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Abstract

Turbulent mixing in the radiative regions of stars is usually either ignored or crudely accounted for in most stellar
evolution models. However, there is growing evidence that such mixing is present and can affect various aspects of
a star’s life. Here, we present a first attempt at quantifying mixing by horizontal shear instabilities in stars using
direct numerical simulations. The shear is driven by a body force, and rapidly becomes unstable. At saturation, we
find that several distinct dynamical regimes exist, depending on the relative importance of stratification and thermal
diffusion. In each of the regimes identified, we propose a certain number of theoretically motivated scaling laws for
the turbulent vertical eddy scale, the turbulent diffusion coefficient, and the amplitude of temperature fluctuations
(among other quantities). Based on our findings, we predict that the majority of stars should fall into one of two
categories: high Péclet number stratified turbulence, and low Péclet number stratified turbulence. The latter is
presented in a related paper by Cope et al., while the former is discussed here. Applying our results to the solar
tachocline, we find that it should lie in the high Péclet number stratified turbulence regime, and predict a substantial
amount of vertical mixing for temperature, momentum, and composition. Taken as is, the new turbulence model
predictions are incompatible with the Spiegel & Zahn model of the solar tachocline. However, rotation and
magnetic fields are likely to affect the turbulence, and need to be taken into account in future studies.

Unified Astronomy Thesaurus concepts: Astrophysical fluid dynamics (101); Hydrodynamics (1963); Stellar
evolution (1599); Stellar physics (1621); Hydrodynamical simulations (767); Stellar rotation (1629); Solar rotation
(1524); Stellar processes (1623)

1. Introduction

Inspired by the seminal work of Jean-Paul Zahn on shear
instabilities in stars (Zahn 1974, 1992), we have begun a
systematic exploration of this process and of its impact on mixing
in stellar radiative zones (see Garaud et al. 2015a, 2017; Garaud &
Kulenthirarajah 2016; Gagnier & Garaud 2018; Kulenthirarajah &
Garaud 2018; Cope et al. 2020). Shear is almost omnipresent in
stellar interiors. It can be directly measured in the Sun and in red
giant branch (RGB) stars thanks to helio- and asteroseismology
(see Christensen-Dalsgaard & Schou 1988; Brown et al. 1989;
Thompson et al. 1996; Schou et al. 1998; Charbonneau et al. 1999;
Beck et al. 2012; Deheuvels et al. 2012, 2014; Mosser et al.
2012a, 2012b; Benomar et al. 2018; Bazot et al. 2019, and many
others). It can also be inferred from observations of the surface
differential rotation of intermediate-mass stars (Barnes et al. 2005;
Reiners 2006; Reinhold et al. 2013; Balona & Abedigamba 2016).
Shear instabilities have long been invoked as a source of turbulent
mixing in stars, participating in the transport of both angular
momentum and chemical elements. Since the source of the shear is
usually the star’s differential rotation, shear-induced mixing is one
of the many processes involved in what stellar astrophysicists
usually refer to as rotational mixing (see, e.g., Zahn 1974;
Pinsonneault 1997; Maeder & Meynet 2000).

Shear can have components in both the vertical direction
(radial shear) and in the horizontal direction (latitudinal shear), as
exemplified by observations of the solar tachocline (e.g., Schou
et al. 1998; Charbonneau et al. 1999). Nevertheless, the vast
majority of theoretical studies of shear-induced mixing to date
have focused on the effect of vertical shear only. Vertical shear
instabilities are perhaps the most intuitive source of vertical
mixing in stars, since they directly generate vertical fluid motion.
But they are also directly affected by stratification, which tends to
suppress vertical flows. Indeed, a parcel of fluid, displaced

adiabatically by a distance Δr from its original position rm would
experience a buoyancy force
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where ρ0(r) is the background radial density profile of the star,
ρm=ρ0(rm), g is gravity, ∣r¶ ¶r ad is the rate of change of
density a parcel would undergo while traveling adiabatically,
and N is the Brunt–Väisälä frequency. As such, the larger the
stratification (as quantified by N), the larger the restoring force
experienced by adiabatic motions. Stratification can suppress
adiabatic vertical shear instabilities entirely unless the shear S
exceeds a certain threshold, such that
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where Jc is a constant of order unity. This criterion is known as
the Richardson criterion (Richardson 1920; Howard 1961). The
quantity J is fundamental to the study of stratified vertical shear
flows, and is the so-called gradient Richardson number. Typical
values of J in stellar interiors are usually in excess of 103 even
in very strong shear layers, suggesting that shear instabilities
are not possible. However, Zahn (1974) noted that thermal
diffusion can be very large in stars (see also Spiegel &
Zahn 1970), so the displacement of fluid parcels is not
necessarily adiabatic, especially if the latter are small. He then
argued that the correct criterion to apply should instead be

( ) ( )JPr JPr , 3c

where Pr=ν/κT is the Prandtl number (which is the ratio of the
viscosity ν to the thermal diffusivity κT) and ( )JPr c is also a
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constant, which is now O(10−3). The validity of this criterion was
independently verified by various groups (Prat & Lignières 2013;
Prat & Lignières 2014; Garaud & Kulenthirarajah 2016; Prat et al.
2016; Garaud et al. 2017) who further established that (JPr)c ;
0.007. Since the Prandtl number is usually exceedingly small in
stars (being typically∼10−6 or less), this implies that vertical
shear instabilities can be excited even when the gradient
Richardson number J is very large (i.e., up to O(104) or so,
depending on the local value of Pr). As thermal diffusion is
important for these instabilities to develop, they are now
commonly referred to as diffusive shear instabilities, or sometimes
secular shear instabilities.

Despite this, there are several reasons why these so-called
diffusive vertical shear instabilities may not be a particularly
important source of mixing in stars. First, even with the
modified stability criterion proposed by Zahn (1974), vertical
shear in most stars remains stable because the stratification is so
strong (i.e., N is very large); typical Richardson numbers in
RGB stars for instance are ( )-O 10 105 6 assuming that the
angular velocity profile is smoothly varying between the
rapidly rotating core and slowly rotating envelope (Deheuvels
et al. 2012, 2014). Second, the typical vertical eddy scale
associated with diffusive shear instabilities is small, because it
has to allow for rapid thermal diffusion. As proposed by Zahn
(1992) and confirmed by the direct numerical simulations
(DNSs) of Garaud et al. (2017), this scale is given by

( )k
=l

S

N
, 4T

Z 2

which we call the Zahn scale hereafter. Consequently, the
corresponding turbulent diffusivity is also relatively small.
Zahn (1992) suggested that it can be modeled as

( )k k
µ µ =D Sl

S

N
C
J
, 5T T

turb Z
2

2

2

which was recently confirmed by Prat & Lignières (2014), Prat
et al. (2016), and Garaud et al. (2017), as long as it is applied in
the correct parameter regime intended by Zahn (1992; see
Garaud et al. 2017, for more detail). Garaud et al. (2017)
estimated the constant C to be around 0.08, which would imply
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From Equation (5) we see that whenever J ? 1, Dturb = κT;
this is expected since the instability only occurs because of
strong thermal diffusion, so one would not expect it to transport
heat faster than diffusely. However, we also see from
Equation (6) that for the typical parameter values adopted here,
Dturb is not much larger than the typical microscopic viscosity
or compositional diffusivity in the star either (which are of the
order of unity in cgs units). This implies, as stated above, that
diffusive vertical shear instabilities may not be a particularly
relevant source of mixing for stellar evolution.

Horizontal shear instabilities are an alternative source of shear-
induced mixing, as also discussed by Zahn (1992). In contrast
with vertical shear instabilities, which must necessarily involve
vertical fluid motions, horizontal shear instabilities can develop
with purely horizontal flows and are therefore unaffected by
stratification. As such, they are always present except when

stabilized by rotation (see Watson 1980; Garaud 2001). Note that
without any vertical flow, purely horizontal shear instabilities
cannot induce any advective vertical transport. However, Zahn
(1992) further argued that the horizontal fluid motions in each
radial shell could become decoupled, therefore leading to the
generation of substantial vertical shear on short length scales.
This would drive secondary diffusive vertical shear instabilities,
and associated turbulent mixing. Zahn (1992; see also Lignières
2020, for an alternative argument leading to the same scaling)
argued that the turbulent mixing coefficient associated with these
horizontal flows would be

( )k e
µD

N
, 7T

turb 2

(see his Equation (2.22)) where ε is the viscous dissipation rate,
which he assumes would be of the order of the mechanical energy
injection rate). Cope et al. (2020) performed the first study of
horizontal shear instabilities with a stellar context in mind, and
confirmed Zahn’s prediction for the turbulent diffusion coefficient,
albeit only in a specific region of parameter space (see more on this
issue in Section 3 below). It is interesting to note that Dturb now
scales as ( )k NT

2 1 2, in contrast with the turbulent mixing
coefficient associated with vertical shear instabilities, which scales
as κT/N

2. As such, the former is more likely to dominate in the
strong stratification limit than the latter. For this reason, we now
propose to perform a more comprehensive study of mixing by
horizontal shear instabilities in stars, building on the work of Zahn
(1992) and Cope et al. (2020). Note that preliminary results on this
work were presented in Garaud (2020), but our theoretical
interpretation of the data has since changed, so the conclusions
presented in this paper should be preferred.
Section 2 presents the setup used for our numerical

experiments on horizontal shear instabilities, which is identical
to that of Cope et al. (2020). Section 3 summarizes the results
of Cope et al. (2020) and clarifies why a more comprehensive
study is needed. Section 4 describes the numerical method
used, and analyzes the results both qualitatively and quantita-
tively. In particular, Section 4.4.3 tentatively proposes a new
model for mixing by stratified horizontal shear instabilities in
stars, which should be valid in a wide range of parameter space.
Finally, Section 5 summarizes the results, discusses implica-
tions for the solar tachocline, and raises a number of further
questions that need to be addressed before the model can safely
be used in stellar evolution codes.

