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ABSTRACT: This study investigates the parameter dependence of eddy heat flux in a homogeneous quasigeostrophic two-

layer model on a b plane with imposed environmental vertical wind shear and quadratic frictional drag. We examine the

extent to which the results can be explained by a recently proposed diffusivity theory for passive tracers in two-dimensional

turbulence. To account for the differences between two-layer and two-dimensional models, we modify the two-dimensional

theory according to our two-layer f-plane analyses reported in an earlier study. Specifically, we replace the classic

Kolmogorovian spectral slope,25/3, assumed to predict eddy kinetic energy spectrum in the former with a larger slope,27/3,

suggested by a heuristic argument and fit to the model results in the latter. It is found that the modified theory provides a

reasonable estimate within the regime where both ~b5bk22
d U21 and the strength of the frictional drag, ~cD 5 cDk

21
d , are

much smaller than unity (here, cD is the nondimensional drag coefficient divided by the depth of the layer, kd is the

wavenumber of deformation radius, and U is the imposed background vertical wind shear). For values of ~b and ~cD that are

closer to one, the theory works only if the full spectrum shape of the eddy kinetic energy is given. Despite the qualitative,

fitting nature of this approach and its failure to explain the full parameter range, we believe its documentation here remains

useful as a reference for the future attempt in pursuing a better theory.
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1. Introduction

The maintenance of global climate is in large part deter-

mined by the baroclinic eddy equilibration of the extratropical

troposphere. While these eddies have been well resolved in

global climate models, an understanding of them that could be

useful for the construction of conceptual models for climate

change research remains missing. For the meridional heat

fluxes of these eddies in particular, the pursuit of a quantitative

understanding has indeed had a long history (Held 1999). An

important theoretical framework for approaching this problem

is founded on the seminal work by Rhines (1975, 1977) and

Salmon (1978, 1980), where they studied homogeneous two-

layer quasigeostrophic (QG) turbulence as a prototype ofmore

complex atmospheric flows.

Numerical model simulations for this type of turbulence

have been compared with theoretical scaling arguments in a

series of papers in the intervening years (Larichev and Held

1995; Held and Larichev 1996; Lapeyre and Held 2003;

Thompson and Young 2006, 2007; Chang and Held 2019,

hereafter CH19; Gallet and Ferrari 2020). In the models in-

vestigated by these papers, an environmental mean vertical

shear in the zonal flows is prescribed such that the environ-

mental temperature and potential vorticity (PV) gradients in

each layer are uniform. The deviations from these mean en-

vironmental gradients are assumed to be doubly periodic, so

that all eddy statistics, including the heat (or mass) and PV

fluxes are horizontally uniform, while the eddy momentum

fluxes vanish on average. The heat flux, in particular, can be

described by a diffusivity, defined as the flux divided by the

prescribed gradient. The parameter dependence of this diffu-

sivity, the thermal diffusivity, is then the central concern of the

theoretical scaling arguments discussed therein.

However, some of these existing scaling arguments lack

quantitative agreement with the numerical simulations.

Moreover, all of them consider the limits where the thermal

diffusivity depends only on b or the strength of the friction

individually. As a step to improve and generalize the existing

arguments, our goal in this paper is to better understand the

thermal diffusivity’s dual dependence on b and the strength of

the quadratic friction. In this work, we effectively try to extend

the work of CH19 on the b 5 0 limit, which studied the de-

pendence on the strength of the quadratic friction with b 5 0,

to the cases of nonzero b. We do so by combining it with the

work of Kong and Jansen (2017, hereafter KJ17) on the dif-

fusivity of passive tracers in externally stirred two-dimensional

turbulence. Specifically, KJ17 proposed a passive tracer diffu-

sivity theory for two-dimensional turbulence that describes

both the dependence on b and the strength of the quadratic

friction. We modify their theory to account for the nature of

thermal diffusivity in the two-layer turbulence. We then in-

vestigate the ability of this modified theory to explain the nu-

merical simulations, conducted using themodel documented in

CH19 except for the inclusion of the b effect.

The rest of the paper is organized as follows. In section 2, we

selectively review the relevant theoretical scaling arguments

from previous literature, both in the case of advection of pas-

sive tracers in externally stirred two-dimensional turbulence

and of temperature in the two-layer self-stirred model. In

section 3, we describe the two-dimensional turbulence theory
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of KJ17 and our modifications to make it applicable for the

two-layer turbulence, following the heuristic argument de-

scribed in CH19. Section 4 presents a comparison between the

numerical simulations and the theoretical prediction obtained

by the arguments proposed in section 3, with their discrepancy

examined in further detail. In section 5, we summarize our

results and discuss some additional, unsettled questions that

prevent us from developing a quantitative theory for the full

parameter range.

2. A review on some existing scaling theories

To setup the background of the derivation of the generalized

diffusivity theory in section 3, this section surveys some of

the relevant scaling arguments that have been proposed in the

literature for two-dimensional turbulence and two-layer QG

turbulence. The connection between two-dimensional turbu-

lence and two-layer QG turbulence is first noticed by Rhines

and Salmon. They postulated that the energy in two-layer

turbulence is typically extracted from the mean available po-

tential energy by the eddy heat flux into the baroclinic mode,

transferred to the barotropic mode near the radius of defor-

mation, and cascaded inversely within the barotropic mode to

larger horizontal scales. If the cascade is sufficiently extensive,

this results in most of the energy being barotropic and at large

enough scale that the baroclinic streamfunction (temperature

in the two-layer model) acts essentially like a passive tracer

mixed by the barotropic flow. For this reason, it is common for

existing studies to develop the scaling theories for the eddy

heat flux in the self-stirred two-layer model based on the the-

ories for the flux of a passive tracer in the externally stirred

two-dimensional (barotropic) model, as discussed in more

details in the following.

