there is no equation involving the small divisor appearing. We will, how-
ever, not get that the solution is differentiable with respect to ε at the origin ε = 0 and
this may indeed be false in the generality considered in this paper. (See Remark 20.)

Remark 11. The smallness conditions on ‖f‖Hρ,m in Theorem 9 (as well as The-
orems 12, 14 in what follows) will be made explicit during the proof. We anticipate
that they depend on the spectral properties of A (the eigenvalues and the size of the
projection), the number theoretic properties of ω, and the size of nonlinearity ĝ. We
make explicit the small conditions in all steps.

Theorem 12. Consider the model (1.1). Suppose that f ∈ Hm(Td) with m > d
2

and g ∈ Cm+l(Rn,Rn) (l = 1, 2, . . .).
If Assumption 1 is satisfied and ‖f‖Hm is small enough (or Lip(ĝ) is sufficiently

small in the whole of Rn in the sense of Assumption 2), then, for ε ∈ Ω̃, where

(4.2) Ω̃ := Ω̃(σ) = {ε ∈ R+ : σ ≤ |ε| ≤ 2σ}

with sufficiently small σ > 0, there exists a unique solution Uε ∈ Hm(Td) for (2.4).
Moreover, the solution Uε obtained above has the following regularity in ε:
• If g ∈ Cm+1(Rn,Rn), then the mapping ε 7→ Uε : Ω̃ → Hm(Td) is Lipschitz.

• If g ∈ Cm+l+1(Rn,Rn), then the mapping ε 7→ Uε : Ω̃ → Hm(Td) is Cl.

In addition, when ε ∈ Ω̃ and ε → 0 along the set Ω̃, the solution Uε → 0 and the
mapping ε 7→ Uε are continuous at ε = 0.

Remark 13. Note that if Lip(ĝ) is sufficiently small in the whole of Rn, we do
not impose any small condition on f . Otherwise, it is necessary to give the small
condition on f . (Recall the analysis in section 2.4.)

We emphasize that the regularity of the solution Uε in ε stated in Theorem 12
depends on the regularity of the composition operator presented in Proposition 8.
Even if we show that the derivatives with respect to ε exist for all ε > 0, we do not
make any claim about the limit of the derivatives as ε goes to 0.

The following Theorem 14 is for the situation when the forcing and the nonlin-
earity are rather irregular.

Theorem 14. We study (1.1). Suppose that f ∈ L2(Td) and g is globally Lip-

schitz continuous on Rn satisfying Assumption 2. Then, for ε ∈ Ω̃, there is a unique
solution Uε ∈ L2(Td) for (2.4).

Under the above assumptions if f ∈ H1(Td) and g ∈ C1+Lip, then the unique
solution Uε constructed above is in ∩0≤s<1H

s.

Note that Theorem 14 applies to some piecewise linear models (the Lipschitz
constant of the derivatives has to be sufficiently small). Such models appear naturally
in many areas.

We also stress that in Theorem 14, for f ∈ H1(Td), we cannot claim that the
solution is in H1, but only that it belongs to the intersection ∩0≤s<1H

s. We do not
have a contraction argument in this case, but we can estimate the speed of convergence
of the iterative procedure in the space Hs for 0 ≤ s < 1.

In the analytic case (Theorem 9) and in the highly differentiable regularity (Theo-
rem 12), when m > (d2 + 2), we have that the solution Uε is C2 with
respect to the argument θ. Hence, the quasi-periodic solutions x(t) obtained through
(2.3) is also a twice differentiable function of time. As a consequence, the solutions
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we have produced satisfy the differential equation (1.1) in the classical sense. In the
lower regularity case, the solutions we produce solve the equation in the sense that the
Fourier coefficients of (2.4) are the same in both sides. This is equivalent to solving
(1.1) in the weak sense since the trigonometric polynomials are dense in the space of
C∞ test functions.

In this paper, we also present some results for PDE model (1.2). Since the for-
mulation requires new definitions and auxiliary lemmas, we postpone the formulation
of the results until section 7.

5. Analytic case: Proof of Theorem 9. We prove Theorem 9 in the analytic
sense by considering the fixed point equation (2.9) in the Banach space Hρ,m for any
ε ∈ Ω(σ, µ). Recall (2.9),

(5.1) Uε(θ) = L−1
ε [εf(θ)− εĝ(Uε(θ))] ≡ Tε(Uε)(θ).

The first concern is the invertibility of the linear operator Lε and the quantitative
bounds on its inverse when ε ranges over the complex domain Ω(σ, µ) defined in
(4.1). We remark that it is impossible to obtain the same bounds if ε belongs to
the imaginary axis. In fact, we conjecture that the optimal domain of ε, when the
solution Uε of (5.1) is considered as a function of ε, do not extend to the imaginary
axis.

Second, since we want to obtain a solution Uε analytic in ε, we will define a space
consisting of functions analytic in ε. (See section 5.2.) By reinterpreting the fixed
point problem in the space Hρ,m,Ω, we obtain rather directly the analytic dependence
on ε of the solutions Uε. The delicate steps are to show that, for each ε ∈ Ω(σ, µ),
the operator Tε maps a ball centered at the origin in the space Hρ,m to itself and it
is a contraction in this ball.

5.1. Estimates on the inverse operator L−1

ε
. For the analytic nonlinearity

g, the linear part A is dominant with respect to the nonlinear part ĝ. Moreover, the
Lipschitz constant of ĝ can be small enough in a sufficiently small domain.

We now study the linear operator defined by

Lε = ε (ω · ∂θ)2 Id+ (ω · ∂θ) Id+ εA.

Our main result in this section includes that Lε is boundedly invertible from the
analytic function space Hρ,m to itself when ε ranges over a complex conical domain
Ω(σ, µ), which is away from the imaginary axis. Of course, this result requires the
condition on A in Assumption 1.

A key ingredient for the result is that the norms of the functions can be read off
from the sizes of the Fourier series and that the operator Lε acts in a very simple
matter in Fourier series. Indeed, if the matrix A was diagonal, the operator Lε will
be just a Fourier multiplier in each component (this case is worth keeping in mind as
a heuristic guide).

5.1.1. Some elementary manipulations. A consequence of Assumption 1 is
that there exists a basis of generalized eigenvectors Φi ∈ Cn (i = 1, 2, . . . , n) such that

AΦ = JΦ, Φ = (Φ1, . . . ,Φn)
⊤,(5.2)
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where J is the standard Jordan normal form. That is, for 1 ≤ p ≤ n, 1 ≤ j ≤ p,

J =




J1 0
J2

. . .

0 Jp




n×n

, Jj =




λj 0
1 λj

. . .
. . .

0 1 λj




d×d

.

Note that the subscript n×n denotes the dimension of the matrix J . The symbol
d (1 ≤ d ≤ n) represents the multiplicity of the eigenvalue λj . More precisely, the
Jordan matrix J depends on the spectra of the matrix A.

When we write a function Uε ∈ Hρ,m in the Fourier expansion as

Uε(θ) =
∑

k∈Zd

Ûk, εe
ik·θ =

∑

k∈Zd

˜̂
Uk, εΦe

ik·θ

with Ûk, ε,
˜̂
Uk, ε ∈ Cn and Φ ∈ Cn2

being the one specified in (5.2), the operator Lε

acting on the Fourier basis becomes

Lε(Φe
ik·θ) =

(
−ε(k · ω)2Id+ i(k · ω)Id+ εJ

)
Φeik·θ =: Lε(k · ω)Φeik·θ,

where

Lε(a) = −εa2Id+ iaId+ εJ

=




Lε,1(a) 0
Lε,2(a)

. . .

0 Lε,p(a)




n×n

(5.3)

with, for 1 ≤ j ≤ p,

Lε,j(a) =




lε,j(a) 0
ε lε,j(a)

. . .
. . .

0 ε lε,j(a)




d×d

with

(5.4) lε,j(a) = −εa2 + ia+ ελj .

The formula (5.3) gives that

(5.5) L−1
ε (a) =




L−1
ε,1(a) 0

L−1
ε,2(a)

. . .

0 L−1
ε,p(a)




n×n
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with, for 1 ≤ j ≤ p,

L−1
ε,j (a)

=




l−1
ε,j (a) 0

−εl−2
ε,j (a) l−1

ε,j (a)

ε2l−3
ε,j (a) −εl−2

ε,j (a) l−1
ε,j (a)

...
. . .

. . .
. . .

(−1)d−1εd−1l−d

ε,j (a) · · · ε2l−3
ε,j (a) −εl−2

ε,j (a) l−1
ε,j (a)




d×d

.

(5.6)

Consequently, to estimate the inverse of Lε, it suffices to estimate

(5.7) Γε := sup
a∈R

|L−1
ε (a)| ≥ sup

k∈Zd

|L−1
ε (k · ω)|,

where the matrix norm is defined by

(5.8) |L| = max
i,j

|Lij |

with Lij being the (i, j)th variable of the matrix L. Of course, any other norm will
work just as well since the nonlinear operators we need to estimate will have a small
norm for any precise definition of the metric.

5.1.2. Bounds on L
−1

ε
given in (5.5). For the matrix Lε(a) defined in (5.3),

once we obtain the infimum of |lε,j(a)| in (5.4) for a ∈ R, we get the estimates
of Γε defined in (5.7). The following estimates are similar to those in [CCdlL13],
which considered only the 1-dimensional case. We now present the details for the
n-dimensional case.

Note that the estimates we obtain also apply to the standard Sobolev space Hm,
which allows us to conclude very quickly the results for the finitely differentiable case
presented in section 6. We first deal with two special cases, which throw some light
on the general case. Of course, from the purely logical point of view, these special
cases can be omitted since they can be covered in the general discussion. We note
that Case 1 with ε ∈ R+ is the special case needed in the finite differentiability result.
So it is worth dealing with it explicitly.

Case 1. When ε ∈ R+, we have, for a ∈ R,

|lε,j(a)|2 = | − εa2 + ia+ ελj |2

= (−εa2 + ελj)
2 + a2

= ε2a4 + (1− 2ε2λj)a
2 + ε2λ2

j .

Take G(v) = ε2v2 + (1 − 2ε2λj)v + ε2λ2
j with v = a2 ≥ 0. It is obvious that G(v) ≥

G(0) = ε2λ2
j sinceDG(v) = 2ε2v+(1−2ε2λj) > 0 due to the smallness of ε. Therefore,

we have

(5.9) inf
a∈R

|lε,j(a)| ≥ |ελj |.

Equivalently,
sup
a∈R

|lε,j(a)|−1 ≤ |ελj |−1.
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Together with (5.6) and the matrix norm defined in (5.8), we have that

Γε = sup
a∈R

|L−1
ε (a)| = sup

a∈R

max
1≤j≤p

|L−1
ε,j (a)|

= sup
a∈R

max
1≤j≤p

(
max

1≤m≤d

|εm−1l−m
ε,j (a)|

)

≤ max
1≤j≤p

(
max

1≤m≤d

|ε|m−1 · |ε|−m|λj |−m

)

≤ |ε|−1 max
1≤j≤p

(
max

1≤m≤d

|λj |−m

)
.

