Proxima: Accelerating the Integration of Machine Learning in
Atomistic Simulations

Yuliana Zamora
University of Chicago
Chicago, Illinois, USA

yzamora@uchicago.edu

Jan Foster
University of Chicago & Argonne
National Laboratory
Chicago, Illinois, USA
foster@uchicago.edu

ABSTRACT

Atomistic-scale simulations are prominent scientific applications
that require the repetitive execution of a computationally expen-
sive routine to calculate a system’s potential energy. Prior work
shows that these expensive routines can be replaced with a machine-
learned surrogate approximation to accelerate the simulation at the
expense of the overall accuracy. The exact balance of speed and
accuracy depends on the specific configuration of the surrogate-
modeling workflow and the science itself, and prior work leaves
it up to the scientist to find a configuration that delivers the re-
quired accuracy for their science problem. Unfortunately, due to
the underlying system dynamics, it is rare that a single surrogate
configuration presents an optimal accuracy/latency trade-off for
the entire simulation. In practice, scientists must choose conserva-
tive configurations so that accuracy is always acceptable, forgoing
possible acceleration. As an alternative, we propose Proxima, a sys-
tematic and automated method for dynamically tuning a surrogate-
modeling configuration in response to real-time feedback from the
ongoing simulation. Proxima estimates the uncertainty of applying
a surrogate approximation in each step of an iterative simulation.
Using this information, the specific surrogate configuration can be
adjusted dynamically to ensure maximum speedup while sustaining
a required accuracy metric. We evaluate Proxima using a Monte
Carlo sampling application and find that Proxima respects a wide
range of user-defined accuracy goals while achieving speedups of
1.02-5.5% relative to a standard implementation with no surrogate.

CCS CONCEPTS

« Computing methodologies — Uncertainty quantification;
Computational control theory; Online learning settings.

KEYWORDS

Modeling and Simulation, Machine Learning, Control Theory

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICS °21, June 14-17, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8335-6/21/06.

https://doi.org/10.1145/3447818.3460370

Logan Ward
Argonne National Laboratory
Lemont, Illinois, USA
Iward@anl.gov

Ganesh Sivaraman
Argonne National Laboratory
Lemont, Illinois, USA
gsivaraman@anl.gov

Henry Hoffmann

University of Chicago

Chicago, Illinois, USA
hankhoffmann@cs.uchicago.edu

ACM Reference Format:

Yuliana Zamora, Logan Ward, Ganesh Sivaraman, Ian Foster, and Henry
Hoffmann. 2021. Proxima: Accelerating the Integration of Machine Learning
in Atomistic Simulations. In 2021 International Conference on Supercomputing
(ICS ’21), June 14-17, 2021, Virtual Event, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3447818.3460370

1 INTRODUCTION

Scientific computing applications, such as continuum fluid dynam-
ics (CFD), lattice quantum chromodynamics (QCD), and atomistic
simulations account for a large fraction of the supercomputing
cycles used at national laboratories and other supercomputer fa-
cilities [1]. These applications are often dominated by the repet-
itive execution of a few high-cost functions [6, 22]. In the past,
speedups in these domains have relied on advances in hardware ar-
chitecture and numerical-algorithm development [18, 21, 35]. How-
ever, recent advances in machine learning have enabled another
promising acceleration technique: replacing expensive functions
with machine-learned surrogates [4, 15]. Because the learned surro-
gate is an approximation of the expensive target function, the use of
learned surrogates introduces opportunities for trade-offs between
computation latency and accuracy (or error).

Pioneering work on surrogate methods has proved the value of in-
tegrating machine learning into scientific applications [8, 9, 38, 50].
However, that work has focused primarily on the construction of
the surrogate models themselves, rather than on how to integrate
these approximations into larger simulations. In particular, it em-
ployed ad hoc, heuristic integration strategies, such as featurizing
the expensive function and then using the surrogate only when
a function call’s features are in the range seen when the surro-
gate model was trained [7, 8] —an approach that demonstrates the
potential value of surrogate usage, but has significant practical
drawbacks.

The speed and accuracy of a simulation that uses a surrogate
model depends on factors such as (1) the form of the surrogate
model, (2) when to use the surrogate model, (3) how much training
data to use to generate the surrogate model, and (4) how often to
retrain said model while the simulation runs. Prior methodologies
for using surrogate models have typically fixed these parameters
or left the choice of values to the user—approaches that prevent
optimal choices or impose significant burdens on users in terms of

ICS ’21, June 14-17, 2021, Virtual Event, USA

profiling to find acceptable surrogate configurations. Furthermore,
prior methodologies use the same configuration values during an
entire run (and from run to run), leading to suboptimal outcomes
when the simulation’s properties change as it evolves.

We describe in this paper a new approach to this problem that
both simplifies and optimizes the use of machine learning in scien-
tific simulation by creating a dynamic surrogate configuration en-
gine. In so doing, we remove the need for a previously trained model,
precomputed training set, or user-specified retraining schedule—
and permit surrogate-based simulations to adapt dynamically to
changing simulation behaviors. To do so, we introduce Proxima,
an application-agnostic Python library developed to incorporate
surrogate models within a scientific simulation, allowing the user to
specify a desired maximum mean absolute error to be met. Proxima
achieves this acceptable requested error by continually monitor-
ing the simulation execution, dynamically adapting the surrogate
configuration parameters and determining when to retrain the
surrogate model at run-time.

Specifically, we focus on the decision engine which sets the cri-
teria for when to use the surrogate model or revert to the original,
high-cost, high-accuracy target function. We implement a domain
agnostic decision engine based on control theory. Our control-
theoretic decision engine ties in how often the model is retrained
while determining the training set size and thus establishing a rela-
tionship between performance and accuracy. Unlike prior work that
sets key parameters on surrogate usage before the simulation is run,
when using Proxima, these values are determined automatically by
Proxima’s run-time system. Thus, instead of requiring extensive
testing and specific parameters for each application run, Proxima
dynamically tunes the parameters for each test case based on run-
time feedback without prior training. Additionally, unlike prior
approaches, Proxima no longer requires the model to be retrained
at every step, significantly reducing overall run-time.

We showcase Proxima by applying it to an example application
involving Monte Carlo (MC) simulation of a methane molecule
(CH4) across a wide range of temperatures. Methane is the small-
est member of the hydrocarbon family. Interactions in methane
are dominated by many-body weak dispersion interactions, for
which surrogate models must provide first-principles accuracy [47].
Finding training datasets and configuration parameters that can de-
liver this accuracy with good performance is a tedious process. We
compare Proxima to a system with no surrogate and to a surrogate-
based approach that uses prior methodologies based on profiling
to find the best fixed surrogate configuration parameters for the
entire simulation. We demonstrate that Proxima, when run for tem-
peratures in the range {100, 200, ... 1000}K, obtains speedups from
1.02x to 5.52X over the non-surrogate version, with a harmonic
mean speedup of 1.64X, while respecting the error bounds in all
cases. Testing with error bounds that stress Proxima verifies that
Proxima works across a wide range of these user-defined error
bounds. Finally, we double-check the accuracy results by compar-
ing approaches along a secondary physical property, the radius-of-
gyration (ROG), that relies on not just average accuracy, but the
accuracy of each individual simulation step. We find that Proxima
achieves a mean absolute error of less than 0.00126A. In contrast,
the fixed parameter approach of prior work yields results beyond
the acceptable error bounds across most of the temperatures tested.