a. Diffusivity of passive tracers in two-dimensional

flow with b 5 0

For homogeneous two-dimensional turbulence tomaintain a

statistically steady state, energy is typically input at a small

forcing scale with a prescribed energy injection rate «. To the

extent that most energy cascades to large scales, « can also be

thought of as the strength of the inverse energy cascade. In the

absence of a b effect, large-scale friction stops the cascade

by dissipating energy. When the friction is in the form of

quadratic drag, the frictional damping strength is an inverse

length scale or a wavenumber (cD). If the forcing scale and

domain size are irrelevant in the parameter regime of in-

terest (and if no other properties of the forcing other than

« are relevant) the system is then characterized by only two

parameters: « and cD. By dimensional analysis, the eddy

diffusivity (D) for a passive tracer with an imposed envi-

ronmental tracer gradient should scale as

D; «1/3c24/3
D , (1)

which has been shown to be supported by simulations of pas-

sive tracer transport in barotropic models (e.g., Grianik et al.

2004; KJ17). Additionally, the relevant halting length scale,

again by dimensional analysis, is then

L; c21
D . (2)

b. Diffusivity of passive tracers in two-dimensional
flow with b

The presence of b breaks the isotropy of the equations and

channels the barotropic inverse energy cascade into Rossby

waves and zonal jets that do not participate directly inmeridional

mixing. When b alone is large enough to achieve this redirection

before the cascade is halted by friction, one can hope that dif-

fusivity depends on b rather than friction. The physical picture is

that the frictional energy loss occurs in the jets, allowing the

eddies responsible for themeridional mixing of passive tracers to

be independent of the friction strength. If this regime is achiev-

able, then by dimensional analysis the diffusivity should scale as

D; «3/5b24/5 . (3)

This limit has also been confirmed in simulations of passive

tracer transport in two-dimensional turbulence (e.g., Smith

et al. 2002; KJ17). In addition, the halting scale in this

b dominated limit, whichmarks the peak in the spectrum of the

meridional component of the velocity, can also be derived by

dimensional analysis as

L; «1/5b23/5 (4)

(Vallis and Maltrud 1993).

c. Thermal diffusivity in two-layer model with b 5 0

As mentioned earlier, given the connection between the

two-dimensional and two-layer turbulence, it is tempted to

apply Eq. (1) to the thermal diffusivity in two-layer model with

b 5 0 (so long as the damping is sufficiently small that the ki-

netic energy is predominately barotropic). In the two-layer

model, « is however not prescribed. Instead, it is the mean

vertical shear in the zonal flows between the two layers, U, or

equivalently the mean gradient of baroclinic streamfunction,

that is prescribed. The energy is generated through the eddy

mixing that taps the available potential energy associated with

this mean vertical zonal shear,

«
p
[D

t
U2k2

d 5D
t
T22 , (5)

where Dt is the thermal diffusivity and kd is the wavenumber

of the deformation radius, also externally imposed in QG theory,

and the time scale T [ (Ukd). This equation is exact in the ho-

mogeneous model. Setting «5 «p, combining this exact energetic

relation with Eq. (1) and taking D 5 Dt, the resulted scaling is

D
t
; c22

D T21 (6)

(Held 1999). This scaling is however found by CH19 to poorly

predict the thermal diffusivity in b 5 0 two-layer simulations. It

explained the decrease of thermal diffusivity with increasing

strength of the quadratic friction but overestimates this sensitivity.

d. Thermal diffusivity in two-layer model with b

Again, to apply Eq. (3) to the two-layer thermal diffu-

sivity, one has to consider that « is internally computed in
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the two-layer model. Letting «5 «p and solving Eqs. (5) and

(3) simultaneously, Held and Larichev (1996) obtained

D
t
;b22T23 . (7)

Strictly speaking, a complication in applying Eq. (3) to the two-

layer turbulence is that the latter has three distinct diffusivities:

the thermal diffusivity, and the diffusivity of the upper- and

lower-layer PV, respectively. These three diffusivities are

simply related due to the vanishing of domain mean momen-

tum and PV fluxes (e.g., Vallis 1988) and they approach each

other only when criticality j[Uk2
d/b approaches to infinity.

Thus, without further justification for why it is the temperature

(baroclinic streamfunction) that behaves most like a passive

tracer, Eq. (7) is better regarded as only applicable to the

strongly unstable flows where j is large. Lapeyre and Held

(2003) indeed found in numerical simulations that Eq. (3) ac-

tually fits best for the diffusivity of lower-layer PV and de-

scribed how to modify Eq. (7) appropriately.

In fact, the state of knowledge regarding the validity of

Eq. (7) is somewhat confusing. On one hand, Eq. (7) and its

variants have been shown capable of at least qualitatively ex-

plaining the diffusivity defined by poleward eddy heat trans-

port in more complex systems, including an inhomogeneous

two-layer QG channel model (Pavan and Held 1996; Zurita-

Gotor 2007), a multilayer Boussinesq channel model (Jansen

and Ferrari 2013), and a comprehensive atmospheric-only

general circulation model (Barry et al. 2002). On the other

hand, Eq. (7) has also been shown to be problematic even for

explaining the two-layer b-plane simulations. Specifically,

Thompson and Young (2007) found that Eq. (7) is not the as-

ymptotic limit for large b as it is assumed. For large b, the

thermal diffusivity is not merely a function of b but still de-

pends on the strength of friction. This complicated dual de-

pendence is therefore the subject of study we like to address

in section 3.

