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RESPONSE SOLUTIONS TO QUASI-PERIODICALLY FORCED
SYSTEMS, EVEN TO POSSIBLY ILL-POSED PDES, WITH STRONG
DISSIPATION AND ANY FREQUENCY VECTORS*

FENFEN WANG! AND RAFAEL DE LA LLAVE#

Abstract. We consider several models (including both multidimensional ordinary differential
equations (ODEs) and partial differential equations (PDEs), possibly ill-posed), subject to very
strong damping and quasi-periodic external forcing. We are interested in studying response solu-
tions (i.e., quasi-periodic solutions with the same frequency as the forcing). Under some regularity
assumptions on the nonlinearity and forcing, without any arithmetic condition on the forcing fre-
quency w, we show that the response solutions indeed exist. Moreover, the solutions we obtained
possess optimal regularity in & (where ¢ is the inverse of the coefficients multiplying the damping)
when we consider € in a domain that does not include the origin € = 0 but has the origin on its
boundary. We also show that response solutions are continuous in € at 0. However, in general, the
solutions may fail to be differentiable with respect to € at ¢ = 0. In this paper, we allow multidi-
mensional systems and we do not require that the unperturbed equations under consideration are
Hamiltonian. One advantage of the method in the present paper is that it gives results for analytic,
finitely differentiable and low regularity forcing, and nonlinearity, respectively. As a matter of fact,
we do not even need that the forcing is continuous. Notably, we obtain results when the forcing is in
L2 space and the nonlinearity is just Lipschitz as well as in the case that the forcing is in H' space
and the nonlinearity is C**+5P_ In the proof of our results, we reformulate the existence of response
solutions as a fixed point problem in appropriate spaces of smooth functions.
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1. Introduction. In recent times, there has been much interest in the study of
response solutions (i.e., solutions which have the same frequency as the forcing term)
for nonlinear mechanical systems subject to strong damping (i.e., systems in which
the term describing the damping contains a factor e ~! with ¢ being a small parameter)
and quasi-periodic external forcing. The mechanical systems under consideration are
second order equations with respect to the time derivative and the damping is the
term which corresponds to the time derivative of first order (see (1.1) and (1.2) below);
this is a singular perturbation in €. For more information in this field, we refer to
[Bal94, Genl0a, CCCdIL17] and references therein.

We are interested in finding response solutions for two classes of equations. We
first consider an ODE model of the form

(L.1) Tt + éxt—i—g(aﬁ) = f(wt), z € R™
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Equation (1.1) is referred to as a varactor equation in the literature [Gen10a, CCdIL13,
CFG14, GMV17, GV17].

We also consider PDE models. One particular example is obtained from the
Boussinesq equation (derived in the paper [Bou72]) by adding a singular friction
proportional to the velocity:

1
(1.2) Ut + —Ut — Plpree — Use = (uQ)M + f(wt,x), © € T=R/27Z,
€

where 8 > 0 is a parameter. Of course, (1.2) will be supplemented with periodic
boundary conditions. We note that the positive sign of 8 makes (1.2) ill-posed. That
is, there are many initial conditions that do not lead to solutions. It is, however,
possible that there is a systematic way to construct many special solutions, for some
ill-posed Boussinesq equations, which are physically observed (we refer to the papers
[dIL09, dILS19, CdIL19a, CdIL19b]).

In both (1.1) and (1.2), ¢ > 0 is a small parameter and w € R?\ {0} with
d € Ny := N\ {0}. The forcing f is quasi-periodic with respect to time ¢. Note that
in the PDE (1.2), the forcing may depend on the space variable. At this moment, we
think of the forcing as a quasi-periodic function taking values in a space of functions.

In (1.1), one considers the nonlinearity g as a function from R™ to R™ with n € N
and the forcing f as a function from T? to R™. We will obtain several results depending
on the regularity assumed for f and g. First, we will consider that the functions f and
g are real analytic in the sense that they take real values for real arguments, which
are what appear in physical applications, with ¢ € R;. We will also consider highly
differentiable functions f and g, such as f € H™ (m > %) and g is C™* (1 =1,2,...).
In addition, we will obtain results for rather irregular functions f and g. For example,
the forcing f is in the L? space, the nonlinearity g is just Lipschitz or f is in the H!
space, g is C'1HHP,

In (1.2), we consider the function f : T? x T — R. Analogously to the case
of (1.1), we will present results for f being real analytic and finitely differentiable
with high regularity. Note that in the study of the PDE model (1.2), we will just
focus on the physically relevant case of a specific nonlinearity (u?),,. It is possible
to discuss general nonlinearities in a regularity class, but being unaware of a physical
motivation, we leave these generalizations to the readers. We emphasize that the
nonlinearity (u?);, in (1.2) is unbounded from one space to itself, but the fixed point
problem we consider overcomes this problem since there will be smoothing factors.

From the physical point of view, the parameter ¢ is real. However, it is natural to
consider € in a complex domain when we consider our problem in an analytic setting.
It is important to notice that the complex domain we choose does not include the
origin but accumulates on it. Indeed, the solutions fail to be differentiable at ¢ = 0
in the generality considered in the present paper (see Remark 20). However, we will
show that the response solutions depend continuously on ¢ at € = 0.

1.1. Some remarks on the literature. The problem of the response solutions
for dissipative systems has been studied by several methods. One method is based on
developing asymptotic series and then show that they can be resummed using com-
binatorial arguments, which are established using the so-called tree formalism. This
can be found in the literature [GBD05, GBD06, Genl0a, Genl0Ob]. Recent papers
developing this method are [GMV17, GV17]. We point out that one important nov-
elty of the papers [GMV17, GV17] is that no arithmetic condition is required in the
frequency of the forcing. A later method is to reduce the existence of response solu-
tions to a fixed point problem, which is analyzed in a ball in an appropriate Banach
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space, centered in the solution predicted by the asymptotic expansion. In this direc-
tion, we refer to [CCdIL13, CCCdIL17] and references therein. Note that the papers
[CCdIL13, CCCdIL17] considered the perturbative expansion to low orders on ¢ and
obtained a reasonably approximate solution in a neighborhood of € = 0. Neverthe-
less, to obtain the asymptotic expansions, one needs to solve equations involving small
divisors and assume some nondegeneracy conditions. Note that the small divisors as-
sumed in [CCdIL13, CCCAIL17] are weaker than the Diophantine conditions in KAM
theory. In this paper, we will not assume any small divisors conditions since we do
not attempt to get the approximate solution through an asymptotic expansion.

Since the literature is growing, it is interesting to systematically compare results.

There are several figures of merit for results on the existence of response solutions:

(1) the arithmetic properties required in the external forcing frequency, such as
Diophantine condition, Bryuno condition, or even weaker conditions, etc.;

(2) the analyticity domain in € established. Since we do not expect that the
asymptotic series converges, this domain does not include a ball centered
at the origin. We emphasize that the shape of this analyticity domain is
very important to study properties of the asymptotic series. Having a par-
abolic domain shows that the asymptotic series is unique and it is also re-
lated to Borel summability. In this paper, we only establish wedge domains,
but under extra Diophantine assumptions, parabolic domains established in
[CFG13, CCdIL13, CCCdIL17] and Borel summability methods are consid-
ered in [GBDO05, GBDO06]. It seems that the optimal regularity domain is
related to the Diophantine properties assumed. In this paper, we do not
assume any Diophantine conditions and the solutions may fail to be differen-
tiable at € = 0. See Remark 20;

(3) whether the method gives some asymptotic expansions for the solutions;

(4) whether the method can deal with the forcing function f which has low reg-
ularity (e.g., f € L? or f € H') and the nonlinearity function g of low
regularity (the case of piecewise differentiable functions appears in some ap-
plications);

(5) the generality of the models considered (e.g., whether the method requires
that the system be Hamiltonian, reversible, etc.);

(6) smallness conditions imposed on functions f and g;

(7) the conditions required for the linear part of g, such as its eigenvalues are
nonzero. We do not know whether our method can deal with the case of
noninvertible A in the generality considered here. Research on extending the
method to the case of degenerate fixed points is studied in [CdILW19].

Notice that all these figures of merit cannot be accomplished at the same time.

Obtaining more conclusions on the solutions (e.g., the existence of asymptotic expan-
sions) will require more regularity and some arithmetic conditions on the frequency.
Especially, allowing zero eigenvalues of the linear part of g is another issue which
would deserve further investigation.

1.2. The method in the present paper. From the strictly logical point of
view, our paper and [GMV17, GV17] are completely different even if they are moti-
vated by the same physical problem for the model (1.1). More precisely, the present
paper deals with not only the analytic setting but also the finitely differentiable case
and even just the Lipschitz problem by the method of the fixed point theorem. In
contrast, the papers [GMV17, GV17] apply resummation methods to establish the
existence of response solutions under analytic conditions.
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In the multidimensional case of (1.1), compared with [GMV17], the methods pre-
sented in this paper do not need that the oscillators without dissipation are Hamil-
tonian or that the linearization of g at the origin (denoted by A, which is an n X n
matrix) is positive definite. Further, we do not assume that the matrix A is diagonal-
izable or symmetric. We allow Jordan blocks that appear naturally in the problems
at resonance case appearing in [BG15, Gazl5].

However, we note that our method for the analytic case involves smallness as-
sumptions in the forcing f but not in the nonlinear part (denoted by §) of g. In
the setting of L? and H', we involve just smallness assumptions on § but not f.
For the highly differentiable case (i.e., H™, m > g), we choose either smallness as-
sumptions for f or g, (see section 2.4 for more details). Explicitly, the smallness
conditions imposed in f or § are determined by the eigenvalues of A and properties
of the nonlinearity. See section 5.3 and section 6.1.2 for a concrete presentation.

As a further application, we consider adding dissipative terms to the Boussi-
nesq equation of water waves in (1.2). Equation (1.2) is ill-posed in the sense that
not all initial conditions lead to solutions. Nevertheless, we construct response solu-
tions.

We note that the approach followed in [CCdIL13, CCCdIL17] has two steps. In
the first step, one constructed series expansions in € that produced approximate so-
lutions. In a second step, one used a contraction mapping principle for an operator
defined in a small ball near the approximate solutions obtained in the first step. Of
course, this approach requires a very careful choice of the spaces in which the ap-
proximate solutions lie and the fixed point problems are formulated. One important
consideration is that the spaces are chosen such that the operators involved map the
spaces into themselves. Since some of the operators involved are diagonal in Fourier
series, it is important that the norms can be read off from the Fourier coefficients.
It will also be convenient that there are Banach algebra properties and properties of
composition operators in the chosen space. This allows us to control the nonlinear
terms easily. We have to say that it is the idea in [CCdIL13, CCCdIL17] that inspires
our present treatment for (1.1) and (1.2).

To motivate the procedure adopted in this paper, we note that in the method
of [CCdIL13, CCCdIL17], the fixed point part does not depend on any arithmetic
condition on the forcing frequency. We will modify slightly the fixed point part to get
response solutions analytic with respect to the parameter ¢, for the analytic models
(1.1) and (1.2), when ¢ ranges over a complex domain without any circle centered at
the origin € = 0. Our method (very different from resumming expansions) consists in
transforming the original equations (1.1) and (1.2) into the fixed point equations (see
(2.9) and (7.7), respectively). The main observation that allows us to solve the fixed
point equations is that we are allowed to use the strong dissipation in the contraction
mapping principle.

Our method also works for finitely differentiable problems. In such a case, we will
introduce Sobolev spaces, in which the norms of functions are measured by the size
of the Fourier coefficients. The solutions obtained, for (1.1) and (1.2) in the finitely
differentiable setting, still possess the corresponding regularity in € when e ranges
over a real domain without any circle centered at the origin ¢ = 0.

We think that the regularity results obtained in this paper are close to optimal.
As for the optimality for the domain, we find that there exist arbitrarily small values
of € for which the operator we constructed is not a contraction and the method of the
proof breaks down. Therefore, we conjecture that this is optimal and that indeed,
regular solutions do not exist for these small parameter values and general forcing
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and nonlinearity. We also show, in Remark 20, that, in both analytic and finitely
differentiable cases, there are examples in which the solution is not differentiable at
€ = 0 when we remove the Diophantine condition on w.

The lack of differentiability at € = 0 is a reflection of the problem being a singular
perturbation. In the case considered here that there are no nonresonance conditions
on the frequency, the problem is more severe than in previously considered cases.

1.3. Some possible generalization. Our method could deal easily with the
general case with the form

1
(1.3) PTi + gqa:t + g(z,wt) = f(wt), xeR",

where p, q are diagonal constant matrices and g(z,wt) = Az + §(x,wt), where A is a
matrix in Jordan block form and § : R® x T¢ — R™ is sufficiently regular. We leave
the easy details to the interested readers. See Remark 17, which gives some simplified
calculations after we have carried out the case in (1.1).