Case 2. When ε is pure imaginary, i.e., ε = is with s small enough. In this case,
there exists a real root a such that |lε,j(a)| = 0 since the discriminant 1 + 4s2λj > 0
(by the smallness of s) for −sa2 + a+ sλj = 0. Hence, the operator Lε is unbounded
if the small parameter ε locates in the imaginary axis, which makes the contraction
mapping principle inapplicable.

We conjecture that no solutions for (2.5) exist when ε is purely imaginary because
zero divisors can be considered as resonance.

To study the analyticity in ε of the function Uε satisfying (5.1), it will be interest-
ing to study the inverse of Lε when ε ranges over the complex domain Ω(σ, µ) defined
in (4.1).

In what follows, in order to avoid having many constants, we will follow standard
practice and denote by Cλ any constant depending only on the eigenvalues λj (j =
1, . . . , n) of the matrix A, but not ε.

Proposition 15. For Γε defined in (5.7), when ε ∈ Ω(σ, µ), we have

Γε ≤ σ−1Cλ.

Proof. Fix
ε = s1 + is2

for ε lining on a conical domain Ω(σ, µ); we have s1 ≥ µ|s2|, where µ > µ0 with
some sufficiently large positive constant µ0 (e.g., µ0 > 103), and σ2 ≤ s21 + s22 ≤ 4σ2.
Namely,

(5.10)
1√

1 + 10−6
· σ <

1√
1 + µ−2

· σ ≤ s1 ≤ 2σ.

Then, one obtains that

|lε,j(a)|2 = | − εa2 + ia+ ελj |2

=
∣∣−s1(a

2 − λj)− i(s2a
2 − a− s2λj)

∣∣2

= s21(a
2 − λj)

2 +
[
s2(a

2 − λj)− a
]2

.

(5.11)

If λj < 0, it is obvious that

(5.12) |lε,j(a)|2 ≥ s21(a
2 − λj)

2 ≥ s21λ
2
j .

The remaining task is to estimate |lε,j(a)|2 in (5.11) in the case of λj > 0. The
first term vanishes at the point a = ±

√
λj . We define two regions in a as the following:

I1 = [(1− 10−3)
√

λj , (1 + 10−3)
√
λj ] ∪ [(−1− 10−3)

√
λj , (−1 + 10−3)

√
λj ],

I2 = R \ I1.
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When a ∈ I2, we obtain the estimate

(5.13) |lε,j(a)|2 ≥ s21(a
2 − λj)

2 ≥ s21 ·O(|λj |2).

In the case of a ∈ I1, it is clear that [s2(a
2 − λj)− a] = O(s2)− a. Therefore,

|lε,j(a)|2 ≥
[
s2(a

2 − λj)− a
]2

= [O(s2)− a]
2 ≥ a2

2
= O(|λj |) ≥ O(|λj |) · s21

(5.14)

by the smallness of s1 and s2 (depending on ε). Note that the last inequality in the
above estimate is very wasteful but we want to get estimates comparable to the ones
we have in the other pieces. The inequalities (5.10), (5.12), (5.13), and (5.14) allow
that

inf
a∈R

|lε,j(a)| ≥ σ ·O
(
min

{
|λj |, |λj |

1
2

})
.

Equivalently,

(5.15) sup
a∈R

|lε,j(a)|−1 ≤ σ−1Cλj
,

where

Cλj
= O

(
max

{
|λj |−1, |λj |−

1
2

})
.(5.16)

Combining with the formulas in (5.5), (5.6), the matrix norm defined in (5.8),
and (5.15) we obtain that

Γε = sup
a∈R

|L−1
ε (a)| = sup

a∈R

max
1≤j≤p

|L−1
ε,j (a)|

= sup
a∈R

max
1≤j≤p

(
max

1≤m≤d

|εm−1l−m
ε,j (a)|

)

≤ max
1≤j≤p

(
max

1≤m≤d

σm−1 · σ−m(Cλj
)m
)

≤ σ−1Cλ

(5.17)

with

Cλ = max
1≤j≤p

1≤m≤d

(
Cλj

)m
= O

(
max
1≤j≤p

1≤m≤d

{
|λj |−m, |λj |−

m
2

}
)
.(5.18)

It follows from Proposition 15 that, for each ε ∈ Ω(σ, µ),

(5.19)
∣∣εL−1

ε (a)
∣∣ ≤ σ · σ−1Cλ ≤ Cλ.

Due to the fact that the norm in the space Hρ,m is characterized by the Fourier
coefficients, we have

(5.20)
∥∥εL−1

ε

∥∥
Hρ,m→Hρ,m = sup

k∈Zd

∣∣εL−1
ε (k · ω)

∣∣ ≤ Cλ.

This inequality is crucial in the contraction mapping argument used in section 5.3.
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Remark 16. By (5.17), we see that Γε can be bounded by σ−1 when σ is the
minimum distance to the origin in the domain Ω(σ, µ). Then it follows from (5.19)
that the bad factors σ−1 can be dominated by the good factor σ. This is the reason
why we choose σ ≤ |ε| ≤ 2σ, whose maximum and minimum distances to the origin
are comparable. Note, however, that the estimate for εL−1

ε in (5.20) is independent
of σ, so we obtain uniqueness of solutions for different σ, i.e., the solutions obtained
for different σ agree for the ε in the intersection.

Remark 17. We note that the method presented in this present paper can accom-
modate small modifications leading to several generalizations. For example, we have
the general equation (1.3) with p = diag(p1, . . . ,pn), q = diag(q1, . . . ,qn) being a
diagonal matrix satisfying pj , qj ∈ R\{0}, j = 1, . . . , n. In this general case, the only
modification with the present exposition is that the calculation for lε,j(a) in (5.11)
becomes

|lε,j(a)|2 = | − εpja
2 + iqja+ ελj |2

=
[
−s1(pja

2 − λj)− i(s2pja
2 − qja− s2λj)

]2

= s21(pja
2 − λj)

2 +
[
s2(pja

2 − λj)− qja
]2

,

which makes no difference in our discussion in Proposition 15.

5.2. Analyticity in ε. Recall (2.9),

(5.21) U(θ) = εL−1
ε [f(θ)− ĝ(U(θ))]

with U being a function of ε defined by U = Uε. In this way, we define the operator
T acting on functions analytic in ε, taking values in Hρ,m, given by

(5.22) T (U) ≡ εL−1
ε [f − ĝ(U)] .

Since we want to obtain the solution Uε depending analytically on ε, we reinterpret
T above as an operator acting on the space Hρ,m,Ω consisting of analytic functions of
ε taking values in Hρ,m with ε ranging over the domain Ω(σ, µ). We endow the space
Hρ,m,Ω with the supremum norm

(5.23) ‖U‖ρ,m,Ω = sup
ε∈Ω

‖Uε‖ρ,m,

where we use the abbreviation ‖ · ‖ρ,m := ‖ · ‖Hρ,m defined in Definition 3. The
supremum norm of ε in (5.23) makes Hρ,m,Ω a Banach space. Moreover, it is also a
Banach algebra under multiplication when m > d by Lemma 6.

We now show that the operator T defined in (5.22) maps the space Hρ,m,Ω into
itself.

Lemma 18. Assume that m > d. If U ∈ Hρ,m,Ω, then T (U) ∈ Hρ,m,Ω. Precisely,
if the mapping ε 7→ Uε : Ω → Hρ,m is complex differentiable, then the mapping
ε 7→ Tε(Uε) : Ω → Hρ,m is complex differentiable as well.

Proof. From the definition (5.22), we know that the operator T is composed of
operators εL−1

ε and ĝ. It is clear that the map ε 7→ ĝ(Uε) : Ω → Hρ,m is complex
differentiable since ĝ is analytic and it does not depend on ε explicitly. Therefore, it
suffices to show that the map ε 7→ εL−1

ε (Vε) : Ω → Hρ,m is complex differentiable
when Vε, considered as a function from Ω to Hρ,m, is complex differentiable.
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We prove that the derivatives of εL−1
ε (Vε) with respect to ε exist in the space

Hρ,m−τ (d < τ ≤ m) instead of Hρ,m. Then, we apply, somewhat surprisingly,
Lemma 36 in Appendix A to conclude that the derivatives we consider indeed ex-
ist in the space Hρ,m.

For a fixed ε ∈ Ω, we expand Vε(θ) as

Vε(θ) =
∑

k∈Zd

V̂k, εe
ik·θ

with

(5.24) V̂k, ε =

∫

Td
ρ

Vε(θ)e
−ik·θdθ

satisfying

(5.25)
∣∣∣V̂k, ε

∣∣∣ ≤ ‖Vε‖ρ,m e−ρ|k|
(
|k|2 + 1

)−m
2 .

Taking the derivative with respect to ε for (5.24), we have that

(5.26)
d

dε
V̂k, ε =

∫

Td
ρ

(
d

dε
Vε

)
(θ)e−ik·θdθ

with

(5.27)

∣∣∣∣
d

dε
V̂k, ε

∣∣∣∣ ≤
∥∥∥∥
d

dε
Vε

∥∥∥∥
ρ,m

e−ρ|k|(|k|2 + 1)−
m
2 .

It follows from section 5.1 that

εL−1
ε (Vε) =

∑

k∈Zd

εL−1
ε (ω · k)V̂k, εe

ik·θ

with L−1
ε defined in (5.5). By (5.15) and supa∈R |lε,j(a)|−1a2 ≤ σ−1Cλ (which can be

easily obtained using the same technique as (5.15)), we have that

∣∣∣∣
d

dε

[
εdl−d

ε,j (ω · k)
]∣∣∣∣

=
∣∣d · εd−1 · l−d

ε,j (ω · k)− d · εd · l−d−1
ε,j (ω · k) ·

(
−(ω · k)2 + λj

) ∣∣

≤ Cλ · σ−1.

Together with the formulas (5.5) and (5.6), one gets

∣∣∣∣
d

dε

(
εL−1

ε (ω · k)V̂k, ε

)∣∣∣∣

≤
∣∣∣∣
d

dε

(
εL−1

ε (ω · k)
)∣∣∣∣
∣∣∣V̂k, ε

∣∣∣+
∣∣εL−1

ε (ω · k)
∣∣
∣∣∣∣
d

dε
V̂k, ε

∣∣∣∣

≤ Cλ · σ−1

(∣∣∣V̂k, ε

∣∣∣+
∣∣∣∣
d

dε
V̂k, ε

∣∣∣∣
)
.
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Hence, (5.25), (5.27), and (5.28) yield that

∥∥∥∥
d

dε

(
εL−1

ε (ω · k)V̂k, ε

)
eik·θ

∥∥∥∥
ρ,m−τ

≤ Cλ · σ−1

(∣∣∣V̂k, ε

∣∣∣+
∣∣∣∣
d

dε
V̂k, ε

∣∣∣∣
) ∥∥eik·θ

∥∥
ρ,m−τ

≤ Cλ · σ−1

(
‖Vε‖ρ,m +

∥∥∥∥
d

dε
Vε

∥∥∥∥
ρ,m

)
e−ρ|k|

(
|k|2 + 1

)−m
2

· eρ|k|
(
|k|2 + 1

)m−τ
2

≤ Cλ · σ−1

(
‖Vε‖ρ,m +

∥∥∥∥
d

dε
Vε

∥∥∥∥
ρ,m

)
(|k|2 + 1)−

τ
2 .