Yuliana Zamora, Logan Ward, Ganesh Sivaraman, lan Foster, and Henry Hoffmann

In summary, our contributions are:

e Proposing dynamic tuning of machine-learned surrogate
usage in scientific computing.

o Designing the algorithms that can perform this tuning while
respecting error bounds.

e Developing a library to make surrogate integration a light-
weight addition to existing simulation software.

e Demonstrating the value of tuning surrogate usage parame-
ters to optimize performance with accuracy guarantees.

e Open source release of the code.!

2 BACKGROUND

In this work, we use atomistic simulations as an example scien-
tific application domain with a history of combining physics and
machine learned surrogates. Here, we explain the methods behind
the physics and machine learning components and how they are
combined in prior work. We also provide a brief background on
control theory, as it forms the basis of our proposed method for
tuning surrogate configurations in running science simulations.

2.1 Atomistic Modeling

Atomistic modeling computes interactions between atoms to cap-
ture the complex behavior of materials and molecules [10]. With
atomistic modeling, scientists can study material properties and
defects difficult to observe experimentally due to both spatial and
temporal constraints. To do so, the simulation evaluates the energy
of a system and the forces acting on each atom in many different
configurations. Dominant atomistic modeling methodologies, like
density functional theory (DFT) and Hartree-Fock (HF), that rely on
computing interactions from first principles (i.e., quantum mechan-
ics), can take many minutes, hours, or days to complete such energy
computations [5, 42]. They also quickly become limited in terms of
the size of the system that can be simulated, as computational re-
quirements scale with the number of electrons cubed or worse [13].
Much time and resources are invested in these calculations with
the goal of understanding the dynamic behavior of metals, semi-
conductors, thin films, ceramics, and biological materials [10] and
significant new applications are possible if the length and timescale
of these models can be expanded.

2.2 Atomistic Machine Learning

Machine learning based atomistic simulations gives access to times
and length scales not accessible to first-principle simulation, while
maintaining first-principle accuracy. In particular, supervised learn-
ing techniques can be built to compute the potential energy of a
system in milliseconds (10° times speedup over some quantum me-
chanical methods) and with computational costs that scale linearly
with problem size. The key innovation which has enabled the use
of machine learning is how to represent the structure of an atomic
system in a form amenable to machine learning [3, 23]. For our
work, we rely on the large body of prior work on representations
and how to use them in conjunction with modern machine learning
approaches [11, 20, 25, 29, 41, 48, 49].

!https://github.com/globus-labs/proxima/tree/proxima_control

Proxima: Accelerating the Integration of Machine Learning in Atomistic Simulations

Coulomb matrix
15 x 1 energies

p
5 types, 5 x 3 coordinates
C/% € 1.04 -0.05 -0.07 [36.85, 5.50, 0.50, ,7N
2.13 -0.05 -0.07 5.50, 0.56, 0.50,
0.67 0.17 -1.07 .50, 0.56, 0.56, =3
o :
o e 4

H 0 0

H 5 0 0

H 0.67 0.69 0.62 0.50, 5.50, 0.56,
eﬂ@ H 0.67 -1.03 0.22 0.56, 0.56, 0.50] |

Lperturb L

C 1.04 -0.05 -0.07 [36.85, 5.50, 0.50,

H 2.13 -0.05 -0.07 5.50, 0.56, 0.50,

H 0.67 0.17 -1.07 5.50, 0.56, 0.56,
Eg<:a H 0.67 0.69 0.62 0.50, 5.50, 0.56,

H 0.67 -1.03 0.22 0.56, 0.56, 0.50]

Figure 1: Illustrates the fundamental ideas that this work
leverages in atomistic modeling. A molecule state is repre-
sented by coordinates, say A. These can be perturbed to yield
a different state, B. A state can be encoded in a Coulumb ma-
trix, which when treated as a point in a multi-dimensional
space allows for distance computations. A is within a dis-
tance T of a previously evaluated state, B is not.

In this work, we use two common methods for atom represen-
tation: Coulomb Matrix and Smooth Overlap of Atomic Positions
(SOAP). Both representations are designed specifically for modeling
atomic systems. For example, they are invariant to translating and
rotating the coordinate system and permuting the order in which
atoms are number. These invariances, in conjunction with being
designed to capture that atomic interactions are dominated by lo-
cal, many-body interactions, make the Coulomb Matrix and SOAP
suitable for building surrogates. We chose the two methods to give
a tradeoff between speed and accuracy for the machine learning
methods themselves.

SOAP [3] is a common atom representation used with training
models for the energy and forces acting on atoms that uses a sim-
ilarity measure between atomic neighbor environments. We use
the SOAP implementation in the Dscribe library [25] as the featur-
ization and training data for our model. Then, in a similar manner
to the non-linear kernel ridge regression (KRR) method used by
Botu et al. [7], we train a simple Bayesian ridge regression model
to predict the potential energy.

In addition, we also use the Coulomb Matrix as a quicker-to-
compute alternative to SOAP. The Coulomb Matrix representation
of the atom, proposed by Rupp et al. [38], describes an atom based
on the atomic numbers and pairwise distances between atoms. As
illustrated in Figure 1, we use the Coulomb matrix as a similarity
metric between different molecular geometries when quantifying
how similar a new geometry is from those used to train our model.
Because the similarity check step of Proxima occurs at every time
step, regardless of whether or not we need to invoke the SOAP-
based surrogate model, the small computational cost of the Coulumb
matrix is beneficial.

2.3 Configuring Surrogate Usage

Previous work has established there are benefits in switching be-
tween using surrogate models and the high-cost, target function
during a simulation, which presents an obvious tradeoff between
accuracy and speed [8, 30, 32]. Many implementations of these
“hybrid” physics + machine learning applications require a deci-
sion about whether a new set of function inputs can be effectively

ICS ’21, June 14-17, 2021, Virtual Event, USA

treated with the surrogate model rather than the target function.
The metrics used to inform these “domain of applicability” judge-
ments are numerous and each require setting a threshold value
based on empirical evidence (i.e., profiling the simulation with a
surrogate across a range of thresholds) [36, 39]. As we demonstrate,
setting an applicability threshold is complicated by the ideal thresh-
old being dependent on the boundary conditions for a simulation
and, potentially, even the current state of the simulation.

In the work reported here, we use the distance of a set of function
inputs from all entries used to train a model as our domain of
applicability metric. The target function is then used for a function
call whenever the distance from that call’s inputs to all training
data exceeds a specified threshold. Our use of a threshold metric is
based on work from Botu et al. [7], who observed that the error of
a surrogate model for DFT calculations scales quadratically with
distance from the training set. We use this result as a justification
for setting a single threshold to identify which predictions should
be feasible. We elected for this method over alternative approaches,
such as measuring the variance of an ensemble of models [36], due
to the low cost of computing nearest neighbors.

As hybrid physics+ML applications evolve, surrogate configu-
ration may even go beyond deciding when a surrogate should be
used. For example, the amount of computational resources devoted
to the machine learning and physics components of the multi-scale
partitioning strategy of Caccin et al. [12] would be an example of
a parameter that strongly controls application performance. The
high computational cost of retraining machine learning models
also introduces opportunities for accelerating applications by defer-
ring training until sufficient data are collected—introducing more
parameters to be tuned. Further, models such as sparse KRR [43]
provide easy tradeoffs between model accuracy and inference speed.
The additional opportunities for performance optimization further
motivate the need to automatically tune performance parameters.

2.4 Control Theory

Prior work statically configured surrogate usage: scientists deter-
mined a single threshold for acceptable surrogate use and then
used that threshold for the life of the program. Our proposal is that
dynamically tuning the threshold results in better outcomes. Key
to our approach is using a control theoretic design to dynamically
tune surrogate usage.