3. Toward a theory for the two-layer model incorporating
cD and b

The review in section 2 suggests that the scaling arguments

derived from the two-dimensional turbulence theory, both for

b5 0 and nonzero b, cannot be directly applied to explain the

thermal diffusivity in two-layer turbulence. Rather than to

completely give up on this theoretical framework, CH19 set in

to understand more exactly why it breaks down. At the limit of

b 5 0, they found the main reason being that the barotropic

eddy kinetic energy spectrum of the two-layer flows de-

velops a slope that is steeper than obtained by the classic

Kolmogorovian argument. The Kolmogorovian argument

is fundamentally based on the idea that « alone can fully

characterize the stirring, which is evidently not the case in the

two-dimensional turbulence simulations. Taking a heuristic

approach to factor in this difference, CH19 described a scaling

that agrees better with the simulations. In this section, we ex-

plore how these findings in the b 5 0 limit can be further ex-

tended to understand the case when b is nonzero. Specifically,

we accordingly modify KJ17’s recently proposed theory that

explains both the b and cD dependence of passive tracer dif-

fusivity in two-dimensional turbulence. We start with intro-

ducing their theory and next describe the modification we

made based on CH19’s heuristic argument.

a. KJ17’s theory for two-dimensional turbulence

For passive tracers in two-dimensional turbulence, consid-

ering the full parameter range where both b and cD may play a

role, dimensional analysis suggests that the diffusivity should

be a function of

m[ «21/5b3/5c21
D , (8)

the only dimensionless form among all combinations of «, b,

and cD. The parameter m can be thought of as the zonostrophic

index (e.g., Galperin et al. 2010) modified for quadratic drag. It

can also be thought of as the ratio of the halting wavenumbers

in the frictionally dominated and b dominated regimes, i.e., the

ratio of the two length scales defined in Eqs. (2) and (4). KJ17

then proposed that the diffusivity in two-dimensional turbu-

lence takes the form

D5Dj
b50

F (m) , (9)

where the function F describes the roles of b in causing the

differences between the diffusivity (D) and its corresponding

value at the b 5 0 limit (Djb50).

Specifically, to determine F (m), KJ17 considered the effects

of b in generating Rossby waves. They developed a theory for

F (m) based on the physical picture of the suppression of me-

ridional mixing by zonal wave propagation. This picture is first

proposed by Ferrari and Nikurashin (2010), where the concern

is a passive tracer mixed meridionally by the eddies dominated

by a single zonal wavenumber K. Assuming these eddies

propagate at a phase speed c with respect to a zonal flow u,

Ferrari and Nikurashin (2010) argued that the diffusivity can

be determined as

D5
D

ml

11
(u2 c)

2

2n21E

, (10)

where Dml [ n21
1 E1/2K21 is obtained by traditional mixing

length theory assuming the eddy decorrelation time scale

Te [ (n1E
1/2K)21 with n1 being the dimensionless proportion-

ality constant and E the total eddy kinetic energy. The de-

nominator in Eq. (10) is then a suppression factor depending

on the time scale ratio of eddy decorrelation and zonal flow

advection.

Following Ferrari andNikurashin (2010), KJ17 extended the

single wavenumber picture to consider the full diffusivity

spectrum,

D5

ð‘
0

D(k) dk , (11)

with D(k) determined in the same manner as Eq. (10). In

particular, they treated each wavenumber k independently and

assumed that the relevant Doppler shifted phase speed in D(k)

is simply b/k2 and the relevant eddy kinetic energy is simply the
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energy at that wavenumber, E(k). In terms of E(k), one can

also write Dml(k)5 n21
1 [E(k)k]1/2k21. Putting together, D(k) is

therefore obtained as

D(k)5
n21
1 E(k)

1/2
k23/2

11
n
2
b2

2n21E(k)k
5

, (12)

where the constant n2 is additionally added to include some

freedom in the strength of the suppression.

It is noted that Eq. (12) is still not a closure as E(k) has to be

internally computed by numerical models. To further express

E(k) in terms of the external parameters, KJ17 also assumed a

Kolmogorov spectrum (with Kolmogorov constant C) for the

wavenumbers above the wavenumber of the halting scale for

b 5 0, l0cD, i.e., the inverse of Eq. (2) with l0 being the di-

mensionless proportionality constant,

E(k)5

(
C«2/3k25/3 , k$ l

0
c
D

0, k, l
0
c
D

. (13)

Here, the simple choice of Eq. (2) appears to ignore the im-

portance of the b-halting scale [i.e., Eq. (4)] for determining

E(k), but the hope is that the strength of the suppression factor

for scales between the two halting scale makes this choice less

significant. Combining Eqs. (11)–(13), closed expressions for

D, Djb50, and F (m)5D/Djb50 are then readily obtained. To

simplify the expression for F (m), an extra step can be taken to

change the variable of integration from k to k[kc21
D . With this

help, the functional form F (m) can then be written as

D

Dj
b50

5F (m)5
4l4/3

0

3

ð‘
l0

k27/3

11l
1
m10/3k210/3

dk . (14)

Again for simplicity, the newly introduced constant l1 [
n2/(2n

2
1C) now subsumes all the previously defined constants,

while the prefactor assures that F 5 1 for m5b5 0. Also, its

associated prediction for Djb50 is simply Eq. (1). This ex-

pression is the final product of KJ17’s theory.

b. Modifications for two-layer turbulence based on
CH19’s heuristic argument

Despite the number of assumptions, KJ17 concluded that

Eq. (14) can indeed fit their simulations for the diffusivity of a

passive tracer in two-dimensional turbulence reasonably well.

Yet there are reasons to expect that numerical simulations with

two-layer models do not follow Eq. (14). The most obvious one

is that, at b5 0 limit,Djb50 already does not scale as Eq. (6), as

shown in CH19. It therefore makes sense to first discuss why

Eq. (6) fails and to modify KJ17’s theory accordingly.

In particular, CH19 found that the failure of Eq. (6) has to do

with the absence of a well-defined Kolmogorov inertial range

in the simulated two-layer barotropic eddy kinetic energy

spectrum. Recall that Eq. (6) can be derived by dimensional

analysis in section 2, assuming the nontrivial parameters

determining the relevant eddy scales being cD and « only.

