
Proxima: Accelerating the Integration of Machine Learning in
Atomistic Simulations

Yuliana Zamora
University of Chicago
Chicago, Illinois, USA
yzamora@uchicago.edu

Logan Ward
Argonne National Laboratory

Lemont, Illinois, USA
lward@anl.gov

Ganesh Sivaraman
Argonne National Laboratory

Lemont, Illinois, USA
gsivaraman@anl.gov

Ian Foster
University of Chicago & Argonne

National Laboratory
Chicago, Illinois, USA
foster@uchicago.edu

Henry Hoffmann
University of Chicago
Chicago, Illinois, USA

hankhoffmann@cs.uchicago.edu

ABSTRACT

Atomistic-scale simulations are prominent scientific applications
that require the repetitive execution of a computationally expen-
sive routine to calculate a system’s potential energy. Prior work
shows that these expensive routines can be replaced with amachine-
learned surrogate approximation to accelerate the simulation at the
expense of the overall accuracy. The exact balance of speed and
accuracy depends on the specific configuration of the surrogate-
modeling workflow and the science itself, and prior work leaves
it up to the scientist to find a configuration that delivers the re-
quired accuracy for their science problem. Unfortunately, due to
the underlying system dynamics, it is rare that a single surrogate
configuration presents an optimal accuracy/latency trade-off for
the entire simulation. In practice, scientists must choose conserva-
tive configurations so that accuracy is always acceptable, forgoing
possible acceleration. As an alternative, we propose Proxima, a sys-
tematic and automated method for dynamically tuning a surrogate-
modeling configuration in response to real-time feedback from the
ongoing simulation. Proxima estimates the uncertainty of applying
a surrogate approximation in each step of an iterative simulation.
Using this information, the specific surrogate configuration can be
adjusted dynamically to ensure maximum speedup while sustaining
a required accuracy metric. We evaluate Proxima using a Monte
Carlo sampling application and find that Proxima respects a wide
range of user-defined accuracy goals while achieving speedups of
1.02ś5.5× relative to a standard implementation with no surrogate.

CCS CONCEPTS

• Computing methodologies → Uncertainty quantification;
Computational control theory; Online learning settings.

KEYWORDS

Modeling and Simulation, Machine Learning, Control Theory

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICS ’21, June 14–17, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8335-6/21/06.
https://doi.org/10.1145/3447818.3460370

ACM Reference Format:

Yuliana Zamora, Logan Ward, Ganesh Sivaraman, Ian Foster, and Henry
Hoffmann. 2021. Proxima: Accelerating the Integration of Machine Learning
in Atomistic Simulations. In 2021 International Conference on Supercomputing

(ICS ’21), June 14–17, 2021, Virtual Event, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3447818.3460370

1 INTRODUCTION

Scientific computing applications, such as continuum fluid dynam-
ics (CFD), lattice quantum chromodynamics (QCD), and atomistic
simulations account for a large fraction of the supercomputing
cycles used at national laboratories and other supercomputer fa-
cilities [1]. These applications are often dominated by the repet-
itive execution of a few high-cost functions [6, 22]. In the past,
speedups in these domains have relied on advances in hardware ar-
chitecture and numerical-algorithm development [18, 21, 35]. How-
ever, recent advances in machine learning have enabled another
promising acceleration technique: replacing expensive functions
with machine-learned surrogates [4, 15]. Because the learned surro-
gate is an approximation of the expensive target function, the use of
learned surrogates introduces opportunities for trade-offs between
computation latency and accuracy (or error).

Pioneeringwork on surrogatemethods has proved the value of in-
tegrating machine learning into scientific applications [8, 9, 38, 50].
However, that work has focused primarily on the construction of
the surrogate models themselves, rather than on how to integrate
these approximations into larger simulations. In particular, it em-
ployed ad hoc, heuristic integration strategies, such as featurizing
the expensive function and then using the surrogate only when
a function call’s features are in the range seen when the surro-
gate model was trained [7, 8]Ðan approach that demonstrates the
potential value of surrogate usage, but has significant practical
drawbacks.

The speed and accuracy of a simulation that uses a surrogate
model depends on factors such as (1) the form of the surrogate
model, (2) when to use the surrogate model, (3) how much training
data to use to generate the surrogate model, and (4) how often to
retrain said model while the simulation runs. Prior methodologies
for using surrogate models have typically fixed these parameters
or left the choice of values to the userÐapproaches that prevent
optimal choices or impose significant burdens on users in terms of

ICS ’21, June 14ś17, 2021, Virtual Event, USA Yuliana Zamora, Logan Ward, Ganesh Sivaraman, Ian Foster, and Henry Hoffmann

profiling to find acceptable surrogate configurations. Furthermore,
prior methodologies use the same configuration values during an
entire run (and from run to run), leading to suboptimal outcomes
when the simulation’s properties change as it evolves.