2. Model Setup

Following Cope et al. (2020), we consider a small region of
the radiative zone of a star, located around radius rm. Since we
are ignoring the effects of rotation, the latitude of that region is
irrelevant. We use a local Cartesian domain with coordinates
(x, y, z), where gravity is aligned with the vertical axis, so
= -g eg z. Here z=r−rm where r is the local radius, x is in

the azimuthal direction, and y is in the latitudinal direction. We
use the Spiegel & Veronis (1960) Boussinesq approximation for
weakly compressible gases, which is valid as long as the height
of the computational domain Lz is smaller than any density or
temperature scale height, an assumption that is fairly reasonable
deep in the stellar interior. Consistent with this assumption, the
gravity g, viscosity ν, and thermal diffusivity κT are assumed to
be constant within the domain. The background temperature
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profile T0(z) is assumed to be in thermal equilibrium, which then
implies that the background temperature gradient T0z must be
constant as well, within the context of the model used. As such,
we have

( ) ( )= +T z T T z, 8m z0 0

where Tm is the mean temperature of the star near r=rm.
Consistent with the Spiegel–Veronis–Boussinesq approx-
imation, we assume that the equation of state can be linearized
around Tm, such that
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where ρm=ρ(pm, Tm) is the mean density of the region, which
defines the coefficient of thermal expansion α as the
thermodynamic derivative
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A body force F is assumed to drive a mean shear flow in this
domain, which in turn drives the development of shear
instabilities. Perturbations to the background temperature
arising from these instabilities are assumed to be triply periodic
in the domain, and the total temperature profile is

( ) ( ) ˜( ) ( )= +T x y z t T z T x y z t, , , , , , . 110

The linearized equation of state them implies that corresp-
onding density perturbations can be written as

˜ ˜ ( )r
r
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m

With these definitions in mind, the Spiegel–Veronis–
Boussinesq equations governing the fluid evolution under the
effect of a body force F are:
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where ( )=u u v w, , is the velocity field, p̃ is the pressure
perturbation away from hydrostatic equilibrium (both u and p̃ are
also assumed to be triply periodic), = -T g cz pad, is the adiabatic
temperature gradient, and cp is the specific heat at constant
pressure. For simplicity, we assume that the shear is driven by a
sinusoidal body force ( )=F eF k ysin s x0 where p=k L2s y is the
wavenumber associated with the domain width Ly. The mean flow
is therefore in the x (azimuthal) direction, while the mean shear is
in the y (horizontal/latitudinal) direction.

As in Cope et al. (2020), we now non-dimensionalize the
variables and equations using the anticipated amplitude of the
flow U, obtained by requiring a balance between the inertial
terms and the forcing in the x direction:
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as the unit velocity. The unit length is taken to be -ks
1, so the

unit time is ( )-k Us 1. Finally, we choose ( )--k T Ts z z
1

0 ad, as the
unit temperature, so the nondimensional equations are
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where all of the hatted quantities are from here on nondimen-
sional1 and where
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are the Reynolds number, Péclet number, and stratification
parameters, respectively. N is the Brunt–Väisälä frequency
discussed earlier, defined here in terms of the quantities introduced
so far as ( )a= -N g T Tz z

2
0 ad, . The Reynolds number is the

usual ratio of the viscous diffusion timescale to the turbulent
advection timescale, the Péclet number is the corresponding ratio
of the thermal diffusion timescale and the turbulent advection
timescale, and finally, B is the square of the ratio of the buoyancy
frequency to the shearing rate, and is the equivalent of the
Richardson number but for horizontal shear.
Typical values of Re, Pe, and B in stars can be estimated as

follows, noting that ks=2π/Ly where Ly is the dimensional
length scale of the horizontal shear (which is presumed to be of
the order of the stellar radius):
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We therefore see that for the usual stellar parameters selected
here, Re Pe B, , 1, while =Pr Pe Re 1. It is worth
noting, however, that in the envelopes of high-mass stars, κT
can exceed 1015 cm2 s−1 (Garaud et al. 2015b), in which case
Pe<1, as already noted by Garaud & Kulenthirarajah (2016),
although Re and B remain much greater than 1.
The linear stability properties of horizontal sinusoidal shear

flows in a vertically stratified medium have been studied
extensively (Lucas et al. 2017; Cope et al. 2020). Similar
studies for a hyperbolic tangent shear profile were presented by
Arobone & Sarkar (2012) and Park et al. (2020). The main
findings of these studies are two fold. First, assuming that the
domain is longer than it is wide (i.e., Lx> Ly), then the 2D,

1 To simplify the notation, we have not added hats on the independent
variables x, y, z, and t, or on the differential operators; their non-
dimensionalization is implicit.

3
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vertically invariant mode of instability is always the most
rapidly growing mode (provided Re is larger than a factor of
order unity). The properties of this 2D mode are independent
of stratification (B) or thermal diffusion (Pe). Second, 3D
perturbations (i.e., perturbations that vary with z) are also
almost always excited, but their growth rates are often much
smaller than that of the 2D mode. As demonstrated by Cope
et al. (2020), however, these 3D perturbations play a crucial
role in the saturation of the instability in low Péclet number
flows, and are responsible for the layerwise decoupling of the
2D modes central to the Zahn (1992) model for mixing by
horizontal shear instabilities.

3. Horizontal Shear Instabilities at Low Péclet Number

The simulations of Cope et al. (2020) focused on a
distinguished limit of these equations, namely the low Péclet
number limit ( <Pe 1). This section summarizes their results
for completeness; the reader is referred to the original paper for
more detail.

The low Péclet number limit is interesting for two reasons.
First, as noted above, this limit is indeed achieved in the outer
layers of high-mass stars. Second, it lends itself to an
asymptotic simplification of the governing equations, which
greatly facilitates their analysis. Indeed, as shown by Lignières
(1999; see also Spiegel 1962; Thual 1992), in the limit where
the Péclet number based on the actual eddy scale and the rms
velocity of the flow is small, the advection terms in the heat
equation are negligible in comparison with the advection of the
background temperature profile. As a result the dominant
balance in the temperature equation is

ˆ ˆ ( ) -w Pe T , 231 2

which can then be applied in the momentum equation to yield
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Together, Equation (24) and continuity form the low Péclet
number equations can be solved self-consistently instead of
using Equations (18)–(20). We see that the only relevant
governing parameters are now Re and BPe, which reduces the
dimension of parameter space to be explored by one. More
interestingly, Equation (23) reveals that the temperature field is
entirely controlled by the velocity field, which strongly
constrains the allowable dynamics, and can also be used to
help interpret the results.

Cope et al. (2020) ran a number of simulations using both
the normal equations at Pe�1, and the low Péclet number
equations. The results of the latter were consistent with those of
the former when run at the same values of Re and BPe. Using
these simulations, Cope et al. (2020) were able to identify four
distinct dynamical regimes (two of which are only present for
sufficiently high Reynolds numbers). In all cases, the initial
development of the instability was consistent with predictions
from linear theory: the vertically invariant 2D mode is always
the first to grow, followed by 3D perturbations that cause a
vertical modulation of the 2D perturbations. This results in a
series of meandering horizontal jets that are only weakly
coupled in the vertical, and drive substantial vertical shear, as
proposed by Zahn (1992). In the limit of small stratification
(low BPe), the buoyancy force is essentially negligible. The

vertical and horizontal shear rapidly become fully turbulent,
and the turbulence supports a continuous range of eddy scales
from the injection scale (which here is L̂y) down to the viscous
scale. This is the unstratified regime, where heat is merely a
passive tracer. As BPe increases above unity, the vertical shear
instability between the meanders continues to exist, but the
increasing stratification gradually reduces the vertical size of
the turbulent eddies and the vertical velocity. In the horizontal
direction, the flow contains both large scales (associated with
the forcing) and small scales (associated with the vertical eddy
scale through continuity). Turbulence is present throughout the
domain, which is an important characteristic of this turbulent
stratified regime. As BPe continues to increase, however, the
vertical eddy scale becomes sufficiently small for viscosity to
be important. This begins to affect (but does not entirely
suppress) the vertical shear instability, and the turbulence
becomes intermittent. Finally, at the largest values of BPe, the
turbulence is entirely suppressed by viscosity and the flow
dynamics become layerwise 2D, with each thin layer viscously
connected to its neighbors.
A quantity of particular interest for mixing in stratified fluids

is the so-called mixing efficiency η (see, e.g., Maffioli et al.
2016), which measures how much of the energy injected into
the system is dissipated thermally versus viscously. Indeed,
dotting the momentum equation with û and integrating the
result over the (periodic) domain yields the kinetic energy
conservation equation