1.4. Organization of this paper. Our paper is organized as follows. In sec-
tion 2, we present the idea of reformulating the existence of response solutions for
(1.1) as a fixed point problem. To solve this fixed point equation, in section 3, we give
the precise function spaces that we work in and we list their important properties,
such as Banach algebra properties and the regularity of the composition operators.
We state our three main results in the analytic case, the highly differentiable case, and
with low regularity, respectively, in section 4. Section 5 is mainly devoted to the proof
of our analytic result by the contraction mapping principle. In the process, we need
to pay more attention to the invertibility of operators and regularity of composition
operators. In section 6, we prove our regular result in the finitely differentiable case
by combining the contraction argument with the implicit function theorem. Section 7
is an application to the ill-posed PDE model (1.2) by the similar idea used for the
ODE model (1.1).

2. The formulation for (1.1). In this section, we give an overview of our
treatment for ODE model (1.1), which can be rewritten as

(2.1) exy +xp +eg(z) = ef(wt), z € R™,

where, as indicated before, the mappings are ¢ : R* — R” f : T¢ — R". We
will reduce the existence of response solutions of (2.1) to an equivalent fixed point
problem. To this end, it is crucial to make some assumptions for (2.1).

2.1. Preliminaries. For the analytic or highly differentiable functions f and g
defining (2.1), we make the following assumptions.

Assumption 1. The average of f is 0 and ¢g(0) = 0. Denote A = Dg(0), which is
an n X n matrix, the spectrum A; (j =1,...,n) of A is real, and A; # 0.

Actually, we could weaken the assumptions on the regularity of the function g
when considering low regularity results (e.g, L? or H'). As we will see in section 6.2,
instead of assuming ¢ is differentiable, we just assume the following.

Assumption 2. g is Lipschitz in R™ and it can be expressed in the form

g(x) = Az + §(z),
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where A is an m X n matrix and its spectra are real and nonzero. Moreover, the
nonlinear part § satisfies that Lip(g) is sufficiently small, depending on the spectral
properties of A (the eigenvalues and the Jordan normal form) and the number theo-
retic properties of w. We make explicit the Lipschitz constant in all steps. See (6.7)
for more details.

Note that in the assumptions stated above we are not including that the matrix A
is diagonalizable. Nondiagonalizable matrices appear naturally when considering os-
cillators at resonance, which is often a design goal in several applications in electronics
or appear in mechanical systems with several nodes.

We emphasize that Assumption 2 involves an assumption on § for all values of its
argument. This is needed when we consider solutions in L? which may be unbounded.

It is important to note also that once we have established the conclusion for g un-
der Assumption 2, we can accommodate several physical situations such as piecewise
linear nonlinearity with small breaks.

Without loss of generality, we assume that

(2.2) k-w#0for ke 29\ {0}.

Indeed, if there is a ko € Z? \ {0} such that ko -w = 0, we could reformulate the
forcing with only (d — 1)-dimensional variables which are orthogonal to k.

The condition (2.2) is called the nonresonance condition. If the nonresonance
condition (2.2) is satisfied, then the set {wt}scr is dense on the torus T¢.

2.2. Quasi-periodic solutions, hull functions. In this paper, we are inter-
ested in finding quasi-periodic solutions with frequency w € R?\ {0}. They are
functions of time ¢ with the form

(2.3) ze(t) = U (wt)

for a suitable function U, : T — R™, indexed by the small parameter ¢. The function
U. is often called the hull function. Substituting (2.3) into (2.1) and using that
{wt}ier is dense in T4, we obtain that (2.1) holds for a continuous function z if and
only if the hull function U, satisfies

(2.4) e(w-0p)°Us(0) + (w- 8p) U(6) + eg(U.(8)) = f(6).

Hence, our treatment for (2.1) will be based on finding U, which solves (2.4). We will
manipulate (2.4) to reformulate it as a fixed point equation that can be solved by the
contraction argument.

The equation we will solve (2.4) involves a parameter € (the inverse of the co-
efficient multiplying the damping). We will obtain solutions with delicate regularity
in e, which are objects in a space of functions. Precisely, in the analytic case (see
section 5), we will get a solution U, of (2.4) depending analytically on € when & ranges
on a complex domain  which does not include the origin € = 0 but so that the origin
is in the closure of 2. In the finitely differentiable case (see section 6), the solution
U. is differentiable in £ when ¢ is in a real domain Q which does not also include zero
but includes it in its closure.

However, when we consider the regularity for the solution U, of (2.4) as € goes to
0 along the set €2, we get that U, is continuous in € at 0 in the topologies used in the
fixed point problem (see Lemma (21)). Moreover, we will show that, in the generality
considered in this paper, there are cases in which the solution is not differentiable at
€ =0 (see Remark 20).
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Later, we will develop analogous procedures for the PDE model (1.2) (see sec-
tion 7). We anticipate that the treatment is inspired by this section presenting the
formulation for the ODE model (1.1). The unknowns will not take values in R™, but
rather will take values in a Banach space of functions. In addition, the PDF (1.2)
is ill-posed and its nonlinearity is unbound, which make us do some more drastic
rearrangement for its fixed point equation.

2.3. Formulation of the fixed point problem. In this part, we just present
the formal manipulations. The precise setup will follow, but it is natural to pres-
ent first the formal manipulations since the rigorous setting is chosen to make them
precise.

Our goal is to transform (2.4) into an equivalent fixed point problem. We rewrite
(2.4) as

(2.5) e(w-09)°Us(0) + (w- By) U(0) + cAU-(0) = e f(0) — eg(U-()),

where A = Dg(0) and
9(z) = g(x) — Az.
Note that, in both the analytic case and the highly differentiable case, we use
Assumption 1. It is obvious that

(2.6) 9(0) =0, Dg(0) =0,

namely,

g(z) = O(z*), Dy(x) = O(x),

where O(x) denotes the same order as . As a consequence, Dg is small (in many
senses) in a small neighborhood of the origin = 0. We could also assume that Dg is
globally small in the whole of R™. This is trivial in the sense of complex analyticity by
Liouville’s theorem. When g is just Lipschitz, we need that Lip(g§) is globally small,
namely, Assumption 2.

Based on (2.5) and denoting by Id the n x n identity matrix, we introduce the
linear operator L. as

(2.7) Lo=c(w 09 Id+ (w- ) Id+cA

defined on n-dimensional periodic functions of # € T¢. Then, (2.5) can be rewritten
as

(2.8) L (U:(0)) = ef(0) — eg(U=(0)).

As shown in section 5.1, the linear operator L. is boundedly invertible in the
special space H”™ defined in section 3 when e ranges in a suitable complex domain.
This allows (2.8) to be transformed into a fixed point problem as

where we have introduced the operator 7.. For a fixed €, we can obtain a solution
U. for (2.9) by the contraction mapping principle. Further, we want to get a solution
U, possessing optimal regularity in €. This can be achieved by considering operator
T above in a function space consisting of functions regular in e (see section 5.2 for
the analytic case and section 6.1.1 for the highly differentiable case). Specially, in the
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highly differentiable case, we will use the classical implicit function theorem (we refer
to the references [Die69, LS90, KP13]) to get the regular results.

Two subtle points appear in the above strategy used in (2.9). One is the invert-
ibility of the linear operator £. and the bound of its inverse. Another is the regularity
of the composition operator § o U,.

Fortunately, we observe that the linear operator L. is diagonal in the basis of
Fourier functions. This suggests that we use some variants of Sobolev (or Bergman)
spaces which provide analyticity—or in the low regularity case L? or H'. Hence, it
will be useful that the spaces we consider have norms that can be estimated very
easily by estimating the Fourier coefficients. The estimates of the Fourier coefficients
involve the assumptions that the eigenvalues of A are real and nonzero and that the
range of ¢ is restricted to a domain not including the origin € = 0 but accumulating
at this origin. (See section 5.1.2 for details.)

For the estimates of nonlinear terms, we need that the composition operator goU,
is smooth and considered as a mapping acting on the spaces under consideration. The
regularity of the composition on the left by a smooth function acting on variants of
Sobolev spaces have been widely studied [Mar74, AZ90, IKT13]. In section 3, we will
present the precise spaces and some properties in these spaces used to implement our
program.

2.4. Some heuristic considerations on the smallness conditions required
for the present method. Recall the fixed point equation (2.9); the operator we
consider has the structure

U=el'f—elL'g(U) =T(U).

To solve it by iteration, roughly, we need that the map U + e£-1goU is a contraction
in a domain that contains a ball around e£_ 1 f. Of course, the notions of contraction
and smallness depend on the spaces we choose. The results of existence of solutions
U are sharper if we consider spaces of more regular functions and the results of local
uniqueness are sharper if we consider spaces of less regular functions.

Both the contraction properties of e£-!goU and the smallness properties of e£_ ! f
are formulated in appropriate norms (which change with the regularity considered).
As we will see in section 5.1, the operator e£-! can be bounded in appropriate
norms, which allows us to just consider the smallness of f and the properties of the
composition go U.

It is clear that we can trade off some of the smallness assumptions in g and f.
If we are willing to make global assumptions of smallness on g, we do not need any
smallness assumption on f. If, on the other hand, we assume that g is smooth and
§(0) = Dg(0) = 0, we have that § is small (in many senses) in a small neighborhood
at the origin £ = 0. From this point of view, it is necessary to impose a smallness
condition on f in this small neighborhood.

There are some caveats to these arguments.

In the analytic case, assuming that D¢ is small globally (even bounded) in the
whole complex space C”, Liouville’s theorem shows that it is constant, namely, § is
linear. This makes our result true, but it is trivial and we will not state it. Of course,
Liouville’s theorem is only a concern for analytic results.

In the low regularity cases (e.g., L? or H' when d > 2), the range of f may be
the whole of R™, hence we need to make global assumptions on smallness in §. In the
highly differentiable case (e.g., H™, m > %), we prove our results under two types of
smallness assumptions (See section 6.1.)
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We also advance that in the case of H! regularity, the contraction argument we
use will be somewhat more sophisticated. (See section 6.2.)

3. Function spaces.

3.1. Choice of spaces. To implement the fixed point problem outlined in sec-
tion 2, we need to precisely define function spaces with appropriate norms. The
discussion in section 5 will make clear, it is very convenient that the norms can be
expressed in terms of the Fourier coefficients of functions. In such a case, the inverse
of the linear operator L. can be easily estimated just by estimating its Fourier co-
efficients. We are allowed to choose a special base in such a way that the Fourier
coefficients of the multiplier operator £. have the Jordan standard form. (See sec-
tion 5.1.1.)

We also need the spaces to possess other properties allowing us to control the
composition g o U in (2.9) with ease, such as Banach algebras properties under mul-
tiplication and the properties of the composition operators.

In this section, we use the same notations for Banach spaces as in [dIL09, CCdIL13,
dILS19].

For p > 0, we denote

T = {6 € C*/(27Z)" : Re(0;) € T, Im(6;)| < p, j=1,....,d}.

Then, we denote the Fourier expansion of a periodic function f() on ’]I‘g by

f(e) — Z ﬁceikﬂ’

kezd

where k-0 = Z?:l k;0; represents the Euclidean product in C? and fk are the Fourier

coefficients of f. If f is analytic and bounded on Tg, then the Fourier coefficients
satisfy the Cauchy bounds

1< 9)| - e lklp
Ifk\_ggg\f( )| -e

with [k = 39, [kj.

DEFINITION 3. For p > 0, m € Ny, we denote by HP™ the space of analytic
functions U in ']I‘ﬁ with finite norm

HP™ = HP™(T?)

P
= {U: T = C" | U From = Y ‘Uk’ eIl (|k2 +1)™ < +oo}.
kezd

It is obvious that the space (H”™, || - ||g»m) is a Banach space and indeed a
Hilbert space. From the real analytic point of view, we consider the Banach space
H?P™ of the functions that take real values for real arguments.

For p = 0, H™(T%) := H%™(T?) is the standard Sobolev space; we refer to the
references [Tay97, AF03] for more details. Moreover, when m > £, by the Sobolev
embedding theorem (see Chapters 2 and 6 in [Tay97]), we obtain that H™+(T?) (I =
1,2,...) embeds continuously into C*(T%).

For p > 0, functions in the space H”"™ are analytic in the interior of 'H‘g and
extend to Sobolev functions on the boundary of ']l‘g.
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Remark 4. As a matter of fact, when p > 0 and m > d, the space H”™ can
be identified with a closed space of the standard Sobolev space H™ (Tﬁ) consisting
of functions which are complex differentiable. The manifold T;'f has 2d real dimen-
sions so that, when m > d, the standard Sobolev embedding theorem shows that
HP™ (1 =1,2,...) embeds continuously into C* (T%). Since the uniform limit of com-
plex differentiable functions is also complex differentiable, we conclude that our space
is a closed space of the standard Sobolev space of Tﬁ considered as a 2d-dimensional
real manifold. Several variants of this idea appear already in Bergman spaces in
[RS75, RS80].