We describe in this paper a new approach to this problem that
both simplifies and optimizes the use of machine learning in scien-
tific simulation by creating a dynamic surrogate configuration en-
gine. In so doing, we remove the need for a previously trainedmodel,
precomputed training set, or user-specified retraining scheduleÐ
and permit surrogate-based simulations to adapt dynamically to
changing simulation behaviors. To do so, we introduce Proxima,
an application-agnostic Python library developed to incorporate
surrogate models within a scientific simulation, allowing the user to
specify a desired maximum mean absolute error to be met. Proxima
achieves this acceptable requested error by continually monitor-
ing the simulation execution, dynamically adapting the surrogate
configuration parameters and determining when to retrain the
surrogate model at run-time.

Specifically, we focus on the decision engine which sets the cri-
teria for when to use the surrogate model or revert to the original,
high-cost, high-accuracy target function. We implement a domain
agnostic decision engine based on control theory. Our control-
theoretic decision engine ties in how often the model is retrained
while determining the training set size and thus establishing a rela-
tionship between performance and accuracy. Unlike prior work that
sets key parameters on surrogate usage before the simulation is run,
when using Proxima, these values are determined automatically by
Proxima’s run-time system. Thus, instead of requiring extensive
testing and specific parameters for each application run, Proxima
dynamically tunes the parameters for each test case based on run-
time feedback without prior training. Additionally, unlike prior
approaches, Proxima no longer requires the model to be retrained
at every step, significantly reducing overall run-time.

We showcase Proxima by applying it to an example application
involving Monte Carlo (MC) simulation of a methane molecule
(CH4) across a wide range of temperatures. Methane is the small-
est member of the hydrocarbon family. Interactions in methane
are dominated by many-body weak dispersion interactions, for
which surrogate models must provide first-principles accuracy [47].
Finding training datasets and configuration parameters that can de-
liver this accuracy with good performance is a tedious process. We
compare Proxima to a system with no surrogate and to a surrogate-
based approach that uses prior methodologies based on profiling
to find the best fixed surrogate configuration parameters for the
entire simulation. We demonstrate that Proxima, when run for tem-
peratures in the range {100, 200, ... 1000}K, obtains speedups from
1.02× to 5.52× over the non-surrogate version, with a harmonic
mean speedup of 1.64×, while respecting the error bounds in all
cases. Testing with error bounds that stress Proxima verifies that
Proxima works across a wide range of these user-defined error
bounds. Finally, we double-check the accuracy results by compar-
ing approaches along a secondary physical property, the radius-of-
gyration (ROG), that relies on not just average accuracy, but the
accuracy of each individual simulation step. We find that Proxima
achieves a mean absolute error of less than 0.00126Å. In contrast,
the fixed parameter approach of prior work yields results beyond
the acceptable error bounds across most of the temperatures tested.

In summary, our contributions are:

• Proposing dynamic tuning of machine-learned surrogate
usage in scientific computing.

• Designing the algorithms that can perform this tuning while
respecting error bounds.

• Developing a library to make surrogate integration a light-
weight addition to existing simulation software.

• Demonstrating the value of tuning surrogate usage parame-
ters to optimize performance with accuracy guarantees.

• Open source release of the code.1

2 BACKGROUND

In this work, we use atomistic simulations as an example scien-
tific application domain with a history of combining physics and
machine learned surrogates. Here, we explain the methods behind
the physics and machine learning components and how they are
combined in prior work. We also provide a brief background on
control theory, as it forms the basis of our proposed method for
tuning surrogate configurations in running science simulations.

2.1 Atomistic Modeling

Atomistic modeling computes interactions between atoms to cap-
ture the complex behavior of materials and molecules [10]. With
atomistic modeling, scientists can study material properties and
defects difficult to observe experimentally due to both spatial and
temporal constraints. To do so, the simulation evaluates the energy
of a system and the forces acting on each atom in many different
configurations. Dominant atomistic modeling methodologies, like
density functional theory (DFT) and Hartree-Fock (HF), that rely on
computing interactions from first principles (i.e., quantum mechan-
ics), can take many minutes, hours, or days to complete such energy
computations [5, 42]. They also quickly become limited in terms of
the size of the system that can be simulated, as computational re-
quirements scale with the number of electrons cubed or worse [13].
Much time and resources are invested in these calculations with
the goal of understanding the dynamic behavior of metals, semi-
conductors, thin films, ceramics, and biological materials [10] and
significant new applications are possible if the length and timescale
of these models can be expanded.

2.2 Atomistic Machine Learning

Machine learning based atomistic simulations gives access to times
and length scales not accessible to first-principle simulation, while
maintaining first-principle accuracy. In particular, supervised learn-
ing techniques can be built to compute the potential energy of a
system in milliseconds (105 times speedup over some quantum me-
chanical methods) and with computational costs that scale linearly
with problem size. The key innovation which has enabled the use
of machine learning is how to represent the structure of an atomic
system in a form amenable to machine learning [3, 23]. For our
work, we rely on the large body of prior work on representations
and how to use them in conjunction with modern machine learning
approaches [11, 20, 25, 29, 41, 48, 49].

