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ABSTRACT: This study investigates the parameter dependence of eddy heat flux in a homogeneous quasigeostrophic two-
layer model on a B plane with imposed environmental vertical wind shear and quadratic frictional drag. We examine the
extent to which the results can be explained by a recently proposed diffusivity theory for passive tracers in two-dimensional
turbulence. To account for the differences between two-layer and two-dimensional models, we modify the two-dimensional
theory according to our two-layer f-plane analyses reported in an earlier study. Specifically, we replace the classic
Kolmogorovian spectral slope, —5/3, assumed to predict eddy kinetic energy spectrum in the former with a larger slope, —7/3,
suggested by a heuristic argument and fit to the model results in the latter. It is found that the modified theory provides a
reasonable estimate within the regime where both B= Bk;2U™! and the strength of the frictional drag, ¢p = cpky!, are
much smaller than unity (here, cp is the nondimensional drag coefficient divided by the depth of the layer, k, is the
wavenumber of deformation radius, and U is the imposed background vertical wind shear). For values of 8 and ¢, that are
closer to one, the theory works only if the full spectrum shape of the eddy kinetic energy is given. Despite the qualitative,
fitting nature of this approach and its failure to explain the full parameter range, we believe its documentation here remains

useful as a reference for the future attempt in pursuing a better theory.
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1. Introduction

The maintenance of global climate is in large part deter-
mined by the baroclinic eddy equilibration of the extratropical
troposphere. While these eddies have been well resolved in
global climate models, an understanding of them that could be
useful for the construction of conceptual models for climate
change research remains missing. For the meridional heat
fluxes of these eddies in particular, the pursuit of a quantitative
understanding has indeed had a long history (Held 1999). An
important theoretical framework for approaching this problem
is founded on the seminal work by Rhines (1975, 1977) and
Salmon (1978, 1980), where they studied homogeneous two-
layer quasigeostrophic (QG) turbulence as a prototype of more
complex atmospheric flows.

Numerical model simulations for this type of turbulence
have been compared with theoretical scaling arguments in a
series of papers in the intervening years (Larichev and Held
1995; Held and Larichev 1996; Lapeyre and Held 2003;
Thompson and Young 2006, 2007; Chang and Held 2019,
hereafter CH19; Gallet and Ferrari 2020). In the models in-
vestigated by these papers, an environmental mean vertical
shear in the zonal flows is prescribed such that the environ-
mental temperature and potential vorticity (PV) gradients in
each layer are uniform. The deviations from these mean en-
vironmental gradients are assumed to be doubly periodic, so
that all eddy statistics, including the heat (or mass) and PV
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fluxes are horizontally uniform, while the eddy momentum
fluxes vanish on average. The heat flux, in particular, can be
described by a diffusivity, defined as the flux divided by the
prescribed gradient. The parameter dependence of this diffu-
sivity, the thermal diffusivity, is then the central concern of the
theoretical scaling arguments discussed therein.

However, some of these existing scaling arguments lack
quantitative agreement with the numerical simulations.
Moreover, all of them consider the limits where the thermal
diffusivity depends only on 3 or the strength of the friction
individually. As a step to improve and generalize the existing
arguments, our goal in this paper is to better understand the
thermal diffusivity’s dual dependence on B8 and the strength of
the quadratic friction. In this work, we effectively try to extend
the work of CH19 on the B = 0 limit, which studied the de-
pendence on the strength of the quadratic friction with 8 = 0,
to the cases of nonzero 3. We do so by combining it with the
work of Kong and Jansen (2017, hereafter KJ17) on the dif-
fusivity of passive tracers in externally stirred two-dimensional
turbulence. Specifically, KJ17 proposed a passive tracer diffu-
sivity theory for two-dimensional turbulence that describes
both the dependence on B and the strength of the quadratic
friction. We modify their theory to account for the nature of
thermal diffusivity in the two-layer turbulence. We then in-
vestigate the ability of this modified theory to explain the nu-
merical simulations, conducted using the model documented in
CH19 except for the inclusion of the 8 effect.

The rest of the paper is organized as follows. In section 2, we
selectively review the relevant theoretical scaling arguments
from previous literature, both in the case of advection of pas-
sive tracers in externally stirred two-dimensional turbulence
and of temperature in the two-layer self-stirred model. In
section 3, we describe the two-dimensional turbulence theory

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright

Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by PRINCETON UNIVERSITY LIBRARY | Unauthenticated | Downloaded 08/25/21 07:27 PM UTC


mailto:cyinchang@uchicago.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses

98 JOURNAL OF THE ATMOSPHERIC SCIENCES

of KJ17 and our modifications to make it applicable for the
two-layer turbulence, following the heuristic argument de-
scribed in CH19. Section 4 presents a comparison between the
numerical simulations and the theoretical prediction obtained
by the arguments proposed in section 3, with their discrepancy
examined in further detail. In section 5, we summarize our
results and discuss some additional, unsettled questions that
prevent us from developing a quantitative theory for the full
parameter range.

