
Generalizable and Interpretable Learning for Configuration
Extrapolation

Yi Ding
MIT CSAIL

Cambridge, MA, USA
ding1@csail.mit.edu

Ahsan Pervaiz
University of Chicago

Chicago, IL, USA
ahsanp@uchicago.edu

Michael Carbin
MIT CSAIL

Cambridge, MA, USA
mcarbin@csail.mit.edu

Henry Hoffmann
University of Chicago

Chicago, IL, USA
hankhoffmann@cs.uchicago.edu

ABSTRACT

Modern software applications are increasingly configurable, which
puts a burden on users to tune these configurations for their target
hardware and workloads. To help users, machine learning tech-
niques can model the complex relationships between software
configuration parameters and performance. While powerful, these
learners have two major drawbacks: (1) they rarely incorporate
prior knowledge and (2) they produce outputs that are not inter-
pretable by users. These limitations make it difficult to (1) leverage
information a user has already collected (e.g., tuning for new hard-
ware using the best configurations from old hardware) and (2) gain
insights into the learner’s behavior (e.g., understanding why the
learner chose different configurations on different hardware or for
different workloads). To address these issues, this paper presents
two configuration optimization tools, Gil and Gil+, using the pro-
posed generalizable and interpretable learning approaches. To in-

corporate prior knowledge, the proposed tools (1) start from known
configurations, (2) iteratively construct a new linear model, (3) ex-
trapolate better performance configurations from that model, and
(4) repeat. Since the base learners are linear models, these tools are
inherently interpretable. We enhance this property with a graphical
representation of how they arrived at the highest performance con-
figuration. We evaluate Gil and Gil+ by using them to configure
Apache Spark workloads on different hardware platforms and find
that, compared to prior work, Gil and Gil+ produce comparable,
and sometimes even better performance configurations, but with
interpretable results.

CCS CONCEPTS

• Software and its engineering→ Software configurationman-

agement and version control systems; • Computing method-

ologies→ Machine learning approaches.

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8562-6/21/08.
https://doi.org/10.1145/3468264.3468603

KEYWORDS

Configuration, machine learning, generalizability, interpretability

ACM Reference Format:

Yi Ding, Ahsan Pervaiz, Michael Carbin, and Henry Hoffmann. 2021. Gen-
eralizable and Interpretable Learning for Configuration Extrapolation. In
Proceedings of the 29th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’21),

August 23ś28, 2021, Athens, Greece. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3468264.3468603

1 INTRODUCTION

The increasing configurability of modern software makes it chal-
lenging for users to tune performance due to high complexity:
tremendous configuration spaces and complicated interactions be-
tween these configuration parameters [39, 45, 49, 50]. Configura-
tions have a large influence on application performance such as
latency [42], throughput [3], and energy consumption [8]. As a
result, tools to help tune application configurations for high perfor-
mance have become a crucial yet challenging research area.

To configure software applications efficiently, machine learning
(ML) approaches have been applied to model the complex relation-
ships between configuration parameters and performance. Most
prior work on incorporating ML approaches in software perfor-
mance modeling is to first randomly sample assignments of config-
uration parameters for the application, measure the application’s
performance with the sampled parameters, train a learner on these
samples, predict the performance for unsampled configurations,
and then deploy the software in the configuration with the best
predicted performance [1, 18, 23, 47]. The most sophisticated of
these learnersÐe.g., neural networks [16], random forests [33], and
Gaussian process regression [7, 29]Ðare black-box, meaning that
users have no visibility into their internal workings [9].

Although black-box ML approaches are effective at software
performance modeling, there are two practical limitations to be
addressed for efficient, optimal configuration search:
• Difficulty incorporating prior knowledge. Prior ML-based
tools have little ability to leverage information a user has pre-
viously collected. Such tools require significant data collection:
they must start from scratch by generating numerous random
configurations and collecting their performance. Two specific
scenarios are considered as follows:

728

This work is licensed under a Creative Commons Attribution International 4.0 License.









Generalizable and Interpretable Learning for Configuration Extrapolation ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

For the 𝑖-th configuration x𝑖 , assuming its measured performance
is 𝑦𝑖 , the linear regression model will be:

𝑦𝑖 = 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + . . . + 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖 , (3)

where 𝛽1, . . . , 𝛽𝑝 are coefficients corresponding to 𝑝 configuration
parameters, and 𝜖𝑖 is the noise (usually assumed to be a Gaussian).
The linear model is solved via ridge regression, which is a regular-
ized method to avoid overfitting [10]. Thus Gil addresses CH1 by
iteratively estimating the unknown function with linear models.