Control theory is a discipline for managing dynamic systems
[19]. At a high level, a controller is given a target metric and then
measures dynamic feedback from the system. The feedback is used
(in combination with a model of the system to control) to deter-
mine how to adjust parameters such that the desired behavior is
achieved. As computers are dynamic systems, several researchers
have proposed methods for building controllers that manage com-
puter systems [14, 16, 24, 33, 44], with a particular emphasis on
controlling accuracy and performance tradeoffs [26-28]. One major
challenge of applying control theory to computer systems is that
control theory was developed for continuous linear systems, and
computers are discrete, non-linear systems.

Control systems thus appear to be a natural match for our prob-
lem. We want to adjust surrogate usage such that a user-defined
error bound is met. To apply this technique, we need to do three

ICS ’21, June 14-17, 2021, Virtual Event, USA

Retrain |}
S

Surrogate
model

Figure 2: Logical flow of the Proxima surrogate modeling
process. At upper left, an input value u is received and
checked relative to a distance threshold from recently eval-
uated values. Ultimately either the target function F or the
surrogate model are used to compute the return value e. A
key difference between Proxima and prior work is that the
threshold used to determine whether the surrogate should
be used (T in the upper left) is determined dynamically; i.e.,
this threshold changes with time k.

things: (1) find an appropriate feedback metric that can be measured
at runtime and relates to a scientifically meaningful error metric, (2)
find appropriate configuration parameters that can be dynamically
tuned to change error and latency tradeoffs, and (3) account for
the non-linearities in the relationship between surrogate usage and
error. We explain in detail how we address these three issues in
Section 3.

3 PROXIMA

The basic idea of surrogate modeling is to replace an expensive
target function with a faster machine-learned surrogate model. The
strategy is to speed up the overall simulation by sacrificing accu-
racy in a systematic manner. Thus the surrogate must provide an
acceptable level of accuracy, but take less time to train and exe-
cute than the target function. The crux of the problem is knowing
when to use the surrogate model, when to add data to the train-
ing set, and how often to retrain said model. In prior work, these
decisions are made explicitly by the scientist—who is responsible
for setting appropriate surrogate configuration parameters—and
require laborious profiling to find an acceptable accuracy/perfor-
mance tradeoff. In contrast, Proxima automatically and dynamically
configures these values to meet accuracy constraints with good
performance, eliminating the scientists’ burden of manually tuning
these parameters.

In this section, we describe Proxima, independently of any spe-
cific scientific application. In the subsequent section, we describe
how it is applied to atomistic Monte Carlo, replacing a Hartree—
Fock-energy prediction target function with a Proxima-managed
surrogate.

To begin, in every application, Proxima has a target function F.
We need to process a series of requests for the value of that function
for different arguments, each of which we can be evaluated either
by running F on the supplied argument, or alternatively by running
a surrogate model S. The surrogate model is dynamically trained
using results from previous evaluations of F.

There are thus two key decision points in the system: 1) For
each call to the target function, whether to use F or S to evaluate
it; and 2) for each new evaluation of F, whether or not to retrain S,

Yuliana Zamora, Logan Ward, Ganesh Sivaraman, lan Foster, and Henry Hoffmann

and which past results to use for that retraining. We organize our
solutions to these problems as an Executor, which decides whether
to execute F or S based on the distance logic shown in Figure 2,
and a Controller, which updates the configurable parameters of
the Executor during execution. One parameter could be a distance
threshold, Ty, that controls how similar inputs must be to the train-
ing set of S before the Executor chooses to run S. Prior work (see
Section 2.3) uses a static distance threshold to determine when
to use the surrogate. However, we observe that the relationship
between surrogate accuracy and distance changes as the simulation
executes.

3.1 Executor: Surrogate Selection Logic

We now explain the logic behind the Executor. We use the fol-
lowing notation. Let ji be a user-supplied target error expressed
as mean absolute error (MAE) on a specific value in the scientific
simulation; and V be a vector of results collected so far, ordered by
time of the corresponding request, and each of the form (x, y,y’, d),
where x is a valid argument to F, y = F(x), ¢y’ = S(x), and d is a
distance, computed as described below. Also, let N be the number
of recent observations in V used for computing MAEs.

Let V). be V after k observations have been made and T} be
the current distance threshold. Now consider a new request for a
function evaluation on a value u. We compute the distance from u
to the nearest observation in the N most recent observations in V,
denoted as V. [N]:

d= min |x—ul.
xEVk[N]

If d < T, then we retrain the surrogate model S if the target func-
tion was run for the preceding request, and return the value S(u)
and continue to the next request. If d > T, then we run both the
target function and the surrogate model, and add (u, F(u), S(u), d)
to Vi, producing Vi, . Here we assume that the surrogate model
is significantly cheaper than the target function so running both
presents very little overhead.

3.2 Controller: Setting Distance Threshold

We now discuss how we use the Controller to perform dynamic
online adjustments of the Executor. Here we are computing a thresh-
old T for the current time k.

We formulate this task as a control problem. Specifically, we
want to control the simulation error to meet the user-specified
error bound fi. We want to use the surrogate as much as possible
(to maximize speedup) while maintaining an error at or below the
bound. At any time k, we can compute the achieved error as 1,
the MAE of Vi, {[N]; i.e., the average of the absolute differences
between the y and y’ values in the N most recent elements of Vj;.
In this case, controlling the error means that we want p — fi < 0.
We can control the error by setting the threshold Tj. Intuitively,
if we set the threshold extremely high, the surrogate is always
used, while if we set it extremely low, the target function is always
used. Our goal is to formulate a controller that dynamically sets
the threshold to bring the error to the user-specified bound.

To formulate the controller, we need to know the relationship
between error and threshold. A simple linear model characterizes
this relationship as:

p=a-T, 1)

Proxima: Accelerating the Integration of Machine Learning in Atomistic Simulations

where « is simply a coefficient that represents how much a change
in threshold affects the change in error. With this model we can
formulate a basic control system that manages the error by dynam-
ically tuning the threshold:

1 N
Ties1 = Tg — = (kg = 1) (2)

This controller is simple and low-overhead, requiring just a hand-
ful of floating point computations to compute a new threshold. The
drawback is that the linear relationship, & from Equation 1, rarely
holds in practice because the relationship between the error and
the threshold changes as the simulation evolves. For example, in
our case study later in this paper we find that at higher tempera-
tures, the same threshold will produce a higher error than at lower
temperatures.

One approach to address this issue would be to build a non-
linear model for . In some sense, however, this approach would
simply replace the laborious profiling prior work requires to set
the threshold with a different laborious profiling task to build an
appropriate non-linear model that adapts a over time. Therefore,
we take a different approach and approximate the true version of
a by continually estimating it with a time varying linear model.
Specifically, we compute oy, via regression analysis of the formula
d = apy1ly —y'| + B, for (xi, yi, yj, di) € Vi1[N]. We then compute
this dynamic version of @, and use it in Equation 2:

1 N
Ty =T - o (ke —). (3)
+

Intuitively, the threshold for surrogate usage in the next time
step (k + 1) is a function of the previous threshold, the estimated
relationship between threshold and error at the current time, and
the difference between the measured and desired error.