We also point out that the set of functions in H”"™™ which take real values for real
arguments is a closed set in H”™ (this set is also a linear space over the reals). Since
we will show that our operators map this set into itself, we get that the fixed point
we produce will be such that they give real values for real arguments.

3.2. Properties of the chosen spaces H?™ above. We note several well-
known properties of the space H”™ defined in section 3.1, which will play a crucial
role in what follows.

LEMMA 5 (interpolation inequalities). For any 0 < i < m, 0 < v < 1, denote
s = (1 —v)i+ vm, then we have the following inequalities:
(1) Sobolev case: For f € H™, there exists a constant Cy , > 0 depending only
on i, m such that

(3.1) £ lzzs < Com - I - 1LF W gm-

(2) Analytic case: For p > 0,9 € HP™, there exists a constant C;pm > 0
depending only on t, p, m such that

(3-2) lgllzes < Cipam - Ngllnrs - NgllEzem-

The inequality (3.1) is the very standard Sobolev interpolation inequality in the
literature [Tay97, Zeh75]. Since, as mentioned before, the spaces H”™(T%) can be
considered as a subspace of the standard Sobolev space in T;‘f, we also have (3.2).

LEMMA 6 (Banach algebra properties). We have the following properties in two
cases:
(1) Sobolev case (see [AF03, Tay97]): Letm > %; there exists a constant Cyy, q > 0
depending only on m,d such that for ui, us € H™, the product uy - ug € H™
and

[uruz]lm < Crn,allua ||z [[uz]|

(2) Analytic case: Forp >0, m > d, there exists a constant Cy . q > 0 depending
only on p,m,d such that for ui, us € H”™, the product uy - ug € H”™ and

[uruz || zom < Cpmalluallem [[uz |l zom.

In particular, H”™ is a Banach algebra when p, m, d are as above.

To analyze the operator 7; defined in (2.9), we need to estimate the properties of
the composition operator goU. The following properties are well-known consequences
of Gagliardo—Nirenberg inequalities.

LEMMA 7 (composition properties). We have the following properties in the two
cases:
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(1) Sobolev case (see [Mar74, Tay97, IKT13]): Let g € C™(R™, R™) and assume
that g(0) = 0. Then, for u € H™(T?, R") N L>=(T9, R"), we have

lg@lm < Con (=) (1 + lullzm)

where Cp, (1) = SUP|4i<y, a<m |DVg(w)|. Particularly, when m > 4 (so that,

by the Sobolev embedding theorem H™ C L), if g € C™2 and u,v,u+v €
H™, then

lge(u+v) —gou—Dgou-v|gm

(3.3) ,
< Cma ([[ullze) (1 [[ullzm) [[gllom+2||v][Zm

for some Cp, q > 0 depending on the norm of u.

(2) Analytic case: Let g : B — C™ with B being an open ball around the origin
i C" and assume that g is analytic in B. Then, for u € H”’m('ﬂ‘g, C"n
L>(T4, C™) with u(T%) C B, we have

lg(u)llzem < Cpm (lullzoe) (1 + l[ullgem) .
Moreover, when m > d,

lgo (u+v)—gou—Dgou-v|gem
< Cpmaa (lellpoe) (1 + l[ull o) [0ll3zem-

The complete proof of Lemma 7 can be found in Proposition 1 in [Mar74], Proposi-
tion 3.9 in [Tay97], or Proposition 2.20 in [IKT13]. To make our paper self-contained,
we just give a sketch of the ideas for the inequality (3.3), but refer the interested
readers to the references above.

Since

g6 (u+0)(8) — g oul®) — Dgou(6) - v(6)
_ / / D2g 0 (u+ sv)(6) - v2(0)dsdt,
0 0

we get the desired result by the facts that D?go (u+ tsv) € H™ and its H™ norm is
bounded uniformly in (¢, s) and that H™ is a Banach algebra under multiplication by
Lemma 6. The range of the derivative Dg is an n X n matrix, which can be identified
with R™". Note that the dimension of the range of g does not play any role in our
arguments.

The proof of Lemma 7 is rather elementary in the analytic case.

As a matter of fact, Lemma 7 gives not only the composition operator is differen-
tiable but also presents a formula for the derivative. It is easy to check that the same
argument leads to higher derivatives of the composition operator if we assume more
regularity for the function g. More precisely, we have the following proposition.

PROPOSITION 8 (regularity of composition operators). We have the results in
two cases:
(1) Sobolev case: Let m > %. Then, the left composition operator

C,: H™(T4 R™) — H™(T? R™)

defined by
Cqlul(0) = g(u(0)),
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has the following properties:

If g € C™THR™,R™), then Cy is Lipschitz.

If g € C"HHY R R") (1= 1,2,...), then Cy is C'. Moreover, the derivative
of the operator C, is given by

(DClulv)(0) = Dg(u)v(0).

(2) Analytic case: Let p > 0. Assume that m > d and g : B — C", where B is
an open ball around the origin in C" and is analytic in B.
Let ug € HP™ be such that uo(Tﬁ) C B. Then for all u in a neighborhood
U of ug in H”™, the operator C4 : U — HP™ is analytic. Moreover, for
v € HP™, the derivative of the operator Cq is given by

(DCy[u]v) () = Dg(u)v(8).

Proof. In fact, Lemma 7 shows that the operator C, is C!' when g € C™*2. For
g € O™+ we can proceed by induction. If we have proved the result for I and the
formula for the derivative, we obtain the case for I + 1. Indeed, if g € C™ 1, we
have C, is C'. Then, for g € C™++2 Dg € C™H*1 we get DC, is C' by induction.
Namely, C4 is C'F1,

In the analytic case, we start by observing that u(’]I‘g) C B is a compact set by the
Sobolev embedding theorem. Hence, it is at a bounded distance from the boundary
of B. If the neighborhood of u is sufficiently small, the range of all the functions will
also be contained in B. Then, we obtain our result by Lemma 7. We can also refer
to [CCCdIL17] for more details. O

Note that, for the Sobolev case in Proposition 8, the regularity of C, is not optimal;
we refer to [RS96, AZ90, IKT13] for more results. Note also that, for the analytic
case in Proposition 8, the result is not the most general result. There are results in
the case of regularity where the Sobolev embedding theorem does not give continuity.
In these cases, we need to pay more attention to the ranges of the functions. Since
the functions are differentiable in the complex sense, we obtain that the composition
operator C, is differentiable in the complex sense by the chain rule to obtain the
derivative. Further, to get that the operator C4 is analytic, we just recall the Cauchy
result that also holds for functions whose arguments range over a complex Banach
space. See [HP74].

4. Statement of the main results. In this section, we state several results
for the model (2.1). These results are aimed at different regularities of the forcing f:
analyticity (Theorem 9), finite (but high enough) number of derivatives (Theorem 12),
and low regularity (Theorem 14).

THEOREM 9. Consider the model (1.1). Suppose that f € HP™(T?) for some
p>0,m>d and g is analytic in an open ball around the origin in the space C™.
If Assumption 1 holds and || f|| ge.m is small enough, then, for e € Q, where

(4.1) 0 :=Q(o,u) ={e € C : Re(e) > p|lm(e)|, o < el < 20}

with > po for po > 0 sufficiently large and o > 0 sufficiently small, there is a unique
solution U. € HP™(T4) for (2.4).

Furthermore, considering U. as a function of €, the mapping ¢ — U, : Q —
HP™(T4) is analytic.

In addition, when € € Q and € — 0 along the set ), the solution U. — 0 and the
mapping € — U, is continuous at € = 0.
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Remark 10. The statement of Theorem 9 does not impose any Diophantine con-
dition on the forcing frequency w. Since we do not expand the solution as a power
series in g, there is no equation involving the small divisor appearing. We will, how-
ever, not get that the solution is differentiable with respect to € at the origin € = 0 and
this may indeed be false in the generality considered in this paper. (See Remark 20.)

Remark 11. The smallness conditions on || f||ge.m in Theorem 9 (as well as The-
orems 12, 14 in what follows) will be made explicit during the proof. We anticipate
that they depend on the spectral properties of A (the eigenvalues and the size of the
projection), the number theoretic properties of w, and the size of nonlinearity g. We
make explicit the small conditions in all steps.

THEOREM 12. Consider the model (1.1). Suppose that f € H™(T) with m > ¢
and g € C™H(R™,R™) (I1=1,2,...).
If Assumption 1 is satisfied and || f||gm is small enough (or Lip(g) is sufficiently

small in the whole of R™ in the sense of Assumption 2), then, for e € , where
(4.2) Q:=Q(0)={e€Ry: 0 <l|e|] <25}

with sufficiently small o > 0, there exists a unique solution U. € H™(T4) for (2.4).
Moreover, the solution U. obtained above has the following regularity in &:
o If g € C™TL(R™ R"), then the mapping € v+ U, : Q@ — H™(T?) is Lipschitz.
o If g € CTIHL(R™ R™), then the mapping € — U : Q — H™(T) is CL.
In addition, when € € Qande — 0 along the set ﬁ, the solution U, — 0 and the
mapping € — U, are continuous at € = 0.

Remark 13. Note that if Lip(g) is sufficiently small in the whole of R™, we do
not impose any small condition on f. Otherwise, it is necessary to give the small
condition on f. (Recall the analysis in section 2.4.)

We emphasize that the regularity of the solution U in ¢ stated in Theorem 12
depends on the regularity of the composition operator presented in Proposition 8.
Even if we show that the derivatives with respect to ¢ exist for all € > 0, we do not
make any claim about the limit of the derivatives as € goes to 0.

The following Theorem 14 is for the situation when the forcing and the nonlin-
earity are rather irregular.

THEOREM 14. We study (1.1). Suppose that f € L*(T%) and g is globally Lip-
schitz continuous on R™ satisfying Assumption 2. Then, for e € fNZ, there is a unique
solution U. € L?(T%) for (2.4).

Under the above assumptions if f € H*(T?) and g € C*TUP then the unique
solution U, constructed above is in No<s<1H®.

Note that Theorem 14 applies to some piecewise linear models (the Lipschitz
constant of the derivatives has to be sufficiently small). Such models appear naturally
in many areas.

We also stress that in Theorem 14, for f € H'(T9), we cannot claim that the
solution is in H', but only that it belongs to the intersection Ny<s<1H*. We do not
have a contraction argument in this case, but we can estimate the speed of convergence
of the iterative procedure in the space H® for 0 < s < 1.

In the analytic case (Theorem 9) and in the highly differentiable regularity (Theo-
rem 12), when m > (% + 2), we have that the solution U, is C? with
respect to the argument 6. Hence, the quasi-periodic solutions z(t) obtained through
(2.3) is also a twice differentiable function of time. As a consequence, the solutions
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we have produced satisfy the differential equation (1.1) in the classical sense. In the
lower regularity case, the solutions we produce solve the equation in the sense that the
Fourier coefficients of (2.4) are the same in both sides. This is equivalent to solving
(1.1) in the weak sense since the trigonometric polynomials are dense in the space of
C*° test functions.

In this paper, we also present some results for PDE model (1.2). Since the for-
mulation requires new definitions and auxiliary lemmas, we postpone the formulation
of the results until section 7.

5. Analytic case: Proof of Theorem 9. We prove Theorem 9 in the analytic
sense by considering the fixed point equation (2.9) in the Banach space H”™ for any
e € Q(o, n). Recall (2.9),

(5.1) U-(0) = L [e£(0) — eg(U=(9))] = T=(U-)(6).

The first concern is the invertibility of the linear operator L. and the quantitative
bounds on its inverse when ¢ ranges over the complex domain Q(o, p) defined in
(4.1). We remark that it is impossible to obtain the same bounds if € belongs to
the imaginary axis. In fact, we conjecture that the optimal domain of e, when the
solution U, of (5.1) is considered as a function of ¢, do not extend to the imaginary
axis.

Second, since we want to obtain a solution U, analytic in ¢, we will define a space
consisting of functions analytic in €. (See section 5.2.) By reinterpreting the fixed
point problem in the space H?™*, we obtain rather directly the analytic dependence
on ¢ of the solutions U.. The delicate steps are to show that, for each € € Q(o, ),
the operator 7. maps a ball centered at the origin in the space H”™ to itself and it
is a contraction in this ball.