1https://github.com/globus-labs/proxima/tree/proxima_control

ICS ’21, June 14ś17, 2021, Virtual Event, USA Yuliana Zamora, Logan Ward, Ganesh Sivaraman, Ian Foster, and Henry Hoffmann

min ∥u - x∥ < Tk
x ∈ V

?

What was

last run?

Retrain

S

e = S(u)

e = F(u)

Target

function

Surrogate

model

u

e

No

Yes

Figure 2: Logical flow of the Proxima surrogate modeling

process. At upper left, an input value u is received and

checked relative to a distance threshold from recently eval-

uated values. Ultimately either the target function F or the

surrogate model are used to compute the return value e. A

key difference between Proxima and prior work is that the

threshold used to determine whether the surrogate should

be used (𝑇𝑘 in the upper left) is determined dynamically; i.e.,

this threshold changes with time k.

things: (1) find an appropriate feedback metric that can be measured
at runtime and relates to a scientifically meaningful error metric, (2)
find appropriate configuration parameters that can be dynamically
tuned to change error and latency tradeoffs, and (3) account for
the non-linearities in the relationship between surrogate usage and
error. We explain in detail how we address these three issues in
Section 3.

3 PROXIMA

The basic idea of surrogate modeling is to replace an expensive
target function with a faster machine-learned surrogate model. The
strategy is to speed up the overall simulation by sacrificing accu-
racy in a systematic manner. Thus the surrogate must provide an
acceptable level of accuracy, but take less time to train and exe-
cute than the target function. The crux of the problem is knowing
when to use the surrogate model, when to add data to the train-
ing set, and how often to retrain said model. In prior work, these
decisions are made explicitly by the scientistÐwho is responsible
for setting appropriate surrogate configuration parametersÐand
require laborious profiling to find an acceptable accuracy/perfor-
mance tradeoff. In contrast, Proxima automatically and dynamically
configures these values to meet accuracy constraints with good
performance, eliminating the scientists’ burden of manually tuning
these parameters.

In this section, we describe Proxima, independently of any spe-
cific scientific application. In the subsequent section, we describe
how it is applied to atomistic Monte Carlo, replacing a Hartreeś
Fock-energy prediction target function with a Proxima-managed
surrogate.

To begin, in every application, Proxima has a target function F.
We need to process a series of requests for the value of that function
for different arguments, each of which we can be evaluated either
by running F on the supplied argument, or alternatively by running
a surrogate model S. The surrogate model is dynamically trained
using results from previous evaluations of F.

There are thus two key decision points in the system: 1) For
each call to the target function, whether to use F or S to evaluate
it; and 2) for each new evaluation of F, whether or not to retrain S,

and which past results to use for that retraining. We organize our
solutions to these problems as an Executor, which decides whether
to execute F or S based on the distance logic shown in Figure 2,
and a Controller, which updates the configurable parameters of
the Executor during execution. One parameter could be a distance
threshold, 𝑇𝑘 , that controls how similar inputs must be to the train-
ing set of S before the Executor chooses to run S. Prior work (see
Section 2.3) uses a static distance threshold to determine when
to use the surrogate. However, we observe that the relationship
between surrogate accuracy and distance changes as the simulation
executes.

3.1 Executor: Surrogate Selection Logic

We now explain the logic behind the Executor. We use the fol-
lowing notation. Let 𝜇̃ be a user-supplied target error expressed
as mean absolute error (MAE) on a specific value in the scientific
simulation; and 𝑉 be a vector of results collected so far, ordered by
time of the corresponding request, and each of the form (𝑥,𝑦,𝑦′, 𝑑),
where 𝑥 is a valid argument to F, 𝑦 = F(𝑥), 𝑦′ = S(𝑥), and 𝑑 is a
distance, computed as described below. Also, let 𝑁 be the number
of recent observations in 𝑉 used for computing MAEs.

Let 𝑉𝑘 be 𝑉 after k observations have been made and 𝑇𝑘 be
the current distance threshold. Now consider a new request for a
function evaluation on a value 𝑢. We compute the distance from 𝑢

to the nearest observation in the 𝑁 most recent observations in 𝑉 ,
denoted as 𝑉𝑘 [N]:

𝑑 = min
𝑥 ∈𝑉𝑘 [N]

∥𝑥 − 𝑢∥ .

If𝑑 < 𝑇𝑘 , then we retrain the surrogate model S if the target func-
tion was run for the preceding request, and return the value S(𝑢)
and continue to the next request. If 𝑑 ≥ 𝑇𝑘 , then we run both the
target function and the surrogate model, and add (𝑢, F(𝑢), S(𝑢), 𝑑)

to 𝑉𝑘 , producing 𝑉𝑘+1. Here we assume that the surrogate model
is significantly cheaper than the target function so running both
presents very little overhead.

