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ABSTRACT
We consider incomplete observations of stochastic processes gov-
erning the spread of infectious diseases through finite populations
by way of contact. We propose a flexible semiparametric modelling
frameworkwith at least three advantages. First, it enables researchers
to study the structure of a population contact network and its impact
on the spread of infectious diseases. Second, it can accommodate
short- and long-tailed degree distributions and detect potential
superspreaders, who represent an important public health concern.
Third, it addresses the important issue of incomplete data. Starting
from first principles, we show when the incomplete-data generat-
ing process is ignorable for the purpose of Bayesian inference for the
parameters of the populationmodel. We demonstrate the semipara-
metricmodelling frameworkby simulations andanapplication to the
partially observed MERS epidemic in South Korea in 2015. We con-
clude with an extended discussion of open questions and directions
for future research.
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1. Motivation

The ongoing spread of COVID-19 and other viruses underscores the importance of
understanding how infectious diseases spread by way of contact and how the spread
of infectious diseases can be curbed. Indeed, COVID-19 is not the !rst virus to
spread around the globe, and it will not be the last: Epidemics have been docu-
mented since at least the Middle Ages (e.g. the plague) and are primed to become
more frequent rather than less frequent in the interconnected world of the twenty-
!rst century (as the recent spread of COVID-19, MERS, SARS, Ebola, and Zika
demonstrates).
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1.1. Advantages of network-based approaches to epidemics

We follow a network-based approach to modelling the spread of infectious diseases.
A network-based approach is appealing, because the network of contacts in a popu-
lation determines how infectious diseases can spread (e.g. Keeling and Eames 2005;
Danon et al. 2011; Welch, Bansal, and Hunter 2011). One of the advantages of a
network-based approach is that heterogeneity in the number of contacts can be cap-
tured (e.g. Danon et al. 2011) along with other features of population contact net-
works (e.g. Welch et al. 2011). Indeed, conventional models of epidemics – includ-
ing classic and lattice-based Susceptible-Infectious-Recovered (SIR) and Susceptible-
Exposed-Infectious-Recovered (SEIR) models (e.g. Andersson and Britton 2000; Danon
et al. 2011) – can be considered to be degenerate versions of network-based models,
in the sense that such models postulate that with probability 1 the population con-
tact network is of a known form: e.g. with probability 1 each population member is
in contact with every other population member. Worse, the postulated form of the
population contact network may not resemble real-world contact networks. A second
advantage is that a network-based approach helps study the structure of a population
contact network and its generating mechanism, helping generalise !ndings to similar
populations.

1.2. Shortcomings of existing network-based approaches

Motivated by the shortcomings of classic and lattice-based SIR and SEIR models of
epidemics, Britton and O’Neill (2002), Groendyke, Welch, and Hunter (2011, 2012),
Groendyke and Welch (2018), Bu, Aiello, Xu, and Volfovsky (2021), and others have
explored a network-based approach to epidemics. While a network-based approach is
more appealing than classic and lattice-based SIR and SEIR models, existing network-
based models of epidemics have shortcomings. As we discuss in Section 3, one of the
more important shortcomings is that existing network-based approaches are either not
"exible models of degree distributions or induce short-tailed degree distributions, that is,
the population does not contain population members who have many more contacts than
the bulk of the population members. Short-tailed degree distributions are problematic,
because degree distributions of real-world contact networks are thought to be long-tailed
(e.g. Laumann, Gagnon, Michael, and Michaels 1994; Albert and Barabàsi 2002; Jones
and Handcock 2003a, 2003b, 2004) and the population members in the upper tail of the
degree distribution represent an important public health concern: Population members
withmany contacts can infectmany others and are hence potential superspreaders. Indeed,
there is circumstantial evidence to suggest that superspreaders have played a role in the
SARS epidemic in 2002–2003, the MERS epidemic in 2015, and the ongoing COVID-19
pandemic.

1.3. Proposed network-based approach

We introduce a "exible semiparametric modelling framework based on in!nite mix-
ture models and Dirichlet process priors (Ferguson 1973; Teh 2010), with at least three
advantages. First, it shares with existing network-based approaches the advantage that
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it enables researchers to study the structure of a population contact network and its
impact on the spread of infectious diseases. Second, in contrast to existing network-
based approaches, it is a "exible model of short- and long-tailed degree distributions and
can detect potential superspreaders. Third, it addresses the important issue of incom-
plete data and can deal with a wide range of missing data and sample data. Starting
from !rst principles, we show when the incomplete-data generating process is ignor-
able for the purpose of Bayesian inference for the parameters of the population model.
In addition, we stress the importance of collecting network data with a view to reduc-
ing the posterior uncertainty about the population contact network and its generating
mechanism alongwith possible sources of infections.We demonstrate the proposed frame-
work by simulations and an application to the partially observed MERS epidemic in
South Korea in 2015 (Ki 2015). The MERS epidemic was driven by the coronavirus
MERS, which is related to the coronaviruses SARS and COVID-19. We detect three to
!ve potential superspreaders, who may have had a great impact on the outcome of the
outbreak.

1.4. Goal: superpopulation inference for !nite populations

The proposed semiparametric modelling framework, based on in!nite mixture distribu-
tions and Dirichlet process priors (Ferguson 1973; Teh 2010), extends to in!nite popu-
lations. That said, we assume that the number of population members N is !nite and
embrace a superpopulation approach to statistical inference along the lines of Hartley
and Sielken (1975) and Schweinberger, Krivitsky, Butts, and Stewart (2020), motivated by
applications.

The assumption of !nite N is motivated by the fact that in epidemiological appli-
cations the number of population members N cannot be in!nite. For example, when
the population of interest consists of all animals or all humans on earth, the size of
the population is bounded above by real-world constraints such as geography and the
scarcity of natural resources: Planet earth cannot host in!nite populations of animals or
humans.

Since the population of interest is !nite, the natural objective of statistical inference is
to learn the stochastic process that generated the population contact network and allows
infectious diseases to spread through the population of interest, with a view to under-
standing and predicting epidemics in the population of interest and similar populations.
In other words, it is natural to embrace a superpopulation approach to statistical infer-
ence, as discussed by Hartley and Sielken (1975) and Schweinberger et al. (2020). The
properties of statistical procedures for superpopulation inference can be understood by
developing a non-asymptotic statistical theory that relies on concentration inequalities and
other non-asymptotic tools that have been embraced in high-dimensional statistics (see,
e.g. Wainwright 2019). We are not aware of non-asymptotic statistical theory for stochas-
tic models of epidemics, although there are asymptotic results in probability theory (e.g.
Reinert 1995; Britton, Lindholm, and Turova 2011; Barbour and Reinert 2013; Pang and
Pardoux 2020; Ball 2021) and statistical theory (e.g. Britton 1998, 2001) based onN → ∞
asymptotics. Developing non-asymptotic statistical theory for stochastic models of epi-
demics constitutes an interesting direction for future research, but is beyond the scope of
our paper.



4 M. SCHWEINBERGER ET AL.

1.5. Structure of the paper

The remainder of the paper is structured as follows. A network-based stochastic model
of epidemics is reviewed in Section 2. We discuss shortcomings of parametric popula-
tion models in Section 3 and introduce semiparametric population models in Section 4.
In Section 5, we argue that collecting complete data is all but impossible, and stress the
importance of collecting network data. Principled Bayesian inference based on incomplete
data is discussed in Section 6.We present simulation results in Section 7 and an application
to the partially observed MERS epidemic in South Korea in Section 8. We conclude with
an extended discussion of open questions and directions for future research in Section 9.

2. A network-based stochastic model of epidemics

We introduce a network-based stochastic model of epidemics: We !rst describe a generic
data-generating process in Section 2.1 and then review parametric population models in
Section 2.2.

2.1. Data-generating process

We consider a population with N < ∞ population members, who may be connected by
contacts. In the simplest case, contacts among populationmembers are time-invariant and
are either absent or present. We discuss in Section 9.6 possible extensions to time-evolving
population contact networks.

A basic data-generating process is shown in Figure 1 and can be described as follows:

• Generate a population contact network.
• Conditional on the population contact network, generate an epidemic.

The population contact network is generated by a random graph model as described in
Section 2.2 (parametric) or Section 4 (semiparametric). Conditional on the population
contact network, an infectious disease spreads through the population by way of con-
tact, governed by a continuous-time stochastic process such as the SIR and SEIR model
(Andersson and Britton 2000; Britton and O’Neill 2002; Groendyke et al. 2011, 2012). We
focus on the network-based SEIR model, which can be sketched as follows (Britton and
O’Neill 2002; Groendyke et al. 2011, 2012). In the simplest case, the initial state of the

Figure 1. Data-generating process: Conditional on contacts (undirected lines) amongpopulationmem-
bers (circles), infectious population members (red) spread an infectious disease by contact (directed
lines) to susceptible population members (white), which are exposed (gray) before turning infectious
(red).
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stochastic process consists of a population with one infected populationmember andN−1
susceptible population members. Infected population members pass through three states:
the exposed state; the infectious state; and the removed state. In the exposed state, popu-
lation members have been exposed to the infectious disease, but cannot infect others. In
the infectious state, population members can infect susceptible population members by
way of contact, with transmissions being independent across contacts. In the !nal state
– the removed state – population members have either recovered and are immune to re-
infection or have died, and hence cannot infect others. The epidemic continues until all
infected populationmembers have been removed from the population. All of the described
events – the event that an infectious population member infects a susceptible population
member and the transition of an infected population member from the exposed to the
infectious state and from the infectious state to the removed state – are independent and
occur at random times. The waiting times until these events occur follow Exponential or
Gamma distributions. More speci!c assumptions about the distributions of waiting times
and the population contact network are detailed in Section 2.2 and in the monographs of
Andersson and Britton (2000) and Britton and Pardoux (2019).