5.1. Estimates on the inverse operator £ *. For the analytic nonlinearity
g, the linear part A is dominant with respect to the nonlinear part §. Moreover, the
Lipschitz constant of § can be small enough in a sufficiently small domain.

We now study the linear operator defined by

Lo=c(w-89)° Id+ (w-0p) Id + A.

Our main result in this section includes that L. is boundedly invertible from the
analytic function space H”™ to itself when ¢ ranges over a complex conical domain
Q(o, ), which is away from the imaginary axis. Of course, this result requires the
condition on A in Assumption 1.

A key ingredient for the result is that the norms of the functions can be read off
from the sizes of the Fourier series and that the operator L. acts in a very simple
matter in Fourier series. Indeed, if the matrix A was diagonal, the operator L. will
be just a Fourier multiplier in each component (this case is worth keeping in mind as
a heuristic guide).

5.1.1. Some elementary manipulations. A consequence of Assumption 1 is
that there exists a basis of generalized eigenvectors ®; € C™ (i = 1,2,...,n) such that

(5.2) AD = Jd, & = (dy,...,P,)",
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where J is the standard Jordan normal form. That is, for 1 <p <n, 1 <j <p,

Jy 0 Aj 0

0 Jp nxn 0 1 >\j dxd

Note that the subscript n x n denotes the dimension of the matrix JJ. The symbol
d (1 < d < n) represents the multiplicity of the eigenvalue A;. More precisely, the
Jordan matrix J depends on the spectra of the matrix A.

When we write a function U. € H”™ in the Fourier expansion as

UE(Q) = Z l{jk;7€eik'9 = Z 5k)78¢eik}'9

kezd kezd

with ﬁkys, (71675 € C" and ® € C"’ being the one specified in (5.2), the operator L.
acting on the Fourier basis becomes

Lo (De* ) = (—e(k - w)?Id+i(k - w)Id +eJ) @™’ =: L. (k- w)Pe*?,

where
L.(a) = —ed*Id +iald +eJ
Ls,l(a) 0
(5.3) B Lec2(a)
0 LE’p(a’) nxn
with, for 1 < j <p,
le)j(a) 0
3 lc.j(a)
La,j (a’) = -
0 e lej(a)) 4.a
with
(5.4) l..j(a) = —ea® +ia + ;.
The formula (5.3) gives that
L;i(a) ) 0
Lz 5(a)
(5.5) L7 (a) =
0 Lep(@)/
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with, for 1 < j <p,

(5.6)
LE_; (a)
-1
LA 1 a) 0
_ 13 (a) %) 1M )
(—l)d_lsd_ll;?(a) 521;?(@ —81;?(@) l;;(a) dxd

Consequently, to estimate the inverse of L., it suffices to estimate

(5.7) I'.:=sup|L-'(a)| > sup |L- (k- w)],
a€R kezd

where the matrix norm is defined by

(5.8) |L] = max | Lij]

with L;; being the (i, j)th variable of the matrix L. Of course, any other norm will
work just as well since the nonlinear operators we need to estimate will have a small
norm for any precise definition of the metric.

5.1.2. Bounds on L_*! given in (5.5). For the matrix L.(a) defined in (5.3),
once we obtain the infimum of |l ;(a)| in (5.4) for a € R, we get the estimates
of T'c defined in (5.7). The following estimates are similar to those in [CCdIL13],
which considered only the 1-dimensional case. We now present the details for the
n-dimensional case.

Note that the estimates we obtain also apply to the standard Sobolev space H™,
which allows us to conclude very quickly the results for the finitely differentiable case
presented in section 6. We first deal with two special cases, which throw some light
on the general case. Of course, from the purely logical point of view, these special
cases can be omitted since they can be covered in the general discussion. We note
that Case 1 with e € R is the special case needed in the finite differentiability result.
So it is worth dealing with it explicitly.

Case 1. When ¢ € R, , we have, for a € R,

le.j(a)]? = | — ea® +ia + e\ |?
= (—ead® +e)\j)? + a?
=c%a’ + (1 - 2°N\))a® + °N2.
Take G(v) = e®v® + (1 — 2e®Xj)v + %A% with v = a® > 0. It is obvious that G(v) >

G(0) = %A% since DG(v) = 2ev+(1-2¢%);) > 0 due to the smallness of e. Therefore,
we have

(5.9) inf [l (0)] = e,

Equivalently,

sup [l j(a)] 7" < lea;| 7
acR
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Together with (5.6) and the matrix norm defined in (5.8), we have that

I. =sup|L-'(a)| = sup max |L }(a
€ a€£| € ()‘ aeEISjS ‘ 5,]( )|

m—17—m
= o
ilelﬁ 121;2(17 (1%1}7?)5((1 e €,J (a)|)

< max < max |g/™ - |€|m|/\j|m>
1<j<p \1<m<d

< le|™* max ( max )\j|_m> )
1<j<p \1<m<d

Case 2. When ¢ is pure imaginary, i.e., ¢ = is with s small enough. In this case,
there exists a real root a such that |I. ;(a)| = 0 since the discriminant 1 + 4s?X; > 0
(by the smallness of s) for —sa® 4+ a + s\; = 0. Hence, the operator £. is unbounded
if the small parameter € locates in the imaginary axis, which makes the contraction
mapping principle inapplicable.

We conjecture that no solutions for (2.5) exist when ¢ is purely imaginary because
zero divisors can be considered as resonance.

To study the analyticity in € of the function U, satisfying (5.1), it will be interest-
ing to study the inverse of £. when ¢ ranges over the complex domain Q(c, 1) defined
in (4.1).

In what follows, in order to avoid having many constants, we will follow standard
practice and denote by C) any constant depending only on the eigenvalues \; (j =
1,...,n) of the matrix A, but not e.

PROPOSITION 15. For T'. defined in (5.7), when € € Q(o, 1), we have
PE S O'_lc)\.

Proof. Fix
£ =81 +1i89

for € lining on a conical domain (o, p); we have s; > plsa|, where p > po with
some sufficiently large positive constant g (e.g., o > 10%), and 02 < 5?7 + 53 < 402
Namely,

(5.10) Vljw-a<\/1iﬁ-agslg2a
Then, one obtains that

lle.j(a)|* = | — ea® +ia + e\ |?
(5.11) =|—s1(a® = A)) —i(52a2—a—52)\j)|2

2
=si(a® = \;)? + [s2(a® — ;) —a]”.

If A\; <0, it is obvious that

(5.12) |lg,j(a)\2 > s2(a® — )\j)2 > s%)\?.

The remaining task is to estimate |l ;(a)|? in (5.11) in the case of A; > 0. The
first term vanishes at the point a = +,/\;. We define two regions in a as the following:

L =[(1=107%)/;, (1+107%)y/ A U (-1 = 107%)/ Ay, (1 +107%) /],
L =R\ L.
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When a € I5, we obtain the estimate
(5.13) [l (@) = si(a® = X)) = - O(N ).
In the case of a € I, it is clear that [s2(a? — \;) — a] = O(s2) — a. Therefore,

lle i (@) > [s2(a% = \j) —a]”
(5.14) . a2
=[0(s2) —al” = 5 = O(1A;) = O(INs1) - s
by the smallness of s; and s2 (depending on €). Note that the last inequality in the
above estimate is very wasteful but we want to get estimates comparable to the ones
we have in the other pieces. The inequalities (5.10), (5.12), (5.13), and (5.14) allow
that

inf [L.,;(a)] > o+ O (min {|A\], A1 }).

Equivalently,
(5.15) sup|le ;(a)| 7t < UﬁlCAj,
acR
where
(5.16) Oy, :o(max{ujrl, |Ajr%}).

Combining with the formulas in (5.5), (5.6), the matrix norm defined in (5.8),
and (5.15) we obtain that

I. =sup|L-'(a)| = sup max |L"}(a
- = sup L7 (@) = sup max |} (a)

= sup max ( max |6mll;;”(a)|)

(517) acR 1<j<p \1<m<d
< m—1__—m \m
< s, (s, o)
§0710A
with
618 G=mex (O :O<f£‘?z; gl wrz}). 0
1<m=d 1<m<d

It follows from Proposition 15 that, for each ¢ € Q(o, ),
(5.19) leL-'(a)| < o-07'Cx < Ca.

Due to the fact that the norm in the space H?™ is characterized by the Fourier
coefficients, we have

(5.20) llecs = sup |eL; ' (k- w)| < Ch.
kezd

1||Hﬂvm*)HP=m

This inequality is crucial in the contraction mapping argument used in section 5.3.
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Remark 16. By (5.17), we see that I'. can be bounded by o~! when o is the
minimum distance to the origin in the domain (o, ¢t). Then it follows from (5.19)
that the bad factors o~ ! can be dominated by the good factor o. This is the reason
why we choose o < |¢| < 20, whose maximum and minimum distances to the origin
are comparable. Note, however, that the estimate for e£-! in (5.20) is independent
of o, so we obtain uniqueness of solutions for different o, i.e., the solutions obtained
for different o agree for the € in the intersection.

Remark 17. We note that the method presented in this present paper can accom-
modate small modifications leading to several generalizations. For example, we have
the general equation (1.3) with p = diag(p1,...,Pn), @ = diag(qs,...,q,) being a
diagonal matrix satisfying p;, q; € R\{0}, j = 1, ..., n. In this general case, the only
modification with the present exposition is that the calculation for I. ;(a) in (5.11)
becomes

lle,j(@)]* = | — epja® +iqja + eA;|?
. 2
[ pja —Aj) - 1(52pja2 —qja— SgAj)]
2
st(pja® = Xj)% + [sa(pja® — Aj) —q;a]”,

which makes no difference in our discussion in Proposition 15.

5.2. Analyticity in e. Recall (2.9),
(5.21) U(0) =L [£(9) — 5(U©9))]

with U being a function of £ defined by U = U,. In this way, we define the operator
T acting on functions analytic in ¢, taking values in H”"™ given by

(5.22) TWU)=eL'[f —g(U)].

Since we want to obtain the solution U, depending analytically on €, we reinterpret
T above as an operator acting on the space H”™ consisting of analytic functions of
¢ taking values in H”™ with € ranging over the domain (o, ). We endow the space
H?P™ with the supremum norm

(5.23) 1T p,m.02 = sup |Ue |l p,m,
e€N

where we use the abbreviation || - ||,m := || - ||gem defined in Definition 3. The
supremum norm of ¢ in (5.23) makes H”"™ a Banach space. Moreover, it is also a
Banach algebra under multiplication when m > d by Lemma 6.

We now show that the operator 7~ defined in (5.22) maps the space H”™ into
itself.

LEMMA 18. Assume that m > d. IfU € H?"™ then T(U) € HP"™. Precisely,
if the mapping € — U, : Q — HP™ is complex differentiable, then the mapping
e To(Ue) : Q = HP™ s complex differentiable as well.

Proof. From the definition (5.22), we know that the operator 7 is composed of
operators e£_1 and §. It is clear that the map ¢ — g(U.) : © — HP™ is complex
differentiable since ¢ is analytic and it does not depend on € explicitly. Therefore, it
suffices to show that the map € — e£-1(VZ) : Q — HP™ is complex differentiable
when V_, considered as a function from Q to H”™, is complex differentiable.
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We prove that the derivatives of e£-1(V.) with respect to ¢ exist in the space
HP™ 7(d < 7 < m) instead of H”™. Then, we apply, somewhat surprisingly,
Lemma 36 in Appendix A to conclude that the derivatives we consider indeed ex-
ist in the space H”™.

For a fixed € € Q, we expand V.(0) as

‘/5(0) _ Z ﬁk,seik.e

keZa
with
(5.24) Vie = / Vo(0)e *%dp
T3
satisfying
(5.25) Vo] < Vel e (1012 +1) 7%

Taking the derivative with respect to e for (5.24), we have that

d ~ d .
2 —Vi e = —V. ) (0)e 940
(5.26) an /(d )@
with
d ~ d m
5 L I
(527 R e S

pm

It follows from section 5.1 that

LNV = Y eLiMw k) Vi e
kezd

with LZ! defined in (5.5). By (5.15) and sup,cp |l=,j(a)|'a? < ¢71C\ (which can be
easily obtained using the same technique as (5.15)), we have that

d g,
’da [Edlsj(w~k)]
=]d- e s w k) —d et IS T W k) - (< (w k)P ) |
< C)@O’il.