Due to
∑

|k|=κ 1 ≤ 2dκd−1, k ∈ Zd (see [Ad63]), and choosing d < τ ≤ m,

∑

k∈Zd

(|k|2 + 1)−
τ
2 ≤

∞∑

κ=0

∑

|k|=κ

(κ2 + 1)−
τ
2 ≤

∞∑

κ=0

(κ2 + 1)−
τ
2

∑

|k|=κ

1

≤ 2d
∞∑

κ=0

(κ2 + 1)−
τ
2 κd−1

≤ 2d
∞∑

κ=0

(κ2 + 1)−
τ−d+1

2 < ∞.

As a consequence, it follows from the Weierstrass M-test that the series

∑

k∈Zd

d

dε

(
εL−1

ε (ω · k)V̂k, ε

)
eik·θ

converges uniformly on ε ∈ Ω in the space Hρ,m−τ . The fact that these formal
derivatives are uniformly convergent shows that they are the true derivatives. Namely,

d

dε

(
εL−1

ε (Vε)
)
=
∑

k∈Zd

d

dε

(
εL−1

ε (ω · k)V̂k, ε

)
eik·θ.

Therefore, we have that the mapping ε 7→ εL−1
ε (Vε) : Ω → Hρ,m−τ is complex

differentiable. Since Hρ,m ⊂ Hρ,m−τ , we conclude that the mapping ε 7→ εL−1
ε (Vε) :

Ω → Hρ,m is complex differentiable with derivatives in Hρ,m−τ by Lemma 36 in
Appendix A.

5.3. Existence of the fixed point. Recall that the fixed point equation is

(5.29) U(θ) = εL−1
ε [f(θ)− ĝ(U(θ))] ≡ T (U)(θ).

The proof of the existence of the solutions for the above equation is based on the fixed
point theorem in the Banach spaceHρ,m,Ω. We consider a ball Br(0) around the origin
in Hρ,m,Ω with radius r > 0 (chosen later) and we prove that T (Br(0)) ⊂ Br(0) so
that T is a contraction in the ball Br(0).

It follows from (2.6) (ĝ(0) = Dĝ(0) = 0) and Proposition 8 that the Lipschitz
constant of the composition operator ĝ ◦U is bounded by a constant times the radius

D
o
w

n
lo

ad
ed

 0
8
/2

5
/2

1
 t

o
 1

4
3
.2

1
5
.3

8
.3

2
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



❈�✁✂✄☎✆✝✞ © ✥✂ ✟✠✡☛☞ ✌✍❛✎✞✝�✄☎✏✑✒ ✄✑✁✄�✒✎❝✞☎�✍ �✓ ✞✝☎t ❛✄✞☎❝✔✑ ☎t ✁✄�✝☎✥☎✞✑✒☞

3170 FENFEN WANG AND RAFAEL DE LA LLAVE

r when U ∈ Br(0). Combining this with (5.20), for any elements U1, U2 ∈ Br(0), we
get, assuming that r is sufficiently small such that Cλ · r < 1

2 ,

‖T (U1)− T (U2)‖ρ,m,Ω = sup
ε∈Ω

∥∥εL−1
ε ĝ(U1)− εL−1

ε ĝ(U2)
∥∥
ρ,m

≤ Cλ · r · ‖U1 − U2‖ρ,m,Ω

≤ 1

2
‖U1 − U2‖ρ,m,Ω.

Therefore, T is a contraction in the ball Br(0).
Now we try to identify the conditions that the ball Br(0) with r chosen as above

gets mapped into itself. Now that we have chosen a radius r so that T is a contraction
in Br(0), in the following, we show that for ε, ‖f‖ satisfying suitable assumptions
(these are the assumptions stated in Theorem 9) the operator T maps the ball into
itself.

Indeed, for U ∈ Br(0), one has

‖T (U)‖ρ,m,Ω ≤ ‖T (0)‖ρ,m,Ω + ‖T (U)− T (0)‖ρ,m,Ω

≤ Cλ‖f‖ρ,m +
1

2
r.

Under the assumption that ‖f‖ρ,m is small enough in such a way that

Cλ‖f‖ρ,m ≤ 1

2
r,

we get T (Br(0)) ⊂ Br(0).
In conclusion, by the fixed point theorem in the Banach space Hρ,m,Ω, there exists

a unique solution U ∈ Hρ,m,Ω analytic in ε for (5.29).

Remark 19. When we consider the operator T defined in (5.22) in the Banach
space Hρ,m,Ω, the solution Uε obtained via fixed point theorem does not lose any reg-
ularity on ε. That is, the solution Uε naturally depends analytically on the parameter
ε. However, in the finitely differentiable case, when we take ε ∈ Ω̃ ⊂ R instead of
ε ∈ Ω ⊂ C, the contraction mapping principle is not enough to get a solution Uε with

optimal regularity in ε since when ρ = 0, the space Hρ,m,Ω̃ is no longer a Banach space
with supremum in ε. We will combine this with the implicit function theorem to get
the optimal regularity. (See section 6.1 for more details.) It is worth pointing out that
in the low regularity case, especially in H1, we need a more sophisticated contrac-
tion argument in some sense since there is no Lipschitz property for the composition
operator ĝ ◦ u in H1. (See section 6.2.)

Remark 20. We emphasize that the general solution Uε obtained above may be
not differentiable in ε at the origin ε = 0 since we do not impose any Diophantine
condition for the frequency ω. Indeed, if Uε was differentiable, we denote the derivative

U (1)(θ) := dUε(θ)
dε

|ε=0 and assume Uε = 0 at point ε = 0. Then, taking the derivative

in ε at ε = 0 for (2.4), U (1) would satisfy that

(5.30) (ω · ∂θ)U (1)(θ) = f(θ).

If ω is sufficiently Liouvillean (e.g., |ω · k| ≥ exp(−|k|2); such an ω can be easily
constructed for infinitely many k), we can easily construct analytic function f so that
U (1)(θ) solving (5.30) cannot even be a distribution.
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Note that this argument also excludes very weak notions of differentiability (such
as the existence of limits of quotients through a subsequence). We just argue that
if such a limit exists, the limit would have to satisfy an equation that does not have
solution.

Lemma 21. For the solution Uε constructed above, we have that, for ε ∈ Ω and ε
going to 0 along the set Ω, Uε tends to 0. Moreover, the mapping ε 7→ Uε is continuous
at ε = 0.

Proof. We take ρ1 > ρ > 0 so that both the space Hρ1,m and the space Hρ,m

satisfy the assumptions of Theorem 9. Denote by U1
ε , Uε the solutions obtained by

applying Theorem 9 to Hρ1,m, Hρ,m, respectively. Then, we observe that U1
ε = Uε

by U1
ε ∈ Hρ1,m ⊆ Hρ,m and the uniqueness conclusion in Hρ,m. Moreover, we note

that the set {U1
ε | ε ∈ Ω}, where Ω denotes the closure of Ω, is bounded in Hρ1,m and

hence it is precompact in Hρ,m topology.
To show that Uε is continuous in ε at ε = 0, it suffices to verify that the graph G

of U , that is,
G :=

{
(ε, Uε)| ε ∈ Ω

}
,

is compact in the Hρ,m topology. Since a ball in Hρ1,m is precompact in Hρ,m, we
just need to prove that G is closed. Indeed, the sequence (εn, Uεn) ∈ G if and only if
(2.8) is satisfied, that is,

Lεn(Uεn(θ)) = εnf(θ)− εnĝ(Uεn(θ)).

Taking the limits of εn → ε∗, Uεn → U∗ for n → ∞, one can obtain that

Lε∗(U
∗(θ)) = ε∗f(θ)− ε∗ĝ(U

∗(θ)).

Hence, we conclude that (ε∗, U
∗) ∈ G.

6. Finitely differentiable case: Proofs of Theorems 12 and 14. In this
section we present the proof of Theorem 12, which concerns the highly differentiable
forcing f . We also prove Theorem 14 in which the forcing is assumed to be L2 or H1.
The method used for the finitely differentiable case, especially H1, is different from
that for the analytic case.

6.1. Proof of Theorem 12. When the forcing term f and the nonlinear term
g are finitely differentiable, we consider ε ∈ Ω̃ defined in (4.2) for (2.1).

6.1.1. Regularity in ε. In order to get solutions Uε with some regularity in

ε, we need to consider the operator T defined in (5.22) acting on the space Hm,Ω̃

consisting of differentiable functions of ε, taking values in Hm, with ε ranging over

the domain Ω̃. Moreover, we endow Hm,Ω̃ with the supremum norm

(6.1) ‖U‖
Hm,Ω̃ = sup

ε∈Ω̃

‖Uε‖Hm ,

which is similar to the analytic case in section 5.2. Note that Hm is a Banach space

and it is a Banach algebra whenm > d
2 by Lemma 6. However, Hm,Ω̃ (in contrast with

the analytic versionHρ,m,Ω̃) is not a Banach space with the supremum norm defined in
(6.1). In this case, if we just apply the fixed point theorem to the proof of Theorem 12

in the space Hm,Ω̃, we may lose some regularity in the argument ε. To avoid this
shortcoming, we will combine the contraction argument with the implicit function
theorem such that the solution Uε with optimal regularity in ε can be obtained.
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For the convenience of the implicit function theorem, we introduce the operator
T involving the arguments ε and U as the following:

T(ε, U) := U − T (U),(6.2)

where T is given in (5.22). This makes it clear to obtain the solution U , as a function
of ε, having the same regularity as T by the implicit function theorem.

More precisely, for some ε0 ∈ Ω̃, we first produce a solution Uε0 such that

T(ε0, Uε0) = 0. To get the optimal regularity of the solution U , taking Ω̃ to Hm,
we apply the classical implicit function theorem for the operator T. In this process,
it is crucial to study the differentiability of the operator T, mapping Ω̃×Hm to Hm,
with respect to the arguments (ε, U) as well as the invertibility of DUT(ε0, Uε0).

As a matter of fact, we can easily get the differentiability of the operator T with
respect to the argument U ∈ Hm since the operator Lε is linear and the differentia-
bility properties of the left composition operator ĝ ◦ U are already studied carefully
in [IKT13, AZ90].