This is equivalently to assume Eq. (13), i.e., E(k) to follow a

Kolmogorov spectrum with an inverse cascade rate, «(k), that

is independent of wavenumber, k, and equals to the energy

input from the stirring at a single large wavenumber. CH19

argued that in the two-layer models, associated with the self-

stirring due to baroclinic instability, the energy input from the

baroclinic into the barotropic mode is not localized at the

radius of deformation, but spreads to lower wavenumbers

as well. This leads them to heuristically assume «(k) ;
«p(k/kd)

2x, with x an undetermined parameter representing

the nonlocality of energy transfer (and x 5 0 reducing to the

classic assumption). Along with the fact that,E(k) locally is still

determined by local k and local inverse cascade rate «(k), this

results in a modified barotropic eddy kinetic energy spectrum

in the form

E(k); «2/3p k2x/3
d k2(512x)/3 . (15)

Consistently, the revised scaling for diffusivity and mixing

length become [cf. their Eq. (16)]

~D; ~c
2[(41x)/(11x)]/2
D , (16)

~L; ~c
21/(11x)
D , (17)

where the tilde represents the nondimensionalization by the

mean wind shear (U) and the wavenumber of deformation

radius (kd), i.e., ~D5DkdU
21, ~L5Lkd, and ~cD 5 cDk

21
d . With a

positive x, these revised scaling then suggest a cD dependence

weaker than predicted by Eqs. (6) and (2) as seen qualitatively

in CH19’s two-layer simulations.

To be more quantitative, the parameter x needs to be

specified. CH19 obtained x’ 1 from the fit toDt in their b5 0

numerical simulations. Assuming x ’ 1 for simplicity, we can

here write Eqs. (15)–(17) as

E(k); «2/3p k2/3
d k27/3 , (18a)

~D; ~c25/4
D , (18b)

~L; ~c21/2
D . (18c)

According to Eq. (18), we can then modify Eq. (13) and the

frictional halting scale to get a revised diffusivity to apply to

two-layer thermal diffusivity,

D
t
5

ð‘
l0c

1=2
D

k1=2
d

n21
1 C1/2«1/3p k1/3

d k28/3

11
n
2
b2

2n21C«
2/3
p k2/3

d k8/3

dk . (19)

To obtain an expression for Dt/Dtjb50, one has to again

take into account the complication not present in the two-

dimensional case that, for fixed external parameters in the

two-layer model, «p depends on Dt. In the b 5 0 limit, it is

only the factor of «1/3p in the numerator that survives. After

changing the integration variable by setting k[kc21/2
D k21/2

d ,

we have

D
t

D
t
j
b50

5

 
«
p

«
p
j
b50

!1/3

I , (20)

where
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I 5
5l5/3

0

3

ð‘
l0

k28/3

11l
1
m10/3
2 k28/3

dk (21)

and

m
2
[ «21/5

p b3/5c22/5
D k23/5

d . (22)

The prefactor in Eq. (21) once again ensures that I 5 1 when

b 5 0. The definition of the dimensionless parameter m2 in

Eq. (22) is analogous tom defined in Eq. (8).We can further use

the energetic constraint, i.e., Eq. (5), which requires «p }Dt, to

obtain

D
t

D
t
j
b50

5I 3/2 . (23)

While the final expression is complex, we consider this as the

natural extension of the b 5 0 results in CH19 to nonzero

b following the approach in KJ17 for the passive two-

dimensional case. In fact, Eq. (23) is an implicit equation for

Dt. It indicates that, in the two-layer case, the overall param-

eter dependence of thermal diffusivity is characterized by m2.

Yet m2 by definition depends on «p, which in turn depends on

Dt as stated in Eq. (5). We therefore have to solve Eqs. (23)

and (5) together to further get the explicit prediction for Dt

itself. The extent to which this prediction is supported by nu-

merical simulations will be examined in the next section.

4. Comparison with the simulations

In this section, we present the numerical results of thermal

diffusivity to test the modified theory discussed in section 3.

Following CH19, we use the same numerical model to

conduct a series of simulations in the parameter range:

1023 # ~cD [ cDk
21
d # 1021 and 0# ~b[bk22

d U21 , 1. The value

~cD ’ 1021 corresponds to a drag coefficient inmarine boundary

layers (CH19). This ~cD range is also chosen to ensure the

frictional damping is relatively weak so that eddy kinetic en-

ergy is predominately barotropic, and the ~b range covers the

regime with larger-than-one criticality (i.e., j5 ~b21). For each

combination of ~cD and ~b, we have prepared two different

simulations: one with symmetric drag (quadratic drag with the

same ~cD value in the two layers) and another with asymmetric

drag (quadratic drag only in the bottom layer). When there is

equal drag in both layers, b is the only source of asymmetry

between the two layers.When drag is present in the lower layer

only, it is an additional source of asymmetry between the two

layers. The main focus will be on the simulations with sym-

metric drag, as in CH19.

All the other model parameters and the numerics are also

kept the same as in CH19, except for the maximum resolved

wavenumber (kmax). For most of the cases in CH19, kmax/kd 5
127/50 is chosen following Larichev and Held (1995) and Held

and Larichev (1996). We have confirmed that this resolution is

adequate to obtain robust results for small to moderate ~b.