2.2. Parametric populationmodels

Consider an epidemic that started at time 0 and ceased by time 0 < t < ∞.We assume that
the identities of infected population members are known and denoted by 1, . . . ,M, where
M ∈ {1, . . . ,N}. The population contact network is represented by Y = {Yi,j}Ni<j ∈ Y =
{0, 1}(

N
2), where Yi,j = 1 if population members i and j are in contact during the epidemic

andYi,j = 0 otherwise. Since contacts are undirected and self-contacts aremeaningless, we
assume that Yi,j = Yj,i and Yi,i = 0 hold with probability 1. The transmissions are denoted
by T = {Ti,j}Ni%=j, where Ti,j = 1 if i infects j and Ti,j = 0 otherwise. Observe that Yi,j = 0
impliesTi,j = Tj,i = 0whereasTi,j = Tj,i = 1 impliesYi,j = 1with probability 1. The start-
ing times of the exposure, infectious, and removal periods of infected populationmembers
are denoted by E = {Ei}Ni=1 ∈ RN

+, I = {Ii}Ni=1 ∈ RN
+, and R = {Ri}Ni=1 ∈ RN

+, respectively,
whereR+ = (0,∞) and Ei < Ii < Ri holds with probability 1; note that Ei, Ii,Ri are unde-
!ned if populationmember i is not infected.We writeX = (E, I,R,T) and, in a mild abuse
of language, we refer to X as an epidemic.

The complete-data likelihood function, given complete observations x and y of the
epidemic X and the population contact network Y , is of the form

L(η, θ ; x, y) ∝ L(ηE; x) L(ηI ; x) L(β ; x, y) L(θ ; y),

where η = (ηE, ηI ,β) ∈ "η ⊆ Rd1 (d1 ≥ 1) and θ ∈ "θ ⊆ Rd2 (d2 ≥ 1) are the parame-
ter vectors of the population model generating the epidemic X and the population contact
network Y , respectively. We describe each component of the complete-data likelihood
function in turn, along with its parameters.

The components L(ηE; x) and L(ηI ; x) of the likelihood function are of the form

L(ηE; x) ∝
M∏

i=1
p(Ii − Ei | Ei, ηE)
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L(ηI ; x) ∝
M∏

i=1
p(Ri − Ii | Ii, ηI),

where p(. | Ei, ηE) and p(. | Ii, ηI) are densities with suitable support parameterised by ηE
and ηI , respectively: e.g. the densities may be Gamma densities, with ηE ∈ R+ × R+ and
ηI ∈ R+ × R+ being scale and shape parameters of Gamma densities.

Under the assumption that thewaiting times until infectious populationmembers infect
susceptible population members are independent Exponential(β) random variables with
rate of infection β ∈ R+, the component L(β ; x, y) of the likelihood function is given by

L(β ; x, y) ∝ βM−1 exp(−β a(x, y)),

where a(.) > 0 is de!ned by

a(x, y) =
M∑

i=1

M∑

j=1
yi,j1Ii<Ej max(min(Ej,Ri) − Ii, 0) +

M∑

i=1
di(x, y)(Ri − Ii).

Here, 1Ii<Ej is 1 in the event of Ii < Ej and is 0 otherwise, and di(x, y) is the number of non-
infected population members in contact with population member i. The function a(x, y)
was derived in Britton and O’Neill (2002) and Groendyke et al. (2011).

To represent existing (parametric) and proposed (semiparametric) population models
along with possible extensions in a unifying framework, it is convenient to parame-
terise the distribution of the population contact network Y in exponential-family form
(Sundberg 2019). The component L(θ ; y) of the likelihood function can then be written
as

L(θ ; y) ∝ exp
(
θ*s(y) − ψ(θ)

)
, y ∈ Y,

where θ is a d2-vector of natural parameters, s(y) is a d2-vector of su#cient statistics, and

ψ(θ) = log
∑

y∗∈Y

exp
(
θ*s(y∗)

)
, θ ∈ "θ = {θ ∈ Rd2 : ψ(θ) < ∞} = Rd2 .

Britton andO’Neill (2002) andGroendyke et al. (2011) assumed that contacts are indepen-
dent Bernoulli(µ) (µ ∈ (0, 1)) random variables, which is equivalent to the one-parameter
exponential family with natural parameter θ = logit(µ) ∈ R and su#cient statistic s(y) =∑N

i<j yi,j. Groendyke et al. (2012) extended the exponential-family framework to include
predictors of contacts by assuming that contacts are independent Bernoulli(µi,j) (µi,j ∈
(0, 1)) random variables with logit(µi,j) =

∑d2
k=1 θksi,j,k(yi,j) ∈ R, that is, the log odds of

the probability of a contact between two population members is a weighted sum of func-
tions si,j,k(yi,j) of covariates and yi,j, weighted by θk ∈ R (k = 1, . . . , d2). A speci!c example
is given by si,j,1(yi,j) = yi,j and si,j,2(yi,j) = ci,jyi,j, where ci,j ∈ {0, 1} is a same-hospital indi-
cator, equal to 1 if population members i and j were in the same hospital during the
epidemic and 0 otherwise. The example model is equivalent to a two-parameter expo-
nential family with natural parameters θ1 ∈ R and θ2 ∈ R and su#cient statistics s1(y) =∑N

i<j si,j,1(yi,j) and s2(y) =
∑N

i<j si,j,2(yi,j). If θ2 = 0, the model of Groendyke et al. (2012)
reduces to the model of Britton and O’Neill (2002) and Groendyke et al. (2011).
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3. Shortcomings of parametric populationmodels

While the network-based SEIR models reviewed in Section 2.2 are more "exible than
classic and lattice-based SIR and SEIR models, such parametric population models have
shortcomings. Chief among them is the fact that the induced degree distributions are short-
tailed. Here, the degrees of populationmembers are the numbers of contacts of population
members.

For example, the model of Britton and O’Neill (2002) and Groendyke et al. (2011)
assumes that contacts are independent Bernoulli(µ) (µ ∈ (0, 1)) random variables. As a
consequence, the degrees of population members are Binomial(N − 1,µ) and approxi-
mately Poisson(Nµ) distributed providedN is large,µ is small, andNµ tends to a constant,
as one would expect in sparse population contact networks where the expected degrees of
population members are bounded above by a !nite constant and hence µ is a constant
multiple of 1/N. The model of Groendyke et al. (2012) allows degree distributions to be
longer-tailed than the model of Britton and O’Neill (2002) and Groendyke et al. (2011) –
depending on available covariates – but the induced degree distribution may nonetheless
be shorter-tailed than the degree distributions of real-world contact networks. The degree
distributions of real-world contact networks are believed to be long-tailed (e.g. Laumann
et al. 1994; Albert and Barabàsi 2002; Jones and Handcock 2003a, 2003b, 2004): e.g. in
networks of sexual contacts arising in the study of HIV and other sexually transmitted dis-
eases, some population members tend to have many more sexual contacts than most other
population members. The population members in the upper tail of the degree distribution
represent an important public health concern, because population members with many
contacts can infect many others and are hence potential superspreaders.

Last, but not least, it is worthmentioning that scale-free networkswith power law degree
distributions (Barabàsi and Albert 1999; Albert and Barabàsi 2002) are known to induce
long-tailed degree distributions. However, aside from the fact that the construction of
scale-free networks is incomplete and ambiguous (Bollobáś, Riordan, Spencer, and Tus-
nády 2001), those one-parameter models are not "exible models of degree distributions,
and proper statistical procedures do not lend much support to informal claims that the
degree distributions of many real-world contact networks are scale-free: see, e.g. the work
of Jones and Handcock (2003a, 2003b, 2004) on the degree distributions of sexual con-
tact networks arising in the study of HIV, and the discussion of Willinger, Alderson, and
Doyle (2009).

Therefore, more "exible population models are needed to accommodate both short-
and long-tailed degree distributions.

4. Semiparametric populationmodel

We introduce a semiparametric population model to accommodate both short- and long-
tailed degree distributions and detect potential superspreaders. The population model is
semiparametric in that the prior of the epidemiological parameter η is parametric, while
the prior of the network parameter θ is nonparametric.