3.2.2 Active Learning. Gil applies active learning to iteratively
query samples over successive rounds. At each round, Gil collects
samples that are intended to improve the model predictions for the
best configurations. After evaluating the new samples, the model
is updated using these samples and then the next round begins. As
such, the key is to come up with a query function that converges
quickly so that Gil can find the optimal configuration across spaces
with limited samples. This is not trivial because the model needs to
balance the tradeoff between explorationÐavoiding local optima
in training spaceÐand exploitationÐimproving the predictions for
the highest performance configurations in new space.

Given the base learner is linear,Gil optimizes locally by querying
samples with the best predicted performance at each step: for each
step 𝑡 , assume the predictive function is 𝑓𝑡 , then the optimizer
searches for a subset 𝑆 with 𝑘 configurations such that:

𝑆 = argmax
𝑠∈𝑆, |𝑆 |=𝑘

∑

𝑠

𝑓𝑡 (𝑠) . (4)

This query strategy selects a subset of configurations with the best
predicted performance at each round. Intuitively, picking config-
urations with the best performance is more likely to improve the
prediction accuracy for the best performance configurations in the
next round.With this query strategy, Gil addresses CH2 by search-

ing the optimal configuration as rapidly as possible. Algorithm 1
summarizes the procedures for Gil performance model.

3.3 Gil+ Performance Model

Gil interprets the relationships between the application-level con-
figuration parameters and ultimate performance by quantifying the
learned coefficient for each application-level configuration parame-
ter. To further benefit from interpretation, we propose a hierarchi-
cal performance model that relates application-level configuration
parameters to performance through low-level system metrics. In
particular, we hope to understand not just how each application
parameter influences performance, but also how that influence
manifests through low-level system metrics like cache misses or
context switches.

To accomplish this goal, we present Gil+, illustrated in Figure 1.
We consider five low-level system metrics in this paper (see details
in Table 3). In principle,Gil+ could be applied to any set of low-level
system metrics. We incorporate this extra layer as follows.

Algorithm 2 summarizes the procedures for Gil+. Instead of di-
rectly building models mapping from application configurations to
performance, Gil+ first builds an model that maps from low-level
system metrics to performance. Then, Gil+ obtains the low-level
system metric vector [𝑢1, . . . , 𝑢5] with the best predicted perfor-
mance from test low-level system metric set𝑈te, as in line 3. Next,
for 𝑖-th low-level system metric𝑈 𝑖 , 𝑖 = 1 . . . , 5, Gil+ builds a model

Algorithm 2 Gil+ hierarchical performance model.

Require: 𝑋tr ⊲ Training configuration set
Require: 𝑋te ⊲ Test configuration set
Require: 𝑈tr ⊲ Training low-level system metric set
Require: 𝑈te ⊲ Test low-level system metric set
Require: 𝑌tr ⊲ Training performance set
Require: 𝑑 ⊲ Number of low-level system metrics (LLSMs)
Require: 𝑘 ⊲ Sample budget for each low-level system metric at each round
Require: 𝑇 ⊲ Number of rounds
1: for each round 𝑡 = 1, . . . ,𝑇 do
2: Train model that maps LLSMs𝑈tr to performance 𝑌tr .
3: Get LLSM vector [𝑢1, . . . ,𝑢𝑑 ] with best predicted performance from𝑈te .
4: for each LLSM𝑈 𝑖 , 𝑖 = 1, . . . , 𝑑 do
5: Train model that maps 𝑋tr to𝑈

𝑖
tr .

6: Use trained model to predict on𝑈 𝑖
te .

7: Select 𝑘 configurations 𝑋 𝑖
𝑡
with closest predicted 𝑖-th LLSM values to 𝑢𝑖 .

8: Run workload to get true LLSM value𝑈 𝑖
𝑡
and performance 𝑌 𝑖

𝑡
for 𝑋 𝑖

𝑡
.

9: Update training configuration set 𝑋tr ← 𝑋tr ∪𝑋
𝑖
𝑡
.

10: Update training LLSM set𝑈tr ← 𝑈tr ∪𝑈
𝑖
𝑡
.

11: Update training performance set 𝑌tr ← 𝑌tr ∪𝑌
𝑖
𝑡
.

12: Update test configuration set 𝑋te ← 𝑋te \𝑋
𝑖
𝑡
.