However, as ~b gets closer to one, a higher resolution is gen-

erally required. Hence, for all the simulations examined in this

study, we have chosen kmax/kd 5 255/50. The convergence of

simulations with the largest few ~b at this resolution is still not

guaranteed. As will be discussed later on, this is also the pa-

rameter regime where the modified theory mostly disagrees

with the simulations. While it is unclear what the role of res-

olution may be in this discrepancy, we wish to point it out as a

potential caveat of our analysis.

a. Overview of the simulations

Figure 1 provides an overview of the simulated thermal

diffusivity (Dt) with symmetric drag, diagnosed from the sta-

tistically steady state as Dt 5 ht›xci, where t and c are the

baroclinic and barotropic streamfunctions. On the left, we plot

the nondimensional thermal diffusivity ( ~Dt 5DtkdU
21)

against ~b and use different symbols to indicate the different

values of ~cD. This figure can be compared with Fig. 3 of

Thompson and Young (2007), whose simulations are con-

ducted with linear drag in the lower layer. In spite of the dif-

ference in the frictional form, the ~Dt dependence in our

simulations very much resembles theirs. The value of ~Dt is

always reduced with increasing b for a given ~cD. A character-

istic ~b where ~Dt is insensitive to ~cD is identified around ~b’ 0:4

and ~Dt ’ 1: smaller than this ~b, ~Dt decreases as ~cD increases;

larger than this ~b, ~Dt increases as ~cD increases. The right-hand

FIG. 1. The parameter dependence of the simulated thermal diffusivity with symmetric drag: (left) ~Dt 5DtkdU
21

plotted against ~b5bk22
d U21 with different ~cD 5 cDk

21
d values indicated by different symbols, and (right) ~Dt plotted

against ~cD with results sharing the same value of ~b connected by lines.

JANUARY 2021 CHANG AND HELD 101

Brought to you by PRINCETON UNIVERSITY LIBRARY | Unauthenticated | Downloaded 08/25/21 07:27 PM UTC



panel in Fig. 1, a plot of the variation of the diffusivity as a

function of ~cD for fixed ~b, provides an alternative perspective

on this behavior.

As mentioned earlier, for each simulation with symmetric

drag, a simulation is also generated with asymmetric drag with

the same ~cD in the lower layer for comparison. The results for
~Dt with asymmetric drag are shown in Fig. 2. On the left-hand

panel in Fig. 2, we see a qualitatively similar parameter de-

pendence as compared to its symmetric counterpart over the

explored parameter range. On the right-hand panel in Fig. 2, a

more explicit comparison of simulations with symmetric and

asymmetric drag is provided. Specifically, we plot the asym-

metric drag results at half the ~cD value, since that is the effec-

tive damping strength for its barotropic mode when compared

to the symmetric drag results. As discussed in CH19, this way of

plotting can help us assess whether the two would agree if the

thermal diffusivity were a function of the damping of the bar-

otropic mode only. CH19 found that when ~b5 0 this simple

adjustment works well for small ~cD but underestimates the

symmetric diffusivity when ~cD gets closer to unity. This is

owing to the fact that the flows becomes less barotropic, with

maximum amplitude in the upper layer, resulting in weaker

effective damping of the barotropic mode. The same qualita-

tive behavior is seen here for nonzero b, indicating an addi-

tional complexity to consider when trying to understand the

more realistic asymmetric drag simulations. Hence, to avoid

this extra issue, the following discussion will be limited to the

symmetric drag simulations, a cleaner setup for the comparison

with the theory discussed in section 3.

b. Theoretical fit

To compare with the theory discussed in section 3, as in

KJ17, our first step is to verify that ~Dt normalized by ~Dt jb50

(the thermal diffusivity at b 5 0 limit) can be in large part

explained by one nondimensional parameter. In KJ17’s origi-

nal argument, this parameter is m [Eq. (8)]; with our modifi-

cation, it becomes m2 [Eq. (22)]. We begin by showing the data

according to the former and then gradually changing the ways

of presentation to demonstrate how different it is before and

after this modification.

In the left-hand panel of Fig. 3, we present Dt in the sym-

metric drag simulations in the same way as in Fig. 3 of KJ17.

FIG. 2. As in Fig. 1, but for asymmetric drag (i.e., drag in the lower layer only). (right) Results from the symmetric

drag case are superimposed (black). As in CH19, these are plotted so that they will agree if the diffusivities are only

dependent on the strength of the frictional damping acting on barotropic flows (see text).

FIG. 3. The parameter dependence of the simulated thermal diffusivity with symmetric drag: (left) ~Dt normalized

by ~«1/3p ~c24/3
D plotted against the nondimensional parameter m5 «21/5

p b3/5c21
D , and (right) ~Dt normalized by ~Dt jb50

plotted against the nondimensional parameter m1 5 «21/5
p b3/5c21/2

D k21/2
d .
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Specifically, this is to verify Eq. (9) with Eq. (1) as the b 5 0

normalization. We plotDt normalized by Eq. (1) as a function

of m, where « in Eq. (1) and m is identified as the simulated

energy generation, «p. Note that this log–log plot does not show

the b 5 0 limit. Unlike what is observed for two-dimensional

passive tracer diffusivity in KJ17’s Fig. 3, the two-layer simu-

lations here clearly do not collapse into one curve.

This scatter of data is actually what to expect since we al-

ready know ~Dt jb50 does not follows Eq. (1) but rather Eq. (18)

from the results in CH19. Also, as discussed in section 3, m can

be interpreted as the ratio of frictional and b halting scales, and

CH19 showed that the frictional halting scale in the two-layer

simulations does not follows Eq. (2) but rather Eq. (18).

Guided by the b 5 0 results in CH19, if we assume that the

frictional halting scale is instead given by Eq. (18) and retain

the use of b halting scale as Eq. (4), this halfwaymodification of

the parameter m becomes

m
1
[ «21/5b3/5c21/2

D k21/2
d . (24)

The right-hand panel in Fig. 3 shows the simulated ~Dt normal-

ized by the simulated ~Dtjb50 as a function of m1. We continue to

set « in m1 equal to «p. Note that kd dependence is explicitly

introduced by thismodification to the frictional halting scale and

the b 5 0 diffusivity in Eq. (18). This plot demonstrates a more

compact description of the b and cD dependence of ~Dt . Yet,

according to the modified theory, we expect ~Dt/ ~Dt jb50 is char-

acterized not by m1 but m2 defined in Eq. (22).