2. A review on some existing scaling theories

To setup the background of the derivation of the generalized
diffusivity theory in section 3, this section surveys some of
the relevant scaling arguments that have been proposed in the
literature for two-dimensional turbulence and two-layer QG
turbulence. The connection between two-dimensional turbu-
lence and two-layer QG turbulence is first noticed by Rhines
and Salmon. They postulated that the energy in two-layer
turbulence is typically extracted from the mean available po-
tential energy by the eddy heat flux into the baroclinic mode,
transferred to the barotropic mode near the radius of defor-
mation, and cascaded inversely within the barotropic mode to
larger horizontal scales. If the cascade is sufficiently extensive,
this results in most of the energy being barotropic and at large
enough scale that the baroclinic streamfunction (temperature
in the two-layer model) acts essentially like a passive tracer
mixed by the barotropic flow. For this reason, it is common for
existing studies to develop the scaling theories for the eddy
heat flux in the self-stirred two-layer model based on the the-
ories for the flux of a passive tracer in the externally stirred
two-dimensional (barotropic) model, as discussed in more
details in the following.

a. Diffusivity of passive tracers in two-dimensional
flow with B =0

For homogeneous two-dimensional turbulence to maintain a
statistically steady state, energy is typically input at a small
forcing scale with a prescribed energy injection rate e. To the
extent that most energy cascades to large scales, € can also be
thought of as the strength of the inverse energy cascade. In the
absence of a B effect, large-scale friction stops the cascade
by dissipating energy. When the friction is in the form of
quadratic drag, the frictional damping strength is an inverse
length scale or a wavenumber (cp). If the forcing scale and
domain size are irrelevant in the parameter regime of in-
terest (and if no other properties of the forcing other than
¢ are relevant) the system is then characterized by only two
parameters: ¢ and cp. By dimensional analysis, the eddy
diffusivity (D) for a passive tracer with an imposed envi-
ronmental tracer gradient should scale as

D~ 81/3C1;4/3 , (1)

which has been shown to be supported by simulations of pas-
sive tracer transport in barotropic models (e.g., Grianik et al.
2004; KJ17). Additionally, the relevant halting length scale,
again by dimensional analysis, is then

Brought to you by PRINCETON UNIVERSITY LIBRARY | Unauthenticated | Downloaded 08/25/21 07:27 PM UTC

VOLUME 78
L~cp. 2)

b. Diffusivity of passive tracers in two-dimensional
flow with B

The presence of B breaks the isotropy of the equations and
channels the barotropic inverse energy cascade into Rossby
waves and zonal jets that do not participate directly in meridional
mixing. When S alone is large enough to achieve this redirection
before the cascade is halted by friction, one can hope that dif-
fusivity depends on S rather than friction. The physical picture is
that the frictional energy loss occurs in the jets, allowing the
eddies responsible for the meridional mixing of passive tracers to
be independent of the friction strength. If this regime is achiev-
able, then by dimensional analysis the diffusivity should scale as

D~ 83/5 —4/5 . (3)

This limit has also been confirmed in simulations of passive
tracer transport in two-dimensional turbulence (e.g., Smith
et al. 2002; KJ17). In addition, the halting scale in this
B dominated limit, which marks the peak in the spectrum of the
meridional component of the velocity, can also be derived by
dimensional analysis as

L~g5gs (4)
(Vallis and Maltrud 1993).

¢. Thermal diffusivity in two-layer model with B = 0

As mentioned earlier, given the connection between the
two-dimensional and two-layer turbulence, it is tempted to
apply Eq. (1) to the thermal diffusivity in two-layer model with
B = 0 (so long as the damping is sufficiently small that the ki-
netic energy is predominately barotropic). In the two-layer
model, ¢ is however not prescribed. Instead, it is the mean
vertical shear in the zonal flows between the two layers, U, or
equivalently the mean gradient of baroclinic streamfunction,
that is prescribed. The energy is generated through the eddy
mixing that taps the available potential energy associated with
this mean vertical zonal shear,

e,=D Uk;=D T, ®)

where D, is the thermal diffusivity and k, is the wavenumber
of the deformation radius, also externally imposed in QG theory,
and the time scale T = (Uk,). This equation is exact in the ho-
mogeneous model. Setting & = ¢, combining this exact energetic
relation with Eq. (1) and taking D = D, the resulted scaling is