Let s1(y), . . . , sN(y) be the degrees of populationmembers 1, . . . ,N, where the degree of
population member i is de!ned as si(y) =

∑N
j=1: j %=i yi,j (i = 1, . . . ,N). A simple model of

the sequence of degrees s1(y), . . . , sN(y) is given by the exponential family of distributions
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with probability mass functions of the form

pθ (y) = exp

( N∑

i=1
θisi(y) − ψ(θ)

)

, y ∈ Y, (1)

where the degrees s1(y), . . . , sN(y) are the su#cient statistics and the weights of the degrees
θ1, . . . , θN ∈ R are the natural parameters of the exponential family, while ψ(θ) ensures
that

∑
y∈Y pθ (y) = 1. The exponential-family form of (1) can be motivated by its maxi-

mum entropy property and other attractive mathematical properties (Sundberg 2019). A
convenient property is that the resulting likelihood function factorises as follows:

L(θ ; y) ∝ exp

( N∑

i=1
θisi(y) − ψ(θ)

)

∝
N∏

i<j
exp

(
λi,j(θ)yi,j − ψi,j(θ)

)
,

where

ψ(θ) =
N∑

i<j
ψi,j(θ),

with ψi,j(θ) and λi,j(θ) de!ned by

ψi,j(θ) = log
(
1 + exp

(
λi,j(θ)

))

and

λi,j(θ) = θi + θj,

respectively.
To interpret the natural parameters θ1, . . . , θN of the exponential family, observe that

the model is equivalent to assuming that the contacts Yi,j are independent Bernoulli(µi,j)
(µi,j ∈ (0, 1)) random variables with logit(µi,j) = θi + θj ∈ R. Thus, the log odds of the
probability of a contact between population members i and j is additive in the propensi-
ties of i and j to be in contact with others. It is worth noting that the resulting model can
be viewed as an adaptation of the classic p1-model (Holland and Leinhardt 1981) to undi-
rected random graphs and is known as the β-model (Chatterjee, Diaconis, and Sly 2011;
Rinaldo, Petrović, and Fienberg 2013; Chen, Kato, and Leng 2021).

To cluster population members based on degrees and detect potential superspreaders,
we assume that the degree parameters θ1, . . . , θN are generated by a Dirichlet process prior
(Ferguson 1973; Teh 2010), that is,

θ1 ∼ G

θi | θ1, . . . , θi−1 ∼ 1
α + i − 1

(

αG +
i−1∑

h=1
δθh

)

, i = 2, 3, . . . ,

where α > 0 denotes the concentration parameter and G denotes the base distribution of
the Dirichlet process prior, while δθh denotes a point mass at θh. A convenient choice of the
base distribution G is N(µ, σ 2) (µ ∈ R, σ 2 ∈ R+).
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Draws from a Dirichlet process prior can be generated by generating

• the !rst draw from G;
• the ith draw with a probability proportional to α from G, and otherwise drawing one of

the existing draws θ1, . . . , θi−1 at random.

4.1. Detecting potential superspreaders

The described construction of Dirichlet process priors reveals that sampling the degree
parameters θ1, . . . , θN from a Dirichlet process prior implies that some of the degree
parameters are resampled. As a consequence, some population members share the same
degree parameters. Thus, Dirichlet process priors induce a partition of the population into
subpopulations, where subpopulations share the same degree parameters. In applications
to real-world data, we canmake probabilistic statements about which populationmembers
belong to subpopulations with high degree parameters based on the posterior distribu-
tion. A short demonstration is provided by the application to the partially observedMERS
epidemic in South Korea presented in Section 8.4.

4.2. Short- and long-tailed degree distributions

In addition to detecting potential superspreaders, the semiparametric population model
can accommodate short- and long-tailed degree distributions. To demonstrate, we consider
a population of size N = 1, 000 and generate three sets of degree parameters θ1, . . . , θ1000
from the Dirichlet process prior with concentration parameter α = 5 and base distribu-
tion N(−5, 25). Figure 2 shows kernel density plots of the three sets of degree parameters
θ1, . . . , θ1000 along with the expected degrees of populationmembers. The expected degree
of population member i is de!ned as

µi(θ) = Eθ




1000∑

j=1: j %=i
Yi,j



 =
1000∑

j=1: j %=i

1
1 + exp(−θi − θj)

, i = 1, . . . ,N.

Figure 2 demonstrates that the distribution of the expected degrees µ1(θ), . . . ,µ1000(θ)

can be short- or long-tailed, depending on the degree parameters θ = (θ1, . . . , θ1000). The
!rst set of degree parameters θ1, . . . , θ1000 generated from the Dirichlet process prior con-
sists of three subsets of degree parameters, all of them negative. The resulting distribution
of the expected degrees resembles a steep mountain with a high peak in a neighbourhood
of 0 and a short upper tail. In fact, 90% of all population members have expected degrees
of less than 5, and the highest expected degree is less than 39, which is much lower than
the highest possible degree of 999 in a population of size 1,000. The second set of gener-
ated degree parameters θ1, . . . , θ1000 consists ofmany negative degree parameters and some
positive degree parameters between 0 and 5. Since the log odds of the probability of a con-
tact between two population members i and j is θi + θj, population members with positive
degree parameters can have high to very high expected degrees. Figure 2 shows that the
population consists of at least three subpopulations: population members with expected
degrees of less than 100; population members with expected degrees between 100 and 200;
and population members with expected degree of more than 300. The highest expected
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Figure 2. Three sets of draws θ1, . . . , θ1000 from the Dirichlet process prior with concentration parame-
ter α = 5 and base distribution N(−5, 25). Left: Distribution of degree parameters θ1, . . . , θ1000. Right:
Distribution of expected degrees µ1(θ), . . . ,µ1000(θ). Each row corresponds to one set of draws from
the Dirichlet process prior.

degree is about 722. The resulting distribution of the expected degrees is both multimodal
and long-tailed. The third set of generated degree parameters θ1, . . . , θ1000 resembles the
second set of generated degree parameters, in that the distribution of the expected degrees
is multimodal and long-tailed. That said, the third set of draws is less extreme than the
second set of draws: e.g. the highest expected degree is about 259 rather than 722.

The examples presented above demonstrate that Dirichlet process priors with Gaus-
sian base distributions can accommodate both short- and long-tailed degree distributions,
despite the fact that Gaussians are symmetric and unimodal distributions with light tails.
Other, non-Gaussian base distributions can be chosen. As a consequence, the proposed
semiparametric population model is "exible and can accommodate a wide range of degree
distributions with countless forms and shapes, including short- and long-tailed degree
distributions.

5. Incomplete data

In practice, complete observations of population contact networks and epidemics are rare.
While population-level data (e.g. counts of the total number of infected, recovered, or
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deceased population members) may be disseminated by public health authorities and
can be collected by scraping websites and other channels of communication, collecting
individual-level data (e.g. the contacts, exposure, infectious, and removal times of infected
population members) requires substantial investments in terms of time and resources,
making it all but impossible to collect all relevant data. We !rst discuss possible reasons
for incomplete data in Section 5.1 and then stress the importance of collecting network
data in Section 5.2.

5.1. Possible reasons for incomplete data

There aremany reasons for the fact that available data are,more often than not, incomplete.
Some of the possible reasons are:

• Epidemics are rare events that occur at random times and in random places, and when
such rare events do occur, public health o#cials and scientists may not be well-prepared
to collect relevant data without advance notice.

• Ethical and legal considerations can make the collection of data on individual popu-
lation members challenging, if not impossible: e.g. if there was universal cell phone
coverage and all population members carried cell phones at all times, collecting data
on contacts among population members would be straightforward by monitoring the
locations of cell phones. However, collecting such data would violate laws that protect
the privacy of population members.

• Epidemics are not limited to urban areas with excellent infrastructure and ready access
to public resources, but may occur in remote corners of the planet: e.g. the most recent
outbreaks of Ebola started in remote areas of Africa. Worse, some areas with outbreaks
may be war-torn. As a result, researchers may not be able to collect data by visiting areas
with outbreaks without exposing themselves and others to unacceptable risks.

• In addition, there are more mundane reasons for incomplete data, such as
° design-based mechanisms: e.g. motivated by !nancial constraints, researchers may

sample population members, which implies that a sampling design determines
which data are collected;

° out-of-design mechanisms: e.g. population members refuse to share data when the
data are considered sensitive.

5.2. Importance of collecting network data

Data can be incomplete because transmissions, exposure, infectious, or removal times of
infected population members are unobserved, but many available data sets share one fun-
damental weakness: There are no data on contacts among population members. The lack
of network data is all themore striking, because collecting network data would help reduce
the posterior uncertainty about

(a) the population contact network Y , which imposes hard constraints on how an infec-
tious disease can spread, because Yi,j = 0 (no contact) implies Ti,j = Tj,i = 0 (no
transmission) with probability 1;
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(b) the parameter θ of the population model that generated the population contact
network Y ;

(c) possible sources of infections.