In fact, to getm2, we have to also consider themodification of

b halting scale. If we assume that the slope of the barotropic

eddy kinetic energy spectrum follows Eq. (18), we can estimate

the characteristic velocity in the barotropic mode in eddies of

scale k, V(k); [E(k)k]1/2. Solving for the length scale k21 at

which V matches the characteristic phase speed of a Rossby

wave, b/k2, the resulted length scale with « 5 «p is

L; «1/4k1/4
d b23/4 . (25)

The ratio of the frictional halting scale in Eq. (18) to the modified

b halting scale identified as Eq. (25) is «21/4b3/4c21/2
D k23/4

d . If we

equivalently raise this expression to the 4/5 power to make the

similarity with m and m1, we then recover m2 defined in Eq. (22).

The left-hand panel in Fig. 4 is an analogous plot to those in

Fig. 3, but now using m2 as the abscissa. The change is a modest

but noticeable improvement.

After confirming the tightness of the relationship when

plotting against m2, we can next try to test the theoretical

prediction by the modified theory, i.e., Eq. (23). This analytical

expression is used to fit the simulations in the left-hand panel in

Fig. 4, after choosing l0 5 1 and l1 5 1.25 (corresponding to

the visually estimated n1 5
ffiffiffi
2

p
, n2 5 4, and C 5 0.8). The pa-

rameter m2 still involves «p in its definition. As discussed in

section 3, we can further eliminate «p using the exact rela-

tionship between Dt and «p in Eq. (5). Iterating to solve

Eq. (23) simultaneously with Eq. (5) then yields the explicit

prediction for ~Dt . The dependence of this ~Dt prediction on ~b

and ~cD is shown in the right-hand panel of Fig. 4. Comparing

with the simulations, the result is encouraging for ~b& 0:4, es-

pecially given the numerous assumptions in the modified the-

ory. Yet it misses the transition to a regime of increasing ~Dt

with increasing ~cD for larger ~b.

c. Sensitivity to the energy spectrum

The above results point out the value of Eq. (23) in pre-

dicting ~Dt when ~b is small or moderate but also its limitation

when ~b is large. A natural question is then to ask which as-

sumptions in the theory are inconsistent with the simulations.

For this purpose, we take advantage of the intermediate result

of the theory, Eq. (12), a diagnostic relation between Dt and

the barotropic eddy kinetic energy spectrum E(k).

TakingE(k) directly from numerical simulations, we plot the

diffusivity ratio and diffusivity itself estimated using Eq. (12) in

Fig. 5. While there are still some discrepancies, Eq. (12)’s es-

timation nicely explains the simulated ~cD dependence for large

values of ~b.

This comparison informs us that Eq. (23)’s breakdown in the

large ~b regime has to do with the series of assumptions we

introduced to express E(k) in terms of the external parameters.

We have plotted the simulated E(k) in Fig. 6, with each panel

FIG. 4. Verifying the theoretical prediction, Eq. (23), for ~Dt with symmetric drag: (left) ~Dt normalized by ~Dt jb50

plotted against the nondimensional parameter m2 5 «21/5
p b3/5c22/5

D k23/5
d , and (right) ~Dt plotted against ~b. The sim-

ulations are shown in black (as in Fig. 1), and the theoretical predictions are colored. (right) The ~Dt prediction is

obtained by solving Eqs. (23) and (5) simultaneously to eliminate «p dependence.
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containing a series of simulations using the same ~cD but varying
~b, the spectrum with the largest amplitude corresponding to

the ~b5 0 case. These ~b5 0 cases all have a wide range of

wavenumbers with a fairly well defined spectral slope close to

k27/3. The spectra for the nonzero ~b cases suggest that this

assumption continues to give a fair description for the energy

spectra over a limited range, presumably marking an inverse

cascade, qualitatively justifying holding the value of x in

Eq. (15) fixed with varying b.

The source of the discrepancy is presumably the crude way

that the energy spectrum is cutoff at large scales in Eq. (13),

which assumes that the suppression effect for large b is ade-

quate for estimating the diffusivity without altering the spectral

shape from the b5 0 case. In addition, for ~b approaching unity,

the issue of whether to identify the diffusivity emerging from

these approximations with the diffusivity of lower-layer PV

rather than the thermal diffusivity is presumably relevant

(Lapeyre and Held 2003). But we have not been able to im-

prove the fit to the simulations along these lines.

5. Summary and discussion

In this study, we examine the parameter dependence of eddy

heat flux on the frictional wavenumber of quadratic drag cD,

and b in a homogeneous quasigeostrophic two-layer model.

Seeking a theoretical understanding of the parameter control

on this eddy heat flux, or the thermal diffusivity defined ac-

cordingly, has been a long-lasting problem. The goal of this

study is to connect the results and arguments in previous two-

layer studies to the recent proposal made by KJ17 on under-

standing the same parameter dependence of passive tracer

diffusion in a two-dimensional externally stirred model.

Particularly, building on our findings reported in CH19, we

propose a heuristic modification on KJ17’s two-dimensional

theory and discuss its potential to explain the two-layer

thermal diffusivity Dt.

The central point of ourmodification is on the assumed slope

of the barotropic eddy kinetic energy spectrum E(k). Existing

theories that are based on two-dimensional theory for passive

tracer diffusion have been known to struggle in predicting Dt

in numerical simulations. In CH19, we revisited the problem

and found that, at theb5 0 limit, this is owing to the inaccuracy

of Kolmogorovian argument adopted in these theories. We

also found that heuristically assuming a 27/3 spectral slope of

E(k) that is steeper than Kolmogorovian slope, 25/3, to qual-

itatively account for the input of barotropic energy as the

cascade moves energy to larger scales, provides us a reasonable

estimate for Dtjb50 (i.e., Dt at b 5 0). Since KJ17’s two-

dimensional theory for nonzero b has utilized a Kolmogorovian

argument, we here incorporate the same heuristic modification

into their theory, assuming this spectral slope does not varywithb.

