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ABSTRACT

Zahn’s widely used model for turbulent mixing induced by rotational shear has recently been validated (with some caveats) in
non-rotating shear flows. It is not clear, however, whether his model remains valid in the presence of rotation, even though this
was its original purpose. Furthermore, new instabilities arise in rotating fluids, such as the Goldreich—Schubert-Fricke (GSF)
instability. Which instability dominates when more than one can be excited, and how they influence each other, were open
questions that this paper answers. To do so, we use direct numerical simulations of diffusive stratified shear flows in a rotating
triply periodic Cartesian domain located at the equator of a star. We find that either the GSF instability or the shear instability
tends to take over the other in controlling the system, suggesting that stellar evolution models only need to have a mixing
prescription for each individual instability, together with a criterion to determine which one dominates. However, we also find
that it is not always easy to predict which instability ‘wins’ for given input parameters, because the diffusive shear instability is
subcritical, and only takes place if there is a finite-amplitude turbulence ‘primer’ to seed it. Interestingly, we find that the GSF
instability can in some cases play the role of this primer, thereby providing a pathway to excite the subcritical shear instability.
This can also drive relaxation oscillations, which may be observable. We conclude by proposing a new model for mixing in the

equatorial regions of stellar radiative zones due to differential rotation.
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1 INTRODUCTION

The theory of stellar evolution models the life of stars from their
birth to their death, and is generally successful in reproducing
most salient aspects of the Hertzsprung—Russel (HR) diagram.
Discrepancies between model and observations, however, usually
emerge when probing more specific aspects of stellar evolution using
photospheric chemical abundances (see e.g. Pinsonneault 1997) or
asteroseismology (see e.g. Aerts 2021), and are often resolved by
invoking some amount of extra mixing in the star’s radiative zone.
There are many possible sources of extra mixing in stars, as discussed
for instance by Zahn (1974). Of particular interest in recent years are
the diffusive (alternatively called secular) shear instability (Zahn
1974, 1992; Prat & Ligniéres 2013, 2014; Garaud, Gallet & Bischoff
2015; Garaud & Kulenthirarajah 2016; Prat et al. 2016; Garaud,
Gagnier & Verhoeven 2017; Gagnier & Garaud 2018), and the
Goldreich—Schubert—Fricke (GSF) instability (Goldreich & Schubert
1967; Fricke 1968; Knobloch 1982; Knobloch & Spruit 1982;
Korycansky 1991; Rashid, Jones & Tobias 2008; Barker, Jones &
Tobias 2019, 2020), that can extract energy from the differential
rotation of the star to drive turbulence, and therefore transport of
chemical species and angular momentum. In what follows, we begin
by briefly reviewing what is known about both types of instabilities
and their transport properties, and then discuss what outstanding
issues remain to be studied. We ignore magnetic fields, for simplicity,
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but acknowledge that they would in practice form an important part
of the complete story. Again for simplicity, we consider only the
equatorial region of a star, noting that the non-equatorial case is
substantially more complicated (Knobloch & Spruit 1982; Barker
et al. 2020). Near the equator, by symmetry, the angular velocity €2
is a function of the radius r only, so that we can assume that Q2 =
Q(r).

1.1 Shear instabilities

Ithas long been known (Richardson 1920; Howard 1961; Miles 1961)
that non-diffusive (adiabatic) shear instabilities only grow when the
local Richardson number J drops below a constant of order unity
somewhere in the flow, where
N2

J= oE ()
N is the Brunt—Viisild frequency and S is the local shear (which
would be equal to § = Sq = rdQ2/dr for rotational shear). The
criterion has a simple energetic interpretation: for instability to occur,
the kinetic energy extracted by the perturbations from the mean flow,
which is proportional to 2, must exceed the potential energy lost in
mixing the stratified fluid, which is proportional to N?. In practice,
however, this criterion is rarely satisfied (see Garaud 2021, for a
simple explanation), except very close to the edge of a convective
region where N — 0. As such, standard adiabatic shear instabilities
are almost never excited in radiation zones.
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Crucially, Townsend (1958) noted that the Richardson criterion
is relaxed by non-adiabatic effects, because the stabilizing role
of thermal stratification is reduced by the fluid parcel exchanging
heat with its surroundings. Adapting Townsend’s results, Zahn
(1974) proposed a modified criterion for diffusive shear instabilities
applicable to optically thick stellar interiors. This criterion states that
shear-induced turbulence can be sustained provided

JPr < (JPr)., (2)

where (JPr), is a constant he argues must be of the order of 1073,
and Pr = v/kt is the Prandtl number, defined as the ratio of the
kinematic viscosity v and the thermal diffusivity «r. Noting that
Pr ~ 107-107° in typical stellar interiors (Garaud 2021), Zahn’s
criterion suggests that flows with J ~ 102-10° would be unstable,
which is within the range of expected Richardson numbers in stars
(although some have much larger Richardson numbers still). Zahn
(1992) later derived a turbulent mixing coefficient resulting from
these diffusive stratified shear instabilities, which can in principle be
used to model both chemical transport (Dy) Or momentum transport
(Vlurb):

Dy > vy = CKlv (3)

J

where C is a constant of order unity.

The two components of Zahn’s turbulent mixing prescription,
namely equations (2) and (3), have been tested against direct
numerical simulations (DNS), and found to be valid, in certain limits,
for non-rotating diffusive shear flows (see in particular Prat et al.
2016; Garaud et al. 2017). Both studies found that Zahn’s stability
criterion applies with (JPr). ~ 0.007. They also found that (3) is
correct for diffusive shear flows, but only as long as the turbulence is
local, and JPr < (JPr).. A modified version of the mixing prescription
that takes both issues into account was recently proposed by Garaud
et al. (2017), and is discussed in more detail in Section 6.2. Testing
the validity of Zahn’s model for rotating shear flows, which was
its intended purpose (and the way it is commonly used in stellar
evolution codes) is one of the goals of this paper.

Finally, note that a key aspect of diffusive shear instabilities is
that they are not linearly excited when J >> 1, but instead, emerge
through non-linear (subcritical) instabilities (see e.g. Garaud et al.
2015; Garaud & Kulenthirarajah 2016). As such, they are subject
to hysteresis (see Gagnier & Garaud 2018), and are only excited in
this subcritical regime provided a minimum amount of turbulence is
already present in the system to ‘prime’ the instability. This, to our
knowledge, is not accounted for in any stellar evolution code.

1.2 Adding rotation: the GSF instability

Although Zahn himself suggested that the results he derived for
non-rotating shear flows might be directly applied to flows with
rotational shear (Zahn 1992), it is not obvious as there are several
complications caused by rotation. First, it can influence the dynamics
of the shear instability itself, by constraining the turbulence to
be progressively more invariant along the rotation axis as the
rotation rate increases (Gallet 2015). Secondly, it is known to drive
centrifugal instabilities, which ultimately extract energy from the
angular momentum gradient rather than from the shear, and are
therefore distinct from shear instabilities (Rayleigh 1917; Solberg
1936; Hgiland & Bjerknes 1939; Hgiland 1941). In the absence of
viscosity and thermal diffusion, and in the equatorial region of a star
(which we are concerned with in this paper), the so-called Solberg—
Hgiland criterion for centrifugal instability in differentially rotating,

Modelling coexisting instabilities ~ 4915
stratified shear flows, reads
1d
55, + N =200+ Sa) + N* <0 &
r r

in the notation introduced above. In the absence of stratification
(N? = 0), this criterion recovers the well-known Rayleigh instability
criterion for centrifugal instabilities (Rayleigh 1917), which states
that angular momentum must decrease outward for instability to
occur. As such, the instability can only be excited when Sg is
sufficiently negative. In a radiative zone (N> > 0), the thermal
stratification acts to stabilize the flow as expected. In most stars, this
would be sufficient to suppress centrifugal instabilities altogether,
were it not — as in the case of shear instabilities — for non-adiabatic
effects.

Indeed, Goldreich & Schubert (1967) and Fricke (1968) demon-
strated that taking into account the effects of thermal diffusion greatly
relaxes the instability criterion, which now reads

1'd 4 Vo2 2
— 20t + LN = 20029 + So) + PrN? < 0, 5)
r3or KT

in the equatorial region of a star. Since Pr « 1, this criterion is much
more easily satisfied than (4). The instabilities that arise in that case
are now known as GSF instabilities.

Goldreich & Schubert (1967) immediately noticed the strong
similarity between the GSF instability and the double-diffusive
fingering instability (see also Barker et al. 2019, for a detailed
comparison of the two). Indeed, the fingering instability exists
in fluids that have a stable thermal stratification and an unstable
compositional stratification. On sufficiently small scales, thermal
diffusion reduces the stabilizing role of the temperature gradient,
enabling perturbations to draw energy from the unstable composition
gradient. Similarly in the case of the GSF instability, thermal
diffusion enables small-scale perturbations to extract energy from
the unstable angular momentum gradient. In both cases, a sensible
scale for the instability is

where we note that the fastest-growing modes can take a larger
or smaller value than d depending on the parameters (see e.g. the
appendix of Barker et al. 2020). The unstable region of parameter
space can be written as

ku
l<Ry=—, N

KT
where «y is the diffusivity associated with the unstable field (i.e.
the compositional diffusivity in the fingering case, and the kinematic
viscosity in the GSF case), and R is a non-dimensional ratio of the
square of time-scales associated with the stabilizing and destabilizing
stratifying components, respectively:

2

Ry = ——5 in the fingering case, (8)
N¢
N2
Ry = ————— in the GSF s 9
0 2909+ So) in the case )

where N is the square of the buoyancy frequency associated with the
composition gradient (which is negative when the latter is unstably
stratified), and 22(2€2 + Sq) is the square of the epicyclic frequency
associated with the angular momentum gradient (which is again
negative when the latter is unstably stratified). In fact, the similarity
between the two systems is so strong that they are exactly analogous
in two dimensions, under an appropriate change of variables (see a
nice exposition of this analogy by Barker et al. 2019). As a result,
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many of the results recently obtained in the fingering context (see
the reviews by Garaud 2018, 2020a) apply in the GSF case. Notably,
it is possible to derive approximate analytical expressions for the
growth rate of the GSF instability at low Prandtl number (following
the work of Brown, Garaud & Stellmach 2013), and to construct a
model for turbulent momentum transport that fits the data from DNS

remarkably well for a wide range of parameters (Barker et al. 2019).
This model can be written as

C% Sq +2Q )2

SQ A+ sz k2 ’
when (7) is satisfied, where A and k are the growth rate and
wavenumber of the fastest-growing GSF modes, respectively, and
Cp is a universal constant that is fitted to the data (see more on this in

Section 6.4). The constant Cp is related to the constant A in Barker
etal. (2019), see their equation (31), as C3 = A?/2.