Together with the formulas (5.5) and (5.6), one gets

‘jg (5L;1(w . k)f}k,5>
d

_ N _ d
(5.28) < 'dE (5L€1(w~k))‘ ’V;m + el (w - k)| ‘dgvk,g
-1 - d =
<Cy-o ‘Vk,s F Ve, e| | -
de
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Hence, (5.25), (5.27), and (5.28) yield that

HCZS (ngl(w : k)@s) k-0

pym—1
B ~ d = k-
<Cy-o! <’Vk7g + ‘dgvk,s > ||61k9Hp,m—T

d _m
<C,y- 0'—1 (”V;Hp,m + £Vv5 ) e_PVC| (‘k|2 + 1) 2

p,m
M (B2 1)
1 d 2 _z
<Oyt (Wellt |20 ) k2 4177,

pym

Due to >, -, 1 < 24Kd=1 k€ Z? (see [Ad63]), and choosing d < 7 < m,

ST+ <Y N (WD) (K1) Y 1
kezd k=0 |k|=k k=0 |k|=k
k=0

< 2‘12 K24 1)
As a consequence, it follows from the Weierstrass M-test that the series

Z dile (eLE_I(w . k)‘/}kA’E) eik?

kezd

converges uniformly on € € Q in the space H”™~7. The fact that these formal
derivatives are uniformly convergent shows that they are the true derivatives. Namely,

i -1 _ i =1/, 1\ ik-0
I (eL2 (VE))—kZ R (eLE (w k)VkJ)e .

€z

Therefore, we have that the mapping ¢ + e£-1(V.) : Q@ — HP™ 7 is complex
differentiable. Since H”™ C HP™~" we conclude that the mapping ¢ — e£-1(V.) :
Q — HP™ is complex differentiable with derivatives in H”™~" by Lemma 36 in
Appendix A. 0

5.3. Existence of the fixed point. Recall that the fixed point equation is
(5.29) U(0) =L [f(8) — g(U@))] = T(U)(O).

The proof of the existence of the solutions for the above equation is based on the fixed
point theorem in the Banach space H”™. We consider a ball 5,.(0) around the origin
in H7™ with radius r > 0 (chosen later) and we prove that 7(B,.(0)) C B,(0) so
that T is a contraction in the ball B (0).

It follows from (2.6) (§(0) = Dg(0) = 0) and Proposition 8 that the Lipschitz
constant of the composition operator go U is bounded by a constant times the radius
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r when U € B,.(0). Combining this with (5.20), for any elements Uy, Uy € B,.(0), we
get, assuming that r is sufficiently small such that C) - r < %,

pym

IT(U1) = T(U2)llpm.00 = sup |eL- g(U) — L2 g(Us)||

<Cy-r-||U1 —Us

|p7m,9

1
< 5101 = Ballpm0-

Therefore, T is a contraction in the ball B,.(0).

Now we try to identify the conditions that the ball B,.(0) with r chosen as above
gets mapped into itself. Now that we have chosen a radius r so that 7T is a contraction
in B,.(0), in the following, we show that for e, || f| satisfying suitable assumptions
(these are the assumptions stated in Theorem 9) the operator 7 maps the ball into
itself.

Indeed, for U € B,.(0), one has

IT@)lpm.0 < ITO)lpme + [ITW) = T(0)]p.m.0
1

< Callfllpm + 5

Under the assumption that || f|,m is small enough in such a way that

T,

1
Callfllom < 5
we get T(B,.(0)) C B,.(0).
In conclusion, by the fixed point theorem in the Banach space H”™, there exists
a unique solution U € H?™ analytic in ¢ for (5.29).

Remark 19. When we consider the operator 7 defined in (5.22) in the Banach
space HP™_ the solution U, obtained via fixed point theorem does not lose any reg-
ularity on . That is, the solution U, naturally depends analytically on the parameter
€. However, in the finitely differentiable case, when we take ¢ € 2 C R instead of
e € Q C C, the contraction mapping principle is not enough to get a solution U, with
optimal regularity in ¢ since when p = 0, the space H”™* is no longer a Banach space
with supremum in €. We will combine this with the implicit function theorem to get
the optimal regularity. (See section 6.1 for more details.) It is worth pointing out that
in the low regularity case, especially in H', we need a more sophisticated contrac-
tion argument in some sense since there is no Lipschitz property for the composition
operator gowu in H'. (See section 6.2.)

Remark 20. We emphasize that the general solution U, obtained above may be
not differentiable in € at the origin € = 0 since we do not impose any Diophantine
condition for the frequency w. Indeed, if U, was differentiable, we denote the derivative
UM(9) = %5(0) |e=0 and assume U, = 0 at point € = 0. Then, taking the derivative
in e at ¢ = 0 for (2.4), UM would satisfy that

(5.30) (w-09) UM (0) = f(6).

If w is sufficiently Liouvillean (e.g., |w - k| > exp(—|k|?); such an w can be easily
constructed for infinitely many k), we can easily construct analytic function f so that
UM (8) solving (5.30) cannot even be a distribution.
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Note that this argument also excludes very weak notions of differentiability (such
as the existence of limits of quotients through a subsequence). We just argue that
if such a limit exists, the limit would have to satisfy an equation that does not have
solution.

LEMMA 21. For the solution U, constructed above, we have that, for e € Q and e
going to 0 along the set 2, U, tends to 0. Moreover, the mapping € — U, is continuous
ate=0.

Proof. We take p; > p > 0 so that both the space HP*'"™ and the space HP™
satisfy the assumptions of Theorem 9. Denote by U}, U, the solutions obtained by
applying Theorem 9 to HP1™, HP™ respectively. Then, we observe that Ul = U,
by Ul € HP+™ C HP™ and the uniqueness conclusion in H”™. Moreover, we note
that the set {U} |e € Q}, where Q denotes the closure of €, is bounded in H?*™ and
hence it is precompact in H”™ topology.

To show that U, is continuous in € at € = 0, it suffices to verify that the graph G
of U, that is,

G:={(e, U.)|e € Q},
is compact in the H”™ topology. Since a ball in HP*™ is precompact in H”"™ we

just need to prove that G is closed. Indeed, the sequence (e,, U, ) € G if and only if
(2.8) is satisfied, that is,

Le, (U, (0)) =enf(0) — ,9(Us, (0)).
Taking the limits of €, — €., U., — U* for n — oo, one can obtain that
L (U(0)) = e f(0) —eg(U™(9)).
Hence, we conclude that (., U*) € G. O

6. Finitely differentiable case: Proofs of Theorems 12 and 14. In this
section we present the proof of Theorem 12, which concerns the highly differentiable
forcing f. We also prove Theorem 14 in which the forcing is assumed to be L? or H'.
The method used for the finitely differentiable case, especially H', is different from
that for the analytic case.

6.1. Proof of Theorem 12. When the forcing term f and the nonlinear term
g are finitely differentiable, we consider € € Q defined in (4.2) for (2.1).

6.1.1. Regularity in €. In order to get solutions U. with some regularity in
e, we need to consider the operator 7 defined in (5.22) acting on the space H™
consisting of differentiable functions of ¢, taking values in H™, with € ranging over
the domain Q. Moreover, we endow H™* with the supremum norm

(6.1) U grm.a = sup [|Uel|zrm,

e€N
which is similar to the analytic case in section 5.2. Note that H™ is a Banach space
and it is a Banach algebra when m > % by Lemma 6. However, H™ (in contrast with
the analytic version H”™) is not a Banach space with the supremum norm defined in
(6.1). In this case, if we just apply the fixed point theorem to the proof of Theorem 12

in the space H™, we may lose some regularity in the argument . To avoid this
shortcoming, we will combine the contraction argument with the implicit function
theorem such that the solution U, with optimal regularity in € can be obtained.
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For the convenience of the implicit function theorem, we introduce the operator
T involving the arguments € and U as the following:

(6.2) T(e,U) := U — T(U),

where 7T is given in (5.22). This makes it clear to obtain the solution U, as a function
of &, having the same regularity as T by the implicit function theorem.

More precisely, for some ¢y € €2, we first produce a solution U, such that
T(g0,U:,) = 0. To get the optimal regularity of the solution U, taking Qto H m
we apply the classical implicit function theorem for the operator T. In this process,
it is crucial to study the differentiability of the operator T, mapping 2 x H™ to H™,
with respect to the arguments (g, U) as well as the invertibility of Dy T (gg, Us,)-

As a matter of fact, we can easily get the differentiability of the operator 7 with
respect to the argument U € H™ since the operator L. is linear and the differentia-
bility properties of the left composition operator § o U are already studied carefully
in [IKT13, AZ90].

The key to our results will be the differentiability of the operator 7 with respect
to € as given by the following.

ProposITION 22. Fiz any m € N with m > % and o > 0. We consider the

map that eL71 € B(H™, H™) for every ¢ € (NZ, where B(H™, H™) denotes the set of
bounded operators from the space H™ to itself. B
For any | € N, the map € — L' is C! considered as a mapping from € to
B(H™,H™). Moreover, for any | € N and ¢ € Q, %(eﬁgl) € B(H™, H™).
As a matter of fact, something stronger is true. The map € — L= is real analytic
fore € Q and the radius of analyticity can be bounded uniformly for all € € Q.

Proof. The key to the proof is the observation that, as noted in (5.9) in sec-
tion 5.1.2, |l j(a)| > |e||A;| > o|A;| for € € Q.

To study the expansion in powers of & for [~}

e+, 7
(= +8)( — a®) +ia) "
(e(Nj — a®) +ia+5(Nj — a2))7

—1
2 . —1 )\j — (12
(e(\j — a®) +ia) (1+65(Aj—a2)+ia> .

(a), we rewrite

I=}5 (@)
1

(6.3)

2
6(;‘1% is bounded uniformly in a (compute the
J
limit as |a| tends to infinity and observe that the function is continuous in a since
the denominator does not vanish) and uniformly in & when ¢ ranges in an interval

bounded away from zero.

It is easy to see that the factor

Therefore, we can expand (1 + 55()\Aj_a2 )~1in (6.3) in powers of § using the

j—a?)+ia

geometric series formula. Moreover, the rad)ii of convergence are bounded uniformly

in € € 2 and the values of the coefficients in the expansion are also bounded uniformly
ina€R,e e

Using the formula (5.5) in section 5.1.1 for the inverse £2!, we also obtain that

the matrices LE__& s can be expanded in powers of § with coefficients that are bounded

uniformly in a € R, € € Q.
We note that the operators £_! are multiplier operators (in the sense used in

Fourier series). That is, for ﬁ being the Fourier coefficients of function f in the space
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H™, the Fourier coefficients (L2 f), of function (£Z1f) in the space H™ have the
structure

(6.4) (L7 f) = (LY, F

where each (LZ 1)k is an n x n matrix (i.e., (L71), = L1 (k- w) as specified in (5.5)).
From the discussion in the above paragraph, we know that, for each k, (L1) is
uniformly analytic in e. Thus, we conclude that the operator £-! is analytic in & by
(6.4).

In addition, we know that the Fourier indices k only enter into the multipliers
(L-1)y through k - w and the supremum of (L_ 1), over the Fourier index is bounded
by the supremum in a, which is studied in the previous section 5.1.2. Together with
the fact that the norms of functions in Sobolev spaces are measured by the size of the
Fourier coefficients, we have that, for all m > %, the norm of £Z! considered as an
operator from the Sobolev space H™ to itself is defined by

(6.5) 12 iy = 500 [ (27), ]l = sup [[ 227 (R - )]

Note that the norms of || L1 (k-w)| are just finite-dimensional matrix norms. As a con-
sequence, by (5.20), we can bound ||£Z1||gm _, gm by the supremum of the multipliers

defined in (6.5). Therefore, when we write £ = >0 ((L1)06", [[(L2 )l gm—

can be bounded by the way of (6.5). That means dd—;l(aﬁgl) € B(H™,H™) for every
e d

6.1.2. Existence of the solutions. With all the above preliminaries estab-
lished, now we turn to finishing the proof of Theorem 12. We divide the proof into
two steps. First, for a fixed ¢9 € €2, we find a fixed point U, of 7. defined in (2.9)
by considering a domain P C H™ with 7.(P) C P on which 7; is a contraction.
Second, we use the classical implicit function theorem to verify that the solution U,
we obtained in the first step possesses the optimal regularity in €.

Step 1. As we state in section 2.4, there are two ways to prove that 7: is a
contraction. One is that we choose a small ball in H™ such that Lip(g) is small in
this ball. Meanwhile, we impose a smallness condition on f in this ball. In this way,
the operator 7 maps this ball into itself and it is a contraction in this ball. (We omit
the details here since it is similar to section 5.3.) We can also assume that Lip(§) (or
Dg) is globally small (the assumption is stated is Assumption 2) in such a way that

o 1
(6.6) C) - Lip(g) < 3
This shows that
(6.7) Lip(3) < O < min {|A]™, I/\j?}>
lgmgd
by (5.18).

In this case, for a fixed ¢ € Q and Uy, Uy € H™, it follows from (5.20) that

[7(U1) = Te(Ua) || = €L ((Ur) — §(U2))|
< Cx-Lip(9) - U1 — Uzl

1
< 5lt - Us||prm .