13: Train model that maps configurations 𝑋tr to 𝑌tr .
14: Use the trained model to predict performance for test configuration set 𝑋te .
15: Interpret results using tools in ğ3.4.
16: Output: configuration x★with the best predicted performance and interpretation

results visualized by radar and bar charts.

that maps from application configurations to𝑈 𝑖 . Then, Gil+ selects
top 𝑘 application configurations that have the closest predicted 𝑖-th
low-level systemmetric values to𝑢𝑖 , and these 𝑘 configurations and
corresponding measurements will be queried for the next round, as
in line 7-8. After all training and test sets are updated, Gil+ trains
the model on the final training configuration and performance sets,
and uses it to evaluate the remaining test configurations, picking
the one with the best predicted performance as the output, as in
line 13-14. The intuition of this hierarchical model is to select ap-
plication configurations that induce the nearest low-level system
metric values producing the best predicted performance.

3.4 Interpretation by Visualization

We interpret results from performance models via visualization. We
focus on Gil+ because of its extra low-level system metric layer,
which makes it possible to investigate the cross-stack interactions
between system and application levels. We visualize the learned
relationships between (1) performance and low-level systemmetrics
and (2) low-level system metrics and configuration parameters.

We use radar charts to depict the relationships between perfor-
mance and low-level system metrics and how they change before
and after applying Gil+. These charts visualize the differences
between the initial, user-provided configurations and the final rela-
tionships that Gil+ learns. If users provide configurations that are
known to work well on different hardware, then these charts will
visualize the differences in the influence of these initial configura-
tions and those Gil+ learned. We choose radar charts because they
can show multiple metrics simultaneously and quickly compare
different values in each axis. The label for each axis represents a
specific low-level system metric and the value on each axis is the
learned linear coefficient mapping from low-level system metric to
performance. The changes are visualized with different colors.

We use bar charts to illustrate the relationships between low-
level system metrics and application configuration parameters. We

732



ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Yi Ding, Ahsan Pervaiz, Michael Carbin, and Henry Hoffmann

choose bar charts because there are multiple low-level system met-
rics and we need to compare each with their relationships with
configuration parameters. Take nweight workload in Figure 3 as
an example. The y-axis represents each low-level system metric,
and the x-axis represents the learned absolute linear coefficient
differences before and after applying Gil+. Each bar represents
different configuration parameters, and their direction and length
correspond to the x-axis. With bar charts, we can interpret the
learned relationship between low-level system metrics and con-
figuration parameters, and how their influences to each low-level
system metric change.

3.5 Discussion and Limitations

Gil and Gil+ use linear models as base learners to achieve inter-
pretability, which would lose a slight amount of overall prediction
accuracy compared to using more sophisticated black-box learners
such as neural networks [12], gradient boosting trees [4], and Gauss-
ian process regression [7, 35]. Moreover, these black-box learners
are more likely to overfit the training data and make conservative
judgment in exploring new space. To compensate for the lose of
prediction accuracy, Gil and Gil+ employ an iterative learning
paradigm to allow the model to correct itself every time there is an
error [27]. Meanwhile, Bayesian optimization updates the model
iteratively using a black-box learnerÐGaussian process regression,
and usually achieves high prediction accuracy [38], which is also
demonstrated in our evaluation in Section 5. While powerful, it is
uninterpretable and thus does not provide insights into how the
highest performance configuration is reached. To sum up, Gil and
Gil+ are practical trade-offs between accuracy and interpretability.

4 EXPERIMENTAL METHODOLOGY

This section describes our experimental setup and evaluationmethod-
ologies to demonstrate the effectiveness of Gil and Gil+ at configu-
ration extrapolation in multiple workloads, hardware, and settings.

4.1 Systems

4.1.1 Software. We use Apache Spark 2.2.3 [54] 2 as our software
distributed computing framework. Each experiment has a server
node and four worker nodes. We choose a wide range of config-
uration parameters that reflect significant Spark properties cate-
gorized by shuffle behavior, data compression and serialization,
memory management, execution behavior, networking, and sched-
uling. Table 1 shows the total 20 parameters in detail. We use sim-
ilar parameters to prior work [53] but not the same set because
Spark has actually reduced the number of user visible configuration
parametersÐprecisely because configuring them is challenging.

4.1.2 Hardware. We run experiments on a public cloud computing
system: the Chameleon Cloud Research Platform [21]. We use the
names that Chameleon 3 uses for three Intel x86 processors shown
in Table 2. We collect five low-level system metrics that have been
shown to influence application performance [24]. Table 3 shows
the five low-level system metrics in detail.