(10)

Viurb =

1.3 Coexistence of shear and GSF instabilities

From the respective criteria for diffusive shear instabilities and GSF
instabilities, we see that an interesting situation can arise when
Sq < 0, in which both instabilities are excited at the same time.
In stellar evolution codes such as MESA (Paxton et al. 2011), this
situation is usually dealt with by computing a mixing coefficient for
each instability, and adding them together to obtain a ‘total’ mixing
coefficient. However, this general practice is considered heretical by
most fluid dynamicists, as there is a wealth of evidence showing that
doing this often gives nonsensical results. For example, adding shear
to convection or fingering convection can reduce mixing considerably
(Garaud, Kumar & Sridhar 2019; Blass et al. 2021) instead of
increasing it. There are also well-known cases in which two processes
that would normally be stable, when taken individually, become
unstable when they interact (Hughes & Weiss 1995; Radko 2016).

Based on these examples, one may naturally ask the question
of what really happens when shear instabilities coexist with GSF
instabilities. Of course, one may argue that by contrast with the
examples cited above, the presence of shear is accounted for in
the GSF instability criterion. However, the latter is a local model,
which ignores the possibility of global shearing modes. In addition,
it also ignores the contribution of the subcritical branch of diffusive
shear instabilities. Conversely, the shear instability model ignores
rotation entirely, but the latter could affect both the instability
criterion, and the mixing model. As such it is important to revisit the
problem of diffusive instabilities in rotating, stratified shear flows,
and see whether the existing mixing models described above apply
or not.

We begin by presenting the model set-up used in this paper
in Section 2. In Section 3, we perform a linear stability analysis
of the model system, and demonstrate the existence of coexisting
instabilities in Section 4. In Section 5, we present some qualitative
results of the numerical investigation, while Section 6 studies them
more quantitatively by comparing the measured mixing coefficients
with the models of Garaud et al. (2017) and Barker et al. (2019).
This section will also reveal some of the more unusual aspects of the
interaction between shear and GSF instabilities. Finally, Section 7
summarizes our results, and discusses their implications for stellar
evolution models.

2 MODEL SET-UP

We consider a Cartesian domain located at the equator of a star,
rotating with a constant angular velocity £ = Qpé,. The unit vectors
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Figure 1. Model geometry. An imposed sinusoidal body force F drives an
equatorial mean flow in the azimuthal direction, which varies with z but is
invariant in y.

(e, ey, e) are chosen such that &, points in the direction of £, é.
points in the direction of —g (where g is gravity), and &, is in the
azimuthal direction and is chosen so that the system right-handed
(see Fig. 1).

The domain is assumed to be located in a radiative zone, which is
therefore stably stratified in terms of the potential temperature. We
ignore for simplicity the possibility of a compositional stratification.
Assuming that the domain size is smaller than any of the local
scale heights, we use the Boussinesq approximation (Spiegel &
Veronis 1960). Consistent with this approximation, we use a linear
background thermal stratification in the z direction as Ty(z) = T, +
zTy,, where T,, and T, are constant. Perturbations to this background
are assumed to be periodic in all three directions. Finally, we assume
the presence of a body force of the form F = Fjsin(k,z)é,, of
amplitude Fy and wavenumber k;, which drives an azimuthal flow
(see Fig. 1).

The following dimensional equations govern the dynamics of the
model described above:

d
Pm (a—lt‘—f—u-Vu—f—ZSZXu) =-Vp+pg+ pmvViu

+ Fy sin(ksz)é.,

oT dTq )
—4u-VT +w | Ty, — =xrV°T,

ot dz

V-u=0,

L— (1)
Pm

where p, p, and T are the density, pressure, and temperature
perturbations away from hydrostatic equilibrium, p,, is the mean
density of the region considered, and u = (u, v, w) is the velocity field.
We assume the kinematic viscosity v, thermal diffusivity « T, the local
gravity g, and the thermal expansion coefficient @ = —p'(3p/9T)
to be constant. The adiabatic temperature gradient is d7,4/dz = —g/cy,
where ¢, is the specific heat at constant pressure.
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Because of the imposed sinusoidal forcing, the system has a
laminar steady-state solution given by

Fo . .
u, = sin(ksz)e,. (12)

VK2

We can non-dimensionalize the governing equations using the
amplitude of the laminar solution U, = Fy/ (pmka) as a velocity
scale and the spatial scale of the laminar solution k' as alength-scale
[and thus define ¢, = (k,U;)~" as a time-scale]. The corresponding
non-dimensional equations are

Da . A I, W, i, | B
— = —Vp+RiTe, + R—eV ua— —e,+ —e,+ —sinze,,

Dr Ro Ro Re
£+a.vf+w—iv2f

of Pe ’

V-a=0, (13)

where hats denote non-dimensional variables (and the gradient
operators are now implicitly non-dimensional), with the following
dimensionless parameters:

U F, N? To. p2 v2k>
Re=t=—0  Ri=_r = 80ImVl%

kv ppnv2k} Urk? Fy

U F kU F,
Pe= -+t — "% _pPRe, Ro=_-t—=__"0

kst pmkTVE] 290 280 pmVks

(14)

The Reynolds number Re quantifies the ratio of the laminar flow
shearing rate to the viscous diffusion rate across a length-scale k.
The Richardson number Ri is the square of the ratio of the buoyancy
frequency to the laminar flow shearing rate, which is used as a proxy
for quantifying the potential energy lost in mixing the stratification
to the kinetic energy gained from the shear. The Péclet number
Pe is the ratio of the laminar flow shearing rate to the thermal
diffusion rate. Finally, the Rossby number Ro is the ratio of the
laminar flow shearing rate to the rotation rate, which measures the
relative importance of the inertial terms and the Coriolis force.

3 LINEAR STABILITY ANALYSIS

3.1 Linearized equations

In this section, we look at the stability of the laminar steady-state
solution. We consider 3D infinitesimal perturbations (denoted by the
primes) such that & = @, + @', where ii; () = sin 2. When expanded
in component form, the linearization of the system of equations (13)
results in :

o day o' ap 1, W

- i == v
of FERRPT: 2t TRe' " " Ro
90’ o0 ap 1 _,
= i = - —V A/,

a7 Thas 25 " Re' "’
P L ) (VI SR |
— + i =— i — VD + —,
af Loz a2 Re Ro
a1 i AT’ = L
= up—— w = — B

af Loz Pe
af\/ af\/ a'\/

T Y (15)

+ +
ax ay 0z
where all primed quantities are assumed to be small.
This system of partial differential equations (PDEs) has non-

constant coefficients, since the function #i; and its derivative are
functions of Z. Nevertheless, we can use the periodicity of 7, (Z) to
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transform it into a system of linear algebraic equations. We do so

first by assuming that the perturbations §'(%, 9, 2, f) (where §’ can
be either u’, T’, or p’) can be written as normal modes of the form:

§'(%, 9. 2.1 = G explik, s + ik, $ + L), (16)
where &, and 12), are the non-dimensional wavenumbers in £ and ¥,

respectively, and A is a non-dimensional complex growth rate. We
seek solutions of the same periodicity as i1 (2), satistying:

q@) =) qnexplin?). a7

n=-—oo

In practice, we limit the sum to a finite number of modes, ranging
from n = —N to n = N. We found N = 20 to be sufficient and used

this value throughout.

Substituting these ansitze into the linearized equations, we obtain
a system of algebraic equations for the Fourier coefficients ¢,, for
n = —N to n = N (with the convention that the coefficients of modes
withn < —N and n > N are set to zero):

o Wp—1 Wp+1 i{\xunfl i{\xun#»l
X et R S

ity 2 2 2

= —ik.p, — Re”'|ky*u, — Ro ™ w,,
. RV . .
Av, + BVl RaPadl —ikypy — Re ke 2vs,

2 2

. kewaoy  kew, R
Sy + "; L % — —inp, +RiTy — Re~'JknPw, + R0y,
. AT, kT, R
AT, 4 e T*‘ +w, = —Pe ™! |k, |*T,.
ko, +1€yv,, +nw, =0, (18)

where IAc,, = (l?x, /Qy, n). The dimension of the system can be reduced
by eliminating the pressure p, analytically, resulting in

A Wy Wyl lgvu_l lgru, 1 s _
Rty + 2 ”; . 2 - T+ = —Re |k, *u, —Ro ' w,,
ke |« kevnor kyvns R
+1§. AUy + - ; - 2”+ +Re llknlzvn:|
. Feway & .
w, 4+ =5 = 2L RiT, — Re” e, P, + Ro~'u,
]:'Z ~ ié Upy— ]’C\ Up+1 RS
+]Z )LUn+XTI - %+Re llkn|2Un:|
R kT kT, R
AT, + LRl = —Pe ko T,
2 2
ke, + kyv, +nw, = 0. (19)

This now takes the form of a generalized eigenvalue problem,
namely

A(Re, Ri, Pe, Ro, k,, k,)X = ABX, (20)

whereX:(u,N, e UNSUZN, oo o s UN, WoN, ..., WH, T,N, ey TN) is
the solution vector for some finite N, and A and B are two 4(2N + 1) x
4(2N + 1) matrices. This problem can be solved numerically for A for
any given set of parameters (Re, Pe, Ri, Ro), and selected horizontal
wavenumbers 1€x and 12),. Note that there are, by construction, 4(2N
+ 1) possible eigenvalues and eigenvectors of this system. However,
we only keep the solution for which the real part of A is largest, and
call it A(Re, Pe, Ri, Ro, &, k).