∣ ˆ∣ ˆ ˆ ∣ ˆ∣ ( ) ˆ ( )¶
¶

= á ñ - á  ñ + á ñ-u
u

t
B wT Re y u

2
sin , 25

2
1 2

where ·á ñ denotes a volume average hereafter. Terms on the
right-hand side are the rate of conversion of kinetic energy into
potential energy, the viscous dissipation rate, and the mechan-
ical energy input rate, respectively. Multiplying the temperature
equation with T̂ and integrating the result over the domain
yields the potential energy conservation equation

ˆ
ˆ ˆ ∣ ˆ∣ ( )¶

¶
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t

T
wT Pe T

2
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2
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where the second term on the right-hand side is the thermal
dissipation rate. Assuming a statistically stationary state, and
combining these equations, we get

( ) ˆ ˆ ˆ ∣ ˆ∣
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which indeed shows that the energy injected into the flow can
be dissipated in two ways: viscously or thermally. The quantity
η is then defined as

ˆ ˆ

( ) ˆ
( )h =

- á ñ
á ñ
B wT

y usin
, 28

and can be interpreted as the ratio of the amount of kinetic
energy transferred to potential energy (and later dissipated
thermally) to that injected into the flow mechanically by the
force F.
Together with the qualitative observations summarized

earlier, Cope et al. (2020) were able to model the dynamics
of each of these regimes (other than the intermittent regime)
using arguments of dominant balance, and proposed various

4
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scaling laws for the vertical eddy scale l̂z, the rms vertical
velocity ŵrms, the rms temperature fluctuations T̂rms, and η.
These are summarized in Table 1. Combining the expression
for ŵrms and l̂z yields a prediction for the vertical turbulent
mixing coefficient D̂turb, also shown in Table 1. We see that in
the stratified turbulent regime, D̂turb scales as ( )-BPe 1 2, which
can easily be shown to recover Zahn’s model for mixing by
horizontal shear flows.

The scaling laws for the stratified turbulent regime are
derived as follows (Cope et al. 2020). First, note that the
horizontal component of the flow velocity û must be O(1) by
the nondimensionalization selected. Next, since Pe is low, we
see from Equation (23) and on dimensional grounds that

ˆ ˆ ˆ ( )~ - -
w Pe l T . 29zrms

1 2
rms

Assuming a balance in the vertical component of the
momentum equation between the nonlinear term ˆ · ˆu w and
the buoyancy term ˆBT , then we also have

ˆ ˆ ˆ ˆ ( )~
-

u w l BT . 30zrms rms
1

rms

Combining the two implies

ˆ ( ) ( )~ -l BPe . 31z
1 3

Next, if one assumes that η is roughly constant and of the order
of unity (and take this as a defining property of this regime),
then ˆ ˆ ˆ ( ) ( )- á ñ ~ á ñ ~B wT u y Osin 1 , so

ˆ ˆ ( ) ( )~Bw T O 1 . 32rms rms

Combining this with the above, we then obtain

ˆ ( ) ˆ ( ) ( )~ ~- -w BPe T BPe Pe, , 33rms
1 6

rms
5 6

ˆ ˆ ˆ ( ) ( )~ ~ -D w l BPe . 34zturb rms
1 2

It is worth noting that the theoretical derivation of this scaling
law differs somewhat from the derivations of Zahn (1992) or
Lignières (2020), despite arriving at the same conclusion for
D̂turb. This is because Zahn (1992) and Lignières (2020) assume
that the viscous dissipation is known and fixed, while we
assume that the mechanical forcing (and therefore the typical
horizontal flow velocity U) is known and fixed. However, the
conclusions are consistent otherwise.

The applicability of the results of Cope et al. (2020) is
limited to low Péclet number flows (using the Péclet number Pe
that is based on the large-scale properties of the shear), and
since these conditions are only realized in the envelopes of the
most massive stars, they should not a priori be used to model

mixing in intermediate-mass main-sequence stars. In this paper,
we therefore extend their analysis to flows for which Pe ? 1,
but Pr = 1 (as is the case in the majority of stellar interiors).

4. Numerical Simulations

4.1. Methodology

As in Cope et al. (2020), we use DNSs to investigate the
nonlinear evolution of stably stratified horizontal shear flows.
We use the pseudo-spectral PADDI code (Traxler et al. 2011;
Stellmach et al. 2011), modified to account for the presence
of a body force (e.g., Garaud et al. 2015a; Garaud &
Kulenthirarajah 2016; Gagnier & Garaud 2018), to solve
Equations (18)–(20). The computational domain is triply
periodic, with size ( ˆ ˆ ˆL L L, ,x y z). The dimensions L̂x, L̂y, and
L̂z are 4π, 2π, and 2π, respectively, after Cope et al. (2020).
This selection was found to be a good tradeoff between
computational feasibility and dynamical reliability, i.e., the
ability to capture the correct dynamics without being overly
affected by the boundary conditions (Cope 2019). The
computational costs of these simulations are indeed high: since
we focus in this paper on the high Péclet number and low
Prandtl number regime, and since Re=Pe/Pr, the Reynolds
number has to be very high, and the resolution of the
simulations has to be correspondingly high as well. Further-
more, multiple simulations at high Re are required to capture
the parametric dependence of the solution on Re, Pe, and B. As
such, we choose in what follows to focus on two series of
simulations only:

1. Simulations at Pr=0.1, with Re=100 (Pe= 10),
Re=300 (Pr= 30), and Re=600 (Pe= 60).

2. Simulations at Pr=0.05, with Re=600 (Pe= 30).

Table 2 presents all of the available runs, together with selected
salient properties. All simulations at Re=100 have a resolution
of 384×192×192 equivalent grid points. Those at Re=300
have 576×288×288 equivalent grid points, and finally those
at Re=600 have 768×384×384 equivalent grid points. The
adequacy of the resolution was checked for each simulation by
visual inspection of the energy spectrum, of the physical space
vorticity field, and by computing the product of the Kolmogorov
scale and of the largest wavenumber (which needs to be greater
than one).
Simulations were either started from initial conditions with

ˆ ( ) ( )=u x y z y, , , 0 sin and all other fields seeded with random
small amplitude perturbations, or, from another simulation at
nearby parameters (e.g., gradually increasing or decreasing B). We
have found that the initial conditions used have no influence on

Table 1
Scaling Laws in the Low Péclet Number Regime, as Determined by Cope et al. (2020)

Regime Unstratified Turbulence Stratified Turbulence Intermittent Viscous

Validity BPe = 1 1= BPe = 0.0016Re2 0.0016Re2= BPe = 5Re2 BPe ? 5Re2

l̂z 2 ( )-BPe2 1 3 2(BPe)−1/3 2Re−1/2

ŵrms 1 ( )-BPe 1 6 ( )-Re BPe0.05 3 4 1 2 ( )-Re BPe0.25 3 2 1

T̂rms Pe ( )-Pe BPe 5 6 ( )-Pe BPe 5 6 ( )-PeRe BPe1 2 1

η BPe0.4 0.4 0.08Re1/2(BPe)−1/4 0.25Re2(BPe)−1

D̂turb 2 2(BPe)−1/2 ( )-Re BPe0.1 3 4 5 6 ( )-Re BPe0.5 1

Note. The prefactors are specific to the sinusoidal horizontal shear flow adopted here, but the scalings should be universally valid. The value of η in the turbulent
stratified regime should also be universally valid. The scalings in the intermittent regime are empirical only.
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the nature of the statistically stationary state reached by the
simulation, whenever such a state is achieved. However, it is not
always easy to be certain that such a state has been reached,
especially for simulations at large B and Re (which are
computationally expensive). Details of the issues arising are
presented in Appendix A. Generally speaking, we find that
quantities associated with vertical transport (such as the rms
vertical velocity and the rms temperature perturbations) very
rapidly reach a stationary state, and in all of the cases presented in
Table 2, such a state has indeed been achieved. However,
quantities associated with horizontal transport (such as the rms
horizontal velocities) sometimes exhibit variability on very long
timescales in the limit of large stratification. Table 2 lists which
simulations have not reached a statistically stationary state in
terms of horizontal transport, and which have.

4.2. Qualitative Behavior of the Flow

From a purely qualitative point of view, we find that
properties of our simulations at high Reynolds number, high
Péclet number, and low Prandtl number are similar to those of
high Reynolds number/low Péclet number flows. In particular,
we find that they appear to be divided into the same four
regimes identified by Cope et al. (2020): an unstratified regime,
a turbulent stratified regime, an intermittent regime, and a
viscous regime. Volume-rendered snapshots of û and ŵ in each
regime, for simulations with Re=600 and Pe=60 (so
Pr= 0.1) are shown in Figure 1. The unstratified regime (here,
for B= 1) is qualitatively identical to that described by Cope
et al. (2020); this is not surprising, since the temperature field

(not shown) behaves like a passive scalar in that limit. The
turbulence exhibits a wide range of scales, from the domain
scale to the viscous scale. In the stratified turbulence regime
(here for B= 10), turbulence is present everywhere in the
domain as well, but the vertical eddy scale is smaller; the
meanders of the horizontal flow are more clearly visible. In
the intermittent regime (here for B= 400), as the name
suggests, the turbulence is intermittent in both time and space.
The eddy scale is even smaller, and is affected by viscosity; this
can be seen by the fact that the vertical shear instability takes
the form of much more organized and localized rolls. Finally,
for very large values of B (here, for B= 6000), the vertical
shear instability is entirely viscously suppressed. The hor-
izontal flow takes the form of thin meandering jets in each
layer, and a very weak vertical flow is generated from the
divergence of the horizontal flow.