The above approximation of @ works well in practice, however
to insure stability, it is necessary to bound the change in threshold,
tr by a maximum change of +0.1. In the latter case (i.e., if Vi is
produced), we also compute a new distance threshold, T, bound
by reasonable operating minimum and maximum thresholds. We
also compute g1, the MAE of Vi, ([N] (i.e., the average of the
absolute differences between the y and y” values in the N most
recent elements of Vi, ;). A potential problem could arise if Equation
3 oscillates, producing large swings in threshold from one update to
another. This could occur if the approximation of @ is consistently
off by more than a factor of 2 [16]. However, the bounding of the
threshold described above prevents extreme oscillation in practice.
Furthermore, Proxima can detect the attempted oscillation and
report it to the scientist for further examination.

To provide intuition as to how this update rule works, consider
three cases. 1) If i1 = [, ie., if the MAE of Vj,1[N] is equal
to the user’s desired maximum MAE, T is left unchanged. 2) If
fis1 > fi, Le., if the MAE of Vi ([N] is greater than the user’s
desired maximum MAE, T is increased, by an amount that is larger
if o is smaller. 3) If y.,1 < [i, i.e., if the MAE of Vi, {[N] is less than
the user’s desired maximum MAE, T is decreased, by an amount that
is smaller if « is larger. Figure 3 shows the operation of the update
rule in practice; the a-threshold relationship is clearly visible.

The above starts with a basic control formulation (Equation 2),
which is provably convergent to the goal using basic control anal-
ysis [16]. The convergence proof relies on the rate of change in

ICS ’21, June 14-17, 2021, Virtual Event, USA

0.012 o —
. — - 0.6
0.010 .
- ¥ . N "' 0 5A
__0.008 ° N . B
S o v . — — d
- ° — 04T
© ° " - e °
S 0.006 y T — M o S G
= a1 - : 03¢
X # H v, ° }E
° °m v °
0.004 v 2"
QB lﬁ O 2
L] v
0.002 - - — * o Alpha 0.1
° v Threshold (Ty)
0.000 0.0
0 0 200 400 600 800 1000
Simulation Step(k)
(a) 500 K
— — W — 0.7
0.012 B
0.6
0.010 . —
— 0.5
__0.008 — 5
s v 04T
© - o
'50.006 . - G
< . 032
o
- v =
0.004 §|., g o — 0o
s T4 .
0.002 — - - ? = o Alpha 0.1
: v Threshold (Ty)
0.000 0.0
0 200 400 600 800 1000
Simulation Step(k)
(b) 800 K

Figure 3: Proxima examples of the relationship between o
and threshold T. In these two simulation runs, at 500 K and
800 K, the threshold is directly effected and changed by a.

the threshold. Our modifications to the basic control formulation
(in Equation 3 and the preceding paragraph) can only reduce the
change in threshold, never increase it. Therefore, we expect Prox-
ima’s control formulation to converge under any circumstances
where the basic approach will converge. Proxima, may converge
more slowly, however, because it may choose to reduce the change
in threshold.

3.3 Configuration

To apply Proxima to a specific problem, we must establish a target
function and a machine learning model. For the machine learning
model we also need a distance metric for the features and an accuracy
metric for the prediction.

The only required user parameter is the target error which should
be more intuitive to estimate than a distance threshold; we assume
scientists know an acceptable error and that can be determined
without profiling. In contrast, prior work required scientists to
determine a threshold that may not have an intuitive mapping to
error. If desired, the user may specify the number of training-set

ICS °21, June 14-17, 2021, Virtual Event, USA

Xo: Initial state of molecule
T: Temperature
N: Number of steps to simulate
def simple_monte_carlo(Xo, T, N):
X = Xo
for n in range(N):
X_next = perturb(X, T)
E = energy_function(X) # Target function
R = random()
if accepted(E, R, T):
X = X_next

Listing 1: Pseudo-code for the Monte Carlo sampling appli-
cation used in experiments.

initialization steps, window comparison size, and initial distance
threshold. However, the results were not particularly sensitive to
the variations in the default settings.

4 EXPERIMENTAL SETUP

We next describe the example application that we use both to
illustrate the use of Proxima and to evaluate various aspects of
its performance. This application is run on an Intel Core i7-8700
CPU with 16GB of memory. The Monte Carlo sampling application
(MCSA), for which pseudo-code is provided in Listing 1, computes
the average property of an atomic system, using the Psi4 simulation
code [45] as the underlying energy calculator.

The Monte Carlo algorithm makes small perturbations to the sys-
tem, choosing whether to accept the perturbation as a new starting
point based on a probability related to the energy change, and then
repeating for many iterations. The average of the value of a property
over all iterations is the expected value at the set temperature (T)
if the acceptance probability is P(AE) = max{exp(%), 1}, where
AE is the energy change [34]. An example of a physical property
that can be computed in this way is the average radius of gyration
of a molecule, which is expected to increase with temperature.

In order to converge on a realistic structure, we need an accurate
energy calculation at every Monte Carlo step. Therefore, Proxima’s
job is to speed up the simulation while capturing the energy as
accurately as possible.

To instantiate Proxima, a Python wrapper, also called Proxima, is
used as an interface to the application. The arguments to Proxima
are the target function, the machine learning model, and the MAE
bound. For this example, Bayesian ridge is the machine learning
model used, the data in the training set are represented using SOAP,
and the decision engine uses a Coulomb Matrix representation to
quickly calculate whether or not to use the surrogate model. We
report results in the following with a MAE bound of 0.002, unless
otherwise stated.

We use the energy calculated by Psi4 as ground truth. We mea-
sure error as the MAE of all steps, with the baseline for each step
being the Psi4 prediction. For steps where the surrogate energy is
used, there will be some error. For steps where the surrogate energy
is not used, there will be no error. The MAE includes both of these
cases, unless otherwise stated.

In the MCSA example considered here, the target function takes
a molecule as its argument, and molecules are represented as a

Yuliana Zamora, Logan Ward, Ganesh Sivaraman, lan Foster, and Henry Hoffmann

3.0-%107°
2.5+
2.0
s
CA
#15- v
pv4
= & S 3
¥ o v v
1.04 S w -
v~ 4 S
¥ 8 o
S* X
0.5+ « w x
v% w
0.0 T
6x 102 1000

Execution time

Figure 4: Results of running Fixed with T = 0.3 and no re-
train interval, for temperatures 100-1000 K in increments
of 100 K. Results show slow downs of up to 5x when com-
pared to a no surrogate application.

multi-dimensional Coulomb matrix [38] used to calculate distances
and a SOAP representation as featurization for the training data.

MCSA parameters are the target molecule (e.g., methane), the
temperature at which the molecule is to be simulated, the perturba-
tion size, the number of steps to be run, and a random seed.

4.1 Baseline Workflow

This section presents methods used to evaluate Proxima. We com-
pare Proxima to a non-surrogate system, which we call Baseline,
and to a fixed parameter surrogate system, which we call Fixed.
Fixed uses prior work where the scientist is responsible for config-
uring the surrogate usage by setting an appropriate threshold for
surrogate usage. In the following sections, strategies for Baseline,
Fixed, and the methodology for acquiring the best fixed parameters
are discussed.