The key to our results will be the differentiability of the operator T with respect
to ε as given by the following.

Proposition 22. Fix any m ∈ N with m > d
2 and σ > 0. We consider the

map that εL−1
ε ∈ B(Hm, Hm) for every ε ∈ Ω̃, where B(Hm, Hm) denotes the set of

bounded operators from the space Hm to itself.
For any l ∈ N, the map ε 7→ εL−1

ε is Cl considered as a mapping from Ω̃ to

B(Hm, Hm). Moreover, for any l ∈ N and ε ∈ Ω̃, dl

dεl
(εL−1

ε ) ∈ B(Hm, Hm).
As a matter of fact, something stronger is true. The map ε 7→ εL−1

ε is real analytic

for ε ∈ Ω̃ and the radius of analyticity can be bounded uniformly for all ε ∈ Ω̃.

Proof. The key to the proof is the observation that, as noted in (5.9) in sec-

tion 5.1.2, |lε,j(a)| ≥ |ε||λj | ≥ σ|λj | for ε ∈ Ω̃.
To study the expansion in powers of δ for l−1

ε+δ, j(a), we rewrite

l−1
ε+δ, j(a) =

(
(ε+ δ)(λj − a2) + ia

)−1

=
(
ε(λj − a2) + ia+ δ(λj − a2)

)−1

=
(
ε(λj − a2) + ia

)−1
(
1 + δ

λj − a2

ε(λj − a2) + ia

)−1

.

(6.3)

It is easy to see that the factor
λj−a2

ε(λj−a2)+ia is bounded uniformly in a (compute the

limit as |a| tends to infinity and observe that the function is continuous in a since
the denominator does not vanish) and uniformly in ε when ε ranges in an interval
bounded away from zero.

Therefore, we can expand (1 + δ
λj−a2

ε(λj−a2)+ia )
−1 in (6.3) in powers of δ using the

geometric series formula. Moreover, the radii of convergence are bounded uniformly
in ε ∈ Ω̃ and the values of the coefficients in the expansion are also bounded uniformly
in a ∈ R, ε ∈ Ω̃.

Using the formula (5.5) in section 5.1.1 for the inverse L−1
ε , we also obtain that

the matrices L−1
ε+δ can be expanded in powers of δ with coefficients that are bounded

uniformly in a ∈ R, ε ∈ Ω̃.
We note that the operators L−1

ε are multiplier operators (in the sense used in

Fourier series). That is, for f̂k being the Fourier coefficients of function f in the space
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Hm, the Fourier coefficients ̂(L−1
ε f)k of function (L−1

ε f) in the space Hm have the
structure

(6.4) ̂(L−1
ε f)k =

(
L−1
ε

)
k
f̂k,

where each (L−1
ε )k is an n×n matrix (i.e., (L−1

ε )k = L−1
ε (k ·ω) as specified in (5.5)).

From the discussion in the above paragraph, we know that, for each k, (L−1
ε )k is

uniformly analytic in ε. Thus, we conclude that the operator L−1
ε is analytic in ε by

(6.4).
In addition, we know that the Fourier indices k only enter into the multipliers

(L−1
ε )k through k · ω and the supremum of (L−1

ε )k over the Fourier index is bounded
by the supremum in a, which is studied in the previous section 5.1.2. Together with
the fact that the norms of functions in Sobolev spaces are measured by the size of the
Fourier coefficients, we have that, for all m > d

2 , the norm of L−1
ε considered as an

operator from the Sobolev space Hm to itself is defined by

(6.5)
∥∥L−1

ε

∥∥
Hm→Hm = sup

k∈Zd

∥∥(L−1
ε

)
k

∥∥ = sup
k∈Zd

∥∥L−1
ε (k · ω)

∥∥ .

Note that the norms of ‖L−1
ε (k·ω)‖ are just finite-dimensional matrix norms. As a con-

sequence, by (5.20), we can bound ‖L−1
ε ‖Hm→Hm by the supremum of the multipliers

defined in (6.5). Therefore, when we write L−1
ε+δ =

∑∞
n=0(L−1

ε )nδ
n, ‖(L−1

ε )n‖Hm→Hm

can be bounded by the way of (6.5). That means dl

dεl
(εL−1

ε ) ∈ B(Hm, Hm) for every

ε ∈ Ω̃.

6.1.2. Existence of the solutions. With all the above preliminaries estab-
lished, now we turn to finishing the proof of Theorem 12. We divide the proof into
two steps. First, for a fixed ε0 ∈ Ω̃, we find a fixed point Uε0 of Tε defined in (2.9)
by considering a domain P ⊂ Hm with Tε(P) ⊂ P on which Tε is a contraction.
Second, we use the classical implicit function theorem to verify that the solution Uε

we obtained in the first step possesses the optimal regularity in ε.
Step 1. As we state in section 2.4, there are two ways to prove that Tε is a

contraction. One is that we choose a small ball in Hm such that Lip(ĝ) is small in
this ball. Meanwhile, we impose a smallness condition on f in this ball. In this way,
the operator Tε maps this ball into itself and it is a contraction in this ball. (We omit
the details here since it is similar to section 5.3.) We can also assume that Lip(ĝ) (or
Dĝ) is globally small (the assumption is stated is Assumption 2) in such a way that

(6.6) Cλ · Lip(ĝ) < 1

2
.

This shows that

Lip(ĝ) ≤ O

(
min
1≤j≤p

1≤m≤d

{
|λj |m, |λj |

m
2

}
)

(6.7)

by (5.18).

In this case, for a fixed ε ∈ Ω̃ and U1, U2 ∈ Hm, it follows from (5.20) that

‖Tε(U1)− Tε(U2)‖Hm = ‖εL−1
ε (ĝ(U1)− ĝ(U2))‖Hm

≤ Cλ · Lip(ĝ) · ‖U1 − U2‖Hm

≤ 1

2
‖U1 − U2‖Hm .

This makes Tε a contraction in the whole space Hm.
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In summary, we get a fixed point Uε0 ∈ Hm of (2.9) for some ε0 ∈ Ω̃.
Step 2. It follows from Propositions 8 and 22 that the operator T defined in (6.2)

is Cl with respect to the argument (ε, U) ⊆ Ω̃ × Hm. Based on Step 1, we have
T(ε0, Uε0) = 0. Moreover, DUT(ε0, Uε0) = Id−DUT (ε0, Uε0) = Id− ε0L−1

ε0
Dĝ(Uε0)

is invertible since ε0L−1
ε0

is bounded and Dĝ(Uε0) is sufficiently small. Therefore, by

the implicit function theorem, there exist an open neighborhood, included in Ω̃×Hm

of (Uε0 , ε0) and a Cl function Uε satisfying T(ε, Uε) = 0 on this neighborhood.

6.2. Proof of Theorem 14. In this section, we will prove Theorem 14 in a
different way from the first two cases (analytic and highly differentiable cases). The
key problem is the properties of the composition operator ĝ ◦ u in the space H1(Td)
or space L2(T).

6.2.1. The properties of compositions.

Proposition 23. For the composition operator defined by

(6.8) Cĝ[u](θ) = ĝ(u(θ)),

we have the following properties:
If we consider Cĝ acting on L2(Td,Rn) and assume that ĝ is globally Lipschitz

continuous on Rn, then

Cĝ : L2(Td,Rn) → L2(Td,Rn)

is Lipschitz continuous.
If we consider Cĝ acting on H1(Td,Rn) and assume that ĝ ∈ C1+Lip, then

Cĝ : H1(Td,Rn) → H1(Td,Rn)

is bounded and continuous. In particular, given ǫ > 0, there exists a constant δ̃ :=
δ̃(ǫ,Lip(ĝ), ĝ(0)) > 0 so that ‖u‖H1 ≤ δ̃ implies ‖Cĝ(u)‖H1 ≤ ǫ.

Proof. Since ĝ is globally Lipschitz continuous on Rn, denote M = Lip(ĝ) (for
ease of notation, we will use M in the following part) and for u, v ∈ L2(Td,Rn), we
get

|ĝ(u(θ))− ĝ(v(θ))| ≤ M |u(θ)− v(θ)|.

Therefore,

‖ĝ ◦ u− ĝ ◦ v‖L2 ≤ M‖u− v‖L2 .

We refer to [AZ90, KS00] for the properties of the operator Cĝ mapping space
H1(Td,Rn) to itself.

Remark 24. We emphasize that for our results in L2 and Hm (m > d
2 ), it is

needed to assume that Lip(ĝ) is globally arbitrary small. This allows us to obtain
that the operator Tε in (2.9) is a contraction in the whole space.

However, due to the lack of Lipschitz regularity for the operator Cĝ acting on the
space H1 (see [AZ90]), we need to choose a ball in H1 so that the operator Tε maps
this ball into itself. Note that the chosen ball does not need to be small. We also do
not require that the forcing be small in H1.
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6.2.2. Existence of the solutions. Now, we give the proof of Theorem 14.
First we give the proof for the result in space L2. By Parseval’s identity, we know

that the L2-norm is also expressible in terms of the Fourier coefficients. Together with
the bound of εL−1

ε in (5.20), we have that Tε(L2) ⊂ L2. Moreover, for u, v ∈ L2, one
has

(6.9) ‖Tε(u)− Tε(v)‖L2 =
∥∥εL−1

ε (ĝ ◦ u− ĝ ◦ v)
∥∥
L2 ≤ CλM‖u− v‖L2 .

It follows from Assumption 2 that M is small enough. Therefore, Tε is a contraction
in L2. The result in L2 space follows immediately.

Now, we present the proof for the result in H1. Using the interpolation inequality
in Lemma 5, we obtain, for n ≥ 1, 0 ≤ s < 1, that

∥∥T n+1
ε (u)− T n

ε (u)
∥∥
Hs

≤ C0,1

∥∥T n+1
ε (u)− T n

ε (u)
∥∥1−s

L2

∥∥T n+1
ε (u)− T n

ε (u)
∥∥s
H1

≤ C0,1 [(CλM)
n
]
1−s ‖Tε(u)− u‖1−s

L2

∥∥T n+1
ε (u)− T n

ε (u)
∥∥s
H1 ,

(6.10)

where the second inequality comes from (6.9) inductively. Note that the inequality
(6.6) gives that [(CλM)n]1−s is decreasing exponentially.

The remaining task is to show that ‖T n+1
ε (u)−T n

ε (u)‖H1 in (6.10) can be bounded
independently of the iteration step n. As a matter of fact, from Proposition 23, we
know that u ∈ H1 implies ĝ ◦ u ∈ H1. Moreover, it is easy to check that

‖ĝ ◦ u‖H1 ≤ M‖u‖H1 .

Therefore, we get

‖Tε(u)‖H1 =
∥∥εL−1

ε (f − ĝ ◦ u)
∥∥
H1 ≤ Cλ‖f‖H1 + CλM‖u‖H1 .