D_~c,’T™! (6)

(Held 1999). This scaling is however found by CH19 to poorly
predict the thermal diffusivity in 8 = 0 two-layer simulations. It
explained the decrease of thermal diffusivity with increasing
strength of the quadratic friction but overestimates this sensitivity.

d. Thermal diffusivity in two-layer model with B

Again, to apply Eq. (3) to the two-layer thermal diffu-
sivity, one has to consider that ¢ is internally computed in
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the two-layer model. Letting & = ¢, and solving Eqs. (5) and
(3) simultaneously, Held and Larichev (1996) obtained

D_~B7T. 7)

Strictly speaking, a complication in applying Eq. (3) to the two-
layer turbulence is that the latter has three distinct diffusivities:
the thermal diffusivity, and the diffusivity of the upper- and
lower-layer PV, respectively. These three diffusivities are
simply related due to the vanishing of domain mean momen-
tum and PV fluxes (e.g., Vallis 1988) and they approach each
other only when criticality ¢ = Uk2/B approaches to infinity.
Thus, without further justification for why it is the temperature
(baroclinic streamfunction) that behaves most like a passive
tracer, Eq. (7) is better regarded as only applicable to the
strongly unstable flows where ¢ is large. Lapeyre and Held
(2003) indeed found in numerical simulations that Eq. (3) ac-
tually fits best for the diffusivity of lower-layer PV and de-
scribed how to modify Eq. (7) appropriately.

In fact, the state of knowledge regarding the validity of
Eq. (7) is somewhat confusing. On one hand, Eq. (7) and its
variants have been shown capable of at least qualitatively ex-
plaining the diffusivity defined by poleward eddy heat trans-
port in more complex systems, including an inhomogeneous
two-layer QG channel model (Pavan and Held 1996; Zurita-
Gotor 2007), a multilayer Boussinesq channel model (Jansen
and Ferrari 2013), and a comprehensive atmospheric-only
general circulation model (Barry et al. 2002). On the other
hand, Eq. (7) has also been shown to be problematic even for
explaining the two-layer B-plane simulations. Specifically,
Thompson and Young (2007) found that Eq. (7) is not the as-
ymptotic limit for large B as it is assumed. For large B, the
thermal diffusivity is not merely a function of 8 but still de-
pends on the strength of friction. This complicated dual de-
pendence is therefore the subject of study we like to address
in section 3.

3. Toward a theory for the two-layer model incorporating
cp and B

The review in section 2 suggests that the scaling arguments
derived from the two-dimensional turbulence theory, both for
B = 0 and nonzero 3, cannot be directly applied to explain the
thermal diffusivity in two-layer turbulence. Rather than to
completely give up on this theoretical framework, CH19 set in
to understand more exactly why it breaks down. At the limit of
B = 0, they found the main reason being that the barotropic
eddy kinetic energy spectrum of the two-layer flows de-
velops a slope that is steeper than obtained by the classic
Kolmogorovian argument. The Kolmogorovian argument
is fundamentally based on the idea that & alone can fully
characterize the stirring, which is evidently not the case in the
two-dimensional turbulence simulations. Taking a heuristic
approach to factor in this difference, CH19 described a scaling
that agrees better with the simulations. In this section, we ex-
plore how these findings in the 8 = 0 limit can be further ex-
tended to understand the case when S is nonzero. Specifically,
we accordingly modify KJ17’s recently proposed theory that
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explains both the B and ¢p dependence of passive tracer dif-
fusivity in two-dimensional turbulence. We start with intro-
ducing their theory and next describe the modification we
made based on CH19’s heuristic argument.

a. KJ17’s theory for two-dimensional turbulence

For passive tracers in two-dimensional turbulence, consid-
ering the full parameter range where both 8 and c¢p may play a
role, dimensional analysis suggests that the diffusivity should
be a function of

w= 8*1/533/5CZ)1 , (8)

the only dimensionless form among all combinations of €, 3,
and cp. The parameter u can be thought of as the zonostrophic
index (e.g., Galperin et al. 2010) modified for quadratic drag. It
can also be thought of as the ratio of the halting wavenumbers
in the frictionally dominated and 8 dominated regimes, i.e., the
ratio of the two length scales defined in Egs. (2) and (4). KJ17
then proposed that the diffusivity in two-dimensional turbu-
lence takes the form

D =Dl 7 (u), )

where the function .77~ describes the roles of 8 in causing the
differences between the diffusivity (D) and its corresponding
value at the 8 = 0 limit (D|g—o).