3.2 Controller: Setting Distance Threshold

We now discuss how we use the Controller to perform dynamic
online adjustments of the Executor. Here we are computing a thresh-
old 𝑇𝑘 for the current time k.

We formulate this task as a control problem. Specifically, we
want to control the simulation error to meet the user-specified
error bound 𝜇̃. We want to use the surrogate as much as possible
(to maximize speedup) while maintaining an error at or below the
bound. At any time k, we can compute the achieved error as 𝜇𝑘+1,
the MAE of 𝑉𝑘+1[N]; i.e., the average of the absolute differences
between the 𝑦 and 𝑦′ values in the N most recent elements of 𝑉𝑘+1.
In this case, controlling the error means that we want 𝜇𝑘 − 𝜇̃ ≤ 0.
We can control the error by setting the threshold 𝑇𝑘 . Intuitively,
if we set the threshold extremely high, the surrogate is always
used, while if we set it extremely low, the target function is always
used. Our goal is to formulate a controller that dynamically sets
the threshold to bring the error to the user-specified bound.

To formulate the controller, we need to know the relationship
between error and threshold. A simple linear model characterizes
this relationship as:

𝜇 = 𝛼 ·𝑇, (1)

Proxima: Accelerating the Integration of Machine Learning in Atomistic Simulations ICS ’21, June 14ś17, 2021, Virtual Event, USA

both the error and time bounds. Therefore, lazy training was not
used for Fixed.

4.2 Establishing Best Fixed Parameters

We next discuss how we find the optimal parameters for Fixed.
These parameters achieve the best speedup while staying below a
given mean absolute error bound at 500 K and 1000 K.

Due to the significant stochastic variation of the application,
we must use reference data to compare the performance and ac-
curacy of different methods. Reference data are the saved atom
coordinates and energies obtained from a simulation that uses the
target function only. Using reference data allows for an equivalent
comparison between parameter choices. They are needed because
the atomistic simulations that we consider here proceed by starting
with a molecule’s atoms in a particular state, and then repeatedly
using the target function to compute potential energies on those
atoms and then using the computed potential energies to update
the positions of the atoms. As a result, the molecule’s atoms trace
out a trajectory in space: a trajectory that is highly sensitive to
minor perturbations, so that a small change in potential energies
(as might result from the use of a surrogate rather than the target
function to compute potential energies) can result in the simulation
following an entirely different trajectory.

Such differences between trajectories are not a problem scientif-
ically, because atomistic modeling is concerned not with individual
trajectories but with the statistics of many trajectories. However,
they make comparisons of different methods on the basis of individ-
ual runs challenging, because different trajectories might involve
different numbers of surrogate function evaluations as the molecule
visits different parts of molecular space. To overcome this problem,
we use what we call reference data. First, we perform a simula-
tion using only the target function, saving all atomic coordinates
and energies. Then, when running other methods that we want to
compare with that first simulation, we make the molecule follow
exactly the same trajectory.

In the end, we still need Proxima performance data without using
any reference data, which is shown below, to compare full runs.

Using reference data, we ran a parameter sweep on Fixed for 7 ×
17 = 119 parameter combinations (T, RI) in (𝑇 ∈ {0.1, 0.2, ..., 0.7}) ×

(𝑅𝐼 ∈ {1, 2, 5, 10, ...50, 100, 200, ..., 500}), while keeping fixed the
number of steps (1000), for temperatures at both at 500 K and
1000 K, the molecule (methane), random seed (1), and perturbation
(0.003). For the 1000 K, the T of 0.1 is not taken into account as runs
would take more than 24 hours to be finished, and would not be a
parameter that could be used in the end. Therefore, we consider a
total of 221 combinations: 119 at 500 K and 102 at 1000 K.

From this parameter sweep, we see in Figures 5 and 6, nine (RI,
T) combinations for 500 K and 14 combinations for 1000 K that
meet both the error and time bounds. Of these, four combinations
meet the bounds for both temperatures. From those four, (T = 0.3,
RI = 50) achieve the best speedup (2.31× for 500 K and 1.99× for
1000 K), while staying within the MAE bound for both 500 K and
1000 K. We establish that these are the best fixed parameters for
Fixed.

5 RESULTS

We present the results of MCSA for three different methods: (1) no
surrogate (Baseline), (2) surrogate with fixed parameters (Fixed),
and (3) Proxima. We discuss the practical details of surrogate mod-
eling with Proxima, compare it to other approaches, and discuss its
scientific significance.

5.1 Accuracy and Speedup Results

We first run MCSA with the Baseline and Fixed strategies to
obtain data for later comparisons with Proxima. In these runs, we
keep fixed the number of steps (1000), molecule (methane), random
seed (1), and perturbation (0.003).

Running MCSA first with the Baseline strategy (i.e., always
using the target function), we observe that target-function execu-
tion takes a cumulative time of 523 seconds: an average of of 0.523
seconds per evaluation.