We now choose a ball Br(0) centered at the origin in H1 such that Br(0) is mapped
by Tε into itself. This can be achieved whenever we take r such that

(6.11) Cλ‖f‖H1 ≤ 1

2
r

since CλM < 1
2 given in (6.6). Note that the radius r chosen by (6.11) depends on the

function f , which can be any function in H1. As a consequence, for every u ∈ Br(0)
and n ∈ N, we obtain that T n

ε (u) ∈ Br(0) and

‖T n+1
ε (u)− T n

ε (u)‖H1 ≤ 2r.

Thus, (6.10) becomes

(6.12) ‖T n+1
ε (u)− T n

ε (u)‖Hs ≤ C0,1 [(CλM)
n
]
1−s

(2r)s ‖Tε(u)− u‖1−s
L2 .

This indicates that the sequence T n
ε (u) has a limit u∗ ∈ Hs and the fixed point

obtained by the contraction mapping in L2 should be in Hs. Note that (6.12) allows
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one to bound the distance in Hs from an initial guess to the true solution. That is,

‖u∗ − u‖Hs =
∥∥∥ lim
n→0

T n
ε (u)− u

∥∥∥
Hs

=

∥∥∥∥∥

∞∑

n=0

[
T n+1
ε (u)− T n

ε (u)
]
∥∥∥∥∥
Hs

≤ C0,1(2r)
s ‖Tε(u)− u‖1−s

L2

∞∑

n=0

[(CλM)
n
]
1−s

≤ C0,1(2r)
s
[
1− (CλM)

1−s
]−1

‖Tε(u)− u‖1−s
L2 .

Remark 25. As shown in [AZ90], the conditions for composition operators map-
ping H1+δ to itself are very strict. There are many mapping results for the composi-
tion in H1+δ ∩ L∞, but it is not clear how the L∞ norm behaves under the Fourier
multipliers.

Therefore, using the methods of this paper, it seems that there is a gap between
the treatments possible for the forcing, either in Hs (0 ≤ s < 1) or in Hm (m > d/2).

7. Results for PDEs. An important observation is that, since the treatment of
(1.1) did not use any properties of the dynamics of equation, we can treat even ill-posed
PDEs. The ill-posed equation (1.2) is a showcase of the possibilities of our method
for the model (1.1). The heuristic principle is that we can think of evolutionary PDEs
as models similar to (1.1) in which the role of the phase space Rn is taken up by a
function space (of functions of the spatial variable x). Note that the nonlinearities
in PDE models can be not just compositions but more complicated operators (even
unbounded). For example, the nonlinearity (u2)xx in (1.2) is an unbounded operator
from a function space to itself. However, the fixed point problem under consideration
in the Banach space we choose overcomes this tricky problem. (See section 7.3 for
more details.)

The solutions produced in this section point in the direction that ill-posed equa-
tions, even if they lack a general theory of the existence and uniqueness of solutions,
may admit many solutions that have a good physical interpretation.

For convenience, we rewrite (1.2) as

(7.1) εutt + ut − εβuxxxx − εuxx = ε(u2)xx + εf(ωt, x), x ∈ T, t ∈ R, β > 0,

with a periodic boundary condition.
We define the full Lebesgue measure set

(7.2) O =

{
β > 0 :

1√
β
is not an integer

}
.

Note that we shall only work with values of β in O so that the eigenvalues of the
linear operator εβ∂xxxx + ε∂xx in (7.1) are different from zero in a such way that the
linear operator Nε defined in (7.5) is invertible. (See section 7.3 for the details.)

Remark 26. There are other models of friction besides the ut term in (7.1) that
one could consider. The treatment given in the present paper is a very general method
and could be applied to several friction models, such as utxx.

We note also that our method for the ill-posed equation (7.1) with positive param-
eter β also applies to well-posed equation (7.1) with negative parameter β. It is even
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easier for the well-posed case since the eigenvalues of the linear operator εβ∂xxxx+ε∂xx
in (7.1) are not zero such that we can invert the operator Nε defined in (7.5).

However, we just consider the ill-posed model (7.1) that serves as motivation for
the readers. This ill-posed case is what appears in water wave theory [Bou72].

7.1. Formulation of the fixed point problem. Similarly to section 2 for the
ODE model (2.1), we need to reduce the equation (7.1) to a fixed point problem. In
this section, we just present the formal manipulations omitting specification of spaces.
Indeed, the precise spaces defined in section 7.2 will be motivated by the desire to
justify the formal manipulations and that the operators considered are a contraction.

Our goal is to find response solutions of the form

(7.3) uε(t, x) = Uε(ωt, x),

where, for each fixed ε, Uε : Td × T → R. Inserting (7.3) into (7.1), we get the
following functional equation for Uε:

ε (ω · ∂θ)2 Uε(θ, x) + (ω · ∂θ)Uε(θ, x)− εβ∂4
xUε(θ, x)− ε∂2

xUε(θ, x)

= ε
(
U2
ε

)
xx

+ εf(θ, x).
(7.4)

The solution of (7.4) will be the centerpiece of our treatment.
Denote by Nε the linear operator

(7.5) NεUε(θ, x) =
[
ε (ω · ∂θ)2 + (ω · ∂θ)− εβ∂4

x − ε∂2
x

]
Uε(θ, x).

Then, (7.4) can be rewritten as

(7.6) NεUε(θ, x) = ε
(
U2
ε

)
xx

+ εf(θ, x).

As we will see in section 7.3, the operator Nε is boundedly invertible in some appro-
priate space for ε ∈ Ω(σ, µ) defined in (4.1). In this case, (7.6) becomes

(7.7) Uε(θ, x) = εN−1
ε

[(
U2
ε

)
xx

+ f(θ, x)
]
≡ Tε (Uε(θ, x)) ,

where, for convenience, we introduce the operator Tε. In section 7.4 dealing with
the analytic case, we will show that there exists a solution Uε analytic in ε for (7.7)
by the contraction mapping argument. Moreover, in section 7.5 carrying out the
finitely differentiable case, we will combine the contraction mapping principle with
the classical implicit function theorem to get the regular results.

From the formal manipulation above, we find that the first key point is to study
the invertibility of the operator Nε and give quantitative estimates on its inverse for ε
in a complex domain. Note that the linear operator Nε defined in (7.5) used to study
PDE model (7.1) is much more complicated than the linear operator Lε defined in
(2.7) for ODE model (2.1) since Nε involves not only the angle variable θ ∈ Td but
also the space variable x ∈ T. This leads to different calculations for the inverse of
Nε.

The second crucial part is that the nonlinearity (U2
ε )xx may be unbounded from

one space to itself. However, it happens that εN−1
ε (U2

ε )xx is bounded. (See Lem-
mas 29 and 30 for more details.)

To get a fixed point for (7.7), analogously to the smallness arguments in sec-
tion 2.4 for the ODE model (2.1), we also need to impose some smallness condi-
tions for the PDE model (7.1). However, we only consider a specially nonlinear map
U 7→ εN−1

ε (U2)xx, which is analytic, be a contraction in a domain that contains a
ball around εN−1

ε f . It is nontrivial to choose a sufficiently small ball and the forcing
f is assumed to be small in this ball.
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7.2. Choice of spaces and the statement of our results. In this section,
we give the concrete spaces we work in. Again, we note that the main principle is that
the norms of the functions needed to be expressed in terms of the Fourier coefficients
associated with the Fourier basis in arguments θ and x. This permits us to estimate
the inverse of the linear operator Nε just by estimating its Fourier coefficients. We
also need these spaces to possess the Banach algebra properties and the properties
of composition operators so that the nonlinear terms can be controlled. From the
point of view of analyticity in ε, it is necessary to define spaces consisting of analytic
functions with respect to ε.

In a way analogous to the definition in section 3, for ρ ≥ 0, m, d ∈ N+, we define
the space of analytic functions U in Td+1

ρ with finite norm

Hρ,m := Hρ,m(Td+1)

=

{
U : Td+1

ρ → C | U(θ, x) =
∑

k∈Zd, j∈Z

Ûk,je
i(k·θ+j·x),

‖U‖2ρ,m =
∑

k∈Zd, j∈Z

∣∣∣Ûk,j

∣∣∣
2

e2ρ(|k|+|j|)
(
|k|2 + |j|2 + 1

)m
< +∞

}
.

It is obvious that the space (Hρ,m, ‖ · ‖ρ,m) is a Banach space as well as a Hilbert
space.

We actually consider Hρ,m
0 , which is a subspace of Hρ,m, consisting of functions

U ∈ Hρ,m with

(7.8)

∫ 2π

0

U(θ, x)dx = 0.

In the physical applications, we also consider the closed subspace of Hρ,m in which
the functions take real values for real arguments.

Note that the choice of the normalization condition (7.8) is motivated by the
assumption that ∫ 2π

0

f(θ, x)dx = 0.

Here and after, we consider our fixed point problems in the space Hρ,m
0 . To simplicity

the notation, we still write Hρ,m as Hρ,m
0 .

For ρ > 0, Hρ,m consists of functions which are analytic in the domain Td+1
ρ .

For ρ = 0, Hm := H0,m is just the regular Sobolev space. In this case, we use the
abbreviation ‖ · ‖m := ‖ · ‖0,m.

Similarly to Lemma 6, when ρ > 0, m > (d+ 1) or ρ = 0, m > d+1
2 , we still have

the Banach algebra properties in the space Hρ,m.
Now we are ready to state our main results on the existence of quasi-periodic

solutions for the PDE (7.1) in the cases of analyticity and finite differentiability.

Theorem 27. Consider the model (7.1) with the coefficient β working in the set
(7.2). Assume that f ∈ Hρ,m(Td+1) with ρ > 0, m > (d+ 1).

If ‖f‖ρ,m is small enough (depending on the coefficient β, the number theoretic
properties of ω, and the nonlinearity of (7.1)), then, for ε ∈ Ω defined in (4.1), there
exists a unique solution Uε ∈ Hρ,m(Td+1) for (7.4).

Furthermore, considering Uε as a function of ε, we have that ε 7→ Uε : Ω → Hρ,m

is analytic when m > (d+ 3). In addition, when ε ∈ Ω and it goes to 0 along Ω, the
solution Uε tends to 0 and ε 7→ Uε is continuous at ε = 0.
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Our method also applies to finitely differentiable forcing, but we omit the details.

Theorem 28. Consider (7.1) with the coefficient β working in the set (7.2). As-
sume that f ∈ Hm(Td+1) with m > d+1

2 .

If ‖f‖m is small enough, then, for ε ∈ Ω̃ defined in (4.2), there exists a unique
solution Uε ∈ Hm(Td+1) for (7.4).

Furthermore, for any l ∈ N, the map ε 7→ Uε is Cl (even real analytic) considered

as a mapping from Ω̃ to Hm. In addition, when ε goes to 0 along Ω̃, the solution Uε

tends to 0 and the map ε 7→ Uε is continuous at ε = 0.