Advantages (a) and (b)may not be too surprising, but advantage (c)may be less obvious.
To demonstrate that sampling contacts can reduce the uncertainty about possible sources
of infections, it is instructive to inspect the full conditional probability of the event that a
population member i infected a population member j, assuming that both of them were
infected during the course of the epidemic. If ϕ(i infected j) denotes the prior probability
of the event that population member i infected population member j, then the conditional
probability of the event that population member i infected population member j, given
everything else, takes the form

P(i infected j | E, I,R,Y = y) =
yi,j1Ii<Ej<Ri ϕ(i infected j)

∑M
h=1: h %=j yh,j1Ih<Ej<Rh ϕ(h infected j)

.

If y1,j, . . . , yM,j are observed, then y1,j, . . . , yM,j are !xed and impose hard constraints on
who could have infected j: If i was not in contact with j (that is, yi,j = 0), i could not have
infected j. By contrast, if y1,j, . . . , yM,j are unobserved, then y1,j, . . . , yM,j are not !xed and
need to be inferred, increasing the uncertainty about the possible sources of infection of
j. In other words, observed contacts help narrow down the possible sources of infections
and, in so doing, help reduce the uncertainty about possible sources of infections.

We describe two sampling designs for generating samples of contacts along with
epidemiological data: ego-centric sampling and link-tracing. Some background on ego-
centric sampling and link-tracing of contacts (but not epidemiological data) can be found
in Thompson and Frank (2000), Handcock and Gile (2010), and Krivitsky and Mor-
ris (2017). In the literature on network sampling (Frank 1988; Thompson and Frank 2000;
Gile and Handcock 2006; Handcock and Gile 2010), popular forms of link-tracing are
snowball sampling (Goodman 1961) and respondent-driven sampling (Heckathorn 1997;
Salganik andHeckathorn 2004; Gile andHandcock 2010; Gile 2011; Kurant,Markopoulou,
and Thiran 2011). Some of them do not generate probability samples in the strict sense of
the word, but generate approximate probability samples (e.g. Gile 2011). A recent review
of these and other network sampling designs can be found in Schweinberger et al. (2020).
We adapt these ideas to sampling contacts along with epidemiological data.

An ego-centric sample of contacts and epidemiological data can be generated as fol-
lows:

(a) Generate a probability sample of population members.
(b) For each sampled population member, collect data on the contacts of the population

member and, should the population member be infected, data on possible sources of
infection along with the exposure, infectious, and removal times of the population
member.

A probability sample of population members can be generated by any sampling design
for sampling from !nite populations (e.g. Thompson 2012).
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An interesting extension of ego-centric sampling is link-tracing. Link-tracing exploits
the observed contacts of sampled population members to include additional population
members into the sample. A k-wave link-tracing sample of contacts and epidemiological
data can be generated as follows:

(1) Wave l = 0: Generate an ego-centric sample.
(2) Wave l = 1, . . . , k:

(a) Add the population members who are connected to the population members of
wave l−1 to the sample.

(b) For each added population member, collect all relevant data.

Ego-centric sampling can be considered to be a special case of k-wave link-tracing with
k = 0. We use ego-centric sampling in the simulation study in Section 7.

6. Bayesian inference

We discuss Bayesian inference for the parameters η and θ of the population model based
on incomplete data. Since interest centers on the population model, it is natural to ask:
Under which conditions is the process that determines which data are observed ignorable
for the purpose of Bayesian inference for the parameters η and θ of the population model?
To answer the question, we start from !rst principles. We !rst separate the complete-data
generating process from the incomplete-data generating process:

• The complete-data generating process is the process that generates the complete data, that
is, the process that generates a realisation (x, y) of (X,Y).

• The incomplete-data generating process is the process that determines which subset of
the complete data (x, y) is observed.

A failure to separate these processes can lead to misleading conclusions, as pointed
out by Rubin (1976), Dawid and Dickey (1977), Koskinen, Robins, and Pattison (2010),
Handcock and Gile (2010, 2017), Crane (2018), and Schweinberger et al. (2020).

We therefore proceed as follows. We !rst separate the complete-data generating pro-
cess from the incomplete-data generating process in Section 6.1 and then discuss Bayesian
inference based on incomplete data in Section 6.2. We then discuss Bayesian computing in
Sections 6.3, 6.4, and 6.5.

6.1. Complete- and incomplete-data generating process

To prepare the ground for principled Bayesian inference, we separate the complete-data
generating process from the incomplete-data generating process, adapting the generic ideas
of Rubin (1976) to stochastic models of epidemics.

To do so, let A = {AE,AI ,AR,AT ,AY} be indicators of which data are observed,
where AE = {AE,i}Ni=1 ∈ {0, 1}N , AI = {AI,i}Ni=1 ∈ {0, 1}N , AR = {AR,i}Ni=1 ∈ {0, 1}N , AT =
{AT,i,j}Mi%=j ∈ {0, 1}M2−M , and AY = {AY ,i,j}Ni<j ∈ {0, 1}(

N
2) indicate whether the values of

{Ei}Ni=1, {Ii}Ni=1, {Ri}Ni=1, {Ti,j}Mi%=j, and {Yi,j}Ni<j are observed, respectively. The sequence of
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indicators A is considered to be a random variable, with a distribution parameterised by
ϑ ∈ "ϑ ⊆ Rq (q ≥ 1): e.g. ϑ ∈ [0, 1]N may be a vector of sample inclusion probabilities,
where ϑi ∈ [0, 1] is the probability that population member i ∈ {1, . . . ,N} is sampled and
data on the contacts of populationmember i are collected. The parameter ϑ may be known
or unknown. We focus on the more challenging case where ϑ is unknown. The observed
and unobserved subset of the complete data (x, y) are denoted by xobs and xmis and yobs and
ymis, respectively, where x = (xobs, xmis) and y = (yobs, ymis).

In Bayesian fashion, we build a joint probability model for all knowns and unknowns
and condition on all knowns. Let

p(a, x, y,ϑ , η, θ) = p(a, x, y | ϑ , η, θ)p(ϑ , η, θ)

be the joint probability density of a, x, y, ϑ , η, θ , where

p(ϑ , η, θ) = p(ϑ | η, θ)p(η, θ)

is the prior probability density of ϑ , η, θ and

p(a, x, y | ϑ , η, θ) = p(a | x, y,ϑ)p(x | y, η)p(y | θ)

is the conditional probability density of a, x, y given ϑ , η, θ ; note that p(y | θ) ≡ pθ (y). It is
worth noting that all of these probability densities are with respect to a suitable dominating
measure, but we do not wish to delve into measure-theoretic details, which would distract
from the main ideas.

To determine when the incomplete-data generating process is ignorable for the purpose
of Bayesian inference for the parameters η and θ of the population model, we introduce
the following de!nition of a likelihood-ignorable incomplete-data generating process.

De!nition (likelihood-ignorable incomplete-data generating process): Assume that
the parameters ϑ , η, θ are variation-independent in the sense that the parameter space
of (ϑ , η, θ) is given by a product space of the form "ϑ ×"η ×"θ and that the parame-
ters of the population model η and θ and the parameter of the incomplete-data generating
process ϑ are independent under the prior,

p(ϑ | η, θ) = p(ϑ) for all (ϑ , η, θ) ∈ "ϑ ×"η ×"θ .

If the probability of observing data does not depend on the values of the unobserved data,

p(a | x, y,ϑ) = p(a | xobs, yobs, ϑ) for all a, x, y and all ϑ ∈ "ϑ ,

then the incomplete-data generating process is called likelihood-ignorable, and otherwise
non-ignorable.

We provide two examples of likelihood-ignorable and non-ignorable incomplete-data
generating processes.

Example (likelihood-ignorable): All infected population members visit hospitals, which
record data on contacts, transmissions, exposure, infectious, and removal times of infected
population members. To reduce the posterior uncertainty about the population contact
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network and its generating mechanism, investigators generate a probability sample of
non-infected population members from the subpopulation of all non-infected population
members and collect data on the contacts of sampled population members, rather than
limiting the collection of data to infected population members visiting hospitals.

A possible sampling design for generating samples of contacts and epidemiological data
is link-tracing, as described in Section 5.2. Link-tracing exploits observed contacts of pop-
ulationmembers to increase the size of the sample, which implies that the sample inclusion
probabilities depend on observed contacts but do not depend on unobserved contacts:

p(a | x, y,ϑ) = p(a | xobs, yobs, ϑ) for all a, x, y and all ϑ ∈ "ϑ .

Therefore, link-tracing sampling designs for generating samples of contacts and epidemi-
ological data are likelihood-ignorable, as are ego-centric sampling designs.

Example (non-likelihood-ignorable): Suppose that there exists a constant δ > 0 such
that infected population members i with mild symptoms and fast recovery (Ri − Ii ≤ δ)
do not visit hospitals, whereas infected population members i with severe symptoms and
slow recovery (Ri − Ii > δ) do visit hospitals. Hospitals collect data on infected population
members who visit them, but no data are collected on other population members.

Since the incomplete-data generating process excludes all infected populationmembers
with mild symptoms and fast recovery, it cannot be ignored. Statistical analyses ignoring it
may give rise to misleading conclusions about the rate of infection β and other parameters
of the population model, and may generate misleading predictions of future epidemics in
the population of interest and similar populations.