With this modification, the result is a prediction that the

dependence of Dt/Dtjb50 on cD and b collapses to a depen-

dence on a nondimensional parameter, m2 5 «21/5
p b3/5c22/5

D k23/5
d .

Physically, m2 can also be interpreted as the ratio of the fric-

tional halting scale and b halting scale, with both of them being

modified in the same way to consider the steeper slope of

energy spectrum and introducing the explicit dependence on

the wavenumber of deformation radius kd. This prediction for

Dt/Dtjb50 is confirmed by simulations in the parameter range

1023 # ~cD [ cDk
21
d # 1021 and 0# ~b[bk22

d U21 , 1.

Since the expression for m2 also contains «p the energy

production rate, while «p is itself closely related toDt, we try to

further close the theory by eliminating this «p dependence to

solve forDt from external parameters only. The result is again

of value in this limited parameter range, but is inadequate for

large b. (While we have not highlighted it here, it is also in-

adequate for large cD.) Since an alternative prediction ob-

tained by returning to the simulated E(k) shows no sign of the

same discrepancy, this is likely due to the approximation

concerning the shape of the energy spectrum.

These results do not lead us to a better physical under-

standing of the large b regime in which diffusivity increases

with increasing drag. There are several perspectives that po-

tentially explain this kind of behavior. One is that in these

relatively weakly unstable cases, one can think of the flow as

approximated by a steady wave, for which the flux vanishes

when there is no dissipation, by the familiar nonacceleration

theorem. The dissipation then produces a flux that increases

with the damping strength as it breaks this nonacceleration

limit. An alternative perspective involves the barotropic

governor (James 1987), in which strong damping, acting

FIG. 5. As in Fig. 4, but with the prediction obtained by Eq. (12) and the simulated barotropic eddy kinetic energy

spectrum [E(k)].
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particularly on the zonal mean winds, weakens jets that oth-

erwise interfere with the baroclinic eddy production. Neither

of these perspectives are incorporated into our theory.

Neither have we been able to take into account the results of

Lapeyre andHeld (2003) in which the diffusivity of lower-layer

PV is identified with the diffusivity obtained from the scaling

theory. This modification alters the theory when b approaches

unity, but our attempt to incorporate it into the theory de-

scribed here does not result in any improvements to the fit with

the simulations. In addition, the theories of Gallet and Ferrari

(2020) and Thompson and Young (2006, 2007) focus on the

dynamics of coherent structures, either as barotropic vortices

that advect the baroclinic streamfunction as a passive tracer, or

as baroclinic vortices and jets that participate more directly in

the heat flux. We do not pretend to be able to unify these

various perspectives on this intriguing problem.

In summary, we have made an attempt to present a theory

for the eddy heat flux in the homogeneous two-layer model,

staying close to ideas developed for passive tracer transport

in two-dimensional turbulence by accepting the picture in

which the barotropic mode of the two-layer model plays a

critical role, agreeing qualitatively with the classic picture

conceptualized in Rhines and Salmon’s work and formu-

lated more formally as a scaling theory by Held and

Larichev (1996). The results presented here may provide

some guidance on how to approach a more complete

theory.

Acknowledgments. We thank Junyi Chai for sharing the

doubly periodic quasigeostrophic model code with us and

Tsung-Lin Hsieh for the help of model setup on GFDL

RDHPCS. An earlier version of this work is presented in

CYC’s doctoral dissertation, which was kindly read by Pablo

Zurita-Gotor, SteveGarner, and BobHallberg. Suggestions on

the presentation by the three anonymous reviewers have been

incorporated into the final version. CYC’s graduate study was

supported by NSF Grant AGS-1733818.

REFERENCES

Barry, L., G. C. Craig, and J. Thuburn, 2002: Poleward heat

transport by the atmospheric heat engine. Nature, 415, 774–

777, https://doi.org/10.1038/415774a.

Chang, C.-Y., and I. M. Held, 2019: The control of surface friction

on the scales of baroclinic eddies in a homogeneous quasi-

geostrophic two-layer model. J. Atmos. Sci., 76, 1627–1643,

https://doi.org/10.1175/JAS-D-18-0333.1.

Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffu-

sivity across jets in the SouthernOcean. J. Phys.Oceanogr., 40,

1501–1519, https://doi.org/10.1175/2010JPO4278.1.

Gallet, B., and R. Ferrari, 2020: The vortex gas scaling regime of

baroclinic turbulence. Proc. Natl. Acad. Sci. USA, 117, 4491–

4497, https://doi.org/10.1073/pnas.1916272117.

Galperin, B., S. Sukoriansky, and N. Dikovskaya, 2010: Geophysical

flows with anisotropic turbulence and dispersive waves: Flows

with a b-effect.Ocean Dyn., 60, 427–441, https://doi.org/10.1007/

s10236-010-0278-2.

Grianik, N., I. M. Held, K. S. Smith, and G. K. Vallis, 2004: The

effects of quadratic drag on the inverse cascade of two-

dimensional turbulence. Phys. Fluids, 16, 73–78, https://

doi.org/10.1063/1.1630054.

Held, I. M., 1999: The macroturbulence of the troposphere. Tellus,

51A, 59–70, https://doi.org/10.3402/tellusa.v51i1.12306.

——, and V. D. Larichev, 1996: A scaling theory for horizontally

homogeneous, baroclinically unstable flow on a beta plane.

J. Atmos. Sci., 53, 946–952, https://doi.org/10.1175/1520-

0469(1996)053,0946:ASTFHH.2.0.CO;2.

James, I., 1987: Suppression of baroclinic instability in horizontally

sheared flows. J. Atmos. Sci., 44, 3710–3720, https://doi.org/

10.1175/1520-0469(1987)044,3710:SOBIIH.2.0.CO;2.

Jansen,M., andR. Ferrari, 2013: Equilibration of an atmosphere by

adiabatic eddy fluxes. J. Atmos. Sci., 70, 2948–2962, https://

doi.org/10.1175/JAS-D-13-013.1.