2https://spark.apache.org/docs/2.2.3/configuration.html
3https://www.chameleoncloud.org/hardware/

4.2 Workloads

We select ten Apache Spark workloads from the HiBench 4 big data
benchmark suite [14] with details shown in Table 4. These work-
loads cover various domains including microbenchmarks (micro),
machine learning (ML), websearch, and graph analysis; and they
exhibit a wide range of resource usage. For ten workloads with
2000 configurations per workload on three hardware platforms,
it took four weeks of computing time to collect all these data for
experimental evaluation in this paper.

4.3 Points of Comparisons

We compare the following approaches:
• Default: the default application-level configuration provided by
the Apache Spark developers.
• RS: randomly sample configurations and select the best with a
linear regression performance model.
• NN: a design space exploration method with neural network and
intelligent sampling proposed in [16].
• DAC: a configuration parameter tuning approach with the en-
semble tree model and genetic algorithm proposed in [53].
• BO: Bayesian optimization for configuration tuning [33].
• Gil: generalizable and interpretable learning relating application
configurations and performance.
• Gil+: generalizable and interpretable learning relating applica-
tion configurations, low-level system metrics, and performance.
• OPT: exhaustive search for the true optimal configuration over
the entire measurements.

RS, NN, and DAC are non-iterative learning methods that train
only once, while BO, Gil, and Gil+ are iterative methods that train
multiple rounds until the sample budget is met. NN, DAC, and BO
use black-box models, while RS, Gil, and Gil+ are interpretable.
All parameters for these algorithms used in our experiments are
selected via cross validations.

4.4 Evaluation Metric

For each workload, we compare the Relative Performance (RP) be-
tween the best performance (throughput) found from the learning-
based configuration search methods and the true optimal perfor-
mance (found through exhaustive search over our measurements):

RP = 100% ∗

�

�

�

�

𝑌pred − 𝑌opt

𝑌opt

�

�

�

�

, (5)

where 𝑌pred is the best performance from the above methods and
𝑌opt is the optimal performance. Lower RP is better.

4.5 Evaluation Methodology

We randomly generate 2000 application-level configurations for
each workload, which is a commonly used size in prior work [53].
For each workload, we run it at each configuration on different
hardware to record their performances. We divide the total con-
figurations into three levels: low, modest, and high performance
with corresponding ratios [0.5, 0.3, 0.2]; e.g., the high-performance
configurations are the top 20% of the measured configurations. The
optimal configuration for each workload on each hardware is ob-
tained via exhaustive search over our measurements. We then use

4https://github.com/Intel-bigdata/HiBench

733



Generalizable and Interpretable Learning for Configuration Extrapolation ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

Table 1: Details of the 20 Apache Spark 2.2.3 configuration parameters.

Configuration parameter Range Description

spark.reducer.maxSizeInFlight 24ś128 Maximum size of map outputs to fetch simultaneously from each reduce task, in MB.
spark.shuffle.file.buffer 24ś128 Size of the in-memory buffer for each shuffle file output stream, in KB.
spark.shuffle.sort.bypassMergeThreshold 100ś1000 Avoid merge-sorting data if there is no map-side aggregation.
spark.speculation.interval 100ś1000 How often Spark will check for tasks to speculate, in millisecond.
spark.speculation.multiplier 1ś5 How many times slower a task is than the median to be considered for speculation.
spark.speculation.quantile 0ś1 Percentage of tasks which must be complete before speculation is enabled.
spark.broadcast.blockSize 2ś128 Size of each piece of a block for TorrentBroadcastFactory, in MB.
spark.io.compression.snappy.blockSize 24ś128 Block size used in snappy, in KB.
spark.kryoserializer.buffer.max 24-128 Maximum allowable size of Kryo serialization buffer, in MB.
spark.kryoserializer.buffer 24ś128 Initial size of Kryo’s serialization buffer, in KB.
spark.driver.memory 6ś12 Amount of memory to use for the driver process, in GB.
spark.executor.memory 8ś18 Amount of memory to use per executor process, in GB.
spark.network.timeout 20ś500 Default timeout for all network interactions, in second.
spark.locality.wait 1ś10 How long to launch a data-local task before giving up, in second.
spark.task.maxFailures 1ś8 Number of task failures before giving up on the job.
spark.shuffle.compress false, true Whether to compress map output files.
spark.memory.fraction 0ś1 Fraction of (heap space - 300 MB) used for execution and storage.
spark.shuffle.spill.compress false, true Whether to compress data spilled during shuffles.
spark.broadcast.compress false, true Whether to compress broadcast variables before sending them.
spark.memory.storageFraction 0.5ś1 Amount of storage memory immune to eviction.

Table 2: Details of the hardware platforms.