Next, we obtain results for Fixed. As the combination T = 0.3,
RI = 50 gave the best speed and accuracy results for both 500 K
and 1000 K, we ran Fixed with these parameter values. This com-
bination was able to achieve a low MAE of 0.00149, with a 2.81×
maximum speedup. Though Fixed can achieve high speedups at
higher temperatures compared to Proxima, as illustrated in Figure 7,
Fixed exceeds the error bound, especially at higher temperatures.
For example, at 1000 K, Fixed’s achieved error is over 50% greater
than the bound. In fact, Fixed exceeds the error bound for all tem-
peratures above 600 K. So while it can provide great speedups, those
results are meaningless as the scientific simulation would have to
be rerun to produce meaningful results. On the other hand, as il-
lustrated in Figure 8, Proxima consistently stays within the given
error bound across all temperatures. This is important, because
exceeding the scientist-supplied bound by only a small amount
can throw the scientific validity of a result into question, as we
will explore in the next section. Finally, it is worth noting that the
relatively low cost target function used in this work suggests that
these speedups are conservative.

5.2 Scientific Significance of Surrogate Error

The results of the atomistic simulations considered in this paper
can be used to derive a resulting secondary physical property, the
radius of gyration (ROG). This quantity is highly sensitive to the
accuracy of the entire Monte-Carlo trajectory and is not explicitly
considered by Proxima during a run, but rather is determined only
at the end of a simulation. Thus it provides a useful validation of
the Proxima approach.

We shown in Figure 9, the ROG values obtained for 10 runs
of each of Baseline, Fixed, and Proxima for temperatures from
100 to 1000 K. The multiple runs (with different initial random
seeds) capture the variations that result from the randomness of
the Monte-Carlo simulation.

We see in Figure 9 that Proxima outperforms Fixed in predict-
ing an accurate ROG, achieving results that are closer to those
of Baseline (indeed, coinciding with Baseline’s error bars) and
with less variation, as captured by the error bars, and without the
increased variation in error with temperature that is seen for Fixed.
This is further demonstrated in Figure 10, where the accuracy of
Proxima is much more stable than that of Fixed. In other words,

ICS ’21, June 14ś17, 2021, Virtual Event, USA Yuliana Zamora, Logan Ward, Ganesh Sivaraman, Ian Foster, and Henry Hoffmann

Xo: Initial state of molecule

T: Temperature

N: number of steps to simulate

import Proxima

def simple_monte_carlo(Xo, T, N}:

X = Xo

Make the Proxima wrapper

prox_func = Proxima(calc.energy_function ,

ml_model , mae_bound)

calc.energy_function = prox_func

for n in range(N):

X_next = perturb(X, T)

E = calc.energy_function(X) # Target function

R = random ()

if accepted(E, R, T):

X = X_next

Listing 2: Applying Proxima to MCSA.

can take as much as 9% of total runtime. The controller logic re-
quires much less overhead, taking ∼10𝜇s per step. The reported
Proxima speedups consider all costs, including Proxima logic,model
(re)training, surrogate usage, and inference.

5.6 Ease of Use

Identifying the best parameters for Fixed required running 221
simulations. Running them all is expensive, because while some
simulations run in five minutes, others take days. The results must
then compared based on speedup and error obtained. Even remov-
ing the need for the retrain interval, and using the retraining tech-
nique applied in Proxima, results in only four configurations stay
within both error and latency bounds, as shown in Figure 4. Addi-
tionally, Figure 8 shows that parameter values that work well for
one temperature are not necessarily effective at other temperatures,
where they result in errors above a given bound. Proxima removes
these steps while staying below the user-defined error bound and
achieving speedup: see Figure 7.

The user no longer needs to run the many simulations to find
the best parameters and can import Proxima as a simple Python
library, as shown in Listing 2.

6 RELATED WORK

The potential for performance gains via the integration of machine
learning into atomistic simulations has spurred much research in
this area [7, 8, 31, 37, 46].

Botu and Ramprasad developed a numerical fingerprint to repre-
sent an atom configurations and proposed an algorithm for surro-
gate decision usage [7, 8]. They use this numerical fingerprint as a
feature vector to represent the atom coordinates in a way that can
then be mapped to molecular properties, such as energy and force.
Similarly to Proxima, they add training data each time that the
target function is invoked and choose the surrogate when the input
is within a certain distance threshold of the training data; in con-
trast to Proxima, they use a static threshold. Proxima’s dynamically
changing threshold allows it to invoke the surrogate model more
often while meeting a required error bound, and thus to achieve
higher performance.

Vandermause et al. use the internal uncertainty of a Gaussian
process regression model to decide whether to accept a model
prediction or to use the target function [46]. They applied their on-
the-fly learning methodology to a range of single and multi-element
systems. Though they attempt to keep the amount of training data
low, their methodology retrains the model after every data addition
and they do not discuss speedups.

Rupp et al. describe a surrogate implementation, presenting re-
sults on accuracy and discusses using hyperparameters. They used
a specified training set and found that machine learning can predict
potential energy with high accuracy [37].