6.2. Bayesian inference based on incomplete data

Separating the complete-data generating process from the incomplete-data generating
process paves the way for principled Bayesian inference based on incomplete data.

The following result shows that, as long as the incomplete-data generating process is
likelihood-ignorable, Bayesian inference for the parameters η and θ of the population
model can be based on the marginal posterior p(η, θ | a, xobs, yobs). In other words, the
incomplete-data generating process can be ignored for the purpose of Bayesian inference
for the parameters η and θ of the populationmodel, because themarginal posterior p(η, θ |
a, xobs, yobs) can be computed without requiring knowledge about the incomplete-data
generating process.

Proposition 6.1: If the incomplete-data generating process is likelihood-ignorable and the
prior p(η, θ) is proper, the parameter ϑ of the incomplete-data generating process and the
parameters η and θ of the population model are independent under the posterior,

p(ϑ , η, θ | a, xobs, yobs) ∝ p(ϑ | a, xobs, yobs)p(η, θ | a, xobs, yobs),
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and Bayesian inference for the parameters η and θ of the population model can be based on
the marginal posterior p(η, θ | a, xobs, yobs),

p(η, θ | a, xobs, yobs) =
∑

ymis

∫
p(x | y, η)p(y | θ)p(η, θ) d xmis

∑
ymis

∫ ∫ ∫
p(x | y, η)p(y | θ)p(η, θ) d xmis d η d θ

, (2)

which can be computed without requiring knowledge about the incomplete-data generating
process.

It is worth noting that the unobserved contacts of non-infected populationmembers can
be summed out, both in the numerator and the denominator of the ratio in (2), because
the contacts of population members are independent conditional on θ by construction of
the semiparametric population model described in Section 4. In other words, there is no
need to use computational methods (e.g. Markov chainMonte Carlo methods) to generate
model-based imputations of unobserved contacts of non-infected population members,
which saves computing time.

A proof of Proposition 6.1 can be found in the supplement. The case of Britton and
O’Neill (2002) and Groendyke et al. (2011, 2012), who considered Bayesian inference from
observed infectious and removal times, is a special case of the incomplete-data frame-
work considered here, with xobs = {I,R} and yobs = {}. In general, when x or y are partially
observed, Bayesian inference can be based on the marginal posterior of η and θ given the
observed data, provided the incomplete-data generating process is likelihood-ignorable.

6.3. Truncated Dirichlet process priors

To facilitate Markov chain Monte Carlo sampling from the posterior distribution, we
approximate Dirichlet process priors by truncated Dirichlet process priors along the lines
of Ishwaran and James (2001).

The truncation of Dirichlet process priors takes advantage of the stick-breaking
construction of Dirichlet process priors (Sethuraman 1994; Ishwaran and James 2001;
Teh 2010). A stick-breaking construction of aDirichlet process prior with base distribution
G and concentration parameter α proceeds as follows. First, we sample parameters from
the base distribution G:

γk
iid∼G, k = 1, 2, . . .

We then construct mixing proportions π1,π2, . . . by !rst sampling

Vk | α iid∼Beta(1,α), k = 1, 2, . . .

and then setting

π1 = V1

πk = Vk

k−1∏

j=1
(1 − Vj), k = 2, 3, . . .
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Last, but not least, we construct an in!nite mixture distribution with mixing proportions
π1,π2, . . . and point masses δγ1 , δγ2 , . . . as follows:

P∞ =
∞∑

k=1
πkδγk .

The distribution P∞ is then a draw from the Dirichlet process prior with concentration
parameter α and base distribution G.

A Dirichlet process prior can be truncated by choosing a positive integer K and set-
ting VK = 1, which implies that πK+1 = 0,πK+2 = 0, . . . A !nite mixture distribution
with mixing proportions π1,π2, . . . ,πK and point masses δγ1 , δγ2 , . . . , δγK can then be
constructed as follows:

PK =
K∑

k=1
πkδγk .

The distribution PK can be regarded as a draw from the Dirichlet process prior with con-
centration parameter α and base distribution G truncated at K. If K is large, the truncated
Dirichlet process prior is expected to be a good approximation of the Dirichlet process
prior. Some theoretical guidance regarding the choice of K can be found in Ishwaran and
James (2001). In practice, K can be chosen by

• selecting a large positive integer, such as K = N;
• exploiting domain knowledge;
• choosing a value of K that leads to acceptable in- or out-of-sample performance.

The truncated stick-breaking construction of π implies that π is generalised Dirichlet
distributed, which is conjugate to multinomial sampling (Ishwaran and James 2001) and
facilitates Markov chain Monte Carlo sampling from the posterior distribution.

Since the concentration parameter α and the parameters µ and σ 2 of the base distribu-
tion N(µ, σ 2) are unknown, it is natural to express the uncertainty about α, µ, and σ 2 by
assuming that α,µ, and σ 2 have hyperpriors.We assume that the hyperpriors of the hyper-
parameters α, µ, and 1/σ 2 are Gamma, Gaussian, and Gamma distributions, respectively,
which are conjugate priors and facilitate Markov chain Monte Carlo sampling from the
posterior distribution.

6.4. BayesianMarkov chainMonte Carlo algorithm

ABayesianMarkov chainMonte Carlo algorithm for sampling from the posterior distribu-
tion is described in the supplement. We list here the main steps of the algorithm, without
providing details, and discuss its computing time. Details can be found in the supplement.

To list the main steps of the algorithm, let

• Zi,k = 1 if population member i was assigned degree parameter γk and Zi,k = 0 other-
wise (i = 1, . . . ,N, k = 1, . . . ,K);

• Zi = (Zi,1, . . . ,Zi,K) and Z−i = (Z1, . . . ,Zi−1,Zi+1, . . . ,ZN) (i = 1, . . . ,N), and Z =
(Z1, . . . ,ZN);
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• γ = (γ1, . . . , γK);
• π = (π1, . . . ,πK).

As a consequence, the degree parameter θi of population member i can be expressed as

θi = Z*
i γ , i = 1, . . . ,N.

A Markov chain Monte Carlo algorithm for sampling from the posterior distribution
can then be constructed by combining the following Markov chain Monte Carlo steps by
means of cycling or mixing (Tierney 1994; Liu 2008), assuming all unknown quantities
have been initialised:

(1) Impute the missing data:
(a) Sample Xmis | Xobs = xobs,Y = y, η.
(b) Sample Ymis | X = x,Yobs = yobs,Z = z, γ , η.

(2) Sample the parameters of the population model:
(a) Sample γ | Y = y,Z = z.
(b) Sample Zi | Y = y,Z−i = z−i, γ ,π (i = 1, . . . ,N).
(c) Set θi = Z*

i γ (i = 1, . . . ,N).
(d) Sample η | X = x,Y = y.

(3) Sample the hyperparameters:
(a) Sample α | π .
(b) Sample π | Z = z,α.
(c) Sample µ | σ 2, γ .
(d) Sample σ 2 | µ, γ .

Most of the Markov chain Monte Carlo steps involve Gibbs sampling from full condi-
tional distributions (e.g. Beta, Gamma, and Gaussian distributions), while the others are
Metropolis-Hastings steps. More details are provided in the supplement.

The computing time of the algorithm is a function of

• the number of subpopulations K, which satis!es K ≤ N;
• the number of infected population members M, which satis!es M ≤ N and in large

populations satis!es M . N (unless a non-negligible fraction of the population is
infected);

• the sampling design and the number of population members n sampled out of the N
population members for the purpose of collecting data on contacts along with epidemi-
ological data, which satis!es n ≤ N and in large populations satis!es n . N (unless a
non-negligible fraction of the population is sampled);

• the sparsity of the population contact network.

As a speci!c example, consider ego-centric sampling, as described in Section 5.2. An
ego-centric sampling design samples n out of the N population members and, for each
sampled populationmember, collects data on the contacts of the sampled populationmem-
ber with the N−1 other population members, in addition to data on the transmissions,
exposure, infectious, and removal times of infected population members. As a result, the
computing time of each iteration of the Bayesian Markov chain Monte Carlo algorithm is
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O(KnN), because updates of the K degree parameters γ1, . . . , γK involve computations of
up to n(N − 1) probabilities of the form

Pθi,θj(Yi,j = yi,j) = exp((θi + θj)yi,j − log(1 + exp(θi + θj))),

where θi = Z*
i γ and θj = Z*

j γ .
Having said that, the computing time of O(KnN) in the case of ego-centric sampling

is based on worst-case scenarios and can be reduced to O(Kn) in special cases: e.g. when
the population contact network is sparse in the sense that many population members have
few contacts, it is possible to reduce the computing time by taking advantage of sparsity.
In fact, many real-world networks are sparse: While population members can create up
to N−1 contacts, creating physical contacts that enable disease transmission requires geo-
graphical proximity and time. As a consequence, it is plausible that the expected degrees of
many if not all population members are bounded above by a !nite constant (Dunbar 1992;
Rohe, Chatterjee, andYu 2011; Krivitsky, Handcock, andMorris 2011; Lovász 2012; Amini,
Chen, Bickel, and Levina 2013; Krivitsky andKolaczyk 2015; Butts 2019). In such cases, the
resulting population contact network is sparse, and one could reduce the worst-case com-
puting time of O(KnN) to O(Kn). Some ideas of how to exploit sparsity for the purpose of
reducing computing time can be found in, e.g. Raftery, Niu, Ho&, and Yeung (2012) and
Vu, Hunter, and Schweinberger (2013).