Specifically, to determine . (), KJ17 considered the effects
of B in generating Rossby waves. They developed a theory for

7 () based on the physical picture of the suppression of me-

ridional mixing by zonal wave propagation. This picture is first
proposed by Ferrari and Nikurashin (2010), where the concern
is a passive tracer mixed meridionally by the eddies dominated
by a single zonal wavenumber K. Assuming these eddies
propagate at a phase speed ¢ with respect to a zonal flow z,
Ferrari and Nikurashin (2010) argued that the diffusivity can
be determined as

D
D “w
1+
2V E

where D= 'EV?K™! is obtained by traditional mixing
length theory assuming the eddy decorrelation time scale
T, = (» E*K)™" with v, being the dimensionless proportion-
ality constant and E the total eddy kinetic energy. The de-
nominator in Eq. (10) is then a suppression factor depending
on the time scale ratio of eddy decorrelation and zonal flow
advection.

Following Ferrari and Nikurashin (2010), KJ17 extended the
single wavenumber picture to consider the full diffusivity
spectrum,

D =J D(K) dk, a1

0
with D(k) determined in the same manner as Eq. (10). In
particular, they treated each wavenumber k independently and
assumed that the relevant Doppler shifted phase speed in D(k)
is simply [B/k2 and the relevant eddy kinetic energy is simply the
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energy at that wavenumber, E(k). In terms of E(k), one can
also write Dy (k) = v; '[E(k)k]"* kL. Putting together, D(k) is
therefore obtained as

v 'E(k)"*k"?

T i
202E(k)IS

D(k) = ; (12)

1

where the constant v, is additionally added to include some
freedom in the strength of the suppression.

It is noted that Eq. (12) is still not a closure as E(k) has to be
internally computed by numerical models. To further express
E(k) in terms of the external parameters, KJ17 also assumed a
Kolmogorov spectrum (with Kolmogorov constant C) for the
wavenumbers above the wavenumber of the halting scale for
B = 0, Aocp, i.e., the inverse of Eq. (2) with Ay being the di-
mensionless proportionality constant,

23,-513 -
(S e
> [195)

Here, the simple choice of Eq. (2) appears to ignore the im-
portance of the B-halting scale [i.e., Eq. (4)] for determining
E(k), but the hope is that the strength of the suppression factor
for scales between the two halting scale makes this choice less
significant. Combining Eqgs. (11)—(13), closed expressions for
D, D|g—o, and .7 (u) = DID|,_, are then readily obtained. To
simplify the expression for.” (u), an extra step can be taken to
change the variable of integration from k to x = kc,!'. With this
help, the functional form .7 (1) can then be written as

K77/3

4/3 oo
b My J de.  (14)

pl,, W= Tea e
Again for simplicity, the newly introduced constant A; =
1,/(212C) now subsumes all the previously defined constants,
while the prefactor assures that.”7 = 1for u = 8 = 0. Also, its
associated prediction for D|g—¢ is simply Eq. (1). This ex-
pression is the final product of KJ17’s theory.

b. Modifications for two-layer turbulence based on
CH19’s heuristic argument

Despite the number of assumptions, KJ17 concluded that
Eq. (14) can indeed fit their simulations for the diffusivity of a
passive tracer in two-dimensional turbulence reasonably well.
Yet there are reasons to expect that numerical simulations with
two-layer models do not follow Eq. (14). The most obvious one
is that, at 8 = 0 limit, D|g—o already does not scale as Eq. (6), as
shown in CH19. It therefore makes sense to first discuss why
Eq. (6) fails and to modify KJ17’s theory accordingly.

In particular, CH19 found that the failure of Eq. (6) has to do
with the absence of a well-defined Kolmogorov inertial range
in the simulated two-layer barotropic eddy kinetic energy
spectrum. Recall that Eq. (6) can be derived by dimensional
analysis in section 2, assuming the nontrivial parameters
determining the relevant eddy scales being cp and ¢ only.
This is equivalently to assume Eq. (13), i.e., E(k) to follow a
Kolmogorov spectrum with an inverse cascade rate, (k), that
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is independent of wavenumber, k, and equals to the energy
input from the stirring at a single large wavenumber. CH19
argued that in the two-layer models, associated with the self-
stirring due to baroclinic instability, the energy input from the
baroclinic into the barotropic mode is not localized at the
radius of deformation, but spreads to lower wavenumbers
as well. This leads them to heuristically assume e(k) ~
ep(klk4) ™", with x an undetermined parameter representing
the nonlocality of energy transfer (and x = 0 reducing to the
classic assumption). Along with the fact that, E(k) locally is still
determined by local k and local inverse cascade rate e(k), this
results in a modified barotropic eddy kinetic energy spectrum
in the form

E(k) ~ 8’27/3k§x/3k7(5+2x)/3. (15)
Consistently, the revised scaling for diffusivity and mixing
length become [cf. their Eq. (16)]

b EZ)[(LHX)/(H,V)]/Z . (16)

[~ 551/(1+x) ’

17)

where the tilde represents the nondimensionalization by the
mean wind shear (U) and the wavenumber of deformation
radius (k,),i.e., D = Dk,U™", L = Lky,and ép = cpk;'. With a
positive x, these revised scaling then suggest a ¢, dependence
weaker than predicted by Egs. (6) and (2) as seen qualitatively
in CH19’s two-layer simulations.