4.1.1 Baseline and Fixed Surrogate Strategies. We define two strate-
gies against which we compare Proxima proper in later sections.
The Baseline strategy runs the target function in response to
every request. We determine the accuracy of other methods by
comparing the result obtained at each step against that achieved by
the target function; thus, Baseline has, by definition, the highest
accuracy, as it uses Psi4 to calculate all energies. However, as it uses
the target function at every step, its computational cost is high.
The Fixed strategy runs with a fixed value for the threshold T
and retrains the surrogate model after a specific number of new data
points, the retrain interval (RI), have been added to the dataset. As
we explain below, we performed parameter sweeps in which Fixed
was run with a variety of (T, RI) combinations in order to study
sensitivity to those two parameters. These optimal parameters were
used to run Fixed for 10 temperatures between 100 and 1000 K.
Finally, we performed runs with a lazy training method used in
Proxima, in which retraining is performed only if the last step used
a target function. This is the case when the model is only retrained
if the input data are calculated to be within the specified T. Figure 4,
shows that no runs, even with a conservative threshold of 0.3, met

Proxima: Accelerating the Integration of Machine Learning in Atomistic Simulations

both the error and time bounds. Therefore, lazy training was not
used for Fixed.

4.2 Establishing Best Fixed Parameters

We next discuss how we find the optimal parameters for Fixed.
These parameters achieve the best speedup while staying below a
given mean absolute error bound at 500 K and 1000 K.

Due to the significant stochastic variation of the application,
we must use reference data to compare the performance and ac-
curacy of different methods. Reference data are the saved atom
coordinates and energies obtained from a simulation that uses the
target function only. Using reference data allows for an equivalent
comparison between parameter choices. They are needed because
the atomistic simulations that we consider here proceed by starting
with a molecule’s atoms in a particular state, and then repeatedly
using the target function to compute potential energies on those
atoms and then using the computed potential energies to update
the positions of the atoms. As a result, the molecule’s atoms trace
out a trajectory in space: a trajectory that is highly sensitive to
minor perturbations, so that a small change in potential energies
(as might result from the use of a surrogate rather than the target
function to compute potential energies) can result in the simulation
following an entirely different trajectory.

Such differences between trajectories are not a problem scientif-
ically, because atomistic modeling is concerned not with individual
trajectories but with the statistics of many trajectories. However,
they make comparisons of different methods on the basis of individ-
ual runs challenging, because different trajectories might involve
different numbers of surrogate function evaluations as the molecule
visits different parts of molecular space. To overcome this problem,
we use what we call reference data. First, we perform a simula-
tion using only the target function, saving all atomic coordinates
and energies. Then, when running other methods that we want to
compare with that first simulation, we make the molecule follow
exactly the same trajectory.

In the end, we still need Proxima performance data without using
any reference data, which is shown below, to compare full runs.

Using reference data, we ran a parameter sweep on Fixed for 7 x
17 = 119 parameter combinations (T, RI) in (T € {0.1,0.2,...,0.7}) X
(RI € {1,2,5,10,...50, 100, 200, ..., 500}), while keeping fixed the
number of steps (1000), for temperatures at both at 500 K and
1000 K, the molecule (methane), random seed (1), and perturbation
(0.003). For the 1000 K, the T of 0.1 is not taken into account as runs
would take more than 24 hours to be finished, and would not be a
parameter that could be used in the end. Therefore, we consider a
total of 221 combinations: 119 at 500 K and 102 at 1000 K.

From this parameter sweep, we see in Figures 5 and 6, nine (R],
T) combinations for 500 K and 14 combinations for 1000 K that
meet both the error and time bounds. Of these, four combinations
meet the bounds for both temperatures. From those four, (T = 0.3,
RI = 50) achieve the best speedup (2.31x for 500 K and 1.99x for
1000 K), while staying within the MAE bound for both 500 K and
1000 K. We establish that these are the best fixed parameters for
Fixed.

ICS ’21, June 14-17, 2021, Virtual Event, USA

5 RESULTS

We present the results of MCSA for three different methods: (1) no
surrogate (Baseline), (2) surrogate with fixed parameters (Fixed),
and (3) Proxima. We discuss the practical details of surrogate mod-
eling with Proxima, compare it to other approaches, and discuss its
scientific significance.

5.1 Accuracy and Speedup Results

We first run MCSA with the Baseline and Fixed strategies to
obtain data for later comparisons with Proxima. In these runs, we
keep fixed the number of steps (1000), molecule (methane), random
seed (1), and perturbation (0.003).

Running MCSA first with the Baseline strategy (i.e., always
using the target function), we observe that target-function execu-
tion takes a cumulative time of 523 seconds: an average of of 0.523
seconds per evaluation.

Next, we obtain results for Fixed. As the combination T = 0.3,
RI = 50 gave the best speed and accuracy results for both 500 K
and 1000 K, we ran Fixed with these parameter values. This com-
bination was able to achieve a low MAE of 0.00149, with a 2.81x
maximum speedup. Though Fixed can achieve high speedups at
higher temperatures compared to Proxima, as illustrated in Figure 7,
Fixed exceeds the error bound, especially at higher temperatures.
For example, at 1000 K, Fixed’s achieved error is over 50% greater
than the bound. In fact, Fixed exceeds the error bound for all tem-
peratures above 600 K. So while it can provide great speedups, those
results are meaningless as the scientific simulation would have to
be rerun to produce meaningful results. On the other hand, as il-
lustrated in Figure 8, Proxima consistently stays within the given
error bound across all temperatures. This is important, because
exceeding the scientist-supplied bound by only a small amount
can throw the scientific validity of a result into question, as we
will explore in the next section. Finally, it is worth noting that the
relatively low cost target function used in this work suggests that
these speedups are conservative.

5.2 Scientific Significance of Surrogate Error

The results of the atomistic simulations considered in this paper
can be used to derive a resulting secondary physical property, the
radius of gyration (ROG). This quantity is highly sensitive to the
accuracy of the entire Monte-Carlo trajectory and is not explicitly
considered by Proxima during a run, but rather is determined only
at the end of a simulation. Thus it provides a useful validation of
the Proxima approach.

We shown in Figure 9, the ROG values obtained for 10 runs
of each of Baseline, Fixed, and Proxima for temperatures from
100 to 1000 K. The multiple runs (with different initial random
seeds) capture the variations that result from the randomness of
the Monte-Carlo simulation.

We see in Figure 9 that Proxima outperforms Fixed in predict-
ing an accurate ROG, achieving results that are closer to those
of Baseline (indeed, coinciding with Baseline’s error bars) and
with less variation, as captured by the error bars, and without the
increased variation in error with temperature that is seen for Fixed.
This is further demonstrated in Figure 10, where the accuracy of
Proxima is much more stable than that of Fixed. In other words,

ICS °21, June 14-17, 2021, Virtual Event, USA

Yuliana Zamora, Logan Ward, Ganesh Sivaraman, lan Foster, and Henry Hoffmann

9 x1073
2.00 x10-3
0o Acceptable : >
81 v MAE too high 5 v v
Y ot i 1.751 v '5%)'%'32015
74 vv N=153 ¢ o Runtime too long . v o310 02, 300
: v o e Target function only 1.504 %20 02,500 a5
6+ v £
v % [}
> v . 4 . 1.254
8 ¥ : M %_, D0.2,400
% N v I 1.004 v0.2, 200
44 v ¥ v <
= w v VVVVVVW S
3+ v;"’;vg;h%%v% v v 0.754 g% 2(?.%, 50
7 oy " Target MAE g3
2 v ey g v Q Q 050'
oW, o
& O OP®o® 0 o o ° ° 92,100
14 N=23 o N=45 0254 © 500K
Y SIS N o e v 1000K
0 - B ; 0.00 : : :
100 1000 10000 100000 200 300 400 500

Execution time

Execution time

Figure 5: Left: MAEs and execution times achieved by Fixed with MCSA for methane at 500 K and 1000 K, for 221 different
(RI, T) parameter combinations. The vertical line is the time taken by Baseline and the horizontal line is a target MAE. The
N= numbers are of parameter combinations in different regions. Note that only the 23 parameter combinations in the lower
left meet both error and time bounds. Also shown as a red circle at (0, 523) is the performance achieved by Baseline. Right:
Highlighting the 500 K and 1000 K combinations that lie within the error and time bounds, with RI, T values shown for those
with MAE less than 1.75. The best results are obtained with relatively low retrain intervals and distance thresholds.