This makes 7: a contraction in the whole space H™.
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In summary, we get a fixed point U, € H™ of (2.9) for some &, € €.

Step 2. It follows from Propositions 8 and 22 that the operator T defined in (6.2)
is C! with respect to the argument (¢,U) C Q x H™. Based on Step 1, we have
T(e0,Us,) = 0. Moreover, Dy'T(eo,Us,) = Id — DyT (€0, Us,) = Id — g0 L' Dg(U,,)
is invertible since aoﬁgol is bounded and D§(Uy,) is sufficiently small. Therefore, by
the implicit function theorem, there exist an open neighborhood, included in Qx H™
of (Us,,c0) and a C' function U, satisfying T(e,U.) = 0 on this neighborhood.

6.2. Proof of Theorem 14. In this section, we will prove Theorem 14 in a
different way from the first two cases (analytic and highly differentiable cases). The
key problem is the properties of the composition operator § o u in the space H'(T%)
or space L3(T).

6.2.1. The properties of compositions.

PROPOSITION 23. For the composition operator defined by

(6.8) Cylul(0) = g(u(®)),

we have the following properties:
If we consider Cy acting on L?(T?, R™) and assume that § is globally Lipschitz
continuous on R™, then

Cy: L*(T4R"™) — L*(T4 R")

is Lipschitz continuous.
If we consider C; acting on HY(T4 R"™) and assume that g € C*THP  then

Cy: HY(TYR™) — H' (T, R")

s bounded and continuous. In particular, given € > 0, there erists a constant § =

5(e, Lip(§), 9(0)) > 0 so that ||jul| g1 < 8 implies ICs(w) || g < e.

Proof. Since § is globally Lipschitz continuous on R™, denote M = Lip(g) (for
ease of notation, we will use M in the following part) and for u,v € L?(T¢ R"), we
get

19(u(0)) = 9(v(0))| < Mu(0) — v(B)].

Therefore,

lgou—govli < Mlu— ol

We refer to [AZ90, KS00] for the properties of the operator C; mapping space
HY(T?4 R") to itself. a0

Remark 24. We emphasize that for our results in L? and H™ (m > %), it is
needed to assume that Lip(g) is globally arbitrary small. This allows us to obtain
that the operator 7¢ in (2.9) is a contraction in the whole space.

However, due to the lack of Lipschitz regularity for the operator C; acting on the
space H' (see [AZ90]), we need to choose a ball in H! so that the operator T; maps
this ball into itself. Note that the chosen ball does not need to be small. We also do

not require that the forcing be small in H'.
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6.2.2. Existence of the solutions. Now, we give the proof of Theorem 14.

First we give the proof for the result in space L?. By Parseval’s identity, we know
that the L2-norm is also expressible in terms of the Fourier coefficients. Together with
the bound of e£Z! in (5.20), we have that 7:(L?) C L?. Moreover, for u,v € L?, one
has

(6.9) [ Te(u) = Te(v)ll 2 = [[e£L2t (Gou—gov)|| . < CxM]lu— v 2.
It follows from Assumption 2 that M is small enough. Therefore, 7; is a contraction
in L?. The result in L? space follows immediately.

Now, we present the proof for the result in H'. Using the interpolation inequality
in Lemma 5, we obtain, for n > 1, 0 < s < 1, that

[T () = T2 (W)
n n 1-s n s
(6.10) < Coa |77 (w) = T (W) || o [| 727 () = T2 () ||
nil—s —s n n s
< Coa [(CAM)"] " I Te () = ull 12" | 727 (u) = T2 ()]0 +

where the second inequality comes from (6.9) inductively. Note that the inequality
(6.6) gives that [(C\M)"]}~* is decreasing exponentially.

The remaining task is to show that || 771 (u)—T*(u)|| 1 in (6.10) can be bounded

independently of the iteration step n. As a matter of fact, from Proposition 23, we
know that v € H' implies § o u € H'. Moreover, it is easy to check that

190 ullgr < Mjull .
Therefore, we get

ITe(@)ll g2 = (£ (f = Gow)|| n < CAlfllms + CaM]|ull 2.

We now choose a ball B,.(0) centered at the origin in H! such that B,.(0) is mapped
by 7. into itself. This can be achieved whenever we take r such that

1
(6.11) Cillflls < 57

since Cy M < 3 given in (6.6). Note that the radius r chosen by (6.11) depends on the
function f, which can be any function in H'. As a consequence, for every u € B,.(0)
and n € N, we obtain that 7*(u) € B,(0) and

T2+ () — T2 () || 1 < 27
Thus, (6.10) becomes
(6.12) T2 () — T2 ()| e < Cox [(CAM)"]' ™ (20)% || T2 (u) — ul|}°.

This indicates that the sequence T*(u) has a limit «* € H® and the fixed point
obtained by the contraction mapping in L? should be in H*. Note that (6.12) allows

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/25/21 to 143.215.38.32. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

3176 FENFEN WANG AND RAFAEL DE LA LLAVE

one to bound the distance in H® from an initial guess to the true solution. That is,

= gy = || i 72 0) ]|

oo

T () = T (w)]

n=0

Hs
o0

< Coa(2r)* 1T (u) — ull12° D [(CaM)")'*
n=0

< Coa(20)* [1= (M) ] ITew) = wllj*

Remark 25. As shown in [AZ90], the conditions for composition operators map-
ping H'*? to itself are very strict. There are many mapping results for the composi-
tion in H'*® N L, but it is not clear how the L> norm behaves under the Fourier
multipliers.

Therefore, using the methods of this paper, it seems that there is a gap between
the treatments possible for the forcing, either in H* (0 < s < 1) or in H™ (m > d/2).

7. Results for PDEs. An important observation is that, since the treatment of
(1.1) did not use any properties of the dynamics of equation, we can treat even ill-posed
PDEs. The ill-posed equation (1.2) is a showcase of the possibilities of our method
for the model (1.1). The heuristic principle is that we can think of evolutionary PDEs
as models similar to (1.1) in which the role of the phase space R™ is taken up by a
function space (of functions of the spatial variable ). Note that the nonlinearities
in PDE models can be not just compositions but more complicated operators (even
unbounded). For example, the nonlinearity (u?),, in (1.2) is an unbounded operator
from a function space to itself. However, the fixed point problem under consideration
in the Banach space we choose overcomes this tricky problem. (See section 7.3 for
more details.)

The solutions produced in this section point in the direction that ill-posed equa-
tions, even if they lack a general theory of the existence and uniqueness of solutions,
may admit many solutions that have a good physical interpretation.

For convenience, we rewrite (1.2) as

(7.1) Sy 4+ Uy — EPUsprr — EUge = E(U)ge +ef(wt,z), 2 €T, teR, B> 0,

with a periodic boundary condition.
We define the full Lebesgue measure set

VB

Note that we shall only work with values of S in O so that the eigenvalues of the
linear operator €60, 44: + €0z, in (7.1) are different from zero in a such way that the
linear operator N; defined in (7.5) is invertible. (See section 7.3 for the details.)

Remark 26. There are other models of friction besides the u; term in (7.1) that
one could consider. The treatment given in the present paper is a very general method
and could be applied to several friction models, such as ;..

We note also that our method for the ill-posed equation (7.1) with positive param-
eter 3 also applies to well-posed equation (7.1) with negative parameter 8. It is even

1
(7.2) 0= {B > 0: —=is not an integer} .
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easier for the well-posed case since the eigenvalues of the linear operator €30, 40 +€0z2
in (7.1) are not zero such that we can invert the operator N; defined in (7.5).

However, we just consider the ill-posed model (7.1) that serves as motivation for
the readers. This ill-posed case is what appears in water wave theory [Bou72].

7.1. Formulation of the fixed point problem. Similarly to section 2 for the
ODE model (2.1), we need to reduce the equation (7.1) to a fixed point problem. In
this section, we just present the formal manipulations omitting specification of spaces.
Indeed, the precise spaces defined in section 7.2 will be motivated by the desire to
justify the formal manipulations and that the operators considered are a contraction.

Our goal is to find response solutions of the form
(7.3) ue(t, ) = Us(wt, x),

where, for each fixed ¢, U. : T¢ x T — R. Inserting (7.3) into (7.1), we get the
following functional equation for U.:

e(w-09)° Us(0,2) + (w - 99) Us(0, 2) — efOU(0, z) — £02U.(0, )
=c(U2),, +ef(0,x).

The solution of (7.4) will be the centerpiece of our treatment.
Denote by N the linear operator

(7.5) NU(0,2) = e (- 99) + (w - Dp) — e8I — saﬂ U.(6, ).

(7.4)

Then, (7.4) can be rewritten as
(76) NU-(0,2) == (U2),,, +=1(60,).

As we will see in section 7.3, the operator N, is boundedly invertible in some appro-
priate space for € € (o, ) defined in (4.1). In this case, (7.6) becomes

(7.7) U(0,2) =N [(U2),, + f(0,2)] = T2 (U=(6, ),

where, for convenience, we introduce the operator 7;. In section 7.4 dealing with
the analytic case, we will show that there exists a solution U, analytic in € for (7.7)
by the contraction mapping argument. Moreover, in section 7.5 carrying out the
finitely differentiable case, we will combine the contraction mapping principle with
the classical implicit function theorem to get the regular results.

From the formal manipulation above, we find that the first key point is to study
the invertibility of the operator NV and give quantitative estimates on its inverse for ¢
in a complex domain. Note that the linear operator N; defined in (7.5) used to study
PDE model (7.1) is much more complicated than the linear operator L. defined in
(2.7) for ODE model (2.1) since N involves not only the angle variable § € T¢ but
also the space variable € T. This leads to different calculations for the inverse of
N..

The second crucial part is that the nonlinearity (U2),, may be unbounded from
one space to itself. However, it happens that e N 1(U2),, is bounded. (See Lem-
mas 29 and 30 for more details.)

To get a fixed point for (7.7), analogously to the smallness arguments in sec-
tion 2.4 for the ODE model (2.1), we also need to impose some smallness condi-
tions for the PDE model (7.1). However, we only consider a specially nonlinear map
U +— eN-1(U?),s, which is analytic, be a contraction in a domain that contains a
ball around e N1 f. It is nontrivial to choose a sufficiently small ball and the forcing
f is assumed to be small in this ball.
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7.2. Choice of spaces and the statement of our results. In this section,
we give the concrete spaces we work in. Again, we note that the main principle is that
the norms of the functions needed to be expressed in terms of the Fourier coeflicients
associated with the Fourier basis in arguments # and z. This permits us to estimate
the inverse of the linear operator N just by estimating its Fourier coefficients. We
also need these spaces to possess the Banach algebra properties and the properties
of composition operators so that the nonlinear terms can be controlled. From the
point of view of analyticity in €, it is necessary to define spaces consisting of analytic
functions with respect to e.

In a way analogous to the definition in section 3, for p > 0, m,d € Ny, we define
the space of analytic functions U in Tg“ with finite norm

HPm = (T

= {U : T C | U(f,2) = Z Uy el 0+i ),

kezd, jeL
~ 2 .
N2 = D0 [D| 0D (k2 4 152 + 1) < +oo}.
kezd, jeZ
It is obvious that the space (H”™, || - ||,,m) is a Banach space as well as a Hilbert

space.
We actually consider H5™, which is a subspace of H?™, consisting of functions
U e HP™ with

(7.8) A%wasza

In the physical applications, we also consider the closed subspace of H”™ in which
the functions take real values for real arguments.
Note that the choice of the normalization condition (7.8) is motivated by the

assumption that
27

f(0,2)dx = 0.
0
Here and after, we consider our fixed point problems in the space H5™. To simplicity
the notation, we still write H”"™ as H5™.

For p > 0, HP™ consists of functions which are analytic in the domain Tﬁ“.
For p = 0, H™ := H%™ is just the regular Sobolev space. In this case, we use the
abbreviation | - ||, :== | - [|o,m.-

Similarly to Lemma 6, when p >0, m > (d+ 1) or p =0, m >
the Banach algebra properties in the space H*™.

Now we are ready to state our main results on the existence of quasi-periodic
solutions for the PDE (7.1) in the cases of analyticity and finite differentiability.

d+1

4=, we still have

THEOREM 27. Consider the model (7.1) with the coefficient 5 working in the set
(7.2). Assume that f € HP™ (T with p > 0, m > (d+ 1).

If | fllpm ts small enough (depending on the coefficient B, the number theoretic
properties of w, and the nonlinearity of (7.1)), then, for e € Q defined in (4.1), there
exists a unique solution U, € HP™ (T4 for (7.4).