To be more quantitative, the parameter x needs to be
specified. CH19 obtained x =~ 1 from the fit to D, in their 8 = 0
numerical simulations. Assuming x ~ 1 for simplicity, we can
here write Egs. (15)—(17) as

E(k) ~ & kP77, (18a)
D~ &, (18b)
L~é2. (18c)

According to Eq. (18), we can then modify Eq. (13) and the
frictional halting scale to get a revised diffusivity to apply to
two-layer thermal diffusivity,

%0 V;l Cl/z 8,17/3 k(l{/3k*8/3
DT B 1212
Aoepky

2
v,B

2 (o203 1,23 1,83
2V1C8p kPk

dk. (19)
1+

To obtain an expression for D,/D.|z—o, one has to again
take into account the complication not present in the two-
dimensional case that, for fixed external parameters in the
two-layer model, g, depends on D,. In the 8 = 0 limit, it is

only the factor of s},“ in the numerator that survives. After

changing the integration variable by setting « = kcp 2k 12,
we have
D . \ 1
i —(8 . ) 7, (20)
T1p=0 P'B=0
where
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plotted against 8 = Bk, 2U ! with different ¢p = cpk; ' values indicated by different symbols, and (right) D, plotted
against ¢p with results sharing the same value of 8 connected by lines.

533 (= 83
g ="0 J — 21
3L T A B Kk 1)
and
= sp—ws Bk, 22)

The prefactor in Eq. (21) once again ensures that.7 = 1 when
B = 0. The definition of the dimensionless parameter w, in
Eq. (22) is analogous to u defined in Eq. (8). We can further use
the energetic constraint, i.e., Eq. (5), which requires ¢, « D, to
obtain

DD‘T =7, (23)
lg=0
While the final expression is complex, we consider this as the
natural extension of the B = 0 results in CH19 to nonzero
B following the approach in KJ17 for the passive two-
dimensional case. In fact, Eq. (23) is an implicit equation for
D,. It indicates that, in the two-layer case, the overall param-
eter dependence of thermal diffusivity is characterized by ..
Yet u, by definition depends on &, which in turn depends on
D, as stated in Eq. (5). We therefore have to solve Egs. (23)
and (5) together to further get the explicit prediction for D,
itself. The extent to which this prediction is supported by nu-
merical simulations will be examined in the next section.

4. Comparison with the simulations

In this section, we present the numerical results of thermal
diffusivity to test the modified theory discussed in section 3.
Following CH19, we use the same numerical model to
conduct a series of simulations in the parameter range:
103 =ép=cpk;' =107 and 0= B = Bk;2U~! < 1. The value
¢p ~ 107! corresponds to a drag coefficient in marine boundary
layers (CH19). This ¢p range is also chosen to ensure the
frictional damping is relatively weak so that eddy kinetic en-
ergy is predominately barotropic, and the 8 range covers the
regime with larger-than-one criticality (i.e., ¢ = 87"). For each
combination of ¢p and [5’, we have prepared two different
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simulations: one with symmetric drag (quadratic drag with the
same ¢p value in the two layers) and another with asymmetric
drag (quadratic drag only in the bottom layer). When there is
equal drag in both layers, B is the only source of asymmetry
between the two layers. When drag is present in the lower layer
only, it is an additional source of asymmetry between the two
layers. The main focus will be on the simulations with sym-
metric drag, as in CH19.