6.5. Addressing the label-switching problem

Markov chain Monte Carlo samples from the posterior distribution may show evidence of
label-switching, that is, the labelling of subpopulations may have switched from iteration
to iteration of the Markov chain Monte Carlo algorithm. The label-switching problem is
rooted in the fact that the likelihood function is invariant to permutations of the labels of
subpopulations. While the prior is not invariant to permutations of the labels of subpopu-
lations, the prior is dominated by the likelihood function when the data is informative. As
a consequence, the labels of subpopulations may switch from iteration to iteration of the
Markov chain Monte Carlo algorithm. Label-switching can give rise to misleading con-
clusions about parameters that depend on the labelling of the subpopulations, including
the indicators Z1, . . . ,ZN and the degree parameters γ1, . . . , γK and θ1 = Z*

1 γ , . . . , θN =
Z*
Nγ . The label-switching problem is a well-known problem in the literature concerned

with Bayesian Markov chain Monte Carlo estimation of !nite mixture models and related
models.We follow the Bayesian decision-theoretic approach of Stephens (2000) to undoing
the label-switching, byminimising the posterior expectation of awell-chosen loss function.
A loss function and relabelling algorithmare stated in Schweinberger andHandcock (2015)
and implemented in R package hergm (Schweinberger and Luna 2018). We use them in
Sections 7 and 8 to undo the label-switching in all Markov chain Monte Carlo samples
generated by the Bayesian Markov chain Monte Carlo algorithm.

7. Simulation results

We explore the frequentist properties of Bayesian point estimators and the reduction
in statistical error due to collecting network data by using simulations. We consider a
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population of size 187 consisting of K = 3 subpopulations labelled 1, 2, 3. The three sub-
populations consist of low-, moderate-, and high-degree population members. We assign
population members i to subpopulations 1, 2, 3 by sampling Zi

iid∼Multinomial(1; π =
(.4, .3, .3)) (i = 1, . . . ,N). We then generate a population contact network from the pop-
ulation model described in Section 4 with degree parameters θi = Z*

i γ (i = 1, . . . ,N).
Conditional on the population contact network, an epidemic is generated by the stochas-
tic model described in Section 2, assuming that Ii − Ei and Ri − Ii are independent
Gamma(ηE,1, ηE,2) and Gamma(ηI,1, ηI,2) random variables, respectively (i = 1, . . . ,M).
The data-generating values of the parameters are speci!ed in Sections 7.1 and 7.2. Unless
stated otherwise, we assume that the exposure, infectious, and removal times E, I, R are
observed, whereas the transmissions T are unobserved, as are the population contact
network Y and the indicators Z.

7.1. Simulation results quantifying the error of estimation

We generate 1,000 population contact networks and epidemics as described above. The
data-generating values of the parameters β , ηE,1, ηE,2, ηI,1, ηI,2, γ1, γ2, and γ3 are shown in
Table 1. For each data set, we truncate the Dirichlet process prior at K = 3 and K = 5 as
described in Section 6.3, and estimate the data-generating model by the Bayesian Markov
chain Monte Carlo algorithm described in Section 6.4.

Table 1 sheds light on the frequentist coverage properties of 95% posterior credible
intervals. The simulation results indicate that the frequentist coverage properties of poste-
rior credible intervals are excellent in the case of the epidemiological parameters β , ηE,1,
ηE,2, ηI,1, and ηI,2, but less so in the case of the network parameters γ1, γ2, and γ3. These
results underscore the challenge of estimating network parameters without observing net-
work data. Section 7.2 demonstrates that the statistical error can be reduced by collecting
network data.

7.2. Simulation results quantifying the e"ect of network sampling

To demonstrate that collecting network data can reduce the posterior uncertainty about
the parameters of the population model, we consider a population consisting of K = 3
subpopulations. The K = 3 subpopulations correspond to

• a low-degree subpopulation of size 127 with degree parameter γ1 = −3.5;
• a moderate-degree subpopulation of size 50 with degree parameter γ2 = −1.5;
• a high-degree subpopulation of size 10 with degree parameter γ3 = .5.

Table 1. Simulation results. Coverage properties of 95% posterior credible intervals: number of times
95% posterior credible intervals include the data-generating values of the parameters β , ηE,1, ηE,2, ηI,1,
ηI,2, γ1, γ2, and γ3 in %, using a Dirichlet process prior truncated at K = 3 and K = 5.

Parameter β ηE,1 ηE,2 ηI,1 ηI,2 γ1 γ2 γ3

True value 2 8 .25 4 .25 −2 −1 0
K = 3 95.4% 95.4% 93.5% 95.2% 94.3% 83.4% 97.4% 89.4%
K = 5 93.0% 96.3% 96.3% 96.0% 95.7% 98.4% 100% 96.7%
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Figure 3. Simulation results: MSE of the posterior median andmean of the parameters β , γ1, γ2, and γ3
plotted against the sample size n = 0, 25, 50, 75, 100, 125, 150, 187. If n = 0, no contacts are observed,
otherwise a subset of contacts is observed.

We generate 1,000 ego-centric samples of sizes n = 25, 50, 75, 100, 125, 150, 187 from
the population of size N = 187. We then estimate the population model from each sam-
ple of contacts along with observations of the exposure, infectious, and removal times
of infected population members. In addition, we estimate the population model without
observations of contacts, which corresponds to a sample size of n = 0, using observa-
tions of the exposure, infectious, and removal times of infected population members. To
assess how much the posterior uncertainty about the parameters of the population model
is reduced by sampling contacts, we use the mean squared error (MSE) of the posterior
median and mean of the parameters.

The MSE of the posterior median and mean of the rate of infection β and the degree
parameters γ1, γ2, and γ3 is plotted in Figure 3 against the sample size n = 0, 25, 50, 75,
100, 125, 150, 187. By construction of the model, estimators of the epidemiological param-
eters ηE,1, ηE,2, ηI,1, and ηI,2 are not expected to be sensitive to n – which determines how
much information is available about the network parameters – and the MSE of the poste-
rior median and mean of ηE,1, ηE,2, ηI,1, and ηI,2 are indeed not sensitive to n (not shown).
However, Figure 3 demonstrates that samples of contacts do reduce the MSE of the poste-
rior median and mean of β , γ1, γ2, and γ3: The MSE turns out to be highest when n = 0,
and rapidly decreases as n increases. These observations underscore the importance of
collecting data on contacts or functions of contacts, such as degrees.

8. Partially observedMERS epidemic in South Korea

We showcase the statistical framework introduced in Sections 4, 5, and 6 by applying it to
the partially observed MERS epidemic in South Korea in 2015 (Ki 2015).

8.1. Data

The MERS outbreak in South Korea was driven by the coronavirus MERS, which is
related to the coronaviruses SARS and COVID-19. We retrieved the data from the website
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http://english.mw.go.kr of the South Korean Ministry of Health and Welfare
on September 22, 2015. The website has been removed since, but the data can be obtained
from the authors. The !rst MERS case in South Korea was con!rmed onMay 20, 2015 and
the last case was con!rmed on July 4, 2015. By September 22, 2015, 186 cases had been
con!rmed, of which 144 had recovered while 35 had died, all of whom are considered to
be removed from the population. 7 cases had not removed by September 22, 2015, despite
the fact that the last case of MERS was con!rmed on July 4, 2015. We assume that the
removal times of those 7 cases are unobserved and that the outbreak ceased by Septem-
ber 22, 2015, because the data base has not been updated by the South Korean Ministry of
Health andWelfare since July 2015. The data consist of the infectious and removal times of
the 186 infected population members, with 7 missing removal times. The exposure times
are unobserved and inferred along with the 7 missing removal times. The MERS data set
does not include direct observations of transmissions or contacts, but there are two sources
of indirect observations:

• The assessments of doctors of who infected whom.
• The observed infectious and removal times, which reveal when infected population

members were infectious and, in so doing, help narrow down the possible sources of
infections.

Both of these sources help inform who infected whom and who was in contact with
whom, because an infection implies a contact.