3.2 Two remarkable limits

Although we generally need to solve the system numerically, two
remarkable limits can be derived analytically from the system of
equations (15). The first limit is obtained assuming invariance of the
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perturbations in the y-direction, so d/9d9 = 0. The incompressibility
condition then reduces to

an’  on'

8% oz
By taking the Z-derivative of the x-momentum equation and the %-

derivative of the z-momentum equation, one arrives at the following
two equations:

=0. 1)

o (o a0 0 (8 1 oW
— = il == (- = Vi) - — ,
92 \ of az s 92\ 9% ' Re Ro 92

o (ow 0w a [ op . 1 1 o
— (= +a =— (- RiT" 4+ — V' 22
8£<8t +”Laﬁ> a;e( oz TR e w) Ro oz’ (22

which are the only remaining equations directly affected by rotation.
If we subtract one from the other, and use the incompressibility
condition (21), terms containing Ro disappear from the system to
yield,

9 (od _aw'\ (D (.4 L 320 L9 (gl
— — — | a — 10 —(w
af \ 9z af 3z \ "oz e a2 dz

a1 an’ o
= R v () (23)
by a9z ax

This shows that rotation has no effect on the linear evolution of
y-invariant perturbations in the equatorial regions of a star. Hence,
we expect to recover the stability properties of standard diffusive
stratified shear instabilities for lgy = 0 modes, regardless of the
rotation rate (see e.g. Garaud et al. 2015).

On the other hand, if we assume x-invariance (d/0% = 0), (15)
reduces to the following set of PDEs:

87’2/ w’dﬁL :vaw_ul
of d2  Re Ro’
v’ ap’ 1
=y vy
ot dy  Re
ow’ ap’ . 1 i’
Tu;:_ali i szer%
z
a1
— 0 = VT,
ot Pe
av’  ow’
- — =0. 24)
ay 9z

If, for the moment, we further assume that the vertical scale of the
instability is much smaller than the characteristic length-scale of the
shear (which can be verified a posteriori), then we can approximate
the shear to be locally constant! with a value S. The system now has
constant coefficients, and we can successively eliminate variables to
arrive at the following equation:

N S BN N I
DuDTVw = — ?oDT R70+S +R1Du 875)27 (25)

where D’s are shorthand notations for the differential operators:

N 1, N 1 _, 0
D,=—V"——, Dr —Vi—-—.
Pe Jat

26
Re Jat (26)

We assume normal mode solutions of the form 0’

ik.2 + A7) and obtain the algebraic equation:

() (R or) =~ (50 ) s o) ()

27

o exp(i I;v v+

'A more formal approach would involve using a JWKB approximation on
the governing equations.
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where K? = I%f + k2. This can be expanded to give a third-order
polynomial equation in A:

5\3 + a2i2—|—a1)1—|—a0 :0,
1 N 2 e
a = —+ — ,
2 Pe Re
2 N 1 1€4+R'I€3+ 1 /1 L5 &
= —_— —_— 1— _— _— <,
= RePe " R £2 " Ro \Ro Z2

K Ri g, K8 (1 N 28
ao_RezPe+ Re+RoRe %_‘— ' (28)

The absence of any solution with positive real part (which is
necessary for stability) can be established using the Routh—-Hurwitz
theorem. For a third-order polynomial, the Routh—-Hurwitz criterion
for stability is satisfied if and only if a,, ap > 0 and axa; > ao
(Anagnost & Desoer 1991). Specifically, the condition ay > 0 gives
the following inequality:

LS L (1 +8) —RiP (29)
— v > —— | = — RiPr.
Re? k2 Ro \ Ro

For this to be true for any value of Igy, k. # 0, the RHS must be
non-positive. In other words, the system is stable to all possible
modes provided 0 > —Ro~' (Ro~! + §) — RiPrand conversely, can
be unstable to some modes provided

1 1 A
0> Ro (Ro + S) + RiPr. 30)
This is the non-dimensional equivalent of the GSF instability crite-
rion (5).

This detour has enabled us to identify analytically two distinct
modes of instability: the first one is a pure shearing mode, with
Igy = 0, that does not know about rotation; the second one has I%x =0,
and is a standard 2D GSF mode (see above). As we shall see below,
one or the other of these two modes tends to dominate the linear
stability of the system in almost all of the parameter space.

4 LINEAR STABILITY RESULTS

In this section, we now present and discuss the results of the linear
stability analysis outlined in Section 3. In what follows, we compute
the fastest-growing perturbations to the stratified, rotating shear flow
ur(z2), for a given set of model _parameters (Re, Pe, Ri, Ro), by
maximizing ‘)i[A(Re Pe, Ri, Ro, kr, k )] over all possible values of
the horizontal wavenumbers £, and k The maximization problem
then returns the growth rate and wavenumbers of the fastest- growing
modes. The latter are presented, for fixed Re = 10000 and varying
Pe, Ri, and Ro, in Fig. 2.

Each row of Fig. 2 corresponds to a particular value of Pe, ranging
from 1000 (top row, weak thermal diffusion) down to 0.1 (bottom
row, strong thermal diffusion). In each row, the left-side panel shows
the real part of the growth rate (denoted for simplicity with 1), the
middle panel shows the wavenumber ., and the right-side panel
shows the wavenumber lgy, of the fastest-growing modes. Finally,
within each panel, the quantity in question is shown as a colour map,
as a function of the Richardson number Ri (horizontal axis) and the
inverse Rossby number Ro~! (vertical axis). Stratification increases
as Ri increases, and the rotation rate increases as Ro~! increases (see
equation 14). If the system is linearly stable, the quantity is rendered
using the white colour.

Overall, we clearly see the emergence of (at least) two distinct
modes of instability, whose relative importance (in terms of which
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Figure 2. Linear stability analysis results. From left to right: growth rate map (log colour bar), x-wavenumber map (linear colour bar), and y-wavenumber map
(log colour bar). White areas are regions that are linearly stable. The red line is the marginal stability boundary for the GSF instability. Re = 10 000 for all maps.

From top to bottom: Pe = 1000, 10, 0.1.

has the largest growth rate) depends on the input parameters. The
first mode has IE, =0, l%x = 0O(1), and a growth rate J. that appears
to be independent of the rotation rate. The mode is stabilized if
Ri exceeds a certain threshold. The second mode has £, = 0, a l;v
that can be significantly greater than one, and dominates in a region
of the (Ri, Ro~!) plane whose shape is somewhat reminiscent of
a plough. Based on the analysis of Section 3.2, we see that the
first mode is clearly a shearing mode, while the second is clearly a
GSF mode. This is also confirmed by plotting the marginal stability
curve associated with the GSF instability in red (see equation 30); the
region below and to the left of the red curve is linearly unstable to GSF
perturbations. We therefore conclude that there is a substantial range
of parameters for which the GSF instability and the shear instability
can in principle coexist, even if one dominates over the other from
a linear perspective. Finally, we also note that there appears to be a
third, fully 3D mode present for large rotation rate and intermediate
stratification, that we will not discuss in this paper (as its physical
interpretation is not well understood).

In the weakly rotating limit, (Ro~! — 0), the GSF mode is either
stabilized or subdominant, and the shearing mode dominates. The
growth rate of the shear instability tends to a constant of the order of
0.1 in the limit of weak stratification, and drops to zero as Ri exceeds
a certain threshold whose value depends on the Péclet number. We
can see from Fig. 2 that the neutral stability line lies close to one
at large Péclet number. This may seem surprising at first given that

the Richardson criterion states that stratified shear flows are linearly
stable if the gradient Richardson number, which is equal to J =
Ri/ cos?(%) in this problem, is greater than 1/4 everywhere in the
flow, which happens as soon as Ri > 1/4. This apparent discrepancy
can be resolved by noting that the standard Richardson criterion
neglects viscous effects, and thus fails to capture viscous instabilities.
Between Ri = 1/4 and Ri = 1, viscous modes exist and can be
distinguished by their small growth rates. This has been shown by
Balmforth & Young (2002) in the case of stratified 2D sinusoidal
shear flows and by Garaud et al. (2015) in the case of stratified 3D
sinusoidal shear flows.

As Pe decreases below unity, the critical value of the Richardson
number for shear instability Ri. increases, consistent with the results
of Garaud et al. (2015), who demonstrated that the marginal stability
criterion satisfies Ri. = O(Pe™") for a low Péclet number sinusoidal
flow. Since the inverse of the Péclet number represents how thermally
diffusive the system is, decreasing Pe is equivalent to increasing
thermal diffusion in the system. Faster thermal diffusion acts as a
destabilizing agent against the density stratification, allowing for the
existence of unstable modes at higher values of Ri.

Finally, it is worth remembering that the shear instability has
a subcritical (non-linear) branch (see Section 1). This subcritical
instability does not appear in this linear stability figure, but can be
excited by finite-amplitude perturbations of the right shape provided
the product of the local Richardson number and the Prandtl number
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is lower than approximately 0.007 (at least in the non-rotating case,
see Zahn 1974, Prat et al. 2016; Garaud et al. 2017). Since Pr = 0.1
in the top row, 0.001 in the middle row, and 0.00001 in the bottom
row, this non-linear branch is irrelevant in the top row, but would
exist up to Ri ~ 7 and Ri 2~ 700 in the middle and bottom rows,
respectively.

At higher rotation rates (larger Ro™"), the GSF mode emerges, and
dominates in the plough-shaped region described earlier. For large
Pe (top row), this region has a fairly limited extent, but expands
as Pe decreases (middle and bottom rows) to encompass higher
values of the stratification and lower rotation rates, consistent with
the criterion in equation (30), red line. Within the GSF region, we
see that the y-wavenumber of the fastest growing GSF mode tends
to increase as Ri increases. This can be understood noting that GSF
instabilities are analogous to double diffusive fingering instabilities,
whose characteristic wavenumber is proportional to Ra'* in the non-
dimensionalization used here, where Ra = PeReRi is the Rayleigh
number. At constant Re and Pe, an increase in Ri therefore implies
an increase in the characteristic wavenumber of the fastest growing
mode.

In summary, we see that this model system has the potential for
a wide range of interesting dynamics, raising many questions that
are of relevance to mixing in stars, and of theoretical interest in fluid
dynamics. In particular, it will be interesting to determine (1) which
linear mode of instability ends up dominating the system dynamics
in the regions of parameter space where both coexist, and (2) what
happens when the GSF coexists with the subcritical branch of the
shear instability.

5 NUMERICAL SIMULATIONS

In what follows, we now turn to DNS to study the non-linear
aspects of instabilities of rotating diffusive stratified shear flows.
We begin by briefly describing the algorithm and model set-up used
in the numerical experiments, before presenting the evolution of a
characteristic simulation.