All the other model parameters and the numerics are also
kept the same as in CH19, except for the maximum resolved
wavenumber (k). For most of the cases in CH19, kyax/ky =
127/50 is chosen following Larichev and Held (1995) and Held
and Larichev (1996). We have confirmed that this resolution is
adequate to obtain robust results for small to moderate B.
However, as 3 gets closer to one, a higher resolution is gen-
erally required. Hence, for all the simulations examined in this
study, we have chosen kpy./ks = 255/50. The convergence of
simulations with the largest few B at this resolution is still not
guaranteed. As will be discussed later on, this is also the pa-
rameter regime where the modified theory mostly disagrees
with the simulations. While it is unclear what the role of res-
olution may be in this discrepancy, we wish to point it out as a
potential caveat of our analysis.

a. Overview of the simulations

Figure 1 provides an overview of the simulated thermal
diffusivity (D,) with symmetric drag, diagnosed from the sta-
tistically steady state as D, = (7d,4), where 7 and ¢ are the
baroclinic and barotropic streamfunctions. On the left, we plot
the nondimensional thermal diffusivity (D, =D.k,U™")
against B and use different symbols to indicate the different
values of ¢p. This figure can be compared with Fig. 3 of
Thompson and Young (2007), whose simulations are con-
ducted with linear drag in the lower layer. In spite of the dif-
ference in the frictional form, the D~T dependence in our
simulations very much resembles theirs. The value of D, is
always reduced with increasing g for a given ¢p. A character-
istic B where D, is insensitive to ép is identified around 8 ~ 0.4
and DT ~ 1: smaller than this B, D~, decreases as ¢p increases;
larger than this 8, D, increases as ¢ép increases. The right-hand
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dependent on the strength of the frictional damping acting on barotropic flows (see text).

panel in Fig. 1, a plot of the variation of the diffusivity as a
function of &y for fixed 3, provides an alternative perspective
on this behavior.

As mentioned earlier, for each simulation with symmetric
drag, a simulation is also generated with asymmetric drag with
the same ¢p in the lower layer for comparison. The results for
D, with asymmetric drag are shown in Fig. 2. On the left-hand
panel in Fig. 2, we see a qualitatively similar parameter de-
pendence as compared to its symmetric counterpart over the
explored parameter range. On the right-hand panel in Fig. 2, a
more explicit comparison of simulations with symmetric and
asymmetric drag is provided. Specifically, we plot the asym-
metric drag results at half the ¢p value, since that is the effec-
tive damping strength for its barotropic mode when compared
to the symmetric drag results. As discussed in CH19, this way of
plotting can help us assess whether the two would agree if the
thermal diffusivity were a function of the damping of the bar-
otropic mode only. CH19 found that when 8 =0 this simple
adjustment works well for small ¢p but underestimates the
symmetric diffusivity when ¢p gets closer to unity. This is
owing to the fact that the flows becomes less barotropic, with
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maximum amplitude in the upper layer, resulting in weaker
effective damping of the barotropic mode. The same qualita-
tive behavior is seen here for nonzero B, indicating an addi-
tional complexity to consider when trying to understand the
more realistic asymmetric drag simulations. Hence, to avoid
this extra issue, the following discussion will be limited to the
symmetric drag simulations, a cleaner setup for the comparison
with the theory discussed in section 3.

b. Theoretical fit

To compare with the theory discussed in section 3, as in
KJ17, our first step is to verify that D, normalized by D,|,_,
(the thermal diffusivity at 8 = 0 limit) can be in large part
explained by one nondimensional parameter. In KJ17’s origi-
nal argument, this parameter is u [Eq. (8)]; with our modifi-
cation, it becomes u, [Eq. (22)]. We begin by showing the data
according to the former and then gradually changing the ways
of presentation to demonstrate how different it is before and
after this modification.

In the left-hand panel of Fig. 3, we present D, in the sym-
metric drag simulations in the same way as in Fig. 3 of KJ17.
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FIG. 3. The parameter dependence of the simulated thermal diffusivity with symmetric drag: (left) D, normalized

1/3%—-4/3
P ¢p

by &

plotted against the nondimensional parameter u = ¢,

¢!, and (right) D, normalized by DT‘BZO

plotted against the nondimensional parameter p, = &, "¢k, 1>,
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FIG. 4. Verifying the theoretical prediction, Eq. (23), for D, with symmetric drag: (left) D, normalized by D, | =0
plotted against the nondimensional parameter u, = &, ¢;?°k;*, and (right) D, plotted against 3. The sim-
ulations are shown in black (as in Fig. 1), and the theoretical predictions are colored. (right) The D, prediction is
obtained by solving Egs. (23) and (5) simultaneously to eliminate &, dependence.

Specifically, this is to verify Eq. (9) with Eq. (1) asthe 8 =0
normalization. We plot D, normalized by Eq. (1) as a function
of u, where ¢ in Eq. (1) and u is identified as the simulated
energy generation, ,. Note that this log-log plot does not show
the B = 0 limit. Unlike what is observed for two-dimensional
passive tracer diffusivity in KJ17’s Fig. 3, the two-layer simu-
lations here clearly do not collapse into one curve.