4.3. Data Extraction

For all simulations presented in Table 2, we have measured
the time-dependent quantity

ˆ ( ) ˆ ( ) ( )= á ñq t q x y z t, , , , 35rms
2 1 2

where q̂ could be û, v̂, ŵ, or T̂ . If that quantity has achieved a
statistically stationary state, then we take the time average of
ˆ ( )q trms over the interval Δt for which the system is statistically
stationary, and report it in Table 2 as q̂rms, and the associated
error bar quantifies the rms time variability of ˆ ( )q trms around
q̂rms. Simulations for which a statistically stationary state has

Table 2
Parameters and Main Results for the High Péclet Number DNSs

Re Pe B Ûrms ŵrms T̂rms η l̂z2

100 10 10 2.73±0.22 0.52±0.10 0.18±0.03 0.38±0.03 1.26±0.10
100 10 30 2.56±0.22 0.19±0.04 0.06±0.008 0.22±0.04 0.87±0.08
100 10 100 2.10±0.08 0.05±0.004 0.018±0.001 0.16±0.02 0.49±0.02
100 10 1000 2.21±0.11 0.016±0.001 0.004±0.0005 0.10±0.01 0.38±0.03
100 10 10000 3.44±0.46 0.004±0.002 0.0008±0.0003 0.04±0.02 0.47±0.12

300 30 0.01 2.43±0.12 0.96±0.08 1.16±0.24 0.01±0.002 1.91±0.16
300 30 0.1 2.39±0.11 0.94±0.08 0.83±0.11 0.07±0.01 1.77±0.20
300 30 1 2.29±0.17 0.82±0.10 0.55±0.05 0.30±0.04 1.62±0.20
300 30 10 2.50±0.18 0.61±0.08 0.21±0.02 0.44±0.04 1.03±0.10
300 30 30 3.13±0.19 0.46±0.09 0.10±0.02 0.40±0.03 0.75±0.06
300 30 100 (3.19 ± 0.09) 0.19±0.05 0.038±0.004 0.27±0.04 0.60±0.06
300 30 300 (3.22 ± 0.07) 0.03±0.009 0.011±0.001 0.17±0.02 0.32±0.03
300 30 1000 (4.08 ± 0.07) 0.02±0.003 0.0054±0.0006 0.13±0.02 0.22±0.01
300 30 10000 (2.42 ± 0.07) 0.004±0.0003 0.0008±5·10−5 0.05±0.004 0.18±0.008

600 30 10 2.15±0.11 0.57±0.05 0.19±0.02 0.47±0.02 1.03±0.09
600 30 30 2.40±0.13 0.42±0.06 0.09±0.01 0.43±0.02 0.63±0.05
600 30 100 (2.56 ± 0.11) 0.25±0.04 0.036±0.003 0.35±0.03 0.43±0.02

600 60 0.1 2.36±0.16 0.94±0.12 0.87±0.10 0.07±0.01 1.93±0.29
600 60 1 2.33±0.19 0.86±0.07 0.61±0.05 0.28±0.04 1.69±0.20
600 60 10 2.13±0.13 0.59±0.06 0.21±0.02 0.47±0.03 1.04±0.08
600 60 100 2.19±0.10 0.26±0.06 0.04±0.005 0.33±0.03 0.46±0.04
600 60 400 (2.99 ± 0.13) 0.13±0.06 0.015±0.002 0.19±0.05 0.36±0.03
600 60 1000 (2.80 ± 0.1) 0.02±0.01 0.006±0.0007 0.14±0.02 0.20±0.01
600 60 6000 (2.28 ± 0.11) 0.007±0.0006 0.002±0.0002 0.12±0.02 0.17±0.01

Note. The fourth column shows Ûrms (see Equation (39)), the fifth, sixth, and seventh columns show ŵrms, T̂rms, and η, respectively (see Section 4.3), and the last

column shows the vertical length scale l̂z2 (see Appendix B). All measurements are taken as time averages once the system has reached a statistically stationary state,
and the±represents the rms variability around the mean. In simulations for which Ûrms has not reached a steady state but all other quantities have (see Appendix A),
Ûrms is written in brackets.
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been reached for ˆ ( )w trms , ˆ ( )T trms , and ˆ ( )h t but not for ˆ ( )u trms

and/or ˆ ( )v trms (see discussion and example in Appendix A) are
shown in brackets.

In all cases, we have also computed an estimate of the vertical
eddy size, using the first zero of the vertical autocorrelation
function of ŵ (see, e.g., Garaud et al. 2017; Cope et al. 2020).
More specifically, we computed

(ˆ ) ˆ ( ) ˆ ( ˆ ) ( )= á + ñA l t w x y z t w x y z l t, , , , , , , , 36w

and let ˆ ( )l tz be the first zero of (ˆ )A l t,w . We then take the time
average of ˆ ( )l tz over the duration of the statistically stationary
state available, and the associated errorbar quantifies the rms
time variability of ˆ ( )l tz around the mean l̂z. Note that this is
done as a post-processing step for the simulations, and since the
full fields are not stored very often, the computation of l̂z does
not always involve many instants in time.

Finally, we compute the time-dependent mixing efficiency as

( )
ˆ ˆ

ˆ ˆ ∣ ˆ∣
( )h =

- á ñ

- á ñ + á  ñ- u
t

B wT

B wT Re
, 37

1 2

and report η in Table 2 as the time average of ( )h t during the
statistically stationary phase, together with its rms variability.

4.4. Quantitative Results

Cope et al. (2020), who focused on the low Péclet number
limit, presented all of their quantitative results on the flow
statistics as functions of BPe and Re (see their Figure 8). This is
a natural choice for their data since these are the only two
relevant parameters at low Pe (see Section 3). In contrast, there
is no reason to expect that the flow statistics should only
depend on BPe and Re in high Péclet number systems.
Nevertheless, to ease the comparison of our results with those
of Cope et al. (2020), we first present them as functions of BPe
in Figure 2. In all cases, the shape and size of the symbol
identify the Reynolds number (small circle for Re= 100, small
triangle for Re= 300, and large square for Re= 600). Open
symbols are used for the data presented by Cope et al. (2020),
with blue symbols corresponding to simulations using the
normal Equations (18)–(20) with Pe�1, while red symbols
correspond to simulations run using the asymptotic low Péclet
number Equation (24). Filled symbols are used to present the
new data obtained for this paper; the green-colored symbols
correspond to the suite of simulations with Pr=0.1, and the
orange symbols correspond to Pr=0.05.
We clearly see from this comparison between the high and

low Péclet number data that the qualitative similarity of the
results discussed earlier does not translate into a quantitative
similarity. On the whole, the high Péclet number data is quite
distinct from the low Péclet number data. However, a closer
inspection of Figure 2 shows that a few points for Pe?1 lie
on top of (or very close to, and within the errorbars of) those at
Pe=1. Crucially, these pairs of points have the same
Reynolds number, and the same values of BPe, but have
different individual values of B and Pe. These points are
marked with a purple ellipse and are generally located in the
region of parameter space corresponding to the intermittent or
viscous regimes. As we now demonstrate, this is not a
coincidence.

4.4.1. When Does a Flow Exhibit Low Péclet Number Dynamics?

As discussed by Lignières (1999) and summarized earlier,
the condition that needs to be met to be in the asymptotically
low Péclet number regime is not Pe = 1 (where we recall that
Pe is defined based on the outer scales of the system) but
instead, Pe 1t , where Pet is the turbulent Péclet number based
on the actual flow velocities and actual eddy scale. Since the
eddy scale decreases with increasing stratification, it is quite
plausible that Pet could drop below unity thus leading to low
Péclet dynamics even when Pe?1. This idea is in fact central
to Zahn’s model for horizontal shear instabilities (Zahn 1992),
and was confirmed numerically by Garaud & Kulenthirarajah
(2016) for vertical shear instabilities.
To test it here, we need a simple way to determine when a

system is dominated by low Péclet dynamics (i.e., when
ˆ ˆ -w Pe T1 2 ) and when it is not. One could compute at each
point in the domain and each point in time the respective sizes of
the terms ŵ, ˆ · ˆu T , and ˆ-Pe T1 2 , and compare them to one
another; however, this is unnecessarily cumbersome. After
analyzing various possibilities, we have determined that the ratio

∣ ˆ ∣
ˆ ˆ ( )=r
F

w T
, 38T

rms rms

where F̂T is the time average of ˆ ˆá ñwT during the statistically
stationary state, is an excellent diagnostic of the flow dynamics.