7.3. The boundedness of the operator Tε defined in (7.7) taking Hρ,m

into itself. For the PDE model (7.1), the nonlinear map U 7→ (U2)xx (which in the
ODE case was a composition operator with ĝ ◦ U) is an unbounded operator from a
space to itself. We will show, however, that the map U 7→ εN−1

ε (U2)xx is bounded
from a space to itself. To this end, we give the following lemmas and propositions.
Some of the results would generalize for a nonlinearity of the form U 7→ (g(U))xx.
We will not pursue these specialized results in this paper, but we think it would be
an interesting subject.

Lemma 29. Let U ∈ Hρ,m. Denote

(7.9) h(U) = (U2)xx.

Then, h is analytic from the space Hρ,m to the space Hρ,m−2. Moreover, for V ∈
Hρ,m, we have that

‖Dh(U)V ‖ρ,m−2 ≤ 2‖U‖ρ,m‖V ‖ρ,m.

Proof. We rewrite h = h1 ◦ h2 with

h1 :Hρ,m → Hρ,m−2,

U 7→ Uxx

and

h2 :Hρ,m → Hρ,m

U 7→ U2.

It is obvious that both h1 and h2 are analytic. Therefore, the composition operator
h : Hρ,m → Hρ,m−2 is analytic. Moreover,

Dh(U)V =
d

dξ
h(U + ξV )

∣∣∣∣
ξ=0

=
d

dξ

(
(U + ξV )2

)
xx

∣∣∣∣
ξ=0

= 2(UV )xx.

This shows that

‖Dh(U)V ‖ρ,m−2 ≤ 2‖UV ‖ρ,m ≤ 2‖U‖ρ,m‖V ‖ρ,m

by the Banach algebra property in the space Hρ,m.

Lemma 29 allows that the map U 7→ (U2)xx is bounded from the space Hρ,m to
Hρ,m−2. To prove the boundedness of the operator Tε defined in (7.7), the remaining
task is to show that εN−1

ε : Hρ,m−2 → Hρ,m is bounded.

Lemma 30. For a fixed ε ∈ Ω(σ, µ), the operator εN−1
ε taking the space Hρ,m−2

into Hρ,m is bounded.
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Proof. We verify that ‖εN−1
ε ‖Hρ,m−2→Hρ,m can be bounded by the supremum of

its multipliers, as we argued in the proof of Proposition 22.
Consider V (θ, x) =

∑
k∈Zd

j∈Z\{0}

V̂k,je
i(k·θ+j·x) ∈ Hρ,m−2, in which j 6= 0 comes from

the setting (7.8). Then, by the linear operator Nε defined in (7.5), we have the
following Fourier expansion

N−1
ε (V )(θ, x) =

∑

k∈Zd

j∈Z\{0}

1

−ε(k · ω)2 + i(k · ω)− ε(βj4 − j2)
V̂k,je

i(k·θ+j·x).

Note that we consider β in the full measure set given by (7.2), i.e., βj4 − j2 6= 0 for
j ∈ Z \ {0}.

Recall that our goal is to obtain the bound of the operator from Hρ,m−2 to Hρ,m.
Since

∥∥N−1
ε (V )

∥∥2
ρ,m

=
∑

k∈Zd

j∈Z\{0}

1

|−ε(k · ω)2 + i(k · ω)− ε(βj4 − j2)|2
∣∣∣V̂k,j

∣∣∣
2

· e2ρ(|k|+|j|)
(
|k|2 + |j|2 + 1

)m

=
∑

k∈Zd

j∈Z\{0}

(|k|2 + |j|2 + 1)2

|−ε(k · ω)2 + i(k · ω)− ε(βj4 − j2)|2
∣∣∣V̂k,j

∣∣∣
2

· e2ρ(|k|+|j|)
(
|k|2 + |j|2 + 1

)m−2

≤ sup
k∈Zd

j∈Z\{0}

(|k|2 + |j|2 + 1)2

|−ε(k · ω)2 + i(k · ω)− ε(βj4 − j2)|2
‖V ‖2ρ,m−2 ,

therefore, it suffices to estimate the supremum of Ñ−1
ε defined by

Ñ−1
ε (k, j) :=

k2 + j2 + 1

−ε(k · ω)2 + i(k · ω)− ε(βj4 − j2)

=
k2

−ε(k · ω)2 + i(k · ω)− ε(βj4 − j2)

+
j2

−ε(k · ω)2 + i(k · ω)− ε(βj4 − j2)

+
1

−ε(k · ω)2 + i(k · ω)− ε(βj4 − j2)

(7.10)

for k ∈ Zd, j ∈ Z \ {0}. It is clear that (7.10) includes three parts, in which the main
difficulty is to estimate the second term. We now present the details for the second
term in the case of k 6= 0 (it is easy for k = 0). Equivalently, we just need to estimate
the infimum of

(7.11) Nε(a, t) :=
−εa2 + ia− ε(βt2 − t)

t
, a = (k · ω) ∈ R \ {0}, t = j2 ∈ N+.

Taking ε = s1 + is2 ∈ Ω(σ, µ), we have

(7.12) |Nε(a, t)|2 = s21

[
a2

t
− (1− βt)

]2
+

[
s2

(
a2

t
− (1− βt)

)
− a

t

]2
,
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which has an infimum controlled by σ by an argument similar to Proposition 15. We
will estimate (7.12) in the cases of β > 1 and 0 < β < 1.

When β > 1, i.e., 1− βt < 0, which shows that

|Nε(a, t)|2 ≥ s21

[
a2

t
− (1− βt)

]2
≥ (βt− 1)2s21

≥ (β − 1)2s21 ≥ s21Cβ

by t ≥ 1. To simplify the notation, in what follows, the constant Cβ denotes all

constants that depend on β. For example, the constants C
1
2

β , C
−1
β , etc., are replaced

by the same notation Cβ .
We focus mainly on the case of 0 < β < 1. To analyze (7.12), we divide t ∈ N+

into two regions.
Case 1. When t ≥ [ 1

β
] + 1, we have that 1− βt < 0. Therefore

|Nε(a, t)|2 ≥ s21

[
a2

t
− (1− βt)

]2
≥ s21Cβ .

Case 2. When 1 ≤ t ≤ [ 1
β
], we get that t(1 − βt) ∈ [C1

β , C
2
β ] with C2

β ≥ C1
β > 0.

It is clear that a2

t
− (1 − βt) = 0 holds at a2 = t(1 − βt) ∈ [C1

β , C
2
β ], namely,

a ∈ [−
√

C2
β ,−

√
C1

β ] ∪ [
√

C1
β ,
√

C2
β ]. Now, we divide the region in a ∈ R into two

parts as follows:

I1 = [(−1− 10−3)
√
C2

β , (−1 + 10−3)
√
C1

β ] ∪ [(1− 10−3)
√
C1

β , (1 + 10−3)
√
C2

β ],

I2 = R \ I1.

The case of a ∈ I2 yields that

|Nε(a, t)|2 ≥ s21

[
a2

t
− (1− βt)

]2
≥ s21Cβ .

In the interval of a ∈ I1, the term
a2

t
− (1−βt) can be bounded so that we can bound

the second term in |Nε(a, t)|2, that is,

|Nε(a, t)|2 ≥
[
s2

(
a2

t
− (1− βt)

)
− a

t

]2

=
[
O(s2)−

a

t

]2
≥ s21Cβ

by the smallness of s1, s2 (due to |ε| is sufficiently small). The above estimates for
|Nε(a, t)| give that

|Nε(a, t)| ≥ s1Cβ .

Therefore,

(7.13) inf
a∈R, t∈N+

|Nε(a, t)| ≥ s1Cβ ≥ σCβ

by the domain of ε ∈ Ω(σ, µ). Consequently, for Ñ−1
ε (k, j) defined in (7.10), we obtain

(7.14) sup
k∈Zd, j∈Z\{0}

∣∣∣Ñ−1
ε (k, j)

∣∣∣ ≤ sup
a∈R, t∈N+

∣∣∣Ñ−1
ε (a, t)

∣∣∣ ≤ σ−1Cβ .
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It follows that ∥∥N−1
ε (V )

∥∥
ρ,m

≤ σ−1Cβ‖V ‖ρ,m−2.

Since the norm in the space Hρ,m can be characterized by the Fourier coefficients, we
define ∥∥N−1

ε

∥∥
Hρ,m−2→Hρ,m = sup

k∈Zd, j∈Z\{0}

∣∣∣Ñ−1
ε (k, j)

∣∣∣ .

This allows us to conclude that

(7.15)
∥∥εN−1

ε

∥∥
Hρ,m−2→Hρ,m ≤ σ · σ−1Cβ ≤ Cβ .

As a matter of fact, Lemmas 29 and 30 give that the operator Tε defined in (7.7)
is analytic from the space Hρ,m to itself.

Remark 31. Note that the previous Lemma 30 includes the case of ε ∈ R, which
will be used later in the finitely differentiable case (see Lemma 33).

Note also that for (7.1), the nonlinearity will always be regular. Therefore, we
just consider the finitely differentiable version with m > d+1

2 . The analogue of the
low regularity results for the ODE case would be easier to consider.

7.4. Proof of Theorem 27. In this section, we give the proof of Theorem 27.

7.4.1. Regularity in ε. Since we want to obtain solutions depending analyti-
cally on ε, proceeding as in section 5.2, we consider Tε defined in (7.7) as a function of
ε, namely, the operator T : ε 7→ Tε acting on the space Hρ,m,Ω consisting of analytic
functions of ε, taking values in Hρ,m with ε ranging over the domain Ω(σ, µ). We
endow Hρ,m,Ω with supremum norm

‖U‖ρ,m,Ω = sup
ε∈Ω(σ,µ)

‖Uε‖ρ,m,

which makes Hρ,m,Ω a Banach space. Moreover, it is also a Banach algebra when
m > (d + 1). Based on Lemma 30, we show that the operator T maps the space
Hρ,m,Ω into itself. The idea of the proof is similar to Lemma 18, but the details are
different since the PDE model (7.1) involves a space variable x.

Proposition 32. If m > (d + 3), then the operator T defined in (7.7) maps
the analytic Banach space Hρ,m,Ω into itself. Precisely, if the mapping ε 7→ Uε :
Ω → Hρ,m is complex differentiable, then, ε 7→ Tε(Uε) : Ω → Hρ,m is also complex
differentiable.

Proof. From the fixed point equation (7.7), we know that Tε is composed of εN−1
ε

and h defined in Lemma 29. Lemma 29 gives that h(Hρ,m,Ω) ⊂ Hρ,m−2,Ω. Hence,
it suffices to verify that εN−1

ε (Hρ,m−2,Ω) ⊂ Hρ,m,Ω. In the following step, we use a
similar method as that used in the proof of Proposition 18.