This scatter of data is actually what to expect since we al-
ready know 15,\3:0 does not follows Eq. (1) but rather Eq. (18)
from the results in CH19. Also, as discussed in section 3, u can
be interpreted as the ratio of frictional and 8 halting scales, and
CH19 showed that the frictional halting scale in the two-layer
simulations does not follows Eq. (2) but rather Eq. (18).
Guided by the B = 0 results in CH19, if we assume that the
frictional halting scale is instead given by Eq. (18) and retain
the use of B halting scale as Eq. (4), this halfway modification of
the parameter u becomes

= T Ly (24)
The right-hand panel in Fig. 3 shows the simulated D, normal-
ized by the simulated D, | p-oasa function of w;. We continue to
set € in w; equal to ¢,. Note that k; dependence is explicitly
introduced by this modification to the frictional halting scale and
the B8 = 0 diffusivity in Eq. (18). This plot demonstrates a more
compact description of the 8 and ¢, dependence of D,. Yet,
according to the modified theory, we expect ﬁ,/D~T|B:0 is char-
acterized not by u; but w, defined in Eq. (22).
In fact, to get u,, we have to also consider the modification of
B halting scale. If we assume that the slope of the barotropic
eddy kinetic energy spectrum follows Eq. (18), we can estimate
the characteristic velocity in the barotropic mode in eddies of
scale k, V(k) ~ [E(k)k]"*. Solving for the length scale k! at
which V matches the characteristic phase speed of a Rossby
wave, B/k?, the resulted length scale with & = gy is
L~ 81/4k(11/4'373/4 . (25)
The ratio of the frictional halting scale in Eq. (18) to the modified
B halting scale identified as Eq. (25) is ™43 c;2k; 3. If we
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equivalently raise this expression to the 4/5 power to make the
similarity with p and 4, we then recover u, defined in Eq. (22).
The left-hand panel in Fig. 4 is an analogous plot to those in
Fig. 3, but now using u; as the abscissa. The change is a modest
but noticeable improvement.

After confirming the tightness of the relationship when
plotting against u,, we can next try to test the theoretical
prediction by the modified theory, i.e., Eq. (23). This analytical
expression is used to fit the simulations in the left-hand panel in
Fig. 4, after choosing Ao = 1 and A; = 1.25 (corresponding to
the visually estimated v; = v/2, v, = 4, and C = 0.8). The pa-
rameter , still involves g, in its definition. As discussed in
section 3, we can further eliminate g, using the exact rela-
tionship between D, and g, in Eq. (5). Iterating to solve
Eq. (23) simultaneously with Eq. (5) then yields the explicit
prediction for D,. The dependence of this D, prediction on B
and ¢p is shown in the right-hand panel of Fig. 4. Comparing
with the simulations, the result is encouraging for 8 < 0.4, es-
pecially given the numerous assumptions in the modified the-
ory. Yet it misses the transition to a regime of increasing D,
with increasing ¢ép for larger B.

c. Sensitivity to the energy spectrum

The above results point out the value of Eq. (23) in pre-
dicting D, when B is small or moderate but also its limitation
when B is large. A natural question is then to ask which as-
sumptions in the theory are inconsistent with the simulations.
For this purpose, we take advantage of the intermediate result
of the theory, Eq. (12), a diagnostic relation between D, and
the barotropic eddy kinetic energy spectrum E(k).

Taking E(k) directly from numerical simulations, we plot the
diffusivity ratio and diffusivity itself estimated using Eq. (12) in
Fig. 5. While there are still some discrepancies, Eq. (12)’s es-
timation nicely explains the simulated ¢p dependence for large
values of .

This comparison informs us that Eq. (23)’s breakdown in the
large B regime has to do with the series of assumptions we
introduced to express E(k) in terms of the external parameters.
We have plotted the simulated E(k) in Fig. 6, with each panel
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containing a series of simulations using the same ¢p but varying
B, the spectrum with the largest amplitude corresponding to
the B =0 case. These B =0 cases all have a wide range of
wavenumbers with a fairly well defined spectral slope close to
k™73, The spectra for the nonzero B cases suggest that this
assumption continues to give a fair description for the energy
spectra over a limited range, presumably marking an inverse
cascade, qualitatively justifying holding the value of x in
Eq. (15) fixed with varying B.

The source of the discrepancy is presumably the crude way
that the energy spectrum is cutoff at large scales in Eq. (13),
which assumes that the suppression effect for large 3 is ade-
quate for estimating the diffusivity without altering the spectral
shape from the 8 = 0 case. In addition, for 8 approaching unity,
the issue of whether to identify the diffusivity emerging from
these approximations with the diffusivity of lower-layer PV
rather than the thermal diffusivity is presumably relevant
(Lapeyre and Held 2003). But we have not been able to im-
prove the fit to the simulations along these lines.