Figure 1. Volume-rendered (Childs et al. 2012) snapshots of û and ŵ for
simulations with Re=600, Pe=60, and varying B. From top to bottom, we
see the unstratified regime, the stratified turbulent regime, the intermittent
regime, and the viscous regime.
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Indeed, for truly low Péclet number flows, Equation (23) holds so
ŵ and T̂ are exactly in phase with one another. As a result, r is
very close to one. On the other hand, when Equation (23) does not
hold, ŵ and T̂ are generally not in phase, and r drops below one.

Taking the analysis of Lignières (1999) at face value, one
should therefore compare r to a turbulent Péclet number based
on the rms velocity of the fluid

ˆ ˆ ˆ ˆ ( )= + +U u v w , 39rms rms
2

rms
2

rms
2

and the vertical eddy scale, l̂z. The comparison is shown in
Figure 3(a), using the same symbol style as in Figure 2. We see
that r;1 for all of the low Pe runs (blue symbols), which is
expected since they also have ˆ ˆ =Pe U l Pe 1t zrms . At the
other end of the scale, we see that for many of the high Pe runs
(green and orange symbols), for which Pet?1, r drops to
values between 0.2 and 0.4, again as expected. However, we
see a group of points for values of Pet ; 10 (which is greater
than one) that nevertheless have r;1. The points marked with
a red arrow are the same as those circled in Figure 2, whose
properties are almost identical to those of low Péclet number
simulations. This suggests that ˆ ˆ=Pe U l Pet zrms is not the

relevant bifurcation parameter for low Péclet number
dynamics.
To correct this problem, we show in Figure 3(b) the same

data plotted this time against Pet defined as

ˆ ˆ ( )=Pe w l Pe. 40t zrms

We now see a much clearer partitioning between data with
Pet=1, which has r;1, and data with Pet?1, which has
r;0.2–0.4. All of the simulations that had a red arrow have
now moved to the low Pet clump.
The fact that the definition of Pet based on ŵrms is a better

choice than the one that uses Ûrms is fairly surprising, since the
derivation of Lignières (1999) of the low Péclet number
approximation clearly uses the latter rather than the former (and
is indeed the correct formal way of deriving it). A possible way
of understanding why this may be the case is to consider the
horizontal average of the temperature equation,

ˆ
ˆ ˆ ˆ

( )¶
¶

+
¶
¶

=
¶
¶

T

t z
wT

Pe

T

z

1
, 41

2

2

where the overbar denotes a horizontal average. Following
standard derivations, we have used incompressibility to write

Figure 2. From top left to bottom right: l̂z, ŵrms, T̂ Perms , and η as functions of BPe. In each quadrant, blue symbols represent simulations at Pe�1, red symbols
represent simulations performed using the low Péclet number approximation, green symbols represent high Pe simulations at Pr=0.1, and orange symbols have
Pr=0.05. The shape and size of the symbol represent the Reynolds number: small circles for Re=100, small triangles for Re=300, and large squares for
Re=600. Simulations that have large Pe, but whose dynamics appear to satisfy low Péclet number dynamics, and lie close to a low Pe point at the same parameter
values, are marked by a purple ellipse (see the main text for detail).
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ˆ · ˆ · ( ˆ ˆ ) = u uT T and the divergence theorem together with
horizontal periodicity to reduce this term to the vertical derivative
of the temperature flux. Also note that the horizontal average of ŵ
vanishes for mass conservation. For the convective flux to be
much smaller than the diffusive flux, we therefore need

ˆ ˆ ˆ
( ) ¶

¶
wT

Pe

T

z

1
, 42

which can be approximated as ˆ ˆ ˆ - -
w T Pe T lzrms rms

1
rms

1
to get

ˆ ˆ ( )=Pe w l Pe 1, 43t zrms

as required.

4.4.2. High Péclet Number Dynamics

So far, we have established that the Pe 1 simulations
presented in Table 2 can be partitioned into (1) simulations
with Pet=1 that have the characteristics of low Péclet number
flows, which are now relatively well understood thanks to the
work of Cope et al. (2020), and (2) simulations with Pet? 1
that do not have the characteristics of low Péclet number flows.
We now focus on attempting to understand the latter. To do so,
we present in Figure 4 the same data as in Figure 2, but this
time against B instead of BPe. We have also removed the data
for low Pe (blue points and red points), and identify the high Pe
but Pet< 1 data with open symbols instead of filled symbols.
Finally, for reasons explained in Appendix B, we have dropped
the original definition of the vertical eddy scale l̂z in favor of l̂z2,
measured as

ˆ ˆ
(ˆ ) ( ) ( )=

¢
¢ =l

l
A l t A t

0.38
where , 0.5 0, , 44z

z
w z w2

(i.e., where ˆ ¢lz is the width of the autocorrelation function at
half maximum). With this new definition, l̂z2 is close to the
originally defined length scale for most simulations (see
Appendix B), but is more robust and less variable in time
than l̂z.

We see that presenting the data against B causes it to
collapse quite well into one universal curve for all of the runs
that are not at low Pet (i.e., for all of the filled symbols, except
those that lie closest to the transition Pet= 1). This is expected:
if indeed both Pet?1 and Ret=Pet/Pr?1, one may
anticipate all diagnostics of the flow to become independent of
both parameters (though a weak dependence on their ratio Pr
remains possible). In the weakly stratified limit (which
corresponds to B=1), we see that, as in the low Pe
simulations of Cope et al. (2020), l̂z2 and ŵrms tend to constants
of the order of unity. By contrast, however, we now have
ˆ ( )=T O 1rms instead of ˆ ( )=T O Perms , and η ∝B instead of η
∝BPe. Once B exceeds unity, stratification becomes impor-
tant, and we enter the stratified turbulent regime. Empirically,
we find that η ; 0.4, as in Cope et al. (2020); this appears to be
a general characteristic of the mixing efficiency in low Prandtl
number flows. We also find that ˆ ˆ~ ~ -l w Bz2 rms

1 3, and
ˆ ~ -T Brms

2 3. The stratified turbulent regime appears to end as
Pet drops below unity, at which point the system satisfies the
low Péclet number approximation and is well described by
the theory of Cope et al. (2020; see more on this below). In
the following section, we present a theory that explains the
empirical scalings found in both the weakly stratified regime
and in the stratified turbulent regime.

4.4.3. Scaling Laws

In what follows, we use l̂z generically to denote a vertical
length scale, and reserve l̂z2 for the length scale measured in the
simulations (see Appendix B). In the weakly stratified regime,
with the non-dimensionalization selected, we expect the eddies
to be relatively isotropic with a dominant scale of the order of
unity, and all three components of the velocity should also be
of the order of unity (see also Cope et al. 2020). Figure 4
confirms that this is indeed the case for l̂z2 and ŵrms when
B<1. Furthermore, since the diffusion term in the temperature
equation is negligible (this being a high Péclet number flow),

Figure 3. The diagnostic quantity r (see Equation (38)) plotted against two different possible versions of the turbulent Péclet number: on the left, defined as
ˆ ˆ=Pe U l Pet zrms , and on the right, defined as ˆ ˆ=Pe w l Pet zrms . We see that the second option better distinguishes between simulations that satisfy the low Péclet number

approximation (r ; 1) and simulations that do not (r ; 0.2–0.4). The red arrows point to the simulations circled in Figure 2, whose properties are the same as low
Péclet number simulations with the same value of Re and BPe.
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we expect a balance between ˆ · ˆu T and ŵ, so that

ˆ ( ) ˆ ˆ
ˆ

ˆ ( )~ ~ ~w O
w T

l
T1 , 45

z
rms

rms rms
rms

implying that T̂rms must also be of the order of one, as seen in
Figure 4. Finally, noting that the denominator in η(t) (see
Equation (28)) must always be O(1) since ˆ ( )~u O 1 , then

ˆ ˆ ˆ ˆ ( )h - á ñ ~ ~B wT Bw T B, 46rms rms

as seen in the data.
In the regime of stratified turbulence, on the other hand, we

expect the stratification term to become relevant. This does not
directly affect the horizontal component of the momentum
equation, so we still expect to have ˆ ˆ ( )~ ~p u O 1rms rms

2 . In the
vertical component of the momentum equation, on the other
hand, the buoyancy term becomes important, and from
hydrostatic balance (namely ˆ ˆ¶ ¶p z BT ), we obtain

ˆ
ˆ

ˆ ˆ ( )~ ~
-p

l
l BT . 47

z
z

rms 1
rms

Meanwhile, in the temperature equation we still expect the
same balance as in the weakly stratified case (namely

ˆ · ˆ ˆ ~u T w), but this time the eddy scale ˆ ˆ~l lx z is not
necessarily O(1), so

ˆ ˆ
ˆ

ˆ
ˆ ˆ ( )~ ~

u T

l

T

l
w . 48

z z

rms rms rms
rms

Finally, as in the low Pe analysis of Cope et al. (2020), we
assume that this regime is defined by a constant η∼O(1),
which implies that

ˆ ˆ ( ) ( )~Bw T O 1 . 49rms rms

Combining these three estimates, we get

ˆ ˆ ˆ ( )~ ~ ~- -w l B T Band , 50zrms
1 3

rms
2 3

which is consistent with the observed scalings at intermediate
values of B (i.e., B ? 1 but small enough for Pet ? 1 to hold).
A fit to the data can help constrain the prefactors and reveals
that

ˆ ˆ ˆ ( )  - - -l B T B w B2.1 , , and 1.3 . 51z
1 3

rms
2 3

rms
1 3

These fits to the regime of stratified turbulence are shown as
purple lines in Figure 4.