For a fixed ε ∈ Ω, we expand Vε ∈ Hρ,m−2 as

Vε(θ, x) =
∑

k∈Zd, j∈Z\{0}

V̂k,j,εe
i(k·θ+j·x)

with

(7.16)
∣∣∣V̂k,j,ε

∣∣∣ ≤ ‖Vε‖ρ,m−2 e
−ρ(|k|+|j|)(|k|2 + |j|2 + 1)−

m−2
2 ,
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and

(7.17)

∣∣∣∣
d

dε
V̂k,j,ε

∣∣∣∣ ≤
∥∥∥∥
d

dε
Vε

∥∥∥∥
ρ,m−2

e−ρ(|k|+|j|)(|k|2 + |j|2 + 1)−
m−2

2 .

It follows from (7.5) that

εN−1
ε (Vε)(θ, x) =

∑

k∈Zd, j∈Z\{0}

εN−1
ε (k · ω, j)V̂k,j,εe

i(k·θ+j·x),

where

N−1
ε (k · ω, j) = 1

−ε(k · ω)2 + i(k · ω)− ε(βj4 − j2)
=: N−1

ε .

By (7.14), one has

∣∣∣∣
d

dε

(
εN−1

ε V̂k,j,ε

)∣∣∣∣

≤ |N−1
ε |
∣∣∣V̂k,j,ε

∣∣∣+
∣∣∣∣ε

d

dε
N−1

ε

∣∣∣∣
∣∣∣V̂k,j,ε

∣∣∣+
∣∣εN−1

ε

∣∣
∣∣∣∣
d

dε
V̂k,j,ε

∣∣∣∣

≤ Cβ · σ−1

(∣∣∣V̂k,j,ε

∣∣∣+
∣∣∣∣
d

dε
V̂k,j,ε

∣∣∣∣
)
.

Together with (7.16) and (7.17), we get

∥∥∥∥
d

dε

(
εN−1

ε V̂k,j,ε

)
ei(k·θ+j·x)

∥∥∥∥
ρ,m−τ

≤ Cβ · σ−1

(∣∣∣V̂k,j,ε

∣∣∣+
∣∣∣∣
d

dε
V̂k,j,ε

∣∣∣∣
) ∥∥∥ei(k·θ+j·x)

∥∥∥
ρ,m−τ

≤ Cβ · σ−1

(
‖Vε‖ρ,m−2 +

∥∥∥∥
d

dε
Vε

∥∥∥∥
ρ,m−2

)
e−ρ(|k|+|j|)(|k|2 + |j|2 + 1)−

m−2
2

· eρ(|k|+|j|)
(
|k|2 + |j|2 + 1

)m−τ
2

≤ Cβ · σ−1

(
‖Vε‖ρ,m−2 +

∥∥∥∥
d

dε
Vε

∥∥∥∥
ρ,m−2

)
(
|k|2 + |j|2 + 1

)− τ−2
2 .

By choosing d+ 3 < τ ≤ m, we obtain that

∑

k∈Zd, j∈Z\{0}

(|k|2 + |j|2 + 1)−
τ−2
2 ≤

∑

k̃∈Zd+1

(|k̃|2 + 1)−
τ−2
2

≤
∞∑

κ=0

(κ2 + 1)−
τ−2
2

∑

|k̃|=κ

1

≤ 2d+1
∞∑

κ=0

(κ2 + 1)−
τ−2
2 κd

≤ 2d+1
∞∑

κ=0

(κ2 + 1)−
τ−d−2

2 < ∞.
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Therefore, by the Weierstrass M-test, we conclude that the series

∑

k∈Zd, j∈Z\{0}

d

dε

(
εN−1

ε V̂k,j,ε

)
ei(k·θ+j·x)

converges uniformly on ε ∈ Ω in the space Hρ,m−τ . Therefore, the map ε 7→
εN−1

ε (Vε) : Ω → Hρ,m is complex differentiable with derivatives in Hρ,m−τ by
Hρ,m ⊂ Hρ,m−τ and Lemma 36 in the appendix.

7.4.2. Proof of Theorem 27. We now start to deal with the fixed point equa-
tion

(7.18) U(θ, x) = N−1
ε

[
ε(U2)xx + εf(θ, x)

]
≡ T (U)(θ, x)

in the space Hρ,m,Ω. We will find a fixed point of T by considering a ball Br(0) ⊂
Hρ,m,Ω such that T (Br(0)) ⊂ Br(0)and T is a contraction in this ball.

By (7.15) and Lemma 29, for any U1, U2 ∈ Br(0), we have, assuming that r is
small satisfying Cβ · r < 1

2 ,

‖T (U1)− T (U2)‖ρ,m,Ω =
∥∥εN−1

ε h(U1)− εN−1
ε h(U2)

∥∥
ρ,m,Ω

= sup
ε∈Ω

∥∥εN−1
ε h(U1)− εN−1

ε h(U2)
∥∥
ρ,m

≤ Cβ · r‖U1 − U2‖ρ,m,Ω

<
1

2
‖U1 − U2‖ρ,m,Ω.

This shows that T is a contraction in the ball Br(0).
Now we try to identify the conditions that the ball Br(0) with r chosen as above

gets mapped into itself.
If r satisfies the conditions that make T a contraction in Br(0), we have that, for

U ∈ Br(0),

‖T (U)‖ρ,m,Ω ≤ ‖T (0)‖ρ,m,Ω + ‖T (U)− T (0)‖ρ,m,Ω

≤ Cβ‖f‖ρ,m +
1

2
r.

Therefore, under the assumption that ‖f‖ρ,m is small enough such that Cβ‖f‖ρ,m ≤
1
2r, we obtain that T (Br(0)) ⊂ Br(0).

In conclusion, there is a unique fixed point U in the space Hρ,m,Ω for (7.7).
Namely, we obtain a solution Uε analytic in ε for (7.4). For ε → 0 along the set Ω,
we conclude that the mapping ε 7→ Uε is continuous at ε = 0. This can be proved in
a similar way to that used to Lemma 21.

7.5. Proof of Theorem 28. In this section, we consider T defined in (7.18)

acting on space Hm,Ω̃ consisting of differentiable functions of ε taking values in Hm

with ε ranging over the domain Ω̃(σ, µ) defined in (4.2). We endow Hm,Ω̃ with the
supremum norm

(7.19) ‖U‖
m,Ω̃ = sup

ε∈Ω̃(σ,µ)

‖Uε‖m.

We only have the result that the space Hm is a Banach space and it is also a Banach

algebra when m > d+1
2 but not the space Hm,Ω̃ with the supremum norm with respect
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to ε defined in (7.19). Consequently, the contraction mapping principle is not enough
to get the solution Uε with optimal regularity in ε. We will combine this with the
implicit function theorem to obtain the regular solutions.

In order to use the implicit function theorem, analogously to section 6.1.1, the
main issue is to study the differentiability of the operator T in (7.18) considered as

an operator from Ω̃×Hm to Hm as well as the invertibility of DUT (ε, U).
We first present the result with respect to the argument U . Since Lemmas 29

and 30 also hold in the finitely differentiable setting, we have the following result when
we work in the space Hm.

Lemma 33. For a fixed ε ∈ Ω̃(σ, µ), the operator Tε defined in (7.7) is analytic
from the space Hm to itself.

Now, we give the following proposition with the result that the operator T in
(7.18) is differentiable in the argument ε. Note that T is composed by εN−1

ε and
h defined in (7.9). Since h(Hm) ⊂ Hm−2, we need to verify that the derivatives of
εN−1

ε with respect to ε is bounded from the space Hm−2 to the space Hm. Similarly
to Proposition 22, we have the following.

Proposition 34. Fix any m ∈ N with m > d+1
2 and σ > 0. We consider the

map that to every ε ∈ Ω̃, εN−1
ε ∈ B(Hm−2,Hm). Moreover, for any l ∈ N and ε ∈ Ω̃,

the map ε 7→ εN−1
ε is Cl considered as a mapping from Ω̃ to B(Hm−2,Hm). Namely,

dl

dεl
(εN−1

ε ) ∈ B(Hm−2,Hm).
As a matter of fact, something stronger is true. The mapping ε 7→ εN−1

ε is real

analytic for ε ∈ Ω̃ and the radius of analyticity can be bounded uniformly for all ε ∈ Ω̃.

Proof. The idea of the proof is similar to Proposition 22. For Nε(a, t) defined in
(7.11), we have |Nε(a, t)| ≥ σCβ by (7.13) in Lemma 30; we now expand N−1

ε+δ(a, t)
in powers of δ as

N−1
ε+δ(a, t)

=

(
−(ε+ δ)

[
a2

t
− (1− βt)

]
+ i

a

t

)−1

=

(
−ε

[
a2

t
− (1− βt)

]
+ i

a

t
− δ

[
a2

t
− (1− βt)

])−1

=

(
−ε

[
a2

t
− (1− βt)

]
+ i

a

t

)−1

1− δ

[
a2

t
− (1− βt)

]

−ε
[
a2

t
− (1− βt)

]
+ ia

t




−1

.

(7.20)

By the estimates in Lemma 30, we observe that the factor
[ a

2

t
−(1−βt)]

−ε[ a
2

t
−(1−βt)]+i a

t

is

bounded uniformly in a ∈ R, t ∈ N+, and ε ∈ Ω̃.

Therefore, we can expand (1−δ
[ a

2

t
−(1−βt)]

−ε[ a
2

t
−(1−βt)]+i a

t

)−1 in (7.20) in powers of δ using

the geometric series formula and the radii of convergence are bounded uniformly and
the values of the function are also bounded in a ball which is uniform in a ∈ R, t ∈ Z+,

and ε ∈ Ω̃. That means N−1
ε is uniformly analytic in ε for each a ∈ R, t ∈ Z+, namely,

Ñ−1
ε given by (7.10) is analytic in ε.
To study the operator N−1

ε as a mapping from the space Hm−2 to the space Hm,

we need to consider its multiplier in the Fourier space. Precisely, for f̂k,j being the
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Fourier coefficients of function f in the spaceHm−2, the Fourier coefficients ̂(N−1
ε f)k,j

of function (N−1
ε f) in the space Hm have the structure:

̂(N−1
ε f)k,j =

(
Ñ−1

ε

)
k,j

f̂k,j

with (Ñ−1
ε )k,j = Ñ−1

ε (k, j) given in (7.10). Hence, we get that N−1
ε is analytic in ε.

Moreover, due to the fact that the norm in the space Hm is characterized by the
Fourier coefficients, we can bound

(7.21)
∥∥N−1

ε

∥∥
Hm−2→Hm = sup

k∈Zd, j∈Z\{0}

∥∥∥Ñ−1
ε (k, j)

∥∥∥

due to the uniform boundedness of Ñ−1
ε (k, j) in k ∈ Zd, j ∈ Z \ {0} by (7.14).

Therefore, when we write N−1
ε+δ =

∑∞
n=0(N−1

ε )nδ
n, each ‖(N−1

ε )n‖Hm−2→Hm can be

bounded in the sense of (7.21). That means dl

dεl
(εN−1

ε ) ∈ B(Hm−2,Hm) for every

ε ∈ Ω̃.