5.1 Numerical code: PADDI

The numerical experiments presented in this work were performed
using the PADDI code. PADDI is a high-performance pseudo-spectral
code originally developed to solve double-diffusive hydrodynamic
equations over a triply periodic 3D domain (Stellmach et al. 2011).
Salient aspects of the code are presented in Traxler, Garaud &
Stellmach (2011). The original code was modified to include both
the Coriolis force (Moll & Garaud 2017) and a sinusoidal body force
(Garaud et al. 2015) to suit the needs of the study.

5.2 Forcing-based non-dimensionalization

For the purpose of the linear stability analysis presented in Sections 3
and 4, we employed a non-dimensionalization based on the amplitude
of the laminar steady-state solution, U; = Fj /(pmka). This non-
dimensionalization is useful when looking at the early stages of
development of the instability starting from the laminar solution, but
is not appropriate once the flow becomes non-linear, and the mean
shear decreases as a result of momentum transport by the turbulence.
Garaud & Kulenthirarajah (2016) proposed that a more relevant non-
dimensionalization in turbulent, non-rotating, shear flows can be
derived from assuming a balance between inertial terms and the
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forcing in the momentum equation, such that:
pm(u - Vu) - e, ~ Fy. 31

Then, we can define a new flow amplitude Uy as:

F 12
Ur = ) (32)
ks o

This velocity scale is independent of any diffusivity, and thus ought
to be more relevant than U, once turbulence has fully developed.

Interestingly, the quantities Up and U;, respectively, can now
be seen as estimates for the minimum and maximum possible
amplitudes of the body-forced mean flow achievable in a statistically
stationary state for the selected model set-up. Indeed, the amplitude
of the mean flow is expected to be largest in the absence of any
turbulent dissipation, where it takes the value U, while it is expected
to be smallest when the turbulent viscosity is largest. Hidden in the
dimensional argument above is the assumption that the turbulent
eddies have (1) a length-scale of order ks_' and (2) a characteristic
velocity of the order of the mean flow velocity. These are the largest
possible length- and velocity scales for this flow, so the corresponding
turbulent viscosity implied in this argument is also the largest one
achievable. Hence Up is an estimate of the smallest mean flow
amplitude achievable in this set-up.

Using a new system of units where the velocities are scaled by Ur
instead of U, (and the unit time-scale is correspondingly changed
to 1/k;UF), we obtain a set of non-dimensional equations that looks
almost identical to the system (13):

Di VV+R'TA+1V2V IZ)A+IZA+'”
- = — irTe, + — — ——eé,+ —e@_, +sinze,,
Di P RIr e T Rer Ror ¥ T Rop 7R
o Vi VT b= v
- u- w=_— B
a[ PCF
Vit =0, (33)
where it = u/Up, f = tUpk,, T = T, and where
12
Rep — Ur _ Fy —Re'?2,
kov P2k}
. N?*  N?p, )
Rip = 55 = = ReRi,
U2K2~ kF,
U F 12
Py = — = (—2—~) =Re P,
kokr Pk Ky
12
Rop = kz-‘gf - (4’5‘-2‘f 0 ) = Re™'?Ro. (34)
0 0Pm

The numerical results described in the following sections will be
given in this new non-dimensionalization. Note that since the unit
length-scale has not changed, £ = X, and similarly for y and Z.
Garaud & Kulenthirarajah (2016) demonstrated that Rey, Per, and
Rif are relatively good estimates for the actual turbulent Reynolds,
Péclet, and Richardson numbers in non-rotating stratified shear flows
driven by a body force. This is not necessarily true anymore in the
rotating case, but this system of units is still more appropriate than
the one based on the laminar flow.

5.3 Characteristic simulation output

We begin by presenting the evolution of a characteristic simulation,
whose governing parameters are Rey = 100, Pey = 0.1, Rir = 1000,
and Ro;1 = 1, or equivalently in the non-dimensionalization based
on the laminar flow, Re = 10000, Pe = 10, Ri = 0.1, and Ro~' =
0.01. According to the linear stability analysis of the previous section,
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(b) Mean flow profiles
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Figure 3. Characteristic simulation with governing parameters Rey = 100, Per = 0.1, Rir = 1000, and Ro;1 = 1, or equivalently in the non-dimensionalization

based on the laminar flow, Re = 10000, Pe = 10, Ri = 0.1, and Ro~! = 0.01. Panel (a): time evolution of iyms, Urms, and Wyms. Panel (b): snapshots of the
z-profiles of the mean flow ii. The times correspond to the dotted grey lines in (a). Panel (c): a representative snapshot of 1 taken at f = 42.5. The axes are such
that x is along the long direction of the domain, and z points upwards. Panel (d): the trajectory of the simulation (thin grey line) and steady state (thick cyan
line) plotted over the linear stability map in log, Igy. It lies between two triangles which denote the laminar limit (upwards triangle) and the fully turbulent limit
(inverted triangle). The simulation is initialized in the linearly stable region and ends up in a statistically steady state in the GSF-dominated region. The dashed
solid line shows the extent of the subcritical branch of diffusive shear instability (assuming it is not affected by rotation).

the fastest-growing mode of instability starting from the laminar
equilibrium state should be a shearing mode. The non-dimensional
numerical domain size is (L, = 4, 1:y =2, l:z = 27), which is
sufficiently long to allow for the natural development of the basic
shear instability without constraining the flow too much. Since the
GSF modes are smaller scale, this domain size ought to be sufficient
in the GSF limit as well. The numerical resolution selected for this
simulation has 384 x 192 x 192 equivalent grid points.

The simulation is initialized with a sinusoidal streamwise flow
profile given by (X, ¥, Z, 0) = sin(Z), plus small random pertur-
bations that seed the instabilities. We note that this flow is not the
laminar equilibrium solution for the system (which would have an
amplitude of Rer in this non-dimensionalization). Instead, the flow
is stable at time 7 = 0. The evolution of various quantities of interest
with time is presented in Fig. 3.

Fig. 3(a) shows the evolution of it (7), Ums(7), and Wms(¥), where

S v 1 A
Mrms(t) = ﬁ u (x,t)d X s (35)
xbiyliz; JD

(and similarly for ¥ and ). The constant forcing in the streamwise
direction causes the amplitude of the sinusoidal flow [and therefore
lirms(f)] to increase linearly with time until about 7 = 15, where it
reaches the linear instability threshold for GSF modes to grow. At
this point, perturbations begin to grow exponentially [see €.g. Tyms(7)

and Wy(7)]. Visual inspection of w shows that the perturbations
are limited spatially to the region where the mean shear is negative,
and are initially invariant in X, which is as expected from the GSF
instability. Eventually, the perturbations begin to affect the mean
flow and non-linear saturation occurs around 7 = 20. At this point,
the turbulence is still limited to regions of negative shear, but has
become fully 3D, as illustrated in the snapshot of W taken at f = 43
(see Fig. 3c). The shear in the laminar regions continues to grow
slowly on a viscous time-scale in response to the imposed forcing,
until the system finally reaches a statistically stationary state around
i =10.
Fig. 3(b) shows the mean streamwise flow profile

N B .
L.\'Ly 0 0

at selected times. It has a perfect sinusoidal shape at early times,
but acquires a marked asymmetry once the GSF instability develops,
whereby the turbulent region for 1 < Z < 5 has a weaker shear, while
the laminar regions for 0 < Z < 1 and 5 < Z < 27t have a much
larger shear. To understand why the mean flow becomes strongly
asymmetric, note that the horizontal average of the momentum
equation is

1 0%

u
— 2% fsin@), 37
Rey 322 sin(Z) (37

Bﬁ+ 8(”)—
o o=
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where i1 is the Reynolds stress. Assuming that this turbulent stress
behaves in a diffusive manner, we can define a turbulent diffusivity
Vb 10 the usual way,

_ .o

UW = —Vurb 77 » (38)
a9z

in which case (37) becomes

ot d _ L .

5 = 372 [(ReFl + erb)afzj| + sin(2). (39)

In a statistically stationary state, the time derivative can be ignored,
and integration in Z yields:

8717 _ cos(?) 40)
92 Rep' + D

This shows that the amplitude of the mean shear 9:i/3% must be
weaker in turbulent regions (assuming Dy, > 0), and stronger in
laminar regions where Dy, 2 0).

To understand why the system ends up being governed by the
GSF instability rather than the shear instability, we compute the
‘trajectory’ of the simulation on the (Ri, Ro~!) stability diagram. To
do so, note that if we allow ourselves to approximate the mean flow
profile by the formula ii(Z, f) ~ A(f) sin(%), with A(7) varying slowly
with time, then we can use the frozen-in approximation to perform
a linear stability of this flow at any time 7. This is easily done by
solving the linear system (19), with (Re, Pe, Ri, Ro) replaced by
effective parameters (Rees, Peegr, Riegr, Roesr), Where

AU y
Reyi = —— = ARey 41)
vk
AU .
Peeff = r = APGF (42)
KTkS
Rigg = - Rir 43
= Tuie T A @3
kAUR .
ROeft = — = ARoy. 44
Oeff 2Q0 OF (44)

We can verify that this is indeed consistent: the laminar steady-state
solution has amplitude A = Rey, and in that case Re.y = Rezp = Re
(and similarly for the other parameters), so we indeed recover (19).
With A = 1, by contrast, Re.y = Rep (and similarly for the other
parameters), which gives an estimate of the stability of the system
in its ‘weakest shear’ configuration. In practice, we obtain a quick
estimate of A(7) using A(7) = ~/2iims(f); this approximation would
be exact if the mean flow were exactly sinusoidal (which is not the
case in the GSF-dominated simulations) and if the perturbations were
much smaller than the mean (which is not the case in the weakly
stratified simulations). We checked that turbulent mixing does not
affect the stratification significantly in the statistically stationary state
of each simulation, so N? remains roughly constant in time and space.

With these simplifications and caveats in mind, the trajectory of the
fiducial simulation on the (Ri, Ro™") diagram is shown in Fig. 3(d).
We see that it starts at f = 0 on the top right inverted triangle when
A = 1, which is in the linearly stable region, then moves towards
the bottom left on a straight line. Note that because the only varying
quantity in this expression is A(r), simulation trajectories satisfy
Rof Ri;{fz at all times, and therefore appear as straight lines in the
(Ri,Ro™") stability diagram (which uses logarithmic axes). When the
line intersects the GSF-unstable region the flow becomes unstable,
and then continues to move downward and to the left as the mean flow
continues to increase slowly in amplitude (see above). The trajectory
stops before it reaches the shear-unstable region (where the laminar
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steady-state solution resides, and is marked by an upright triangle).
As a result, and consistent with the findings above, the statistically
stationary state is one that is dominated by the GSF instability.
We note that the system could also be non-linearly unstable to
the diffusive shear instability at these parameters. However, visual
inspection of the simulation shows that this does not appear to be the
case (see also Section 6).