8.2. Model

We use the semiparametric population model introduced in Sections 2 and 4, assum-
ing that Ii − Ei and Ri − Ii are independent Gamma(ηE,1, ηE,2) and Gamma(ηI,1, ηI,2)
random variables, respectively (i = 1, . . . , 186). The priors of the epidemiological param-
eters are given by ηE,1 ∼ Uniform(4, 8), ηE,2 ∼ Uniform(.75, 3), ηI,1 ∼ Uniform(1.5, 8),
ηI,2 ∼ Uniform(2.5, 7.5), and β ∼ Uniform(.1, 8), which cover a range of plausible values
(see e.g. the discussions ofGroendyke et al. 2011, 2012). The degree parameters θ1, . . . , θ186
are assumed to have been generated by aDirichlet process prior with concentration param-
eter α and base distribution N(µ, σ 2). To express the uncertainty about the concentration
parameter α and the parameters µ and σ 2 of the base distribution, we assume that the
hyperparameters α, µ, and 1/σ 2 have Gamma(5, 1), N(0, 1), and Gamma(1, 10) hyper-
priors, respectively. To facilitate Markov chain Monte Carlo sampling from the posterior
distribution, we truncate the Dirichlet process prior at K = 3 as described in Section 6.3.
We choose K = 3 because we expect two subpopulations, one corresponding to poten-
tial superspreaders and one corresponding to all other population members, and K = 3
is a convenient upper bound on the number of subpopulations. We consider two speci!-
cations of the prior probabilities of who infected whom, because the posterior is sensitive
to the prior probabilities of who infected whom. The reason is that the MERS data set
does not contain direct observations of transmissions or contacts, and the information on
transmissions is therefore limited to two sources of indirect observations: the assessments
of doctors of who infected whom and the observed infectious and removal times, as dis-
cussed in Section 8.1. While the observed infectious and removal times help narrow down
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the possible sources of infections, there may be many possible sources of infections left.
As a consequence, it is not surprising that the posterior is sensitive to the choice of prior
probabilities of who infected whom. We demonstrate the sensitivity of the posterior to the
choice of prior in Section 8.4 by using two speci!cations of prior probabilities:

(a) If the doctors assessed that population member i infected population member j, we
specify ϕ(i infected j) = 1 and ϕ(h infected j) = 0 for all infected population mem-
bers h ∈ {1, . . . , 186} \ {i, j}. If the doctors did not specify who infected j and there are
Mj ∈ {1, . . . , 185} infected population members h satisfying Ih < Ej < Rh, we specify
ϕ(i infected j) = 1/Mj for all infected population members i satisfying Ii < Ej < Ri
and ϕ(h infected j) = 0 for all other infected population members h.

(b) If there areMj ∈ {1, . . . , 185} infected populationmembers h satisfying Ih < Ej < Rh,
we specify ϕ(i infected j) = 1/Mj for all infected populationmembers i satisfying Ii <

Ej < Ri and ϕ(h infected j) = 0 for all other infected population members h.

Last, but not least, there is no evidence to suggest that the incomplete-data generating
process is non-ignorable, therefore we estimate the population model under the assump-
tion that the incomplete-data generating process is ignorable. It is worth noting that the
assumption of ignorability is a strong assumption, but it is convenient and defensible
unless there is strong evidence to the contrary. We discuss how to deal with non-ignorable
incomplete-data generating processes in Section 9.4.

8.3. Computing

We sample from the posterior distribution by using the Bayesian Markov chain Monte
Carlo algorithm described in Section 6.4. The Markov chain Monte Carlo algorithm
required 302 minutes. Out of the 2,000,000 sample points generated by the Markov chain
Monte Carlo algorithm, we discard the !rst 200,000 sample points as a burn-in and retain
every 100th sample point of the remaining 1,800,000 sample points, giving rise to aMarkov
chainMonte Carlo sample of size 18,000. The resultingMarkov chainMonte Carlo sample
shows evidence of label-switching.We undo the label-switching as described in Section 6.5.
Trace plots of selected parameters can be found in Figure 4. The trace plots do not show
signs of non-convergence and suggest that the label-switching has been undone.

Figure 4. MERS data: Trace plots of the degree parameters γ1, γ2, and γ3.
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8.4. Results

The semiparametric population model introduced in Section 4 induces a partition of
the population into subpopulations. We therefore start by investigating the local struc-
ture of the population, by determining which population members belong to which
subpopulations.

Figure 5 shows the posterior classi!cation probabilities of population members along
with the transmissions of MERS according to the assessments of doctors. According to
doctors, 181 out of the 186 infected population members are suspected of having infected
0, 1, or 2 other population members, while 5 population members are believed to have
infected more than 2 other population members: 1 (infected 30 others); 14 (infected 70
others); 15 (infected 6 others); 16 (infected 23 others); and 76 (infected 10 others). In total,

Figure 5. MERS data: Posterior classification probabilities of population members along with transmis-
sions of MERS based on the assessments of doctors. Each population member is represented by a circle.
Each circle is divided into coloured slices. The colours of the slices represent subpopulations. The sizes
of the slices are proportional to the posterior probabilities of belonging to the corresponding subpopu-
lations. Directed edges between population members indicate transmissions based on the assessments
of doctors. The five population members who are believed to have infected 139 out of the 186 infected
population members are labelled 1, 14, 15, 16, and 76. The labels of all other population members are
omitted.
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these 5 population members are believed to have infected 139 out of the 186 infected pop-
ulation members. The posterior classi!cation probabilities in Figure 5 suggest that three
subpopulations can be distinguished:

• A subpopulation consisting of populationmembers 1, 14, and 16, whichwe represent by
the colour red in Figure 5. Population member 1 was the !rst con!rmed MERS case in
SouthKorea and is believed to have infected populationmembers 14 and 16. These three
population members are suspected of being responsible for the three largest clusters of
infections, infecting a total of 123 out of the 186 infected populationmembers, andmay
therefore be considered to be primary drivers of the MERS outbreak.

• A subpopulation consisting of population members 15 and 76, which we represent by
the colour orange in Figure 5. Population member 76 (infected 10 others) belongs with
high posterior probability to the orange-coloured subpopulation, whereas there is more
uncertainty about the classi!cation of population member 15 (infected 6 others). Both
of them are thought to be responsible for clusters of infections – albeit smaller clusters
of infections than population members 1, 14, and 16 – andmay therefore be considered
to be secondary drivers of the MERS outbreak.

• A subpopulation consisting of all other populationmembers, which we represent by the
colour grey in Figure 5.

To gain insight into the propensities of population members to form contacts within
and between these subpopulations, we inspect the marginal posterior densities of the
degree parameters γ1, γ2, and γ3. The degree parameters γ1, γ2, and γ3 correspond to the
red-, orange-, and grey-coloured subpopulations in Figure 5, respectively. Figure 6 shows
Markov chain Monte Carlo approximations of the marginal posterior densities of γ1, γ2,
and γ3. The 95% posterior credible intervals of γ1, γ2, and γ3 are given by [.140, .959],
[−2.575, 1.759], and [−2.587,−2.317], respectively. Since the log odds of the probability
of a contact between two population members i and j is θi + θj = Z*

i γ + Z*
j γ , mem-

bers of the red-coloured subpopulation have a high propensity to be in contact with other
population members, in particular other members of the red- and orange-coloured sub-
populations, in addition tomembers of the grey-coloured subpopulation. It is worth noting
that the posterior uncertainty – as measured by the lengths of the 95% posterior credible

Figure 6. MERS data: Markov chain Monte Carlo approximations of the marginal posterior densities of
the degree parameters γ1, γ2, and γ3. The degree parameters γ1, γ2, and γ3 correspond to the red-,
orange-, and grey-coloured subpopulations in Figure 5, respectively.
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intervals – is highest for γ2 and lowest for γ3, whichmakes sense because nomore than 1 or
2 population members belong to the orange-coloured subpopulation with degree parame-
ter γ2 (with a high posterior probability), whereas 181 population members belong to the
grey-coloured subpopulation with degree parameter γ3 (with a high posterior probability).
Taken together, these results suggest that there were three to !ve potential superspreaders
who may have had a great impact on the outcome of the MERS outbreak in South Korea.
These observations underscore the importance of detecting potential superspreaders.

We proceed with posterior predictions of the degree distribution of the population
contact network. While the population contact network and its degree distribution are
unobserved, posterior predictions of the degree distribution can be generated, provided
draws from the posterior distribution are available. Probabilistic statements about the
degrees of population members based on the posterior distribution are informed by the
observed infectious and removal times along with the assessments of doctors of who
infected whom. Both of these sources of information help inform who was in contact with
whom, because

• the observed infectious and removal times reveal when infected population members
were infectious, which helps narrow down the possible sources of infections;

• an infection implies a contact.

The posterior predictions of the degree distribution shown in Figure 7 suggest that the
degree distribution is long-tailed: The bulk of population members has no more than 10
contacts, but somepopulationmembers have asmany as 80 contacts. As pointed out before,
population members with many contacts can infect many other population members and
therefore represent an important public health concern.