5007 © o v Y O Acceptable
V MAE too high
4001 o o> v v O Runtime too long
©
Z
_8300- o o v v v v v
£
£
9200- o (=] ov v v v v
k9]
o
1009 o a o~ v v v v
ST D A R R R A

01 02 03 04 05 06 07
Threshold

Figure 6: A scatter plot of the (RI, T) points in Figure 5, with
markers classifying each point. The points with acceptable
MAE and execution time (the green squares) fall in a rela-
tively narrow range.

Proxima achieves scientifically meaningful results where Fixed
fails to do so.

5.3 Results for Different Error Bounds

Many existing frameworks for surrogate use consider only inference
time and model error when selecting ‘optimal’ parameters, without

Bl Proxima - No Reference Data

3.0 I Fixed - No Reference Data

Speedup

100 200 300 400 500 600 700 800 900 1000 HM
Temperature (K)

Figure 7: Speed-up results for Fixed (with parameters T = 0.3,
RI = 50) and for Proxima without the use of reference data.
The harmonic mean is labeled as HM.

detailed results of model training and decision-engine execution
time, nor any focus on managing error (7, 8, 17]. The work presented
here, in contrast, focuses on control mechanisms that can meet a
user-defined error bound while optimizing end-to-end execution of
an application across a range of temperatures. As we demonstrated
above, the use of control mechanisms is important because even
with extensive profiling, it is difficult to find parameters that satisfy
an error bound across a range of temperatures.

Proxima: Accelerating the Integration of Machine Learning in Atomistic Simulations

x10~3
3.5 -
I Proxima - No Reference Data

30 I Fixed - No Reference Data
25
>
C)
g 2.0
=
>
215
o
=
w

g
=)

o
n

0.0 100 200 300 400 500 600 700 800 900 1000 HM

Temperature (K)

Figure 8: MAE of the energies predicted by surrogates, not
including target function calls, across 10 temperatures. The
harmonic mean is labeled as HM.

—4— Proxima

0.277 ;
—— Baseline

—— Fixed

0.276

ROG MEAN (A)
o
N
<N
a

0.274

0.273

200 400 600 800 1000
Temperature (K)

Figure 9: Mean of ROG comparison between Baseline, Fixed,
and Proxima without the use of reference data. Fixed is with
parameter values T = 0.3, RI = 50.

0.0101 —— Proxima
—+— Fixed

0.008

0.006

ROG MAE (A)
o
=3
S
=

0.002

0.000

200 400 600 800 1000
Temperature (K)

Figure 10: MAE of ROG comparison between Fixed and Prox-
ima without the use of reference data.

ICS ’21, June 14-17, 2021, Virtual Event, USA

<
o

Emm Normalized Error
HEl Speedup

S
ul o ~

Normalized Error
o
B

0.3

0.2

0.1

0.0
n — o~ < ©o
o o o o o
=4 Q < Q]
< o o o o
S

User Defined Error Bound

Figure 11: Proxima accuracy and speed vs. user-defined er-
ror bound. As the error bound increases from 0.0005 to
0.006, normalized error remains less than 1, indicating that
Proxima always stays within the user defined error, while
speedup increase to a maximum of 5.52.

We report here on experiments that evaluate Proxima’s ability
to meet a wide range of user-specified error bounds. Specifically,
we run Proxima for error bounds in the range 0.0005 - 0.006 and
measure the achieved error and speedup in each case. The results,
displayed in Figure 11 presents the the error bound on the x-axis and
the normalized error (where a value of 1 indicates the error bound,
and values <1 indicate staying below the target error) on the y-
axis. As expected, Proxima abides by the given error bounds, while
achieving up to 5.52x speedup for the highest error bound. These
results emphasize the point that surrogates are most useful when
there is some room for error. The results with low error bounds
are important as they show that Proxima performs acceptably even
in those stressful situations; however, we should not be concerned
that performance is poor in those cases, because they are not the
cases that we are targeting.

5.4 Error Sensitivity and Reduction

Since both the energy landscape and surrogate model are nonlinear,
a conservative distance threshold, T, for one configuration may
result in significant error for another configuration. Therefore it is
impossible to choose a static distance threshold that can satisfy a
specific user-defined error bound. Proxima solves this problem by
dynamically changing the threshold, illustrated in Figure 3, based
on simulation error feedback and a user-defined error bound.

5.5 Proxima Overhead

The largest source of overhead in Proxima is the time needed to
train the underlying surrogate model. While model inference is typ-
ically orders of magnitude faster than the target function, training
time grows with training set size, and can reach 60% of total runtime
in worse-case scenarios. Proxima’s decision engine can also be a
source of meaningful overhead. For MCSA, the decision engine re-
quires a Euclidean-distance calculation based on a Coulomb-Matrix
representation of the atomistic geometry. Calculating this distance

ICS ’21, June 14-17, 2021, Virtual Event, USA

Xo: Initial state of molecule
T: Temperature

N: number of steps to simulate
import Proxima

def simple_monte_carlo(Xo, T, N}:

X = Xo

Make the Proxima wrapper

prox_func = Proxima(calc.energy_function,
ml_model, mae_bound)

calc.energy_function = prox_func

for n in range(N):
X_next = perturb(X, T)
E = calc.energy_function(X) # Target function
R = random()
if accepted(E, R, T):
X = X_next

Listing 2: Applying Proxima to MCSA.

can take as much as 9% of total runtime. The controller logic re-
quires much less overhead, taking ~10us per step. The reported
Proxima speedups consider all costs, including Proxima logic,model
(re)training, surrogate usage, and inference.

5.6 Ease of Use

Identifying the best parameters for Fixed required running 221
simulations. Running them all is expensive, because while some
simulations run in five minutes, others take days. The results must
then compared based on speedup and error obtained. Even remov-
ing the need for the retrain interval, and using the retraining tech-
nique applied in Proxima, results in only four configurations stay
within both error and latency bounds, as shown in Figure 4. Addi-
tionally, Figure 8 shows that parameter values that work well for
one temperature are not necessarily effective at other temperatures,
where they result in errors above a given bound. Proxima removes
these steps while staying below the user-defined error bound and
achieving speedup: see Figure 7.

The user no longer needs to run the many simulations to find
the best parameters and can import Proxima as a simple Python
library, as shown in Listing 2.

6 RELATED WORK

The potential for performance gains via the integration of machine
learning into atomistic simulations has spurred much research in
this area [7, 8, 31, 37, 46].

Botu and Ramprasad developed a numerical fingerprint to repre-
sent an atom configurations and proposed an algorithm for surro-
gate decision usage [7, 8]. They use this numerical fingerprint as a
feature vector to represent the atom coordinates in a way that can
then be mapped to molecular properties, such as energy and force.
Similarly to Proxima, they add training data each time that the
target function is invoked and choose the surrogate when the input
is within a certain distance threshold of the training data; in con-
trast to Proxima, they use a static threshold. Proxima’s dynamically
changing threshold allows it to invoke the surrogate model more
often while meeting a required error bound, and thus to achieve
higher performance.