It is important to keep in mind that this visualization of the
simulation trajectory should only be used for qualitative purposes.
Indeed, the background image of log, I;v on which the trajectory is
superimposed was produced using a fixed Reynolds number Re =
10000 and a fixed Péclet number Pe = 10, whereas in practice both
Resr and Pe.i evolve with time with A. A more useful visualization
can be created in the 3D parameter space of (Ri, Ro~!, Re) (noting
that Pe.sf = PrRe. where the Prandtl number is constant), but this
is difficult to show in a printed figure.

In what follows, we now analyse a number of simulations with
widely varying parameters, and attempt to characterize the dynamics
observed based on the tools and arguments presented in this section.

5.4 Exploration of parameter space

We fix Rey = 100 and Per = 0.1 (so Pr = 0.001), and vary both
Rir and Ro;' to explore parameter space. Table 1 lists the input pa-
rameters and summarizes salient results for all available simulations.
In all cases, the non-dimensional domain size is (47t, 27, 27). Each
simulation has a numerical resolution of 384 x 192 x 192 equivalent
grid points and is either initialized from small random perturbations
to a laminar solution, or from the endpoint of another simulation ran
at slightly different input parameters.

To illustrate the wide range of possible emergent dynamics, we
consider a subset of the data for three possible values of the input
Richardson number (Rir = 1, 100, 10 000), and three possible values
of the input inverse Rossby number (Ro;1 =0.2,1,5). Fig. 4 (top
row) shows where these simulations lie in parameter space as follows.
Each simulation is assigned a colour. The full possible extent of
its trajectory in parameter space is shown as a thin grey segment
of slope 1/2 (see the discussion of Fig. 3d), ranging between the
laminar state (A = Rey, upright triangle) and the most turbulent
state (A = 1, inverted triangle). For each simulation, we waited until
the system reached a statistically stationary state, then plotted the
range of the trajectory in that state. With that choice, the simulation
appears as a coloured point if fluctuations in A(7) are small, and as a
coloured segment if fluctuations in A(f) are large. The left column of
Fig. 4 shows this information on a background colour map of log,, 12),
obtained from a linear stability analysis using Re. = Re = 10 000,
Pe.ir = Pe = 10, while the right column shows the same information
superimposed on a similar colour map obtained using Re s = Rep =
100, Pesr = Pep = 0.1. Comparing the two maps provides an idea of
whether one can reliably identify a mode as being ‘shear-dominated’
or ‘GSF-dominated’ using linear stability analysis alone, showing
that in some of the more clear-cut cases we can, but that in general
we cannot (see more on this below).

Figs 5 and 6 show representative snapshots of 7 and w, respec-
tively, in the same simulations, once they have achieved a statistically
stationary state. The snapshots are arranged in the same way as
the triangles in the top row of Fig. 4: each row from bottom
to top corresponding to an increasing value of the rotation rate
(Ro;' = 0.2, 1, 5), and each column from left to right corresponding
to an increasing value of the stratification (Rir = 1, 100, 10 000).

We begin by looking at the most weakly rotating simulations
(bottom row of Figs 5 and 6). In the left-hand and centre panels, the
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Table 1. Salient properties of all available simulations. Columns 1 and 2 list the governing
parameters Ro,?l and Rif of each simulation. The remaining parameters Rer = 10% and Pey =
0.1 are the same in all cases. Columns 3 and 4 show the rms velocities #i;ys and Wyy,s measured in
the statistically steady state of each simulation (except the ones with Rir = 4000, see table notes
for detail). Column 5 shows the shearing rate Smid extracted from the midplane of the domain
(see Section 6.1). Column 6 shows the turbulent viscosity computed using Ve, = — (1 0W)mid/ Simid

(also see Section 6.1).

Roj ! Rip lirms Wrms N mid Vturb
0.2 1 1.8(2) 1.19(9) —1.7(4) 0.7(2)
0.2 10 2.8(1) 1(5) —2.7(6) 0.5(1)
0.2 100 4.92(7) 0.89(3) —5.4(6) 0.2(3)
0.2 1000 16.1(2) 0.79(2) —13.5(8) 0.1(1)
0.2@ 4000 34.4(4) 0.061(2) —37(7) 0.014(5)
0.2 4000 28.9(4) 0.8(1) —25(1) 0.07(2)
0.2 10 000 57.3(7) 0.033(2) —68(6) 0.006(2)
1 1 1.9(1) L.4(1) — 1.6(4) 0.7(3)
1 10 23(3) 1.12(9) —1.9(6) 0.8(3)
1 100 4.9(2) 0.96(6) —4.3(6) 0.34(7)
1 1000 13.55(8) 0.82(2) —11.4(8) 0.13(1)
1 10 000 34.5(2) 0.43(4) —33(1) 0.03(4)
5 1 2(4) 2(4) —1.8(6) 0.5(5)
5 10 4.1(9) 1.5(4) —4(1) 0(3)
5 100 7.6(1) 1.35(7) —6(4) 0.26(4)
5 1000 11.29(4) 0.95(2) —9(7) 0.17(2)
5 10 000 23.3(2) 0.59(1) —20.909) 0.059(5)
5 100 000 44.6(9) 0.12(1) —50(5) 0.012(2)

(a) data extracted in the time interval (f — f.r) € [31.2, 38.2] (see Fig. 11).
(b) data extracted in the time interval (7 — frer) € [44.2, 51.2] (see Fig. 11).

effect of rotation appears at a first glance to be negligible and the
snapshots are qualitatively similar to those obtained by Garaud &
Kulenthirarajah (2016) in the non-rotating case. As the Richardson
number increases from Rir = 1 (left-hand panel) to what Garaud &
Kulenthirarajah (2016) refer to as the strongly stratified limit (Rip =
100, centre panel), Fig. 6 shows that the scale of vertical velocity
fluctuations decreases significantly. As discussed by Zahn (1992)
(see also Garaud et al. 2017), the typical size of vertical eddies in
non-rotating low Péclet number stratified turbulence is controlled by
a combination of stratification and thermal diffusion, and would
be proportional to (RiciPec;)~"? in the model set-up and non-
dimensionalization used here. This scaling is qualitatively consistent
with the decrease in eddy size observed in the snapshots. Since a
smaller eddy scale implies a decrease in the turbulent viscosity, this
in turn results in a substantial increase of the amplitude of the mean
flow, which is clearly seen in Fig. 5.

This somewhat simplistic discussion is, however, called into
question if we look at the corresponding trajectories of these two
simulations in Fig. 4. We see that they both lie close to the boundary
between GSF-dominated and shear-dominated regimes, and in the
case of the Rir = 100 simulation (aquamarine colour), both maps
actually suggest that it lies in the GSF region of parameter space.
An alternative explanation for the small eddy size observed in this
simulation could then naively be that it is undergoing GSF-driven
turbulence instead. But that interpretation is immediately invalidated
by the presence of turbulence in regions of positive shear. In short,
this example demonstrates the difficulty of identifying, simply from
the position of the simulation on the linear stability maps, or from
snapshots of W, whether the turbulence is shear-driven or GSF-driven.
We will revisit this topic below in Section 6, where we will finally
understand this particular simulation as one that is dominated by the
non-linear branch of the shear instability.

Beyond a certain threshold in Rip, the dynamics change dra-
matically and become governed by almost 2D GSF modes when
Rir = 10000 (bottom right panel in Figs 5 and 6). This result is
relatively easy to understand given the position of the solution in the
regime map (see the bottom right blue point in Fig. 4, top row): at
these parameters, the shear instability is not linearly excited, and the
GSF instability is very close to the marginal stability boundary and
therefore barely supercritical. This likely explains why the modes
do not become fully turbulent and, as we shall demonstrate in
Section 6.6, why the non-linear shear instability is not triggered.

A similar transition between shear-dominated dynamics at low
Richardson number and GSF-dominated dynamics at higher Richard-
son number is observed when the rotation rate is a little higher
(middle row in Figs 5 and 6), i.e. when Ro;l = 1. However, there
are also a few important differences with the more weakly rotating
case discussed above. In the leftmost panel of Fig. 6 (at Riy =
1), we see that the increased rotation rate causes the turbulence to
be more coherent along the rotation axis. In the middle panel of
the same row (Riy = 100, Ro,;1 = 1), we see that the turbulence is
becoming more inhomogeneous, somewhat suppressed in regions of
positive shear, and enhanced in regions of negative shear (middle
of the domain). In the rightmost panel of Fig. 6, the system is
now clearly dominated by the GSF instability. The turbulence has
a very small vertical scale, and is limited to the region of negative
shear. This strong inhomogeneity leads to a notable asymmetry in
the mean flow, for the reasons discussed in Section 5.3. This is
illustrated in Fig. 7 which shows, for each of the simulations of Figs 5
and 6, a series of individual profiles of i(Z, f), for various times 7
selected once the system is in the statistically stationary phase. The
layout is the same as in Figs 5 and 6. We see that all simulations
that are clearly dominated by the GSF instability have asymmetric
mean flow profiles with a weaker negative shear in the turbulent
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Figure 4. Effective parameters of a simulation plotted over the linear stability maps computed with Pe = 10, Re = 10 000 (left) and Per = 0.1, Rer = 100 (right).
The top row corresponds to the simulations discussed in Section 5, while the bottom row shows other available simulations (see Table 1). The upward and inverted
triangles denote the position in parameter space of the laminar solution (Riefr = Ri, Rogﬁl- =Ro~ ') and the fully turbulent solution (Riesr = Rip, Ro;ﬁl- = Ro;l)
for each simulation, respectively. The thin grey line connecting an upward triangle to the inverted triangle of the same colour represents the maximum possible
extent of a trajectory (see Section 5.3). The thicker coloured line overlaid on the grey line is the actual extent of the trajectory during the statistically steady state

of the particular simulation.

region, and a stronger positive shear in the laminar regions, as in
Fig. 3(b).