Figure 4. From top left to bottom right: l̂z2, ŵrms, T̂rms, and η as functions of B. In each quadrant, open symbols represent simulations that have Pet�1, while filled
symbols have Pet>1 (see Equation (40)), green symbols represent simulations at Pr=0.1, and orange symbols have Pr=0.05. The shape and size of the symbol
represent the Reynolds number: small circles for Re=100, small triangles for Re=300, and large squares for Re=600. The straight lines represent fits to the data in
the stratified turbulent regime discussed in Section 4.4.3.
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4.4.4. Mixed Layers and U/N Scaling

While the scalings derived above are quite plausible in the light
of the supporting data, they are strikingly different from what is
commonly discussed and observed in high Reynolds number/
high Péclet number flows in geophysics, where >Pr 1. There, it
is well known that the strongly stratified turbulence can
intermittently drive the formation of localized mixed layers with
reduced stratification separated by thinner interfaces with stronger
stratification. The layers have a vertical scale of ( )~l U Nz ,
where U here is more generally the rms velocity of horizontal
flows, and L is their horizontal scale (see, e.g., Park et al. 1994;
Holford & Linden 1999; Billant & Chomaz 2000; Brethouwer
et al. 2007; Oglethorpe et al. 2013; Zhou & Diamessis 2019).
When written in terms of the non-dimensionalization adopted in
this work, the layer heights should therefore scale as∼B−1/2. We
clearly do not see this scaling here. This is surprising since when
Pe ? 1 and Re ? 1, the flow dynamics should be relatively
independent of the microscopic parameters ν and κT (and
therefore of their ratio), so the theoretical arguments put forward
to explain the formation of layers on a scale B−1/2 in geophysical
flows (Brethouwer et al. 2007) should still apply here. This raises
the question of whether thermally mixed layers on the scale B−1/2

actually do exist in our simulations, but cannot be identified with
the current method used to measure the vertical eddy scale.

Inspection of instantaneous temperature profiles (e.g.,
ˆ ( )T z0, 0, at different instants in time) in various simulations
does reveal the presence of locally mixed layers, at least in the
region of parameter space associated with stratified turbulence.
This is shown in Figure 5(a). These local inversions of the
temperature gradient become smaller and rarer as B increases,
and for values of B where Pet = 1, the temperature fluctuations
are too small to cause any change in the background
stratification. We have measured the scale l̂T of these locally
mixed regions, using the method described in Appendix B
(note that for very small values of B where temperature behaves
more like a passive scalar, the temperature profiles are too
variable to clearly identify layers, so we ignore them here). The
results are presented in Figure 5(b), and clearly show that these
mixed layers have approximately the same width as the vertical
eddy scale measured using the autocorrelation function—in
other words, each individual overturning event can be

attributed to a single strong eddy that locally mixes the
background stratification. We find no evidence for a scaling
law with ˆ ~ -l BT

1 2, as one might have expected. We are
therefore forced to conclude that the behavior of low Prandtl
number stratified turbulence is fundamentally different from
that of high Prandtl number stratified turbulence, and that
scalings typically associated with the latter do not apply here.

4.4.5. Transition to Low Péclet Number Dynamics

Using the new scaling laws derived in Section 4.4.3, and the
fact that the transition to low Péclet number dynamics occurs
when Pet drops below one, we predict that it should take place
(roughly) when

( ) ( )<  > k
-PeB B B Pe2.7 1 2.7 . 522 3 3 2

For runs with Pe=10, 30, and 60, respectively, the transition
should take place around Bκ;140, 730, and 2060, respec-
tively. This corresponds roughly to what we see in the data
(within a factor of about two).
Note that this transition from stratified turbulence with high

Péclet number dynamics to low Péclet number dynamics is
unique to the low Prandtl number limit. Indeed, another way in
which the stratified turbulence regime could break down is in
the limit where viscosity becomes important. This happens
when the viscous term in the horizontal component of the
momentum equation grows to be of the same order as the other
terms (which are all of the order of unity), namely when

ˆ
ˆ

( ) ˆ ( )~  ~- -Re
u

l
O l Re1 . 53

z

z
1 rms

2
1 2

With ˆ  -l B2.1z
1 3 in the stratified turbulence regime, this

transition would happen at the critical value

( )=nB Re2.1 . 543 3 2

However, since Re?Pe when Pr=1, we always have
Bν ?Bκ, so viscosity does not affect the transition from high
Péclet number stratified turbulence to low Péclet number
stratified turbulence.

Figure 5. Left: selected profiles of the total temperature (e.g., ˆ ( )+z T x y z, , ), for two simulations at Re=600, Pe=60, and B=10 (green dashed line) and
B=100 (red solid line), respectively. The two profiles are offset horizontally for ease of visualization. Note the presence of steps, that each correspond to a mixed
layer. The steps clearly become smaller as B increases. Right: height of the mixed layers l̂T (cyan and brown symbols), measured using the method described in
Appendix B, and compared with the vertical eddy scale (green and orange symbols), as a function of B. Symbols for the eddy scale are the same as in Figure 4.
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Once Pet drops below one (or equivalently, when B exceeds
Bκ), then the flow is governed by the low Péclet number
approximation (see Equation (23)). We know from the work of
Cope et al. (2020) that the dominant dynamics can be classified
into three possible regimes (ignoring the unstratified regime,
which is not relevant for these strongly stratified shear flows):
the low Péclet number stratified turbulence regime, when 1=
BPe=0.0016Re2, the intermittent regime, for 0.0016Re2=
BPe = 5Re2, and the viscous regime, for BPe ? 5Re2. Which
of these three regimes the system transitions into as B begins to
exceed Bκ therefore depends on Pr and Pe, as illustrated in

Figure 6(a). If Pr is closer to one (e.g., Pr= 0.1, as in the DNSs
presented here), then the flow transitions directly from high
Péclet number stratified turbulence to the low Péclet number
intermittent regime unless Pe is very large. As Pr decreases
down toward stellar values, however, the flow can transition
from high to low Péclet number stratified turbulence for
intermediate values of Pe (see Figures 6(b) and 7). To see this
numerically would require DNSs at the following parameters at
least: Pr=0.001, Pe=10, and Re=104, which is presently
outside of the range achievable by the PADDI code.

5. Discussion

5.1. Summary, Implications, and Discussion

In this work, we have used DNSs to examine turbulent mixing
in horizontal shear flows driven by a body force with amplitude
F0 and characteristic length scale L, in the distinguished stellar
limit where the Prandtl number Pr= ν/κT is low, where both the
outer scale Reynolds number n=Re UL and Péclet number

k=Pe UL T are high, and where the stratification parameter
B=N2L2/U2 is high. Here, N is the Brunt–Väisälä frequency,
and in the model, U is a characteristic amplitude of the horizontal
flow obtained by assuming a balance between the forcing and the
Reynolds stress in the horizontal (see Equation (17)). In a star,
however, U/L would simply be the observed mean horizontal
shear. We have found that the resulting turbulent dynamics of
these shear flows can be divided into two categories, depending
on the turbulent Péclet number ˆ ˆk= =Pe w l w l Pet z T zrms rms ,
where wrms is the typical vertical velocity of turbulent eddies,
and lz is their vertical scale. Note that hatted quantities are
nondimensional (see Section 2), while nonhatted quantities are
dimensional.
In the more weakly stratified cases (but still with B 1, as

expected in stars), the dominant turbulent eddies and their
vertical velocities are relatively large, so Pet ? 1. In that limit,
we found that ˆ  -l B2.1z

1 3, which implies, dimensionally,
that

⎛
⎝⎜

⎞
⎠⎟ ( )
-

l
N L

U
L2.1 . 55z

2 2

2

1 3

Meanwhile, we found that ˆ  -w B1.3rms
1 3 and ˆ  -T Brms

2 3,
which imply dimensionally that

⎛
⎝⎜

⎞
⎠⎟ ( )
-

w
N L

U
U1.3 , and 56rms

2 2

2

1 3

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

( )

 -
- -

T
N L

U
L T T

N L

U
L
N

g
T ,

57

z z mrms

2 2

2

2 3

0 ad,

2 2

2

2 3 2

where T0z is the background temperature gradient, T zad, is the
adiabatic temperature gradient, g is gravity, and Tm is the mean
temperature of the region considered. Taken together, these
imply a vertical turbulent diffusivity (for compositional mixing
or momentum transport, for instance)

⎛
⎝⎜

⎞
⎠⎟ ( )~
-

D w l
N L

U
UL2.7 , 58zturb rms

2 2

2

2 3

Figure 6. Evolution of the regime diagram as the Prandtl number decreases
from Pr=0.1 (top, DNS value) to Pr=0.001 (bottom). In both plots, the blue
line marks the transition from unstratified (or weakly stratified) to strongly
stratified turbulence, and the red line approximately marks the transition
between high and low Péclet number dynamics. The inclined portion of the red
line is the line Pe=B2/3/2.7, or equivalently, B=Bκ or Pet=1. Above the
red line and to the right of the blue line, the turbulence is in the high Péclet
number stratified turbulence regime (HPNST) discussed in Section 4.4.3.
Below the red line, the dynamics satisfy the low Péclet number approximation,
and can fall into the three possible regimes identified by Cope et al. (2020): low
Péclet number stratified turbulence regime (LPNST), intermittent regime, and
viscous regime (see Section 3).
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and a vertical temperature flux (recalling that ∣ ˆ ∣ ˆ ˆF w T0.25T rms rms

in this limit, see Section 4.4.1),

⎛
⎝⎜

⎞
⎠⎟ ( ) ( ) - -
-

F
N L

U
UL T T0.3 . 59T z z

2 2

2

1

0 ad,

Note that all of these scaling laws were obtained by analyzing
two sets of DNSs, one for Pr=0.1, and one for Pr=0.05,
both of which are much larger than the expected values of Pr in
stars (which would be closer to Pr∼ 10−6 or even smaller), and
not particularly well separated in parameter space from one
another. As such, there is a reasonable possibility that the
prefactors in the estimates obtained have a weak dependence on
Pr (possibly logarithmic), leading to uncertainties of the order
of one in lz, wrms, Trms, Dturb, and FT.