Last, but not least, it may be of interest to inspect posterior predictions of the epidemic
itself. We focus on the maximum of the ‘epidemic curve,’ that is, the maximum number
of infectious population members during the height of the MERS outbreak. The observed
number is 129, that is, the number of infectious population members reached 129 at the

Figure 7. MERSdata: Posterior predictions of thedegreedistributionof thepopulation contact network.
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Figure 8. MERS data: Posterior predictions of the maximum number of infectious population members
during the epidemic. The red vertical line indicates the observed number of 129. The posterior predic-
tive distribution is bimodal. The two modes of the posterior predictive distribution correspond to two
scenarios. In the first scenario, the first infected populationmember is isolated in the sense that it has no
contacts. As a result, no other populationmember is infected, giving rise to themode at 1. In the second
scenario, the first infected population member is not isolated. Then MERS can spread throughout the
population, resulting in the mode at the observed number of 129.

height of the MERS outbreak. Figure 8 reveals that the posterior predictive distribution of
themaximumnumber of infectious populationmembers is bimodal. The twomodes of the
posterior predictive distribution correspond to two scenarios. In the !rst scenario, the !rst
infected population member is isolated in the sense that it has no contacts. As a result, no
other population member is infected, giving rise to the mode at 1. In the second scenario,
the !rst infected population member is not isolated. Then MERS can spread throughout
the population, resulting in the mode at the observed number of 129.

These results are based on prior speci!cation (a) described in Section 8.2, that is, the
prior probabilities of who infected whom are speci!ed in accordance with the assess-
ments of doctors. If the assessments of doctors are ignored and prior speci!cation (b) in
Section 8.2 is used, then – conditional on the event that the !rst infected population mem-
ber is not isolated – the predicted maximum number of infectious population members is
122.5 on average, which is 5% lower than the observed number of 129. By contrast, when
the assessments of doctors are taken into account and prior speci!cation (a) in Section 8.2
is used, then – conditional on the event that the !rst infected population member is not
isolated – the predicted maximum number of infectious population members is 127.9 on
average, which is 1% lower than the observed number of 129. In other words, ignoring
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the assessments of doctors and choosing prior speci!cation (b) leads to underpredictions
of the maximum of the ‘epidemic curve,’ whereas utilising the assessments of doctors and
choosing prior speci!cation (a) leads to predictions that match, on average, the observed
maximum of the ‘epidemic curve’ rather well. These observations underscore that

• posterior predictions of the epidemic are sensitive to the choice of prior of who infected
whom, at least in the absence of observations of transmissions or contacts;

• data on transmissions and contacts should be collected to reduce the posterior uncer-
tainty about quantities of interest and the sensitivity of posterior predictions of the
epidemic to the choice of prior.

9. Open questions and directions for future research

We have introduced a semiparametric population model that can accommodate both
short- and long-tailed degree distributions and detect potential superspreaders, in addition
to dealing with a wide range of missing and sample data.

Having said that, many open questions remain. Some of them are rooted in the lack of
data, while others stem from computational and statistical challenges arising from the lack
of data and the complexity of the models. We review a selection of open questions and
directions for future research below.

9.1. What is the population of interest?

To analyze the MERS outbreak in South Korea, we applied the proposed semiparametric
modelling framework to the 186 infected population members. In so doing, we made the
implicit assumption that the population of interest consists of those 186 infected popula-
tion members. There is no denying that such an assumption is unappealing. In fact, the
assumption was motivated by convenience rather than substantive considerations, includ-
ing the challenge of determining the population of interest: e.g. does the population of
interest consist of all residents of SouthKorea, all residents of East Asia, or thewholeworld?

9.2. Incomplete data

As pointed out before, collecting complete data on population contact networks and epi-
demics is all but impossible. As a consequence, public health o#cials and researchers face
a recurring question in the event of epidemics (whether outbreaks of coronaviruses such
as COVID-19, MERS, or SARS, Ebola viruses, or other viruses): Which data to collect?
We believe that, to learn the structure of a population contact network and its impact on
the spread of an infectious disease, investigators should attempt to collect contact and epi-
demiological data on all infected populationmembers and collect samples of contacts from
non-infected population members by likelihood-ignorable sampling designs. We discuss
some of the challenges arising in practice along with possible solutions.

First, while it is challenging to collect data on transmissions, it is advisable to collect data
that help reduce the posterior uncertainty about epidemiological parameters. One possible
source of data are viral genetic sequence data, among other possible data sources. We refer
interested readers to Bouckaert et al. (2019) for a recent review of possible data sources.
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Second, it is prudent to sample from population contact networks to reduce the pos-
terior uncertainty about network parameters. The two likelihood-ignorable sampling
designs discussed above can be used to do so, though both require a sampling frame. If
no sampling frame is available, an alternative would be respondent-driven sampling (e.g.
Gile and Handcock 2010; Gile 2011), which is a form of link-tracing without a sampling
frame. Location data collected by mobile phones and other electronic sources would be
alternative sources of data, but raise data privacy issues (Fienberg and Slavković 2010). In
the past decade, substantial progress has been made on data privacy in the statistical liter-
ature: see, e.g. the work of Karwa and Slavković (2016) on data privacy in scenarios where
network data are generated by the β-model (albeit without Dirichlet process priors and
without epidemics). Studying data privacy for epidemics would be an important direction
for future research.

9.3. Computational challenges arising from incomplete data

The lack of data has computational implications. Statistical algorithms for likelihood-
based statistical inference (e.g. EM algorithms, Dempster, Laird, and Rubin 1977) have
to integrate over the unobserved data, hence the computing time tends to increase with
the amount of missing data. How to develop scalable statistical algorithms, with statisti-
cal guarantees, is an open question. One idea would be to develop a two-step estimation
algorithm, !rst estimating the network parameters and then estimating the epidemiolog-
ical parameters, leveraging computational advances in the statistical analysis of network
data (e.g. Raftery et al. 2012; Salter-Townshend and Murphy 2013) and epidemiological
data (Bouckaert et al. 2019). A two-step estimation algorithm may require data on con-
tacts, however, because without data on contacts the posterior correlations of the network
parameters and the rate of infection can be high (Groendyke et al. 2011), in which case
two-step estimation algorithms may not work well. A related problem is how to update
posteriors in reasonable time as more data on infections and contacts come in.

9.4. Non-ignorable incomplete-data generating processes

We have considered here ignorable incomplete-data generating processes. If the
incomplete-data generating process is non-ignorable, then either the incomplete-data gen-
erating process must be modelled or it must be demonstrated that Bayesian inference for
the parameters of the population model is insensitive to the incomplete-data generating
process. Both approaches require insight into the incomplete-data generating process and
may require additional model assumptions, some of which may be untestable.

9.5. Populationmodels capturing additional network features

We have focussed here on the degrees of population members as network features, but
there are many other important network features: e.g. if population contact networks
exhibit closure (e.g. transitive closure, Wasserman and Faust 1994; Kolaczyk 2009), then
infectious diseases may spread rapidly within subpopulations but may spread only slowly
through the whole population, which has potential policy implications. There are two
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broad approaches to capturing closure in population contact networks: latent space mod-
els (Ho&, Raftery, andHandcock 2002; Handcock, Raftery, and Tantrum 2007; Smith, Asta,
andCalder 2019) and related latent variablemodels (e.g. Salter-Townshend,White, Gollini,
and Murphy 2012; Rastelli, Friel, and Raftery 2016; Fosdick and Ho& 2015; Ho& 2021);
and exponential-family models of random graphs (Frank and Strauss 1986; Snijders, Pat-
tison, Robins, and Handcock 2006; Lusher, Koskinen, and Robins 2013). Both classes of
models can accommodate the degree terms we have used (see, e.g. Krivitsky, Handcock,
Raftery, and Ho& 2009; Thiemichen, Friel, Caimo, and Kauermann 2016) along with addi-
tional terms that reward closure in population contact networks. However, both of them
come at costs in terms of computing time (Bhamidi, Bresler, and Sly 2011; Chatterjee and
Diaconis 2013), although the computing time depends on the class of models under con-
sideration (see, e.g. Karwa, Petrović, and Bajić 2016). In addition,Welch (2011) pointed out
that closure in population contact networks may not be detectable unless data on the pop-
ulation contact network are collected. This, too, underscores the importance of collecting
network data.

9.6. Time-evolving population contact networks

We have assumed that the population contact network is time-invariant, motivated by the
lack of data on the population contact network and the desire to keep the model as sim-
ple and parsimonious as possible. In practice, the population contact network may evolve
over time, because population members may create or discontinue contacts and because
authorities may enforce social distancing measures. As a consequence, it would be natural
to allow the population contact network to change over time. Extensions to time-evolving
population contact networks could be based on temporal stochastic block and latent space
models (e.g. Fu, Song, and Xing 2009; Sewell and Chen 2015, 2016; Sewell, Chen, Bern-
hard, and Sulkin 2016); temporal exponential-family random graph models (Robins and
Pattison 2001; Hanneke, Fu, and Xing 2010; Ouzienko, Guo, and Obradovic 2011; Kriv-
itsky and Handcock 2014); continuous-time Markov processes (Snijders 2001); relational
event models (Butts 2008); and other models (e.g. Katz and Proctor 1959; Durante and
Dunson 2014; Sewell 2017). An interesting approach to time-evolving population con-
tact networks was recently introduced by Bu et al. (2021), albeit without the ability to
accommodate long-tailed degree distributions and detect potential superspreaders.
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