Yuliana Zamora, Logan Ward, Ganesh Sivaraman, lan Foster, and Henry Hoffmann

Vandermause et al. use the internal uncertainty of a Gaussian
process regression model to decide whether to accept a model
prediction or to use the target function [46]. They applied their on-
the-fly learning methodology to a range of single and multi-element
systems. Though they attempt to keep the amount of training data
low, their methodology retrains the model after every data addition
and they do not discuss speedups.

Rupp et al. describe a surrogate implementation, presenting re-
sults on accuracy and discusses using hyperparameters. They used
a specified training set and found that machine learning can predict
potential energy with high accuracy [37].

In summary, although prior work has yielded many advances
in the integration of surrogate models into atomistic simulations,
none are able to guarantee a user-specified level of accuracy, as
Proxima has shown to be able to do.

Other related work has investigated methods for accelerating
surrogate model creation via automated model selection and learn-
ing algorithms that mimic the underlying structure of algorithms
[2, 40]. That work requires the full training data set prior to to
prediction, but could potentially be adapted to improve the models
used within Proxima.

7 CONCLUSION

We have presented Proxima, a novel method for simplifying the
incorporation of machine-learning-based surrogate models into
science applications. A surrogate model is effective when it is suffi-
ciently accurate for scientific goals and the cost of its (re)training
is less than that saved by its use. We used the example of atomistic
simulations to illustrate the challenges inherent in the resulting
speed-accuracy tradeoffs, which are typically too complex for users
to navigate without extensive and expensive experimentation. We
showed how simple approaches to the integration of surrogate mod-
els, in which default values are used for various surrogate model
configuration parameters, can easily result in inaccurate results
and/or extreme slowdowns. We also showed how the complexity
of such simulations means that users cannot readily identify good
values for parameters without performing extensive experimen-
tation. We then showed how with Proxima, a user does not need
to perform extensive testing, curate a training set, or pre-train a
machine learning model. Instead, Proxima used control theory to
determine values for configuration parameters automatically, in
ways that satisfy error bounds while also delivering substantial
speedups: up to 5.52X% in the case studied here.

We have focused in this paper on a simple atomistic modeling
problem, namely computing the energy of methane, the simplest
hydrocarbon. In future work, we will apply the method to larger
atomistic modeling problems, where we expect Proxima to provide
yet greater benefits. The relationship between threshold and error
is not expected to change with increased problem size, so we expect
Proxima to continue to meet the error bounds. And because Prox-
ima replaces a target function that scales as O(n?) with a linear
surrogate, the speedups could be even larger for larger problems.
By delivering large speedups with only minor modifications to the
science application, Proxima thus further opens the capabilities of
using machine learning in these science applications.

Proxima: Accelerating the Integration of Machine Learning in Atomistic Simulations

8

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their comments, which we
have used to improve the paper. Funding support for this work
comes from NSF (grants CCF-2028427, CNS-1956180, CCF-1837120,
CNS-1764039), ARO (grant W911NF1920321), and a DOE Early Ca-
reer Award (grant DESC0014195 0003). LW and GS were supported
by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nu-
clear Security Administration, responsible for delivering a capable
exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative.

REFERENCES

(1]

[12]

[13]

[14

[15

[16]

[17

Katie Antypas, BA Austin, TL Butler, RA Gerber, Cary Whitney, Nick Wright,
Woo-Sun Yang, and Zhengji Zhao. NERSC workload analysis on Hopper.
Lawrence Berkeley National Laboratory Technical Report, 6804:15, 2013.
Prasanna Balaprakash, Ananta Tiwari, Stefan M Wild, Laura Carrington, and
Paul D Hovland. AutoMOMML: Automatic multi-objective modeling with ma-
chine learning. In International Conference on High Performance Computing, pages
219-239. Springer, 2016.

Albert P Bartok, Risi Kondor, and Gabor Csanyi. On representing chemical
environments. Physical Review B, 87(18):184115, 2013.

Jorg Behler. Perspective: Machine learning potentials for atomistic simulations.
The Journal of Chemical Physics, 145(17):170901, 2016.

F Matthias Bickelhaupt and Evert Jan Baerends. Kohn-Sham density functional
theory: Predicting and understanding chemistry. Reviews in computational chem-
istry, 15:1-86, 2000.

Kurt Binder, Jiirgen Horbach, Walter Kob, Wolfgang Paul, and Fathollah Varnik.
Molecular dynamics simulations. Journal of Physics: Condensed Matter, 16(5):S429,
2004.

Venkatesh Botu, Rohit Batra, James Chapman, and Rampi Ramprasad. Machine
learning force fields: Construction, validation, and outlook. The Journal of Physical
Chemistry C, 121(1):511-522, 2017.

Venkatesh Botu and Rampi Ramprasad. Adaptive machine learning framework
to accelerate ab initio molecular dynamics. International Journal of Quantum
Chemistry, 115(16):1074-1083, 2015.

Venkatesh Botu and Rampi Ramprasad. Learning scheme to predict atomic forces
and accelerate materials simulations. Physical Review B, 92(9):094306, 2015.
Markus J Buehler. Atomistic modeling of materials failure. Springer Science &
Business Media, 2008.

Keith T Butler, Daniel W Davies, Hugh Cartwright, Olexandr Isayev, and
Aron Walsh. Machine learning for molecular and materials science. Nature,
559(7715):547-555, 2018.

Marco Caccin, Zhenwei Li, James R. Kermode, and Alessandro De Vita. A frame-
work for machine-learning-augmented multiscale atomistic simulations on par-
allel supercomputers. International Journal of Quantum Chemistry, 115(16):1129—
1139, June 2015.

Christopher J Cramer and FM Bickelhaupt. Essentials of computational chemistry.
Angewandte Chemie, 42(4):381-381, 2003.

Yixin Diao, Joseph L Hellerstein, Sujay Parekh, Rean Griffith, Gail Kaiser, and
Dan Phung. Self-managing systems: A control theory foundation. In 12th IEEE
International Conference and Workshops on the Engineering of Computer-Based
Systems, pages 441-448. IEEE, 2005.

Scott E Field, Chad R Galley, Jan S Hesthaven, Jason Kaye, and Manuel Tiglio. Fast
prediction and evaluation of gravitational waveforms using surrogate models.
Physical Review X, 4(3):031006, 2014.

Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated design of
self-adaptive software with control-theoretical formal guarantees. In 36th Inter-
national Conference on Software Engineering, pages 299-310, 2014.

Nathan A Garland, Romit Maulik, Qi Tang, Xian-Zhu Tang, and Prasanna Bal-
aprakash. Progress towards high fidelity collisional-radiative model surrogates
for rapid in-situ evaluation. In 3rd Workshop on Machine Learning and the Physical
Sciences. PMLR, 2020.

Luigi Genovese, Matthieu Ospici, Thierry Deutsch, Jean-Francois Méhaut, Alexey
Neelov, and Stefan Goedecker. Density functional theory calculation on many-
cores hybrid central processing unit-graphic processing unit architectures. The
Journal of chemical physics, 131(3):034103, 2009.

Torkel Glad and Lennart Ljung. Control theory. CRC press, 2018.

Andrea Grisafi, David M Wilkins, Gabor Csanyi, and Michele Ceriotti. Symmetry-
adapted machine learning for tensorial properties of atomistic systems. Physical
Review Letters, 120(3):036002, 2018.