Kong, H., and M. F. Jansen, 2017: The eddy diffusivity in baro-

tropic b-plane turbulence. Fluids, 2, 54, https://doi.org/

10.3390/fluids2040054.

Lapeyre, G., and I. M. Held, 2003: Diffusivity, kinetic energy dis-

sipation, and closure theories for the poleward eddy heat flux.

J. Atmos. Sci., 60, 2907–2916, https://doi.org/10.1175/1520-

0469(2003)060,2907:DKEDAC.2.0.CO;2.

FIG. 6. Barotropic eddy kinetic energy spectra [E(k)] as a func-

tion of the total wavenumber (k) in symmetric drag simulations:

each panel shows a set of simulations with the same ~cD but varying
~b. The dashed line indicates the spectral slope k27/3.

JANUARY 2021 CHANG AND HELD 105

Brought to you by PRINCETON UNIVERSITY LIBRARY | Unauthenticated | Downloaded 08/25/21 07:27 PM UTC

https://doi.org/10.1038/415774a
https://doi.org/10.1175/JAS-D-18-0333.1
https://doi.org/10.1175/2010JPO4278.1
https://doi.org/10.1073/pnas.1916272117
https://doi.org/10.1007/s10236-010-0278-2
https://doi.org/10.1007/s10236-010-0278-2
https://doi.org/10.1063/1.1630054
https://doi.org/10.1063/1.1630054
https://doi.org/10.3402/tellusa.v51i1.12306
https://doi.org/10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2
https://doi.org/10.1175/1520-0469(1987)044<3710:SOBIIH>2.0.CO;2
https://doi.org/10.1175/1520-0469(1987)044<3710:SOBIIH>2.0.CO;2
https://doi.org/10.1175/JAS-D-13-013.1
https://doi.org/10.1175/JAS-D-13-013.1
https://doi.org/10.3390/fluids2040054
https://doi.org/10.3390/fluids2040054
https://doi.org/10.1175/1520-0469(2003)060<2907:DKEDAC>2.0.CO;2
https://doi.org/10.1175/1520-0469(2003)060<2907:DKEDAC>2.0.CO;2


Larichev, V. D., and I. M. Held, 1995: Eddy amplitudes and fluxes

in a homogeneous model of fully developed baroclinic insta-

bility. J. Atmos. Sci., 25, 2285–2297, https://doi.org/10.1175/

1520-0485(1995)025,2285:EAAFIA.2.0.CO;2.

Pavan, V., and I. M. Held, 1996: The diffusive approximation for

eddy fluxes in baroclinically unstable jets. J. Atmos. Sci., 53,

1262–1272, https://doi.org/10.1175/1520-0469(1996)053,1262:

TDAFEF.2.0.CO;2.

Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid

Mech., 69, 417–443, https://doi.org/10.1017/S0022112075001504.

——, 1977: The dynamics of unsteady currents. Marine Modeling,

E. D. Goldberg et al., Eds., The Sea—Ideas and Observations

on Progress in the Study of the Seas, Vol. 6, Wiley and Sons,

189–318.

Salmon, R., 1978: Two-layer quasi-geostrophic turbulence in a

simple special case. Geophys. Astrophys. Fluid Dyn., 10, 25–

52, https://doi.org/10.1080/03091927808242628.

——, 1980: Baroclinic instability and geostrophic turbulence.

Geophys. Astrophys. Fluid Dyn., 15, 167–211, https://doi.org/
10.1080/03091928008241178.

Smith, K. S., G. Boccaletti, C. C. Henning, I. Marinov, C. Y. Tam,

I. M. Held, and G. K. Vallis, 2002: Turbulent diffusion in the

geostrophic inverse cascade. J. FluidMech., 469, 13–48, https://

doi.org/10.1017/S0022112002001763.

Thompson, A. F., and W. R. Young, 2006: Scaling baroclinic eddy

fluxes: Vortices and energy balance. J. Phys. Oceanogr., 36,

720–738, https://doi.org/10.1175/JPO2874.1.

——, and ——, 2007: Two-layer baroclinic eddy heat fluxes: Zonal

flows and energy balance. J. Atmos. Sci., 64, 3214–3231, https://

doi.org/10.1175/JAS4000.1.

Vallis, G. K., 1988: Numerical studies of eddy transport properties in

eddy-resolving andparametrizedmodels.Quart. J. Roy.Meteor.

Soc., 114, 183–204, https://doi.org/10.1002/qj.49711447910.

——, and M. E. Maltrud, 1993: Generation of mean flows and jets

on a beta plane and over topography. J. Phys. Oceanogr., 23,
1346–1362, https://doi.org/10.1175/1520-0485(1993)023,1346:

GOMFAJ.2.0.CO;2.

Zurita-Gotor, P., 2007: The relation between baroclinic adjustment

and turbulent diffusion in the two-layer model. J. Atmos. Sci.,

64, 1284–1300, https://doi.org/10.1175/JAS3886.1.

106 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 78

Brought to you by PRINCETON UNIVERSITY LIBRARY | Unauthenticated | Downloaded 08/25/21 07:27 PM UTC

https://doi.org/10.1175/1520-0485(1995)025<2285:EAAFIA>2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025<2285:EAAFIA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<1262:TDAFEF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<1262:TDAFEF>2.0.CO;2
https://doi.org/10.1017/S0022112075001504
https://doi.org/10.1080/03091927808242628
https://doi.org/10.1080/03091928008241178
https://doi.org/10.1080/03091928008241178
https://doi.org/10.1017/S0022112002001763
https://doi.org/10.1017/S0022112002001763
https://doi.org/10.1175/JPO2874.1
https://doi.org/10.1175/JAS4000.1
https://doi.org/10.1175/JAS4000.1
https://doi.org/10.1002/qj.49711447910
https://doi.org/10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2
https://doi.org/10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2
https://doi.org/10.1175/JAS3886.1