Now, we start to prove Theorem 28 by constructing a fixed point Uε0 for ε0 ∈ Ω̃
first and then using the implicit function theorem to obtain the optimal regularity of
Uε in ε. It is similar to the proof in section 6.1.2. We omit some details here.

Proof. First, when we choose a small ball Br(0) ⊂ Hm,Ω̃, a similar process to

section 7.4.2 allows us to obtain a fixed point Uε0 ∈ Hm for some ε0 ∈ Ω̃ by the
contraction argument in this ball.

Then, according to Lemma 33 and Proposition 34, we obtain that the operator
T , defined in (7.18), acting on Ω̃ × Hm is Cl in arguments ε and U , respectively.

Namely, T(ε, U) = U − T (ε, U) is Cl in Ω̃ × Hm. Based on the first step, we have
T(ε0, Uε0) = 0. Moreover, DUT(ε0, Uε0) = Id−DUT (ε0, Uε0) = Id− ε0N−1

ε0
Dh(Uε0)

is invertible since ε0N−1
ε0

Dh(Uε0) is sufficiently small in a small domain of the origin
in Hm. Therefore, by the implicit function theorem, there exist an open neighborhood
included in Ω̃×Hm of (ε0, Uε0) and a Cl function Uε satisfying T(ε, Uε) = 0 on this
neighborhood.

Appendix A. Some properties in analytic and finitely differentiable
Banach spaces.

A.1. Analytic functions in Banach space.

Definition 35. Let X, Y be complex Banach spaces and O ⊂ X is open. We
say that f : O → Y is analytic if it is differentiable at all points of O and there exists

a function γ := γx(‖z‖) with γx(‖z‖)
‖z‖ → 0 as ‖z‖ → 0, such that

‖f(x+ z)− f(x)−Df(x) · z‖ ≤ γx(‖z‖)
for all x ∈ O and z ∈ X such that (x+ z) ∈ O.

Note that Definition 35 is a rather weak version of differentiability, but it is enough
for this paper. For more analyticity of nonlinear functions in Banach spaces, we refer
to [HP74, Muj86].

The main result of this appendix is the theory of complex analytic functions in
Banach space, bootstrapping the meaning of derivatives of analytic functions. The
result could be deduced from stronger results in [HP74, RS80], but we thought it
would be useful to present a self-contained proof since this lemma could be useful in
other applications.
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Lemma 36. Let U ⊆ C be open and X, Y be complex Banach spaces, X ⊆ Y with
continuous embedding. Let f : U → X, which is differentiable in Y for all x ∈ U , and

(A.1) lim
h→0

∥∥∥∥
f(x+ h)− f(x)

h
− f ′(x)

∥∥∥∥
Y

= 0.

Then, f ′(x) ∈ X and

(A.2) lim
h→0

∥∥∥∥
f(x+ h)− f(x)

h
− f ′(x)

∥∥∥∥
X

= 0.

We start by proving the Cauchy–Goursat theorem for functions satisfying (A.1).
The proof is rather straightforward. This will lead to a Cauchy formula, from which
we can deduce (A.2).

Proposition 37. Let g : U → X ⊆ Y , be differentiable everywhere in the sense
of Y differentiable. Let γ be a triangle contour contained in U . Then

∫

γ

g(z)dz = 0.

Of course, by the usual approximation procedures, one can get the result for more
general paths. This will not be needed for our purposes. Note that, by the fact that
g is continuous as a function from U to Y , we know that the integrals over paths
involved can be understood as Riemann integrals.

Proof. Suppose γ is a triangular contour with positive orientation, we construct
four positively oriented contours that are triangles obtained by joining the midpoints
of the sides of γ. Then, we have

∫

γ

g(z)dz =

4∑

i=1

∫

γi

g(z)dz.

Let γ1 be selected such that

∣∣∣∣
∫

γ

g(z)dz

∣∣∣∣ ≤
4∑

i=1

∣∣∣∣
∫

γi

g(z)dz

∣∣∣∣ ≤ 4

∣∣∣∣
∫

γ1

g(z)dz

∣∣∣∣ .

If
∫
γ
g(z)dz = b 6= 0, we get ∣∣∣∣

∫

γ1

g(z)dz

∣∣∣∣ ≥
1

4
|b|.

Proceeding by induction, we get a sequence of triangular contours {γn}, whose length
equals 2−n|γ|, where |γ| denotes the length of γ, such that

(A.3)

∣∣∣∣
∫

γn

g(z)dz

∣∣∣∣ ≥
1

4n
|b|.

By the choice of γn, we have

Interior of γn+1 ⊂ Interior of γn

and the length of the sides of γn goes to 0 as n → ∞. Therefore there exists a unique
point z0 ∈ ⋂n Interior of γn ∈ U .
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Since g is differentiable at z0, there is a function R such that

g(z) = g(z0) + g′(z0)(z − z0) +R(z, z0),

where
‖R(z, z0)‖Y ≤ |z − z0|w(|z − z0|)

with w(|z − z0|) → 0 when |z − z0| → 0. Integrating g along γn, we find that

∫

γn

g(z)dz =

∫

γn

g(z0)dz +

∫

γn

g′(z0)(z − z0)dz +

∫

γn

R(z, z0)dz

= [g(z0)− g′(z0)z0]

∫

γn

1dz + g′(z0)

∫

γn

zdz +

∫

γn

R(z, z0)dz

=

∫

γn

R(z, z0)dz.

Therefore,
∥∥∥∥
∫

γn

g(z)dz

∥∥∥∥
Y

≤ |γn| · sup
z∈γn

‖R(z, z0)‖Y

≤ |γn| ·
|γn|
2

· w
( |γn|

2

)

≤ |γ|2
2 · 4nw

( |γn|
2

)
(A.4)

by |z − z0| < 1
2 |γn| for z ∈ γn. Comparing (A.3) and (A.4), we get b = 0.

As a corollary, we obtain the same conclusion, but assuming only that g is differ-
entiable at all points inside of the triangle except for the center of the small triangles.

Now we begin to prove Lemma 36. As is standard, for the function f in Lemma 36,
fixing ǫ belonging to the interior of γ, we define

gǫ(z) =





f(z)−f(ǫ)
z−ǫ

, z 6= ǫ,

f ′(z), z = ǫ,

which satisfies the hypothesis of Proposition 37 or its corollary. If γ is triangle centered
at ǫ, then

0 =

∫

γ

gǫ(z)dz =

∫

γ

f(z)

z − ǫ
dz − f(ǫ)

∫

γ

1

z − ǫ
dz.

Hence we satisfy the formula

f(ǫ) =
1

2πi

∫

γ

f(z)

z − ǫ
dz.

Now, we can compute the derivative with respect to ǫ in space X and obtain

f ′(ǫ) =
1

2πi

∫

γ

f(z)

(z − ǫ)2
dz.

Of course, since the derivative is obtained as limits of quotients, if the limit exists in
X, it has to agree with the limit in Y .
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A.2. Finitely differentiable functions in Banach space. For arbitrary Ba-
nach spaces X1, . . . , Xi, Y, i ≥ 1, we denote by A(X⊗i, Y ) the space of symmetric
continuous i-linear forms on X⊗i := X1 × · · · × Xi taking values in Y . Now we
present the converse to Taylor’s theorem (see page 6 in the book [AR67]).

Definition 38. Let O ⊂ X be a convex set and F : O → Y, fi : O → A(X⊗i, Y ),
i = 0, . . . , r. For any x ∈ O and h ∈ X such that (x+ h) ∈ O, we define R(x, h) by

F (x+ h) = F (x) +
r∑

i=1

fi(x)(h, . . . , h)

i!
+R(x, h).

If for any 0 ≤ i ≤ r, fi is continuous and for any x ∈ O, ‖R(x,h)‖Y

‖h‖r
X

→ 0 as ‖h‖rX → 0,

then we say F is of class Cr on O and DiF = fi for any 0 ≤ i ≤ r.

Definition 39. We denote by Cr(O, Y ) the space of functions f : O → Y with
continuous derivatives up to order r. We endow Cr(O, Y ) with the norm of the
supremum of all the derivatives. Namely,

(A.5) ‖f‖Cr = max
0≤i≤r

sup
x∈O

|[Dif ](x)|X⊗i,Y

with

| · |X⊗i,Y ≡ sup
‖x1‖X1

=1,...‖xi‖Xi
=1

‖A(x1, . . . , xi)‖Y .

As is well known, the norm (A.5) makes Cr(O, Y ) a Banach space.

Definition 40. We denote by Cr+Lip(O, Y ) the space of functions in Cr(O, Y )
whose rth derivative is Lipschitz. The Lipschitz constant is

LipO,Y D
rf = sup

x1, x2∈X

x1 6=x2

|Drf(x1)−Drf(x2)|X⊗r,Y

‖x1 − x2‖X
.

We note that since O may not be compact, this definition is different from the
Whitney definition in which the topology is given by seminorms of the supremum in
compact sets. We will not use the Whitney definition of Cr in this paper.

Definition 41. An open set O is called a compensated domain if there is a con-
stant C such that given x, y ∈ O there is a C1 path γ contained in O joining x, y
satisfying |γ| ≤ C‖x− y‖.

For O a compensated domain, we have the mean value theorem

‖f(x)− f(y)‖Y ≤ C‖f‖C1(O,Y )‖x− y‖X .

In particular, C1 functions in a compensated domain are Lipschitz. It is not difficult
to construct noncompensated domains with C1 functions which are not Lipschitz.

Of course a convex set is compensated and the compensation constant is 1. In our
paper, we will just be considering domains which are balls or full spaces. See [dlLO99]
for the effects of the compensation constants in many problems of the function theory.

A.3. The standard Sobolev space. As a matter of fact, we define

Hm(Td) := Hm(Td,Rn) := {U = (U1, . . . , Un)|Ui ∈ Hm(Td,R), i = 1, . . . , n}
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equipped with the norm

(A.6) ‖U‖Hm =
∑

0≤i≤n

‖Ui‖Hm

and
Hm(Td,R) = {U ∈ L2(Td,R) : D|α|U ∈ L2(Td,R), 0 ≤ |α| ≤ m},

where we use multi-index notation α = (α1, . . . , αd) ∈ Nd, |α| = ∑d
i=1 αi, and x =

(x1, . . . , xd) ∈ Td, Dα := Dα
x = Dα1

x1
· · ·Dαd

xd
. We define

‖U‖Hm(Td,R) =
∑

0≤|α|≤m

‖DαU‖L2

with

‖U‖L2 =

(∫

Td

|U(θ)|2dθ
) 1

2

.

Indeed, by Fourier transformation, the norm defined in (A.6) is equivalent to the
norm defined by Definition 3 based on the Fourier coefficients. We refer to the books
[AF03, Tay97] for more details.
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