[21]

[22]

[23

[24]

[25]

[26

[27

[28

[29

(30]

[31

[32

&
&

[34

[35

(36]

[37

[38

[39

[40]

[41

[42]

[43

[44]

[45]

ICS ’21, June 14-17, 2021, Virtual Event, USA

Mohamed Hacene, Ani Anciaux-Sedrakian, Xavier Rozanska, Diego Klahr,
Thomas Guignon, and Paul Fleurat-Lessard. Accelerating VASP electronic struc-
ture calculations using graphic processing units. Journal of computational chem-
istry, 33(32):2581-2589, 2012.

J Hafner. Atomic-scale computational materials science. Acta Materialia, 48(1):71-
92, 2000.

Christopher Michael Handley and Jorg Behler. Next generation interatomic
potentials for condensed systems. The European Physical Journal B, 87(7), July
2014.

Joseph L Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M Tilbury. PID
controllers. In Feedback Control of Computing Systems, chapter 9, pages 293-335.
John Wiley & Sons, Ltd, 2004.

Lauri Himanen, Marc OJ Jéager, Eiaki V Morooka, Filippo Federici Canova,
Yashasvi S Ranawat, David Z Gao, Patrick Rinke, and Adam S Foster. DScribe: Li-
brary of descriptors for machine learning in materials science. Computer Physics
Communications, 247:106949, 2020.

Henry Hoffmann. CoAdapt: Predictable behavior for accuracy-aware applications
running on power-aware systems. In 26th Euromicro Conference on Real-Time
Systems, pages 223-232. IEEE Computer Society, 2014.

Henry Hoffmann. JouleGuard: Energy guarantees for approximate applications.
In Ethan L. Miller and Steven Hand, editors, 25th Symposium on Operating Systems
Principles, pages 198-214. ACM, 2015.

Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant
Agarwal, and Martin C. Rinard. Dynamic knobs for responsive power-aware
computing. In Rajiv Gupta and Todd C. Mowry, editors, 16th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 199-212. ACM, 2011.

Giulio Imbalzano, Andrea Anelli, Daniele Giofré, Sinja Klees, Jorg Behler, and
Michele Ceriotti. Automatic selection of atomic fingerprints and reference con-
figurations for machine-learning potentials. The Journal of Chemical Physics,
148(24):241730, 2018.

T.L. Jacobsen, M. S. Jorgensen, and B. Hammer. On-the-fly machine learning of
atomic potential in density functional theory structure optimization. Physical
Review Letters, 120(2), January 2018.

Alireza Khorshidi and Andrew A Peterson. Amp: A modular approach to machine
learning in atomistic simulations. Computer Physics Communications, 207:310—
324, 2016.

Zhenwei Li, James R. Kermode, and Alessandro De Vita. Molecular dynamics
with on-the-fly machine learning of quantum-mechanical forces. Physical Review
Letters, 114(9), March 2015.

Martina Maggio, Alessandro Vittorio Papadopoulos, Antonio Filieri, and Henry
Hoffmann. Automated control of multiple software goals using multiple actuators.
In Eric Bodden, Wilhelm Schifer, Arie van Deursen, and Andrea Zisman, editors,
11th Joint Meeting on Foundations of Software Engineering, pages 373-384. ACM,
2017.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing
machines. The Journal of Chemical Physics, 21(6):1087-1092, June 1953.

Phani Motamarri, Sambit Das, Shiva Rudraraju, Krishnendu Ghosh, Denis Davy-
dov, and Vikram Gavini. DFT-FE-A massively parallel adaptive finite-element
code for large-scale density functional theory calculations. Computer Physics
Communications, 246:106853, 2020.

Andrew A Peterson, Rune Christensen, and Alireza Khorshidi. Addressing
uncertainty in atomistic machine learning. Physical Chemistry Chemical Physics,
19(18):10978-10985, 2017.

Matthias Rupp. Machine learning for quantum mechanics in a nutshell. Interna-
tional Journal of Quantum Chemistry, 115(16):1058-1073, 2015.

Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Miiller, and O Anatole
Von Lilienfeld. Fast and accurate modeling of molecular atomization energies
with machine learning. Physical Review Retters, 108(5):058301, 2012.

Faizan Sahigara, Kamel Mansouri, Davide Ballabio, Andrea Mauri, Viviana Con-
sonni, and Roberto Todeschini. Comparison of different approaches to define the
applicability domain of QSAR models. Molecules, 17(5):4791-4810, April 2012.
Pedro Savarese and Michael Maire. Learning implicitly recurrent CNNs through
parameter sharing. arXiv preprint arXiv:1902.09701, 2019.

Jonathan Schmidt, Mario RG Marques, Silvana Botti, and Miguel AL Marques.
Recent advances and applications of machine learning in solid-state materials
science. npj Computational Materials, 5(1):1-36, 2019.

John C Slater. A simplification of the Hartree-Fock method. Physical review,
81(3):385, 1951.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using
pseudo-inputs. In Y. Weiss, B. Scholkopf, and J. Platt, editors, Advances in Neural
Information Processing Systems, volume 18, pages 1257-1264. MIT Press, 2006.
Martin Térngren. Fundamentals of implementing real-time control applications
in distributed computer systems. Real-time systems, 14(3):219-250, 1998.

Justin M Turney, Andrew C Simmonett, Robert M Parrish, Edward G Hohenstein,
Francesco A Evangelista, Justin T Fermann, Benjamin J Mintz, Lori A Burns,
Jeremiah] Wilke, Micah L Abrams, et al. Psi4: An open-source ab initio electronic

ICS ’21, June 14-17, 2021, Virtual Event, USA

[46]

[47]

structure program. Wiley Interdisciplinary Reviews: Computational Molecular
Science, 2(4):556-565, 2012.

Jonathan Vandermause, Steven B Torrisi, Simon Batzner, Yu Xie, Lixin Sun,
Alexie M Kolpak, and Boris Kozinsky. On-the-fly active learning of interpretable
Bayesian force fields for atomistic rare events. npj Computational Materials,
6(1):1-11, 2020.

Max Veit, Sandeep Kumar Jain, Satyanarayana Bonakala, Indranil Rudra, Detlef
Hohl, and Géabor Csanyi. Equation of state of fluid methane from first principles
with machine learning potentials. Journal of Chemical Theory and Computation,
15(4):2574-2586, 2019.

Yuliana Zamora, Logan Ward, Ganesh Sivaraman, lan Foster, and Henry Hoffmann

[48] Nicholas Wagner and James M Rondinelli. Theory-guided machine learning in
materials science. Frontiers in Materials, 3:28, 2016.

[49] Logan Ward, Ruogian Liu, Amar Krishna, Vinay I Hegde, Ankit Agrawal, Alok
Choudhary, and Chris Wolverton. Including crystal structure attributes in ma-
chine learning models of formation energies via Voronoi tessellations. Physical
Review B, 96(2):024104, 2017.

Mitchell A Wood, Mary A Cusentino, Brian D Wirth, and Aidan P Thomp-
son. Data-driven material models for atomistic simulation. Physical Review B,
99(18):184305, 2019.

[50

	Abstract
	1 Introduction
	2 Background
	2.1 Atomistic Modeling
	2.2 Atomistic Machine Learning
	2.3 Configuring Surrogate Usage
	2.4 Control Theory

	3 Proxima
	3.1 Executor: Surrogate Selection Logic
	3.2 Controller: Setting Distance Threshold
	3.3 Configuration

	4 Experimental Setup
	4.1 Baseline Workflow
	4.2 Establishing Best Fixed Parameters

	5 Results
	5.1 Accuracy and Speedup Results
	5.2 Scientific Significance of Surrogate Error
	5.3 Results for Different Error Bounds
	5.4 Error Sensitivity and Reduction
	5.5 Proxima Overhead
	5.6 Ease of Use

	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