In summary, although prior work has yielded many advances
in the integration of surrogate models into atomistic simulations,
none are able to guarantee a user-specified level of accuracy, as
Proxima has shown to be able to do.

Other related work has investigated methods for accelerating
surrogate model creation via automated model selection and learn-
ing algorithms that mimic the underlying structure of algorithms
[2, 40]. That work requires the full training data set prior to to
prediction, but could potentially be adapted to improve the models
used within Proxima.

7 CONCLUSION

We have presented Proxima, a novel method for simplifying the
incorporation of machine-learning-based surrogate models into
science applications. A surrogate model is effective when it is suffi-
ciently accurate for scientific goals and the cost of its (re)training
is less than that saved by its use. We used the example of atomistic
simulations to illustrate the challenges inherent in the resulting
speed-accuracy tradeoffs, which are typically too complex for users
to navigate without extensive and expensive experimentation. We
showed how simple approaches to the integration of surrogate mod-
els, in which default values are used for various surrogate model
configuration parameters, can easily result in inaccurate results
and/or extreme slowdowns. We also showed how the complexity
of such simulations means that users cannot readily identify good
values for parameters without performing extensive experimen-
tation. We then showed how with Proxima, a user does not need
to perform extensive testing, curate a training set, or pre-train a
machine learning model. Instead, Proxima used control theory to
determine values for configuration parameters automatically, in
ways that satisfy error bounds while also delivering substantial
speedups: up to 5.52× in the case studied here.

We have focused in this paper on a simple atomistic modeling
problem, namely computing the energy of methane, the simplest
hydrocarbon. In future work, we will apply the method to larger
atomistic modeling problems, where we expect Proxima to provide
yet greater benefits. The relationship between threshold and error
is not expected to change with increased problem size, so we expect
Proxima to continue to meet the error bounds. And because Prox-
ima replaces a target function that scales as 𝑂 (𝑛3) with a linear
surrogate, the speedups could be even larger for larger problems.
By delivering large speedups with only minor modifications to the
science application, Proxima thus further opens the capabilities of
using machine learning in these science applications.

Proxima: Accelerating the Integration of Machine Learning in Atomistic Simulations ICS ’21, June 14ś17, 2021, Virtual Event, USA

8 ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their comments, which we
have used to improve the paper. Funding support for this work
comes from NSF (grants CCF-2028427, CNS-1956180, CCF-1837120,
CNS-1764039), ARO (grant W911NF1920321), and a DOE Early Ca-
reer Award (grant DESC0014195 0003). LW and GS were supported
by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nu-
clear Security Administration, responsible for delivering a capable
exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative.

REFERENCES
[1] Katie Antypas, BA Austin, TL Butler, RA Gerber, Cary Whitney, Nick Wright,

Woo-Sun Yang, and Zhengji Zhao. NERSC workload analysis on Hopper.
Lawrence Berkeley National Laboratory Technical Report, 6804:15, 2013.

[2] Prasanna Balaprakash, Ananta Tiwari, Stefan M Wild, Laura Carrington, and
Paul D Hovland. AutoMOMML: Automatic multi-objective modeling with ma-
chine learning. In International Conference on High Performance Computing, pages
219ś239. Springer, 2016.

[3] Albert P Bartók, Risi Kondor, and Gábor Csányi. On representing chemical
environments. Physical Review B, 87(18):184115, 2013.

[4] Jörg Behler. Perspective: Machine learning potentials for atomistic simulations.
The Journal of Chemical Physics, 145(17):170901, 2016.

[5] F Matthias Bickelhaupt and Evert Jan Baerends. Kohn-Sham density functional
theory: Predicting and understanding chemistry. Reviews in computational chem-
istry, 15:1ś86, 2000.

[6] Kurt Binder, Jürgen Horbach, Walter Kob, Wolfgang Paul, and Fathollah Varnik.
Molecular dynamics simulations. Journal of Physics: Condensed Matter, 16(5):S429,
2004.

[7] Venkatesh Botu, Rohit Batra, James Chapman, and Rampi Ramprasad. Machine
learning force fields: Construction, validation, and outlook. The Journal of Physical
Chemistry C, 121(1):511ś522, 2017.

[8] Venkatesh Botu and Rampi Ramprasad. Adaptive machine learning framework
to accelerate ab initio molecular dynamics. International Journal of Quantum
Chemistry, 115(16):1074ś1083, 2015.

[9] Venkatesh Botu and Rampi Ramprasad. Learning scheme to predict atomic forces
and accelerate materials simulations. Physical Review B, 92(9):094306, 2015.

[10] Markus J Buehler. Atomistic modeling of materials failure. Springer Science &
Business Media, 2008.

[11] Keith T Butler, Daniel W Davies, Hugh Cartwright, Olexandr Isayev, and
Aron Walsh. Machine learning for molecular and materials science. Nature,
559(7715):547ś555, 2018.