As we increase the rotation rate even further (top row in Figs 5—
7), the effect of rotation on the shear-dominated regime becomes
quite pronounced. The more weakly stratified simulation (Rip = 1)
now shows roll-like structures that are invariant in the y-direction.
This reduction of the flow dynamics to two dimensions reverses
the sign of the energy cascade, and the shear-induced rolls now
span the entire vertical height of the domain as well. The mean
flow profile in this regime is highly variable, as seen in Fig. 7 (e.g.
top left panel). However, this is only true at low Rip, and as the
stratification increases, the flow becomes 3D again and transitions to
GSF-dominated dynamics.

To summarize our findings so far, at least from a qualitative point
of view, we have found that the dynamics appear to be either shear-
dominated or GSF-dominated depending on the parameters selected.
This identification is sometimes trivial, as is the case for instance
when the turbulence spans the entire domain (which would not
happen in a GSF-dominated system), or in the case where the flow
is invariant in the streamwise direction (which cannot extract any
energy from the shear, and therefore could not be a shear instability).
In other cases, by contrast, the identification can be much more
difficult. We now turn to a quantitative analysis of momentum
transport in our model system which, as we demonstrate below,
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provides a useful and more systematic way of characterizing the
dynamics of a simulation.

6 QUANTITATIVE ANALYSIS

6.1 Computing the turbulent viscosity

Assuming a linear relationship between the turbulent stress i and
the shearing rate dii/d? (see equation 38), we can compute the
turbulent viscosity Vg, by measuring 7w and dit/d? from the DNS.
We focus on the region near the middle of the domain where the
shear is negative (so both instabilities can be present) and relatively
constant. We therefore restrict our measurements to the interval
Z € [m—0.5,m+0.5]. For each simulation, we take all profiles
of dii/d? that were saved during the statistically stationary state,
and fit a constant to these profiles in the interval considered. The
measured mean shearing rate is then denoted Smid and the standard
deviation around the mean yields an estimate of the measurement
error and/or its variability. Similarly, we take all available profiles
of s during the statistically stationary state, and fit a constant
to these profiles in the same interval. The measured mean stress
is denoted (iiw)y;q, and its standard deviation is used to estimate
the measurement error/variability. Both procedures are illustrated in
Fig. 8, for the simulation with parameters Ro;' = 1 and Rir = 100.
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Figure 5. Representative snapshots of i from simulation data for Rey = 100, Per = 0.1 (Re = 10, Pe = 10). From top to bottom: Ro;,1 =5,1,02Ro! =
0.05, 0.01, 0.002). From left to right: Rir = 1, 100, 10000 (Ri = 0.0001, 0.01, 1). In each snapshot, the long side of the domain corresponds to the streamwise
direction (x), the vertical (z) is aligned with that of the page, and the remaining direction is that of the rotation axis (y).

From these measurements, we deduce the non-dimensional value of

the turbulent viscosity in the middle of the domain, as

. (W) mia

Vurb = ——x o . (45)
Shid

We can then compare our simulation data to the predictions of
existing models, specifically those of Garaud et al. (2017) for the
turbulent viscosity of non-rotating low Péclet number shear flows,
and of Barker et al. (2019) for the turbulent viscosity induced by the
GSF instability.

6.2 Comparison with the shear instability model of Garaud
et al. (2017)

The model of Garaud et al. (2017) provides the following estimate?
for the dimensional turbulent viscosity vy, in non-rotating, stratified
shear flows at low input Péclet number Pey:

for JPr < (JPr).,

Vrb =

C (1 JPr ) Kt
1+a(JPep) ' \'  (JPr)./) J
(46)

where J is the local Richardson number (which here is equal to
Rir/S2:0), Pris the Prandtl number (which is equal to 0.001 in our

20n further inspection, we discovered that the formula given in equation (42)
of Garaud et al. (2017) is actually not quite correct, using (JPe)~! in the
denominator of the first term instead of (JPer)~!. The formula provided here
corrects this error. The constant a needed to be re-fitted accordingly.

DNS), and where C ~ a ~ 0.08,b ~ (.25, and (JPr). =~ 0.007 are
model constants that were fitted to the non-rotating data (see Garaud
et al. 2017). Non-dimensionally, this becomes

Vwrb =

C 1 JPr
a+ JPegp (JPr),

b
) for JPr < (JPr),, 47)
which tends to C/a >~ 1 as J — 0. This is expected from the non-
dimensionalization selected, which assumes a balance between the
turbulent stresses and the forcing.

Fig. 9(a) shows the quantity Vg, computed from the DNS in
the manner described in the previous section, as a function of JPr.
It is compared with the model prediction (magenta curve, which
represents the right-hand side of equation 47). Note that since JPer =
JPrRey, with Rer = 100 being held constant, the right-hand side of
this equation is a function of JPr only in our data set, hence our
choice to present the results as a function of this quantity. Plotted in
this manner, all simulations dominated by the shear instability should
lie on (or close to) the magenta curve. The non-rotating DNS from
Garaud & Kulenthirarajah (2016), which were run at the same values
of Rey and Pey as our rotating simulations, are shown as small solid
grey circles. We see that the model fits these non-rotating simulations
well, as expected, except for a little dip near JPr ~ 0.001, which seems
to be a real feature of the data (see Garaud et al. 2017). Simulations
for increasing rotation rates are shown as coloured circles (see legend
for detail), and the size of the circle is linearly related to —log;o(Riy)
(so the largest circles correspond to the least stratified simulations
at Rir = 1, and the smallest circles correspond to the most strongly
stratified simulations). The data reveal very interesting, if sometimes
puzzling trends.
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Figure 6. Representative snapshots of w from simulation data for Rer = 100, Per = 0.1 (Re = 104, Pe = 10). From top to bottom: Ro);1 =5,1,0.2 (Ro’l =
0.05, 0.01, 0.002). From left to right: Rir = 1, 100, 10000 (Ri = 0.0001, 0.01, 1). The orientation of the domain is the same as in Fig. 5.
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Figure 7. Horizontally averaged profiles of the mean flow ii(z, ¢) at selected instants in time, taken during the statistically stationary state, for Rey = 100, Per =
0.1 (Re = 104, Pe = 10). Instantaneous profiles are shown in grey, and their time average is shown in blue. From top to bottom: Ro);1 =5,1,0.2 (Rof1 =0.05,

0.01, 0.002). From left to right: Rir = 1, 100, 10000 (Ri = 0.0001, 0.01, 1).

6.3 Slowly rotating diffusive shear flows

As expected, most of the slowly rotating simulations (Rol?I =0.2,
blue circles) lie close to the non-rotating data and the magenta model
curve. We also see a few outliers, which have Rip = 4000 and 10
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000, respectively, that turn out to be particularly interesting (see
Section 6.6 below). Ignoring these outliers for now, our results
tentatively confirm that turbulent transport for Ro;' = 0.2 (and
lower) is primarily shear-driven, and is consistent with the fact that
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Figure 8. Illustration of data extraction method. Instantaneous profiles of dii/d? and i, extracted during the statistically steady state, are shown in grey, and
their time average is shown in blue. We fit constants to these quantities in the interval [7 — 0.5, 7 + 0.5] to measure Syiq and (Zi))miq. The extracted means are
shown in the solid red line, and the dotted red lines are placed one standard deviation above and below. The parameters for this simulation are: Ro;1 =1and
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Figure 9. Comparison of Dy, and (21))mig (symbols) with the theoretical models (magenta lines) of Garaud et al. (2017) (left) and Barker et al. (2019) (right).
The symbol colour represents the rotation rate (see legend) and the symbol size is inversely related to the stratification. The grey points are the non-rotating data
of Garaud & Kulenthirarajah (2016). The square blue points correspond to a particular simulation at Ri = 4000 discussed in Section 6.7. Note the quantity
plotted on the right-hand panel, —(l1t)mia/ (Ro}1 + Siiq) is essentially the same as Vg, When Ro;l & Smid.

the turbulence spans most of the computational domain (including,
crucially, regions where the shear is positive) in the corresponding
snapshots of Fig. 6.

However, it is important to note that, with the exception of the least
stratified case (Rir = 1), the mean flow is linearly stable to the shear
in these simulations. As such, the dynamics observed in simulations
for Riy = 10, 100, and 1000 must be driven by non-linear shear
instabilities. It is easy to verify that our findings are consistent with
Zahn’s instability criterion (see Zahn 1974; Garaud et al. 2017 and
Section 1): indeed, the blue points all lie in the region where JPr
< (JPr). > 0.007. Interestingly, some of them get very close to this
stability threshold, suggesting that weak rotation does not affect it.

In summary, we find that for weak rotation, and moderate strati-
fication, existing models for turbulent mixing by diffusive stratified
shear flows hold. The same is not true, however, for larger rotation
rates and/or very strong stratification.

6.4 Comparison with the GSF instability model of Barker et al.
(2019)

For more rapidly rotating simulations (higher Roy"), we see that,
with a few exceptions at lower values of the stratification, the data do
not fall on the model curve for shear-induced turbulence, and instead
lies above it (most red and green points). This is not surprising since
many of these simulations were tentatively identified as being GSF-
dominated in the previous section. We do note that the GSF instability
not only persists for JPr > 0.007 (which is not unreasonable, since
it is not limited by Zahn’s criterion), but can also have a turbulent
viscosity that is sometimes substantially larger than that of the pure
shear instability. To see why this is the case, we now compare our
data with the GSF model of Barker et al. (2019).