Furthermore, considering U as a function of €, we have that e — U, :  — HP™
is analytic when m > (d+ 3). In addition, when € € Q and it goes to 0 along €, the
solution U, tends to 0 and € — U. is continuous at € = 0.
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Our method also applies to finitely differentiable forcing, but we omit the details.

THEOREM 28. Consider (7.1) with the coefficient B working in the set (7.2). As-
sume that f € H™ (T4 with m > 9£L.

If || fllm is small enough, then, for e € Q defined in (4.2), there exists a unique
solution U, € H™(THL) for (7.4).

Furthermore, for any | € N, the map € — U, is C' (even real analytzc) considered
as a mapping from Q to H™. In addition, when ¢ goes to 0 along Q the solution U,
tends to 0 and the map € — U, is continuous at € = 0.

7.3. The boundedness of the operator 7. defined in (7.7) taking H*™
into itself. For the PDE model (7.1), the nonlinear map U ~ (U?),, (which in the
ODE case was a composition operator with g o U) is an unbounded operator from a
space to itself. We will show, however, that the map U — eN_1(U?),, is bounded
from a space to itself. To this end, we give the following lemmas and propositions.
Some of the results would generalize for a nonlinearity of the form U — (g(U))zx.
We will not pursue these specialized results in this paper, but we think it would be
an interesting subject.

LEMMA 29. Let U € HP”™. Denote
(7.9) h(U) = (U?) 4

Then, h is analytic from the space HP™ to the space HP™ 2. Moreover, for V &
HP™ we have that
IDRU)V | p.m—2 < 2[|U]|,,

Proof. We rewrite h = hy o ho with

, m—2
hy :HP™ — HPTTE
U U,

and

h2 CHP™ s HPT
U U2

It is obvious that both h; and hsy are analytic. Therefore, the composition operator
h : HP™ — HP™=2 is analytic. Moreover,

a4 _ 4 2 _
Dh(U)V = dgh(U+§V) " (U+¢ev)?) - 200V )z

This shows that
[DRU)V |[pm—2 < 2(UV][pm < 20Ul pmlIV ] pm

by the Banach algebra property in the space H”™. ]

Lemma 29 allows that the map U + (U?),, is bounded from the space H”™ to
HP™=2. To prove the boundedness of the operator 7. defined in (7.7), the remaining
task is to show that eN"! : HP™=2 — HP™ is bounded.

LEMMA 30. For a fired € € Q(o, 1), the operator eN! taking the space HP™ 2
into HP™ is bounded.
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Proof. We verify that ||eNt||2p.m-2_,2.m can be bounded by the supremum of
its multipliers, as we argued in the proof of Proposition 22.

Consider V(0,2) = cza ?k,jei(k'”j"'”) € H”™=2, in which j # 0 comes from
jez\{0}

the setting (7.8). Then, by the linear operator N. defined in (7.5), we have the
following Fourier expansion

1
—e(k-w)? +i(k-w) —e(Bj* - j?)

‘7k jei(k»9+j'a;) )

NIWV)(02) = )
oo

Note that we consider 3 in the full measure set given by (7.2), i.e., Bj* — j2 # 0 for

jeZ\{0}.
Recall that our goal is to obtain the bound of the operator from H”™~2 to H/™.
Since

2

1 2 1 5o
||N5 (V)Hp,m - kzg:d |—E(kw)2—|—1(kw) _E(/@j4—j2)|2 ‘Vk,]

FEZ\{0}
. e2e(kI+13D) (|k\2 + 4% + 1)’”
S (k] + 151 + 1)° Vi
|—e(k - w)2 +i(k-w) —e(Bjt — )P 7

‘ 2
kezd
JEZ\{0}

-2 URHID (k)2 4 151 + 1)”“2

EI2 4[24 1)2
< swp (1 |' || ) I
kezd  |—e(k - w)? +i(k-w) — (B85t — 52)|

JEZ\{0}

2
pym—2"

therefore, it suffices to estimate the supremum of N;l defined by

o k4241
N (k,j) = —e(k-w)2 +i(k-w) — (B4 — j2)
k‘2
1) —e(k - w)? +i(k.c;)2€(ﬁj4 —7*)
+ _5(](; . w)2 + l(k . (JJ) - 5(5.74 _.]2)
. 1

—e(k-w)? +i(k - w) —e(Bj* - j?)

for k € Z4, j € Z\ {0}. Tt is clear that (7.10) includes three parts, in which the main
difficulty is to estimate the second term. We now present the details for the second
term in the case of k # 0 (it is easy for & = 0). Equivalently, we just need to estimate
the infimum of

—ea® +ia — e(Bt? — t)
t

(7.11)  N.(a,t) = ,a=(k-w)eR\{0}, t =342 N,.

Taking € = s1 +is2 € Q(o, 1), we have

w1 ol =[S asn] + [ (S oa-sn) 2]

T
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which has an infimum controlled by ¢ by an argument similar to Proposition 15. We
will estimate (7.12) in the cases of > 1and 0 < 8 < 1.
When g8 > 1, i.e., 1 — 8t < 0, which shows that

2 2
IN.(a,1)]? > 52 [‘; —(1- 57:)] > (Bt — 1)%s2
> (8-1)%si > 5iCp
by t > 1. To simplify the notation, in what follows, the constant Cg denotes all

constants that depend on S. For example, the constants C %, CE ! etc., are replaced
by the same notation Cg.

We focus mainly on the case of 0 < 8 < 1. To analyze (7.12), we divide ¢ € Ny
into two regions.

Case 1. When t > [ ] + 1, we have that 1 — 5t < 0. Therefore

2 2
IN.(a, )2 > 52 [at —(1- 575)] > 52C.

Case 2. When 1 <t < [%], we get that t(1 — ft) € [C}, CF] with CF > Cf > 0.

It is clear that “72 -1 - [315 = 0 holds at a®> = t(1 — ft) € [C}, C3], namely,

a € [f,/ —/CrH U [,/C}, 5 Now, we divide the region in ¢ € R into two

parts as follows
I =[(=1-107%),/C%, (=14 107°),/CH U[(1 = 107%),/C}, (1 + 107%),/C3],
L =R\ 1.

The case of a € I yields that
a® 2
|N.(a,t)]* > s7 [t —(1- Bt)] > s705.

In the interval of a € I;, the term % — (1 — Bt) can be bounded so that we can bound
the second term in |N.(a,t)|?, that is,

IN.(a,t)|*> > {82 (a: _a —ﬁt)> - jr

- [0(52) - %r > s2C;

by the smallness of s1, s (due to |e| is sufficiently small). The above estimates for
|Nc(a,t)| give that
|Ne(a,t)] > s1C3.

Therefore,

(7.13) weitily, INe(a:t)] 2 5105 2 0Cp

by the domain of € € (o, ). Consequently, for Ngl(k,j) defined in (7.10), we obtain

(7.14) s [NUkg)[ £ sup
kezd, jeZ\{0} a€R, teNL

N;l(a,t)) <o 'Cs.
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It follows that

VT <o Cs|IV L pim—s-

pym

Since the norm in the space H”™ can be characterized by the Fourier coefficients, we
define

IV

1||Hp,7n—24)7{p,m, = Sup ‘N;l(k,j)‘ '

kezd, jeZ\{0}

This allows us to conclude that

(7.15) |eNT <o-07'Cs < Cp. 0

1
o2 340m <
As a matter of fact, Lemmas 29 and 30 give that the operator 7. defined in (7.7)

is analytic from the space H”™ to itself.

Remark 31. Note that the previous Lemma 30 includes the case of ¢ € R, which
will be used later in the finitely differentiable case (see Lemma 33).

Note also that for (7.1), the nonlinearity will always be regular. Therefore, we
just consider the finitely differentiable version with m > %. The analogue of the
low regularity results for the ODE case would be easier to consider.

7.4. Proof of Theorem 27. In this section, we give the proof of Theorem 27.

7.4.1. Regularity in e. Since we want to obtain solutions depending analyti-
cally on ¢, proceeding as in section 5.2, we consider T defined in (7.7) as a function of
e, namely, the operator 7 : € — 7. acting on the space H”"™ consisting of analytic
functions of €, taking values in H”™ with e ranging over the domain Q(o, ). We
endow H”™ with supremum norm

||U||p7m,Q: sSup ”UEHP,mv

e€Q(o,u)

which makes H”™ a Banach space. Moreover, it is also a Banach algebra when
m > (d+ 1). Based on Lemma 30, we show that the operator 7 maps the space
HP ™ into itself. The idea of the proof is similar to Lemma 18, but the details are
different since the PDE model (7.1) involves a space variable x.

PROPOSITION 32. If m > (d + 3), then the operator T defined in (7.7) maps
the analytic Banach space HP™ into itself. Precisely, if the mapping € — U, :
Q — HP™ is complex differentiable, then, € — T-(U:) : Q@ — HP™ is also complex
differentiable.

Proof. From the fixed point equation (7.7), we know that 7 is composed of e N1
and h defined in Lemma 29. Lemma 29 gives that h(H*™?) C HP™= 22 Hence,
it suffices to verify that eN1(HP™=22) € HP™SL In the following step, we use a
similar method as that used in the proof of Proposition 18.

For a fixed € € , we expand V. € H”™ 2 as

Ve(0,x) = Z ‘7k,j75€i(k'9+j'm)
kezd, jeZ\{0}
with
v — ] . _m—2
(7.16) ’Vk,j,a < Vel PURIHID (12 4 |52 + 1)~ 22,
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and
d d ) m_2

717 Bl VAR I | il 7 —p(lklI+17D (| k|2 1241
R A P R C R
It follows from (7.5) that

eNTH V)0, 2) = Y NSk w, )V e BT,

kezd, jeZ\{0}

where )

N (k-w, j) = = NZL

—e(k-w)? +ilk-w) — (B -2 T F
By (7.14), one has

(N

d
e—N_!

+d5

<IN Vese

d ~
%Vk,j,e

‘Vk,j,a

).

+ [eNZY

S CB . 0'_1 (‘Vk,j75 dg

d ~
+ ‘Vk,j,a

Together with (7.16) and (7.17), we get

d ~ . .
Hd (sN‘;lvk,jg) el(k-0+j'm)
13

pym—7

)|

—V. ) e—#(l’fH-Ijl)(|],€|2_i_|j|2_|_1)—mTf2

pym—2

. d ~ . A
<Cp-o! (‘V’w#s @Vk,m glk-0+i-2)

"

p,m—1

<Cg-o! <||Vs||p,m2 +

. PRI+ (|k\2 +151% + 1)
T2

—V. ) (IEP+ 1P +1) =

pym—2

<Cg-ot (IIVellp,mz +

By choosing d + 3 < 7 < m, we obtain that

(Ve Ve W (/LR Ve

kezd, jeZ\{0} kezd+1

< i(lﬁQ +1)77 Y1
k=0

[k|=k

< 9d+1 Z(“Q + 1)—Tg2,€d
k=0

o
<IN (W24 1) TR < oo,
k=0
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Therefore, by the Weierstrass M-test, we conclude that the series

d ~ ) ,
Z e <€N;1Vk,j7a) el(k-0+7-)
kezd, jeZ\{0}

converges uniformly on € €  in the space H”™~7. Therefore, the map ¢ —
eNZY (VL) + Q — HP™ is complex differentiable with derivatives in H”™~7 by
HP™ C HP™TT and Lemma 36 in the appendix. ]

7.4.2. Proof of Theorem 27. We now start to deal with the fixed point equa-
tion

(7.18) U0, 2) = N7 [e(U?)aw +cf(0,2)] = T(U)(0,2)

in the space H”™. We will find a fixed point of 7 by considering a ball B,(0) C
HP ™S such that T (B(0)) C By(0)and 7 is a contraction in this ball.

By (7.15) and Lemma 29, for any Uy, Us € B.(0), we have, assuming that r is
small satisfying Cg - r < %,

IT(@) = TW2llpms = |eN 0(U) = N BT, 0
= sup ’|ENE_1h(U1) - ENa_lh(UQ)Hp m
e€eN 7
< C,g . I‘HU1 - U2||p,m,Q

1
< 510 = Uallpmo

This shows that 7 is a contraction in the ball B.(0).

Now we try to identify the conditions that the ball B,.(0) with r chosen as above
gets mapped into itself.

If r satisfies the conditions that make 7 a contraction in B,(0), we have that, for
U € B,.(0),

IT@)pm.0 < ITO)lpm.0 + 1TW) =TO)pm.e

1
lpym + ST

< CsllFlpam + 5

Therefore, under the assumption that || |, is small enough such that Ca||f|l,.m <
ir, we obtain that 7(B(0)) C B(0).

In conclusion, there is a unique fixed point U in the space H”™ for (7.7).
Namely, we obtain a solution U, analytic in € for (7.4). For e — 0 along the set Q,
we conclude that the mapping € — U, is continuous at € = 0. This can be proved in
a similar way to that used to Lemma 21.