[12] Marco Caccin, Zhenwei Li, James R. Kermode, and Alessandro De Vita. A frame-
work for machine-learning-augmented multiscale atomistic simulations on par-
allel supercomputers. International Journal of Quantum Chemistry, 115(16):1129ś
1139, June 2015.

[13] Christopher J Cramer and FM Bickelhaupt. Essentials of computational chemistry.
Angewandte Chemie, 42(4):381ś381, 2003.

[14] Yixin Diao, Joseph L Hellerstein, Sujay Parekh, Rean Griffith, Gail Kaiser, and
Dan Phung. Self-managing systems: A control theory foundation. In 12th IEEE
International Conference and Workshops on the Engineering of Computer-Based
Systems, pages 441ś448. IEEE, 2005.

[15] Scott E Field, Chad R Galley, Jan S Hesthaven, Jason Kaye, and Manuel Tiglio. Fast
prediction and evaluation of gravitational waveforms using surrogate models.
Physical Review X, 4(3):031006, 2014.

[16] Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated design of
self-adaptive software with control-theoretical formal guarantees. In 36th Inter-
national Conference on Software Engineering, pages 299ś310, 2014.

[17] Nathan A Garland, Romit Maulik, Qi Tang, Xian-Zhu Tang, and Prasanna Bal-
aprakash. Progress towards high fidelity collisional-radiative model surrogates
for rapid in-situ evaluation. In 3rdWorkshop on Machine Learning and the Physical
Sciences. PMLR, 2020.

[18] Luigi Genovese, Matthieu Ospici, Thierry Deutsch, Jean-François Méhaut, Alexey
Neelov, and Stefan Goedecker. Density functional theory calculation on many-
cores hybrid central processing unit-graphic processing unit architectures. The
Journal of chemical physics, 131(3):034103, 2009.

[19] Torkel Glad and Lennart Ljung. Control theory. CRC press, 2018.
[20] Andrea Grisafi, David MWilkins, Gábor Csányi, and Michele Ceriotti. Symmetry-

adapted machine learning for tensorial properties of atomistic systems. Physical
Review Letters, 120(3):036002, 2018.

[21] Mohamed Hacene, Ani Anciaux-Sedrakian, Xavier Rozanska, Diego Klahr,
Thomas Guignon, and Paul Fleurat-Lessard. Accelerating VASP electronic struc-
ture calculations using graphic processing units. Journal of computational chem-
istry, 33(32):2581ś2589, 2012.

[22] J Hafner. Atomic-scale computational materials science. ActaMaterialia, 48(1):71ś
92, 2000.

[23] Christopher Michael Handley and Jörg Behler. Next generation interatomic
potentials for condensed systems. The European Physical Journal B, 87(7), July
2014.

[24] Joseph L Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M Tilbury. PID
controllers. In Feedback Control of Computing Systems, chapter 9, pages 293ś335.
John Wiley & Sons, Ltd, 2004.

[25] Lauri Himanen, Marc OJ Jäger, Eiaki V Morooka, Filippo Federici Canova,
Yashasvi S Ranawat, David Z Gao, Patrick Rinke, and Adam S Foster. DScribe: Li-
brary of descriptors for machine learning in materials science. Computer Physics
Communications, 247:106949, 2020.

[26] Henry Hoffmann. CoAdapt: Predictable behavior for accuracy-aware applications
running on power-aware systems. In 26th Euromicro Conference on Real-Time
Systems, pages 223ś232. IEEE Computer Society, 2014.

[27] Henry Hoffmann. JouleGuard: Energy guarantees for approximate applications.
In Ethan L. Miller and Steven Hand, editors, 25th Symposium on Operating Systems
Principles, pages 198ś214. ACM, 2015.

[28] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant
Agarwal, and Martin C. Rinard. Dynamic knobs for responsive power-aware
computing. In Rajiv Gupta and Todd C. Mowry, editors, 16th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 199ś212. ACM, 2011.

[29] Giulio Imbalzano, Andrea Anelli, Daniele Giofré, Sinja Klees, Jörg Behler, and
Michele Ceriotti. Automatic selection of atomic fingerprints and reference con-
figurations for machine-learning potentials. The Journal of Chemical Physics,
148(24):241730, 2018.

[30] T. L. Jacobsen, M. S. Jùrgensen, and B. Hammer. On-the-fly machine learning of
atomic potential in density functional theory structure optimization. Physical
Review Letters, 120(2), January 2018.

[31] Alireza Khorshidi and Andrew A Peterson. Amp: Amodular approach to machine
learning in atomistic simulations. Computer Physics Communications, 207:310ś
324, 2016.

[32] Zhenwei Li, James R. Kermode, and Alessandro De Vita. Molecular dynamics
with on-the-fly machine learning of quantum-mechanical forces. Physical Review
Letters, 114(9), March 2015.