Barker et al. (2019) studied turbulent transport by the GSF insta-
bility, and proposed a model for the turbulent viscosity at saturation
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that relies on balancing the growth rates of primary instability and
parasitic instabilities (see also Brown et al. 2013, for related work
on the analogous fingering instability). Dimensionally, when written

using the notation of this paper, their model predicts that the Reynolds
stress should be

_ 2S|nid+29)\72
Y

uw = (48)
where A and k, are the dimensional growth rate and wavenumber of
the fastest-growing GSF mode, Sy,iq is the dimensional value of the
shearing rate (taken here in the middle of our domain, where it is
negative), and Cp is a constant of order unity that needs to be fitted
to the data. Barker et al. (2019) find? that Cz; ~ +/8. We can express
this in our code units to get a prediction for the Reynolds stress in
the middle of the domain:
. 2.8 -1 S

(@) mig = —Cp(Smia + Rog )m- (49)
We know from the analogy between the GSF and the fingering
instabilities, that when A and k, are written in the natural units for
double-diffusive convection [namely, d = (k7v/N?)'"* as the unit
length, and d?/k ¢ as the unit time], they are only functions of the
Prandtl number, and of the so-called equivalent density ratio, defined
in our units as

Rip
Ry=——F - (50)
Roy (Rog" + Smid)
(see Section 1). An alternative way of writing (49) is therefore
. 2
({@)mia _ Cj Agst 1)

Ro;l + Smid B Pep késf()‘gSf + Prkésf) 7

where A and kg are the growth rate and wavenumber of the fastest-
growing GSF modes expressed in their natural units (S0 Agst = Ad>/icr
and kg = dk,). Using this expression has two advantages. First, note
that the right-hand side of (51) is a function of Ry only when the
Prandtl number is fixed, which is the case of our simulations. As such,
and as demonstrated by Barker et al. (2019), plotting the quantity
— (W) mia /(Ro;1 + S’mid) against Ry should collapse the data on a
single curve if the system is only subject to the GSF instability. Sec-
ondly, note that —(i1th)mia/(Roz" 4 Smia) =~ — (@0 )mia/Smia = Viarb
when Ro;l & |Smial, which is often the case in our simulations.
As a result, plotting — (W) miq/ (Ro;1 + S'mid) is almost the same as
plotting Dy, Which allows for an easy comparison with Fig. 9(a).

Fig. 9(b) shows —(iiw)mia/ (Ro;1 + S‘mid) against Ry computed
using (50). The symbols used for each simulation are identical to
the ones in Fig. 9(a), with the colour representing Roy;' and the size
representing Riy. The solid magenta line is the model prediction from
equation (51), with the constant fitted to the data equal to Cp >~ V3.
Fig. 9(b) reveals a number of interesting features of our data.

First, note that not all simulations depicted in Fig. 9(a) are present
in 9(b) — the largest red point, corresponding to a run with Ro;l =5,
Rip = 1, is missing. This is because in this case, Ry is smaller than
one, and the system is not subject to GSF instabilities (consistent with
the position of the simulation in the stability diagrams, see Fig. 4).

Secondly, looking at the remaining data points present in Fig. 9(b),
we see that the turbulent viscosity model for the GSF instability
provides a good explanation for the data in many, but crucially not

3More specifically, they find that a best fit to their data is obtained with A ~
4 (see their equation 31), which corresponds to C >~ +/8 using the relation
A%)2=C3.
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all cases. In particular, we see a few blue points (for Ro;l =0.2)
that clearly lie above the GSF model curve at large R. These points
correspond to those that are in the shear-unstable branch very close to
JPr = 0.007 in Fig. 9(a), with Vg, >~ 0.1. We therefore confirm that
these simulations are dominated by the shear instability, and that the
turbulent viscosity in that case is much larger than that of the GSF.
Conversely, we now also see that the blue outliers that were lying
well below the model curve for the shear instability in Fig. 9(a), are
well explained by the GSF model curve in 9(b) (these are the blue
points at very large R that lie almost on top of the GSF model curve).
Finally, we were initially surprised to see that the GSF model
curve fits the data for small Ry quite well in Fig. 9(b), even when
a simulation was identified to be in the shear-dominated regime.
After further investigation, we discovered that this is most likely a
coincidence that accidentally arose from our choice of parameters.
Indeed, in the limit Ry — 1, one can use the asymptotic scalings
derived by Brown et al. (2013) to show* that Agst = +/Pr and kgt
1/+/2. With this, (51) implies that
o 2
- % ~ Bty = 255 /B when Ry— 1,Pr< 1, (52)
Roz' + Smid Pep
(which is the case for our simulations, since Pr = 0.001). With
C,zg =~ 8, and Pey = 0.1, this predicts that ¥y, 2~ 5 in weakly stratified
systems which is quite close to what the shear instability model
predicts in the same limit, but only coincidentally. Had we selected
substantially different values of Pep or Pr, the GSF predictions and
shear predictions would have been quite different, and we believe
this would be more clearly visible in the data. As it is, we do see
that the data at low Ry is more consistent with being almost constant
(which the shear model predicts) than with the GSF model, but this
will need to be verified in the future with a more comprehensive
exploration of parameter space.

6.5 Summary so far

To summarize our results, we find that the model of Barker et al.
(2019) correctly predicts the turbulent viscosity measured in a
simulation whenever it is dominated by the GSF instability. Similarly,
the model of Garaud et al. (2017) correctly predicts the measured
turbulent viscosity whenever a simulation is dominated by the shear
instability. Taken on its own, this result is superficially pleasing but
does not answer the more important question of when or why a
simulation ends up being dominated by one instability or the other
when both can theoretically be excited. A very naive approach would
be to compare the linear growth rates of each mode of instability
and select whichever is largest, but this would obviously not work
here — in strongly stratified flows, the shear instability is primarily
excited through a non-linear pathway, that cannot be captured in
this manner. Ignoring the outliers (see below for more on these
points), an alternative empirical answer to this question may be the
following: the instability that ends up dominating is the one that
would individually contribute the most to turbulent transport. In
other words, one could compute the turbulent viscosity predicted
by the GSF model of Barker et al. (2019), as well as the one
predicted by the shear instability model of Garaud et al. (2017), and
whichever one is the largest identifies the dominant instability. This
method, when applied to our data, would correctly identify almost
all simulations (and therefore also correctly predict the measured

4See equation B5 of Brown et al. (2013) using ¢ = 1, because the equivalent
of the diffusivity ratio 7 is the Prandtl number for GSF modes.
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turbulent viscosity), except for the outliers. It is therefore time to
take a closer look at these simulations, to see what is happening in
this case.

6.6 The outliers

The blue square and blue circle, found substantially below the
magenta curve in Fig. 9(a), are from very strongly stratified sim-
ulations with Rip = 4000 and Rir = 10 000, respectively. These
simulations are clearly GSF-dominated, despite satisfying Zahn’s
instability criterion (/Pr < 0.007), and despite the fact that at these
parameters the model of Garaud et al. (2017) would predict a much
larger turbulent viscosity than the model of Barker et al. (2019).
This can be seen either from the individual snapshot in Fig. 6, which
reveals the flow to be that of a 2D mode of the GSF instability, or
from the corresponding position of the data points on Fig. 9(b), where
they lie almost exactly on top of the GSF model curve. The existence
of these points therefore appears to directly contradict the proposal
made above to identify which instability ought to dominate.

More worryingly, they also show that it is possible to have two
stratified rotating shear flows with similar values of JPr and the
same rotation rate, but with two very different values of the turbulent
viscosity — in the cases shown here, Dy, in the GSF-dominated
simulations is up to two orders of magnitude smaller than in the
shear-dominated simulations at the same value of JPr and Roj'. Of
course, it is important to remember that merely satisfying Zahn’s
instability criterion does not guarantee that a system will be subject
to shear-induced turbulence. Since the instability is subcritical in
that regime, its development relies on the availability of finite-
amplitude perturbations of the right kind and of sufficient amplitude
to ‘prime’ the turbulence. In the non-rotating case, as discussed in the
introduction, this has been shown to lead to the existence of hysteresis
in the system (Garaud et al. 2015; Garaud & Kulenthirarajah 2016;
Gagnier & Garaud 2018), with otherwise similar simulations being
turbulent or not depending on the manner in which they were
initialized. It is therefore natural to find that the same phenomenon
occurs in the rotating case, and the failure to trigger shear-induced
turbulence in these outlying blue points is likely simply be due to
the lack of a proper ‘primer’. This realization brings us to the more
interesting question of how to prime the non-linear shear instability.

6.7 Priming the shear instability

In the non-rotating case, priming the non-linear shear instability is
quite difficult. Garaud & Kulenthirarajah (2016) and Garaud et al.
(2017) were only able to do it by using as initial conditions the
turbulent state of the system at a slightly lower stratification. In other
words, the shear instability can persist into the non-linear regime if
the stratification increases very gradually, but disappears otherwise.
Interestingly, we are finding that the situation is quite different in the
rotating case, because the GSF instability can serve as a primer for
the shear instability, as long as it is not 2D.

A simple demonstration of this effect is shown in Fig. 10, which
summarizes a simple experiment in which the Richardson number
is suddenly increased at 7 = f,or from Riy = 1000 to Rir = 1700,
in two simulations that had reached a statistically stationary shear-
dominated state, one non-rotating (blue and magenta curves), and one
at Ro,}1 = 0.2 (red and green curves). We see that the turbulence,
characterized for example by W, dies out in the non-rotating case,
but rapidly recovers in the rotating case, and remains at a level
consistent with that of shear-induced turbulence. Since the rotating
case is GSF unstable, we conclude that the small-scale turbulence
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Figure 10. Illustration of the GSF instability’s ability to prime the non-linear
shear instability. The quantities iiyms (left axis, top curves) and Wy (right
axis, bottom curves) are shown for two simulations with Ro,}1 = 0 (blue and
pink curves) and 0.2 (red and green curves). At f = ff, the stratification
increases from Riz = 1000 to Rig = 1700.

associated with the GSF instability must be able to prime the shear
instability. In hindsight, this is not surprising. The GSF instability
only exists because it is thermally diffusive (see Section 1), and
therefore has a typical length-scale that is small enough for thermal
diffusion to take place. This is precisely the characteristic eddy scale
that is required to trigger the non-linear shear instability, and we see
in this example that it does.

When the background stratification continues to increase, however,
the system eventually approaches the marginal stability threshold for
the GSF instability (Ry — Pr~', see equation 7). When this happens
(e.g. for the simulation at Riy = 10 000, see Fig. 4), the saturated
‘turbulent’ state of the GSF remains 2D, and is invariant in the
streamwise direction. Since it is not possible to extract energy from
the shear using streamwise-invariant perturbations, this 2D form of
the GSF instability cannot prime the shear instability, and the system
remains in a GSF-dominated state. This explains the existence of the
outliers discussed in Section 6.6, and why these are only found for
very large Ry.