As the stratification increases (i.e., B increases holding
everything else constant), both lz and wrms decrease, and so does
the turbulent Péclet number Pet. When Pet drops below one, the
dynamics become thermally diffusive (see Lignières 1999, and
Section 4.4.5). Assuming that the turbulence satisfies the scalings
(Equations (55)–(59)), prior to this diffusive transition, then the
latter occurs when ( )= =kB B Pe2.7 3 2, independently of Pr
(see Section 4.4.5). For B?Bκ, the temperature equation
satisfies the low Péclet number approximation (Equation (23)).
As discovered by Cope et al. (2020) and summarized in Section 3,
there are various possible regimes the system could achieve in that
case, depending on the respective values of the product BPe and
of Re (low Péclet number stratified turbulence regime, intermittent
regime, and viscous regime). A possible regime diagram for stellar
values of the Prandtl number (Pr∼ 10−6) is presented in Figure 7,
showing both the diffusive transition and the possible regimes
achievable beyond the transition. Generally speaking, we see that
for reasonable stellar values of B and Pe (see, e.g., Equation (22)),
we can expect a simple transition from high Péclet to low Péclet
stratified turbulence as B increases.

5.2. Implications for the Solar Tachocline

As discussed in Section 1, the solar tachocline is the best-
known example of a stellar shear layer that is located in a
radiative zone, and has substantial horizontal shear. Using
values of L;rcz=5×1010 cm (where rcz is the radius of the
base of the convection zone), N ; 10−3s−1, U∼rcz ΔΩ ;
104 cm s−1 (where ΔΩ ; 2× 10−7s−1), ν ; 10 cm2 s−1,
and κT ; 107 cm2 s−1 appropriate for the bulk of the solar
tachocline, we get

( )   -Pr Re Pe B10 , 10 , 10 and 10 . 606 13 7 6

This point is shown in Figure 7 and lies well within the high
Péclet number stratified turbulence regime discussed above.
Combining Equations (55)–(59) with Equation (60) would
imply that

( ) ( )
 ´ ~ ´

~ -

- -

-

l L w U

T L T T

2.1 10 , 1.3 10 ,

and 10 . 61
z

z z

2
rms

2

rms
4

0 ad,

Since the width of the tachocline itself is at most of the order of
a few percent of rcz, this would appear to imply that it is only a
few eddies wide (or less). We can also compute an estimate for
the vertical turbulent diffusivity (of chemical species or
momentum) as

( ) ( )~ ´ ~- -D UL O2.7 10 10 cm s . 62vturb,
4 11 2 1

Estimating the horizontal turbulent diffusivity D hturb, from the
model on the other hand is much more difficult, because the
horizontal flow contains a vast range of energy-containing scales
(from the scale of the jet and its large-scale meanders, to the scale
lx;ly;lz of the turbulent eddies). As such, it is not clear
whether one should estimate ~D ULhturb, , or ~D Ulh zturb, , or
something else altogether.
Nevertheless, we are now in a position to determine whether

our turbulence model is consistent with the Spiegel & Zahn
(1992) model of the tachocline, or not. Spiegel & Zahn (1992)
demonstrated that, provided the tachocline is turbulent, and
provided the turbulence is sufficiently anisotropic such that

⎜ ⎟⎛
⎝

⎞
⎠ ( )

D

D

r

h
, 63h

v

czturb,

turb,

2

then the tachocline thickness is related to D hturb, via

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ ( )  kW

h
N D

r 64T

h
cz

1 2

turb,

1 4

(see their Equation (5.19)). For Spiegel & Zahn’s model to be
self-consistent, we therefore need

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ ( )  kWh

r N D
. 65

cz

T

vturb,

1 2

Assuming that our new turbulence model is indeed applicable
to the solar tachocline, then Equation (62) should hold.
Substituting the observed values of all known quantities (see
above, and also W ´ -3 10 6 s−1), Equation (65) becomes

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) W

~- - -h

r N
B Pe O2.7 10 . 66

cz

2 3 1 2 4

Figure 7. The same as in Figure 6 but for a solar value of the Prandtl number.
The e symbol marks the approximate location of the bulk of the solar
tachocline, and the green line shows how this position would change if U varies
(the point would go up along this line if U increases, and down if U decreases).
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This is not consistent with our turbulence model,2 where the
height of the turbulent eddies is ( ) ( )- -O r O r10 10cz cz

2 4 (see
Equation (61)). In other words, it appears that the Spiegel &
Zahn model of the tachocline cannot be reconciled with our
new model for stratified turbulence driven by horizontal shear
flows. Possible resolutions of this inconsistency are discussed
below.

Finally, from Equation (59), we find that the turbulent
temperature flux is

∣ ∣ ( ) ( )~ -F O 10 K cm s , 67T
4 1

using a value of - = -T T N T g 10z z m0 ad,
2 4 K cm−1 with g

; 5×104 cm s−2 and Tm ; 2×106K. This is to be compared
with the background diffusive temperature flux, which is equal
to k- ~T 10T z0

3K cm s−1 using ∣ ∣  -T 10z0
4 K cm−1. The

ratio of the two is therefore of the order of

∣ ∣
∣ ∣

( )
k

~
F

T
10, 68T

T z0

which would imply that the shear-induced turbulence could
have a substantial effect on the heat transport in this region.
Note that as it is located in a stably stratified region, FT<0,
which would imply an inward turbulent heat flux. Again, this
finding is not consistent with Spiegel & Zahn’s model of the
tachocline, which assumes that the shear-induced turbulence
does not affect the local stratification.

5.3. Discussion

The apparent contradictions between our numerical findings
on stratified turbulence generated by horizontal shear flows
and Spiegel & Zahn’s model of the tachocline (Spiegel &
Zahn 1992) strongly suggests that one or the other (or both)
may not appropriately model the tachocline dynamics. If our
new turbulence model is correct, then this calls for a completely
new model of the solar tachocline, in which the turbulence is
quite strong and able to modify the stratification below the
convection zone. This would likely be observable using
helioseismology. If on the other hand Spiegel & Zahn’s model
applies, then this would imply that our turbulence model is
missing crucial elements that need to be accounted for to
correctly capture the tachocline dynamics. There are several
possibilities for which this could be the case.

For instance, it is important to bear in mind that our model
predictions for the solar tachocline are predicated on the
assumption that there is no other possible turbulent regime.
However, this is just an assumption, and it is not impossible
that a new regime could appear at very low Prandtl number,
with its own set of scaling laws. If that were to be the case, then
the functional dependence of Pet on Pe and B could change, in
which case the Pet=1 line would move in parameter space
from its present position. In other words, future work will be
needed to confirm (or invalidate) the predictions made in this
work when Pr is in the stellar range.

More importantly, however, is the fact that our study
currently neglects several important physical processes that are
known to be present in stars and will likely impact the results,
such as rotation, magnetic fields, vertical shear, and the

possibility of additional sources of stratification such as a
gradient in chemical composition.
The most likely culprit is rotation. As discussed by Watson

(1980; see also Garaud 2001; Park et al. 2020), rotation can
stabilize a global latitudinal differential rotation pattern (at least
from the perspective of linear theory), so the 2D mode of
horizontal shear instability that is always present in our
simulations (and is crucial to the excitation of the turbulence)
may disappear in rapidly rotating stars, or in stars that are
weakly differentially rotating. In the solar tachocline, the shear
appears to be marginally stable to horizontal shear instabilities,
which could be interpreted as evidence that the tachocline is
actually turbulent, and that the turbulence is transporting
potential vorticity to drive the system toward (but never quite
reaching) marginal stability (see Garaud 2001). Even if the
flow is shear-unstable, however, rotation is likely to influence
both 2D and 3D modes of instability (Park et al. 2020),
therefore affecting the large-scale horizontal eddies and their
horizontal transport properties. We can quantify this by
estimating the Rossby number associated with the vertical
component of the momentum equation (i.e., the ratio of the
nonlinear terms to the Coriolis term). We find that it is the same
as that associated with horizontal flows, and equal to