[33] Martina Maggio, Alessandro Vittorio Papadopoulos, Antonio Filieri, and Henry
Hoffmann. Automated control of multiple software goals usingmultiple actuators.
In Eric Bodden, Wilhelm Schäfer, Arie van Deursen, and Andrea Zisman, editors,
11th Joint Meeting on Foundations of Software Engineering, pages 373ś384. ACM,
2017.

[34] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing
machines. The Journal of Chemical Physics, 21(6):1087ś1092, June 1953.

[35] Phani Motamarri, Sambit Das, Shiva Rudraraju, Krishnendu Ghosh, Denis Davy-
dov, and Vikram Gavini. DFT-FEśA massively parallel adaptive finite-element
code for large-scale density functional theory calculations. Computer Physics
Communications, 246:106853, 2020.

[36] Andrew A Peterson, Rune Christensen, and Alireza Khorshidi. Addressing
uncertainty in atomistic machine learning. Physical Chemistry Chemical Physics,
19(18):10978ś10985, 2017.

[37] Matthias Rupp. Machine learning for quantum mechanics in a nutshell. Interna-
tional Journal of Quantum Chemistry, 115(16):1058ś1073, 2015.

[38] Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O Anatole
Von Lilienfeld. Fast and accurate modeling of molecular atomization energies
with machine learning. Physical Review Retters, 108(5):058301, 2012.

[39] Faizan Sahigara, Kamel Mansouri, Davide Ballabio, Andrea Mauri, Viviana Con-
sonni, and Roberto Todeschini. Comparison of different approaches to define the
applicability domain of QSAR models. Molecules, 17(5):4791ś4810, April 2012.

[40] Pedro Savarese and Michael Maire. Learning implicitly recurrent CNNs through
parameter sharing. arXiv preprint arXiv:1902.09701, 2019.

[41] Jonathan Schmidt, Mário RG Marques, Silvana Botti, and Miguel AL Marques.
Recent advances and applications of machine learning in solid-state materials
science. npj Computational Materials, 5(1):1ś36, 2019.

[42] John C Slater. A simplification of the Hartree-Fock method. Physical review,
81(3):385, 1951.

[43] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using
pseudo-inputs. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural
Information Processing Systems, volume 18, pages 1257ś1264. MIT Press, 2006.

[44] Martin Törngren. Fundamentals of implementing real-time control applications
in distributed computer systems. Real-time systems, 14(3):219ś250, 1998.

[45] Justin M Turney, Andrew C Simmonett, Robert M Parrish, Edward G Hohenstein,
Francesco A Evangelista, Justin T Fermann, Benjamin J Mintz, Lori A Burns,
Jeremiah J Wilke, Micah L Abrams, et al. Psi4: An open-source ab initio electronic

ICS ’21, June 14ś17, 2021, Virtual Event, USA Yuliana Zamora, Logan Ward, Ganesh Sivaraman, Ian Foster, and Henry Hoffmann

structure program. Wiley Interdisciplinary Reviews: Computational Molecular
Science, 2(4):556ś565, 2012.

[46] Jonathan Vandermause, Steven B Torrisi, Simon Batzner, Yu Xie, Lixin Sun,
Alexie M Kolpak, and Boris Kozinsky. On-the-fly active learning of interpretable
Bayesian force fields for atomistic rare events. npj Computational Materials,
6(1):1ś11, 2020.

[47] Max Veit, Sandeep Kumar Jain, Satyanarayana Bonakala, Indranil Rudra, Detlef
Hohl, and Gábor Csányi. Equation of state of fluid methane from first principles
with machine learning potentials. Journal of Chemical Theory and Computation,
15(4):2574ś2586, 2019.

[48] Nicholas Wagner and James M Rondinelli. Theory-guided machine learning in
materials science. Frontiers in Materials, 3:28, 2016.

[49] Logan Ward, Ruoqian Liu, Amar Krishna, Vinay I Hegde, Ankit Agrawal, Alok
Choudhary, and Chris Wolverton. Including crystal structure attributes in ma-
chine learning models of formation energies via Voronoi tessellations. Physical
Review B, 96(2):024104, 2017.

[50] Mitchell A Wood, Mary A Cusentino, Brian D Wirth, and Aidan P Thomp-
son. Data-driven material models for atomistic simulation. Physical Review B,
99(18):184305, 2019.

	Abstract
	1 Introduction
	2 Background
	2.1 Atomistic Modeling
	2.2 Atomistic Machine Learning
	2.3 Configuring Surrogate Usage
	2.4 Control Theory

	3 Proxima
	3.1 Executor: Surrogate Selection Logic
	3.2 Controller: Setting Distance Threshold
	3.3 Configuration

	4 Experimental Setup
	4.1 Baseline Workflow
	4.2 Establishing Best Fixed Parameters

	5 Results
	5.1 Accuracy and Speedup Results
	5.2 Scientific Significance of Surrogate Error
	5.3 Results for Different Error Bounds
	5.4 Error Sensitivity and Reduction
	5.5 Proxima Overhead
	5.6 Ease of Use

	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