Finally, we also found that the interaction of the shear instability
and the GSF instability through priming can drive relaxation oscil-
lations, a result that was fairly unexpected. These oscillations are
illustrated in Fig. 11, which shows both i, and W,y as a function
of time, in a simulation at Ro;-l = 0.2, Rir = 4000. The horizontal
axis shows I — f,.r, where Z¢ in this case was arbitrarily selected to
be the time origin once the system has entered this quasi-periodic
state. The corresponding trajectory of this simulation on the stability
map is shown in Fig. 4 (bottom row, bottom right blue/grey trace in
each panel). The sequence of events associated with a single cycle of
the oscillation (e.g. from  — Zef > 10 to 60 in Fig. 11) is as follows.
At the start of the cycle, the system is in a state of weak shear, which
is very close to being marginally stable to the GSF instability (near
the red curve in Fig. 4). This state is unstable to a slowly growing,
2D GSF mode that eventually saturates (around 7 — fef 2 25). At
this point, the flow looks like that of the bottom right panel of Figs 5
and 6. The system remains in that GSF-dominated state, but the
background shear continues to increase in response to the forcing
(albeit more slowly now). When the shear is large enough, the GSF
flow becomes 3D, at which point the shear instability can finally be
non-linearly excited (around 7 — f =~ 40). When this happens, the
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Figure 11. Illustration of relaxation oscillation dynamics that occur in a
simulation at Ro;] = 0.2 and Rir = 4000 (see text for detail), showing i ms
(left axis, red curve) and W, (right axis, green curve). The grey regions mark
the two distinct time intervals over which the turbulent viscosity is measured,
and shown as blue squares in Fig. 9.

flow looks like the bottom middle panel of Figs 5 and 6. The turbulent
viscosity increases dramatically, and the shear decreases suddenly as
a result. This happens too fast for the non-linear shear instability to
keep up (even though JPr remains smaller than 0.007), and the latter
dies down. The system moves back into the almost-marginally stable
2D GSF state, and the cycle repeats. This regular oscillation between
a GSF-dominated state and a shear-dominated state can also be seen
in Fig. 9. The square blue symbols both correspond to the same
Rip = 4000 simulation discussed here, but were extracted during
distinct time intervals, marked in grey in Fig. 11. We see that while
the flow is shear-dominated the turbulent viscosity is relatively high
and satisfies the Garaud et al. (2017) model, and when the flow is
GSF-dominated the turbulent viscosity is low and satisfies the Barker
et al. (2019) model.

This is an interesting example of a relaxation oscillation driven
by the non-linear priming of one subcritical instability by another
supercritical one. This oscillation between two turbulent states is
accompanied by a significant oscillation in the mean flow amplitude.
Assuming that these oscillations persist at lower Prandtl number, this
mechanism could possibly be at the origin of shear oscillations in
some stars that are close to the marginal stability threshold for the
GSF instability.

7 SUMMARY AND DISCUSSION

In this work, we studied stably stratified, thermally diffusive, rotating
shear flows in the equatorial region of stars, building on previous
work that had focused on the non-rotating case (Prat & Ligniéres
2013; Garaud et al. 2015, 2017; Garaud & Kulenthirarajah 2016;
Gagnier & Garaud 2018). This extension, as introduced in Section 1,
is necessary since the main source of large-scale shear in stars is their
differential rotation.

We used a very simple model set-up, in which a body force drives
a vertically varying azimuthal flow (see Section 2). A linear stability
analysis of this model (see Section 4) reveals the existence of two
modes of instability: shearing modes, which only depend on the
velocity gradient, and GSF modes, which only depend on the angular
momentum gradient. Interestingly, both kinds of modes are found to
coexist in a substantial region of parameter space in our model, which
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naturally leads to the question of which instability dominates when
both are excited. To complicate the matter further, diffusive shear
instabilities are known to be non-linearly unstable (even when they
are linearly stable), which means that they can coexist with the GSF
instability in a much wider region of parameter space than what linear
theory alone suggests.

Using DNS, we then studied the non-linear development of these
instabilities, and were able to measure the turbulent viscosity they
cause for a wide range of input parameters (varying both the rotation
rate and the stratification). The limit of very low stratification, where
the non-diffusive shear instability takes place, was briefly discussed
for completeness, but is not particularly relevant for stellar interiors
except perhaps very close to the edge of a convection zone where the
buoyancy frequency drops to zero.

Much more relevant for stellar radiative zones is the limit of very
large stratification (i.e. Rir > 1, see equation 34). A quantitative
analysis of the simulation data for these cases showed that results in
the weakly rotating limit (i.e. when the predicted Rossby number of
the large-scale flow Rop defined in equation 34 is greater or equal
to 5) are nearly identical to those of non-rotating simulations by
Garaud & Kulenthirarajah (2016). In particular, we found that Zahn’s
non-linear instability criterion (Zahn 1974), namely JPr < (JPr),
=~ (.007, still holds and that the model of Garaud et al. (2017) for
mixing by diffusive turbulent shear flows (corrected for a minor error,
see equation 46), correctly predicts the turbulent viscosity measured
in the DNS when the shear instability is present. By contrast, the
model of Barker et al. (2019) for the GSF instability would largely
underpredict momentum transport for the same simulations. And yet,
we also discovered that the shear instability is not necessarily always
excited when JPr < (JPr).. This is a fundamental difference between
linear and non-linear instabilities that should always be kept in mind
— non-linear instabilities require a finite amplitude ‘primer’ of the
right form to develop, otherwise the instability does not take place.
When that is the case, the GSF instability dominates instead and the
Barker et al. (2019) model correctly predicts the turbulent viscosity.

At larger rotation rates (i.e. for a predicted Rossby number Rof of
order unity or less), the GSF instability is increasingly dominant, and
the turbulent viscosity measured in the DNS is consistent with the
Barkeretal. (2019) model. At the same time, the shear instability does
not appear to be active, but even if it were, the predicted turbulent
viscosity from the shear model of Garaud et al. (2017) would be
much smaller than that predicted by the GSF model of Barker et al.
(2019), and would therefore be irrelevant.

These results pose an important question for stellar astrophysics.
Indeed, stellar evolution codes usually compute turbulent mixing
coefficients based on the local properties of the star (rotation rate,
shear, stratification, etc.) — where local here means local both in
space and time. When a single instability is present, the physics
that need to be included in the construction of that turbulent mixing
coefficient are usually clear (whether they are all taken into account
is another matter of course). However, when multiple instabilities
are present at the same time, as is the case here, we see that the
answer is significantly less obvious. One could simply focus on the
instability that has the largest linear growth rate and ignore the others.
However, this procedure would ignore all subcritical instabilities
(whose linear growth rate is zero or negative), and could potentially
underestimate the true turbulent viscosity by orders of magnitude,
as seen in Section 6.4. Ignoring potential interactions between the
various instabilities, one could alternatively compute the turbulent
viscosity associated with each of them individually (taking into
account, this time, subcritical instabilities), and either add them all
as is done in MESA for instance (Paxton et al. 2011), or take their
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maximum value.’ This approach is somewhat better supported by our
data, but ignores the fact that subcritical instabilities are not always
necessarily excited — see the discussion in Sections 6.6 and 6.7. This
leads to the fundamental question of how can we predict whether the
non-linear shear instability is excited or not?

On that particular matter, an interesting outcome of our investiga-
tion is the discovery that the GSF instability can serve as a primer
for the shear instability, provided the former does not saturate into a
purely 2D flow (see Section 6.7). In other words, the turbulence
associated with the non-linear saturation of the GSF instability
(which draws its energy from the unstable angular momentum
gradient) can sometimes also tap into the shear itself, and further
drive diffusive shear instabilities. To do so, the GSF flow must be
fully 3D, which is usually the case unless R defined in equation (9) is
very close to the marginal stability threshold for the GSF (i.e. unless
Ry — Pr!, see equation 7).

With this in mind, we now propose the following algorithm to
model the turbulent viscosity when both GSF and shear instabilities
are potentially present at the same time®: (1) Compute R using (9),
and if 1 < Ry < Pr~!' compute the associated turbulent viscosity
for the GSF instability vgsp (using equation 10). (2) Compute JPr,
and if JPr < 0.007 compute the turbulent viscosity associated with
diffusive shear instabilities Ve, (using equation 46). (3) If Ry is
close to Pr!, the flow is likely 2D and will remain in a GSF state,
hence use the computed value of the turbulent viscosity vgsg (based
on the discussion in Section 6.6). (4) If R is substantially lower than
Pr!, so the GSF instability is 3D, then let vy, = max(Vshears VGSE)-
This also identifies the dominant instability in the flow.

In this algorithm, the only missing ingredient is the threshold (in
terms of Ry) beyond which the GSF instability remains 2D. Finding
this threshold will require a better understanding of the non-linear
saturation mechanism for the GSF instability at large Ry. From the
numerical experiments shown in this paper at Pr = 0.001, we found
that the GSF flow stays 2D when R, exceeds about 500 = 0.5Pr~!
(see in particular Fig. 9b). Whether a similar rule applies when Pr is
much smaller remains to be determined.

Of course, much more work remains to be done before one can gain
a complete understanding of shear instabilities and GSF instabilities
in stars. In particular, this study was limited to the equatorial region
of a star, and the dynamics away from the equator are known to
be substantially different, both for the GSF instability (Knobloch &
Spruit 1982; Barker et al. 2020), and for the shear instability (Cope,
Garaud & Caulfield 2020; Garaud 2020b). In the former case, Barker
et al. (2020) found that the GSF instability criterion is relaxed
compared with (5), and that angular momentum layering can lead
to a vast increase in the turbulent transport coefficient. In the latter
case, note that a star can undergo horizontal shear off equator, and
Cope et al. (2020) and Garaud (2020b) found that the horizontal
shear instability criterion is much less stringent than that of the
vertical shear instability, and that transport can be quite efficient.
As such, it is quite likely that most of our results do not apply at
higher latitudes. In addition, most stars are magnetized, and the role
of magnetic fields in suppressing or enhancing transport is highly
non-trivial (see e.g. Tobias, Diamond & Hughes 2007; Harrington &
Garaud 2019; Chen & Diamond 2020). Nevertheless, our study has

SThis, in our opinion, makes somewhat more physical sense, as it assumes
that one instability ends up dominating all the other ones. In practice, the
difference is not too significant.

SRegions of positive angular momentum gradient, where the GSF is not
excited, must be treated differently.
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shed light on what might happen when these two very different
instabilities coexist, demonstrating that it can lead to a variety of
interesting and, in the case of the relaxation oscillations, potentially
observable phenomena.
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