∣ · ∣
∣ ∣
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~
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~ ~
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h
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This implies that rotation will be important even on the smaller
vertical scales associated with the eddies, and will likely modify
the vertical momentum balance crucial to the turbulence scalings
derived in Section 4.4.3. Further study of the effect of rotation on
the results presented in this paper is therefore crucial to a better
understanding of the solar tachocline in particular, and other stars
in general.
Coherent horizontal magnetic fields (such as a large-scale

toroidal field that is likely present in the tachocline) could also
stabilize the standard 2D hydrodynamic mode of instability, but
would in turn drive alternative types of magnetohydrodynamic
modes (e.g., Gilman & Fox 1997; Cally 2001) that would
behave quite differently from the large-scale meanders that
arise in our model. Furthermore, since magnetic fields are
generated on all scales by the turbulence, they will likely
modify the vertical momentum balance, with similarly crucial
consequences on the scalings derived. Again, a further study of
the effect of magnetic fields will be required before the model
can be reliably applied to the Sun and other stars.
Beyond the addition of rotation and magnetic fields, the

model will also need to account for compositional stratification
and vertical shear. Indeed, the solar tachocline is a region that is
subject to both horizontal and vertical shear (rather than
horizontal shear alone, as studied here), and it is not clear
whether the added vertical shear would affect our results or not.
Finally, a compositional (rather than thermal) stratification
would significantly change the results discussed here as well.
This is because the compositional diffusivity κC is typically
smaller than the kinematic diffusivity by a factor of 10 or so in
stars, so the equivalent Prandtl number ν/κC would be larger
than one instead of being small. In that case, results from the
geophysical literature are more likely to apply (in particular
those obtained for thermally stratified water, where Pr ; 10).

2 Whether this is consistent with observations or not remains to be determined
—observations can still only provide an upper limit on the tachocline thickness.
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Despite the enormous task still lying ahead, however, the
present study provides a first numerical look at the possible
nature of turbulence in stably stratified regions of stars
undergoing horizontal shear, even if it might not necessarily
apply to the solar tachocline. It is quite clear that horizontal
shear flows have the potential to cause substantial vertical
mixing in stars, which ought to be taken into account in stellar
evolution models moving forward.
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Appendix A
Stationary versus Nonstationary Runs

This Appendix briefly presents some of the raw data
obtained from the simulations, and illustrates the extraction
procedure. It also discusses the issue encountered for the few
runs at high values of B, in which a statistically stationary state
has not yet been reached.
For all simulations, we measure volume averaged quantities

such as ˆ ( )u trms , ˆ ( )w trms , ˆ ( )T trms , and η(t) (see Section 4.3). In all
cases, quantities associated with vertical motions settle into a
statistically stationary state very rapidly, while ˆ ( )u trms (and
ˆ ( )v trms , to some extent) often take longer to reach this state. A
simulation is therefore deemed to have achieved such a state if
ˆ ( )u trms appears to be statistically stationary for an interval of
duration Δt=100 or more (which corresponds roughly to 100
turnover times of the horizontal eddies, since the latter have

Figure A1. Time evolution of ˆ ( )u trms , ˆ ( )w trms , ˆ ( )T trms , and η(t) for a simulation with Re=300, Pe=30, and B=0.1, restarted from a run at Re=300, Pe=30, and
B=1. The orange shaded box marks the time during which the system is deemed to be statistically stationary. The green line is the measured average, and the two
blue lines show the average plus and minus one standard deviation.
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both size and velocity∼O(1) in the non-dimensionalization
selected). In most cases presented in Table 2, such a state has
been achieved, and the time averages of, e.g., ˆ ( )u trms , ˆ ( )w trms ,
ˆ ( )T trms , and η(t) are then measured and reported, together with
their rms variability around the average. Figure A1 shows an
example of a simulation at Re=300, Pe=30, and B=0,1
that appears to have reached a statistically stationary state. For
each of the quantities plotted, the green line is the mean
measured between t=340 and t=450, while the blue lines
are one rms above and one rms below that average.

By contrast, a few simulations at high values of B do not
appear to have reached such a state yet, despite considerable
integration times. This is the case for example of the Re=300,
Pe=30, and B=300 run, shown in Figure A2. We see,
however, that quantities associated with vertical motions have
settled into a statistically stationary state, which appears to start
roughly around t=700. The averages of ˆ ( )w trms , ˆ ( )T trms , and
η(t) were therefore measured in the time interval between
t=700 and t=900. The average of ˆ ( )u trms has also been
measured, but should not be viewed as statistically stationary.

Appendix B
Length-scale Measurements

As discussed in the main text, Cope et al. (2020) defined the
vertical length scale ˆ ( )l tz of turbulent eddies at a given instant
in time as the first zero of the autocorrelation function (ˆ )A l t,w
(see Equation (36)). In most cases, this definition works very
well, as the zero is well defined and fairly stationary in time.
However, in a few of the high Péclet number runs presented in
Section 4, we have found that ˆ ( )l tz varies widely with time,
because (ˆ )A l t,w has a long positive but weak amplitude tail
whose first zero exhibits wide excursions. The difference
between the normal and abnormal behavior of (ˆ )A l t,w is
illustrated in Figure B1.
Inspection of the data reveals that the simulations for which

the abnormal behavior is most pronounced are for Re=300,
Pe=30, and B=100 (shown in Figure B1), Re=300,
Pe=30, and B=30, and Re=600, Pe=30, and B=30.
Interestingly, these are precisely the simulations that appear to
be outliers when plotting l̂z versus B (see red arrows in
Figure B2(a), which is the equivalent of Figure 4 in the main

Figure A2. Time evolution of ˆ ( )u trms , ˆ ( )w trms , ˆ ( )T trms , and η(t) for a simulation with Re=300, Pe=30, and B=300, restarted from a run at Re=300, Pe=30,
and B=100. The orange shaded box marks the time during which the system is deemed to be statistically stationary in terms of ˆ ( )w trms , ˆ ( )T trms , and η(t), even though
ˆ ( )u trms is still evolving. The green line is the measured average, and the two blue lines show the average plus and minus one standard deviation.
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text but with l̂z instead of l̂z2). This strongly suggests that using
the first zero of the autocorrelation function may not be a
universally good estimate of l̂z for the high Péclet number
simulations.

Figure B1 shows that in both normal and abnormal cases, the
function (ˆ )A l t,w has a well-defined core structure that can be
used to create an alternative definition for the eddy size l̂z. We
therefore define a new length scale ˆ ( )¢l tz such that

(ˆ ) ( ) ( )¢ =A l t A t, 0.5 0, B1w z w

(i.e., the width at half maximum), and as usual, take the time
average of ˆ ( )¢l tz during the statistically stationary state.
Naturally, we expect ˆ ˆ¢ <l lz z by continuity of (ˆ )A l t,w . We
also expect that in most normal cases, l̂z and ˆ¢l z should follow
something close to a simple linear relationship, with ˆ¢l z

proportional to l̂z (that relationship would be exact if Aw were a

linear function of l̂ ). We have measured ˆ¢l z for all simulations
presented in Table 2, and plot the two length scales against one
another in Figure B2(b). We see that overall, ˆ ˆ¢l l0.38z z,
except for the same three abnormal simulations, which appear
as outliers in the plot (marked by red arrows). We therefore
adopt a new definition of ˆ ˆ= ¢l l 0.38z z2 in the remainder of the
paper, to ensure that (other than for the abnormal cases), l̂z2 is
as close as possible to the originally defined l̂z.
Finally, as discussed in the main text (see Section 4.4.4), we

also measured the vertical scale of thermally mixed layers l̂T for
simulations in the stratified turbulent regime (for Pet ? 1). To
do so, we looked at individual profiles ˆ ( )T x y z t, , , for all (x,y)
points at selected instants in time where the full fields are
available. We then constructed the total temperature,

ˆ ( )+z T x y z t, , , , and its gradient, ˆ ( )+ dT x y z t dz1 , , , . We
identified all local minima and maxima of this gradient. A
region is deemed to be thermally mixed if the minimum of

Figure B1. Comparison between a normal case, where the first zero of the autocorrelation function (ˆ )A l t,w is well defined (left), to an abnormal case, where there is
instead a long positive tail (right). In both figures there are nine lines, each corresponding to a graph of (ˆ )A l t,w as a function of l̂ at a specific point in time taken
during the statistically stationary phase.

Figure B2. Left: as in Figure 4 in the main text, but showing l̂z vs. B instead of l̂z2 vs. B. The legend is visible in the right plot, and the purple line is the line 2.5B−1/3.
Note the three outliers, marked by the red arrows. Right: comparison between ˆ¢l z and l̂z. Aside from three points marked by the red arrows (which correspond to the
same simulations highlighted on the left), the data shows that ˆ¢l z is indeed roughly proportional to l̂z, with ˆ ˆ¢l l0.38z z (black line).
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ˆ ( )+ dT x y z t dz1 , , , lies below zero; the corresponding width
of this region is then computed as the distance between the two
nearest local maxima whose value is greater than 1 bracketing
this minimum. An example of the procedure applied to a profile
from the simulation at Re=600, Pe=60, and B=100 is
shown in Figure B3. The procedure is repeated for all available
profiles, and the length scale l̂T is then computed as the average
width of all mixed layers identified.
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