5. Summary and discussion

In this study, we examine the parameter dependence of eddy
heat flux on the frictional wavenumber of quadratic drag cp,
and B in a homogeneous quasigeostrophic two-layer model.
Seeking a theoretical understanding of the parameter control
on this eddy heat flux, or the thermal diffusivity defined ac-
cordingly, has been a long-lasting problem. The goal of this
study is to connect the results and arguments in previous two-
layer studies to the recent proposal made by KJ17 on under-
standing the same parameter dependence of passive tracer
diffusion in a two-dimensional externally stirred model.
Particularly, building on our findings reported in CH19, we
propose a heuristic modification on KJ17’s two-dimensional
theory and discuss its potential to explain the two-layer
thermal diffusivity D..

The central point of our modification is on the assumed slope
of the barotropic eddy kinetic energy spectrum E(k). Existing
theories that are based on two-dimensional theory for passive
tracer diffusion have been known to struggle in predicting D,
in numerical simulations. In CH19, we revisited the problem
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and found that, at the 8 = 0 limit, this is owing to the inaccuracy
of Kolmogorovian argument adopted in these theories. We
also found that heuristically assuming a —7/3 spectral slope of
E(k) that is steeper than Kolmogorovian slope, —5/3, to qual-
itatively account for the input of barotropic energy as the
cascade moves energy to larger scales, provides us a reasonable
estimate for D.|g—¢ (ie., D, at B = 0). Since KJ17’s two-
dimensional theory for nonzero 3 has utilized a Kolmogorovian
argument, we here incorporate the same heuristic modification
into their theory, assuming this spectral slope does not vary with 3.

With this modification, the result is a prediction that the
dependence of D,/D,|z— on cp and B collapses to a depen-
dence on a nondimensional parameter, u, = &, "* ¥,k *>.
Physically, u, can also be interpreted as the ratio of the fric-
tional halting scale and $ halting scale, with both of them being
modified in the same way to consider the steeper slope of
energy spectrum and introducing the explicit dependence on
the wavenumber of deformation radius k. This prediction for
D,/D,|g=¢ is confirmed by simulations in the parameter range
1073 =ép=cpk;' =10 and 0=B =Bk 2U ' <1.

Since the expression for w, also contains g, the energy
production rate, while g, is itself closely related to D, we try to
further close the theory by eliminating this &, dependence to
solve for D, from external parameters only. The result is again
of value in this limited parameter range, but is inadequate for
large B. (While we have not highlighted it here, it is also in-
adequate for large cp.) Since an alternative prediction ob-
tained by returning to the simulated E(k) shows no sign of the
same discrepancy, this is likely due to the approximation
concerning the shape of the energy spectrum.

These results do not lead us to a better physical under-
standing of the large 8 regime in which diffusivity increases
with increasing drag. There are several perspectives that po-
tentially explain this kind of behavior. One is that in these
relatively weakly unstable cases, one can think of the flow as
approximated by a steady wave, for which the flux vanishes
when there is no dissipation, by the familiar nonacceleration
theorem. The dissipation then produces a flux that increases
with the damping strength as it breaks this nonacceleration
limit. An alternative perspective involves the barotropic
governor (James 1987), in which strong damping, acting
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particularly on the zonal mean winds, weakens jets that oth-
erwise interfere with the baroclinic eddy production. Neither
of these perspectives are incorporated into our theory.

Neither have we been able to take into account the results of
Lapeyre and Held (2003) in which the diffusivity of lower-layer
PV is identified with the diffusivity obtained from the scaling
theory. This modification alters the theory when B approaches
unity, but our attempt to incorporate it into the theory de-
scribed here does not result in any improvements to the fit with
the simulations. In addition, the theories of Gallet and Ferrari
(2020) and Thompson and Young (2006, 2007) focus on the
dynamics of coherent structures, either as barotropic vortices
that advect the baroclinic streamfunction as a passive tracer, or
as baroclinic vortices and jets that participate more directly in
the heat flux. We do not pretend to be able to unify these
various perspectives on this intriguing problem.

In summary, we have made an attempt to present a theory
for the eddy heat flux in the homogeneous two-layer model,
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staying close to ideas developed for passive tracer transport
in two-dimensional turbulence by accepting the picture in
which the barotropic mode of the two-layer model plays a
critical role, agreeing qualitatively with the classic picture
conceptualized in Rhines and Salmon’s work and formu-
lated more formally as a scaling theory by Held and
Larichev (1996). The results presented here may provide
some guidance on how to approach a more complete
theory.
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