7.5. Proof of Theorem 28. In this section, we consider 7 defined in (7.18)
acting on space 1™ consisting of differentiable functions of € taking values in H™

with € ranging over the domain (o, z1) defined in (4.2). We endow H™ with the
supremum norm

(7.19) U= sup [Uellm-
e€(o,p)

We only have the result that the space H™ is a Banach space and it is also a Banach
algebra when m > % but not the space H™* with the supremum norm with respect
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to € defined in (7.19). Consequently, the contraction mapping principle is not enough
to get the solution U, with optimal regularity in €. We will combine this with the
implicit function theorem to obtain the regular solutions.

In order to use the implicit function theorem, analogously to section 6.1.1, the
main issue is to study the differentiability of the operator T in (7.18) considered as
an operator from Q x H™ to H™ as well as the invertibility of Dy T (¢,U).

We first present the result with respect to the argument U. Since Lemmas 29
and 30 also hold in the finitely differentiable setting, we have the following result when
we work in the space H™.

LEMMA 33. For a fized € € (NZ(U, 1), the operator T defined in (7.7) is analytic
from the space H™ to itself.

Now, we give the following proposition with the result that the operator 7 in
(7.18) is differentiable in the argument . Note that 7 is composed by eN_ 1 and
h defined in (7.9). Since h(H™) C H™ 2, we need to verify that the derivatives of
eN_! with respect to ¢ is bounded from the space H™~2 to the space H™. Similarly
to Proposition 22, we have the following.

ProproOSITION 34. Fiz any m € N with m > % and o > 0. We consider the
map that to every e € Q, eN7t € B(H™ 2, H™). Moreover, for anyl € N and € € Q,
the map € — eN_t is C! considered as a mapping from Q to B(H™ 2, H™). Namely,
A (N1 € B(H™ 2, H™).

As a matter of fact, something stronger is true. The mapping € — eN_1 is real
analytic for e € Q and the radius of analyticity can be bounded uniformly for all e € Q.

Proof. The idea of the proof is similar to Proposition 22. For N(a,t) defined in
(7.11), we have |N.(a,t)| > 0Cs by (7.13) in Lemma 30; we now expand N(;lé(a, t)
in powers of § as

N_s(a,t)

-1

(L2 . _

By the estimates in Lemma 30, we observe that the factor [f(—lﬁt)]
N —e[2 —(1-Bt)]+i%

bounded uniformly in a € R, ¢t € Ny, and € € Q.

(22 —(1-pD)]
—e[22 —(1-pt)]+i2
the geometric series formula and the radii of convergence are bounded uniformly and
the values of the function are also bounded in a ball which is uniform ina € R,t € Z,
and ¢ € Q. That means N ! is uniformly analytic in ¢ for each a € R,t € Z,, namely,
N_! given by (7.10) is analytic in e.

To study the operator N as a mapping from the space H™ 2 to the space H™,
we need to consider its multiplier in the Fourier space. Precisely, for fi ; being the

Therefore, we can expand (1—¢ )~ in (7.20) in powers of § using

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/25/21 to 143.215.38.32. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

3186 FENFEN WANG AND RAFAEL DE LA LLAVE

—

Fourier coefficients of function f in the space H~2, the Fourier coefficients (Nz ' f) k.
of function (N1 f) in the space H™ have the structure:

(/\Z_l\f)k,j = (N;1>k7j J?lw'

with (N2 ; = NZ1(k, j) given in (7.10). Hence, we get that N! is analytic in e.
Moreover, due to the fact that the norm in the space H™ is characterized by the

Fourier coefficients, we can bound

7.21 N Yoo =8 Hﬁ—l kH
(7.21) [N g cnP “H(k, )

due to the uniform boundedness of ﬁ;l(k,j) in k € 24, j € Z\ {0} by (7.14).
Therefore, when we write Ny = 57> ((N1),,6", each [[(NZ 1) ||l3gm-2_3¢m can be

bounded in the sense of (7.21). That means dd—ell(sf\/gl) € B(H™ 2, H™) for every
e O

Now, we start to prove Theorem 28 by constructing a fixed point U, for e € Q
first and then using the implicit function theorem to obtain the optimal regularity of
U. in €. It is similar to the proof in section 6.1.2. We omit some details here.

Proof. First, when we choose a small ball B.(0) C H"™, a similar process to
section 7.4.2 allows us to obtain a fixed point U,, € H™ for some ¢y € Q by the
contraction argument in this ball.

Then, according to Lemma 33 and Proposition 34, we obtain that the operator
T, defined in (7.18), acting on Q x H™ is C! in arguments ¢ and U, respectively.
Namely, T(s,U) = U — T (e,U) is C' in Q x H™. Based on the first step, we have
T(eg,Ues,) = 0. Moreover, Dy'T(gg,Us,) = Id— Dy T (€0, Ue,) = Id—EoNE_Oth(Uao)
is invertible since egN ;' Dh(U,,) is sufficiently small in a small domain of the origin
in H™. Therefore, by the implicit function theorem, there exist an open neighborhood
included in  x H™ of (g, U.,) and a C! function U. satisfying T(e,U.) = 0 on this
neighborhood. ]

Appendix A. Some properties in analytic and finitely differentiable
Banach spaces.

A.1. Analytic functions in Banach space.

DEFINITION 35. Let X, Y be complex Banach spaces and O C X is open. We
say that f: O —'Y is analytic if it is differentiable at all points of O and there exists
a function v = v, (||z||) with M — 0 as ||z|| = 0, such that

ll=]

1f(x+2) = f(z) = Df(x) - 2| < (ll=])
forallz € O and z € X such that (x + z) € O.

Note that Definition 35 is a rather weak version of differentiability, but it is enough
for this paper. For more analyticity of nonlinear functions in Banach spaces, we refer
to [HP74, Muj86].

The main result of this appendix is the theory of complex analytic functions in
Banach space, bootstrapping the meaning of derivatives of analytic functions. The
result could be deduced from stronger results in [HP74, RS80], but we thought it
would be useful to present a self-contained proof since this lemma could be useful in
other applications.
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LEMMA 36. Let U C C be open and X, Y be complex Banach spaces, X C'Y with
continuous embedding. Let f : U — X, which is differentiable in'Y for allxz € U, and

. f($+h) _f(x) / _
(A1) iILlLI}J S f(z) T 0.
Then, f'(x) € X and

. f($+h) _f(x) / _
(A.2) %1_>mo — - f(x) M 0.

We start by proving the Cauchy—Goursat theorem for functions satisfying (A.1).
The proof is rather straightforward. This will lead to a Cauchy formula, from which
we can deduce (A.2).

PROPOSITION 37. Let g : U — X C Y, be differentiable everywhere in the sense
of Y differentiable. Let v be a triangle contour contained in U. Then

[{g(z)dz =0.

Of course, by the usual approximation procedures, one can get the result for more
general paths. This will not be needed for our purposes. Note that, by the fact that
g is continuous as a function from U to Y, we know that the integrals over paths
involved can be understood as Riemann integrals.

Proof. Suppose 7 is a triangular contour with positive orientation, we construct
four positively oriented contours that are triangles obtained by joining the midpoints
of the sides of . Then, we have

[y EIEEDY / ()

Let 71 be selected such that

If fﬁ/g(z)dz =b#0, we get

1
> —1b|.
> 1o

/71 g(z)dz

Proceeding by induction, we get a sequence of triangular contours {~, }, whose length
equals 27"|y|, where |y| denotes the length of v, such that

/% g(z)dz

Interior of ypy41 C Interiorof v,

1
. > — b
(A.3) 2 bl

By the choice of ~,,, we have

and the length of the sides of ~,, goes to 0 as n — co. Therefore there exists a unique
point 29 € ), Interiorof v, € U.
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Since g is differentiable at zg, there is a function R such that

9(2) = g(20) + ¢'(20)(z — 20) + R(z, 20),
where
[R(z, z0)|ly < |z — 2olw(|z — 20l)

with w(|z — z0]) — 0 when |z — 29| — 0. Integrating g along ,, we find that

/% g(z)dz = / 9(z0)dz +/ g (20)(z — 20)dz + | R(z,20)dz

n n Tn

— [g(20) — ¢'(20) 0] / 1z + ¢'(20) / adot / Rz 20)d>

Tn n Tn

- / R(2, 2)d=.

n

Therefore,
|[ st < bl s I ol
Tn Y ZE€Yn
A gl (bl
(A4) <l 22w (2
2 (ol

< 1imi

=2\ 2
by |2 — 20| < 3|7n| for z € ,,. Comparing (A.3) and (A.4), we get b = 0. ad

As a corollary, we obtain the same conclusion, but assuming only that g is differ-
entiable at all points inside of the triangle except for the center of the small triangles.

Now we begin to prove Lemma 36. As is standard, for the function f in Lemma 36,
fixing € belonging to the interior of 7, we define

OSSO,

Z—€

f'(z), z=¢,

which satisfies the hypothesis of Proposition 37 or its corollary. If «y is triangle centered

at €, then
_ _ (&, 1
O/vge(z)dz/vz_edz f(e)Lz—edz'

Hence we satisfy the formula
1
fle) = —/ f(z) dz.
gl

2mi zZ—€

Now, we can compute the derivative with respect to € in space X and obtain

oy f(z)
f(e) = Qm/y (z—e)zdz'

Of course, since the derivative is obtained as limits of quotients, if the limit exists in
X, it has to agree with the limit in Y.
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A.2. Finitely differentiable functions in Banach space. For arbitrary Ba-
nach spaces Xi,...,X;,Y,i > 1, we denote by A(X®"Y) the space of symmetric
continuous i-linear forms on X® := X; x --- x X, taking values in Y. Now we
present the converse to Taylor’s theorem (see page 6 in the book [AR67]).

DEFINITION 38. Let O C X be a conver setand F: O =Y, f; : O — A(X®VY),
1=0,...,7. For any x € O and h € X such that (x + h) € O, we define R(x,h) by

,
filx)(h,..., h)
F(z+h)=F(x)+> S+ Rl h).
i=1
If for any 0 < i <r, f; is continuous and for any x € O, % — 0 as ||h]|% — 0,
X

then we say F is of class C™ on O and D'F = f; for any 0 <i <r.

DEFINITION 39. We denote by C"(0,Y) the space of functions f : O — Y with
continuous derivatives up to order r. We endow CT(0,Y) with the norm of the
supremum of all the derivatives. Namely,

(A.5) [ fller = max sup |[D*f](x)|xe: v
0<i<r €0
with
|'|X®"',YE sup ||A($17"'axi)|‘y'
lz1llxy =1,.. |zl x; =1

As is well known, the norm (A.5) makes C™(0O,Y) a Banach space.

DEFINITION 40. We denote by C"™UP(O,Y) the space of functions in C™(O,Y)
whose rth derivative is Lipschitz. The Lipschitz constant is

D" - DT r
Lipo,yDer sup | f(ffl) f($2)|X® ,Y_

x1, 22€X ||I1 71’2“)(
z1FTg

We note that since O may not be compact, this definition is different from the
Whitney definition in which the topology is given by seminorms of the supremum in
compact sets. We will not use the Whitney definition of C" in this paper.

DEFINITION 41. An open set O is called a compensated domain if there is a con-
stant C such that given x,y € O there is a C' path v contained in O joining x,y
satisfying |y < Cllz — yl|.

For O a compensated domain, we have the mean value theorem

1f(@) = fW)lly < Cllflcrovllz =yl x-

In particular, C! functions in a compensated domain are Lipschitz. It is not difficult
to construct noncompensated domains with C' functions which are not Lipschitz.
Of course a convex set is compensated and the compensation constant is 1. In our
paper, we will just be considering domains which are balls or full spaces. See [dILO99]
for the effects of the compensation constants in many problems of the function theory.

A.3. The standard Sobolev space. As a matter of fact, we define

H™(T?%) := H™(T% R") := {U = (Uy,...,U,)|U; € H"(T*,R), i = 1,...,n}
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equipped with the norm

(A.6) 1O llzrm = >~ Uil

0<i<n

and
H™(T? R) = {U € L*(T%R) : DI*U € L*(T4,R), 0 < |a| < m},

where we use multi-index notation o = (ay,...,aq) € N, |a| = Z?:l a;, and x =
(z1,...,2q) € TY, D* := D = D2} --- D2, We define

Ul mpemy =Y, DUl

0< || <m

U2 = (/W |U(9)2d9>; .

Indeed, by Fourier transformation, the norm defined in (A.6) is equivalent to the
norm defined by Definition 3 based on the Fourier coefficients. We refer to the books
[AF03, Tay97] for more details.
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