Skylake Haswell Storage

Processor Gold 6126 E5-2670 E5-2650
RAM size 192 GB 128 GB 64 GB
# of Threads 48 48 40
Clockspeed 2.6 GHz 3.1 GHz 3.0 GHz
L3 cache 19.25 MB 30 MB 25 MB
Memory speed 2.666 GHz 2.133 GHz 2.133 GHz
# Mem channels 6 4 4
Network speed 10 GbE 0.1 GbE 10 GbE
Disk vendor Samsung Seagate Seagate
# Disks 1 1 16
Disk bandwidth 6 Gb/s 6 Gb/s 24 Gb/s

Table 3: Details of the five low-level system metrics.

Abbr. Low-level metrics Description

BMR Branch misses rate # branch misses/ # total branch misses
CMR Cache misses rate # cache misses/ # total cache misses
CSR Context switch rate # context switch/ # cpu cycles
PFR Page faults rate # page faults/ # cpu cycles
IPC Instruc. per cycle # instruction / # cpu cycles

the methods mentioned above to search for the best configuration
for each workload on different hardware. Since our goal is to ex-
amine the extrapolation ability of each algorithm, we consider the
following two experimental settings:
• low2high: training set only has configurations of low perfor-
mance, and test set has configurations with a wide range of
performance. This setting corresponds to scenario 1 in ğ1; i.e.,

Table 4: Details of the ten HiBench workloads.

Workload Data size Workload Data size

wordcount 32 GB lr 8 GB
terasort 3.2 GB linear 48 GB
als 0.6 GB rf 0.8 GB
bayes 19 GB pagerank 1.5 GB
kmeans 20 GB nweight 0.9 GB

this represents the case where users start from configurations of
low performance and aim to extrapolate to high performance .
• mod2high: training set only has configurations of modest perfor-
mance that run fast from a different hardware, and test set has
configurations with a wide range of performance. For instance,
if the training set has configurations that run fast on Haswell,
but run modestly on Skylake, the search phase will evaluate all
configurations in test set to pick the one predicted to run fastest
on Skylake. Since we have 3 hardware, we have 6 training-test
pairs. This setting corresponds to scenario 2 in ğ1; i.e., this rep-
resents the case where users have found configurations of high
performance for one hardware and attempt to use those as a
starting point to optimize for a different hardware.

In Algorithm 1 and 2, 𝑇 and 𝑘 are set as small numbers to demon-
strate that Gil and Gil+ can produce comparable and better results
on a small sample budget than those methods without intelligent
sampling (e.g., RS). Since the collected dataset size for each hard-
ware is 2000, we choose 20% and 10% for low2high and mod2highÐ
i.e., 400 and 200Ðwhich are much smaller than thousands used in
prior work [53]. low2high requires more labeled data for training
because it extrapolates larger space than mod2high does. 𝑘 is set as
20. We report results averaged over 5 runs with different seeds.

734



ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Yi Ding, Ahsan Pervaiz, Michael Carbin, and Henry Hoffmann

5 EXPERIMENTAL EVALUATION

We examine the following research questions (RQs):
• RQ1: How good are Gil and Gil+ at extrapolating from configu-
rations of low performance to high performance (low2high)?
• RQ2: How good are Gil and Gil+ at extrapolating from configu-
rations of modest performance to high performance (mod2high)?
• RQ3:Does incorporating prior knowledge improve extrapolation
performance compared to starting from scratch?
• RQ4:What can we interpret from visualization in case studies?

5.1 RQ1: How good are Gil and Gil+ at

extrapolation from configurations of low

performance to high performance?

We examine the extrapolation results from configurations of low
performance to high performance in low2high setting. Figure 5
shows the relative performance (RP) results for each method. The
strip label on the right for each row of bar charts represents the
hardware platform for the experiments. The x-axis represents each
workload, and the y-axis represents RP. Lower is better (closer to
optimal). The last column, HarMean, shows the harmonic mean
results over all workloads, which are also quantified in Table 5.

Table 5: Harmonic mean results over all workloads of each

hardware for low2high. The last columnHarMean is the har-

monic mean over three hardware.

Skylake Haswell Storage HarMean

DEFAULT 43% 29% 25% 31%
RS 22% 11% 11% 13%
NN 22% 17% 13% 16%
DAC 36% 18% 19% 22%
BO 14% 1% 2% 2%

GIL 13% 7% 7% 8%
GIL+ 10% 7% 5% 7%

For non-iterative learning methods, RS is generally better than
NN and DAC, which is a bit counter-intuitive as we would think
that linear models are not as powerful as black-box models. How-
ever, as discussed in ğ3.2.1, despite perhaps overall lower prediction
accuracy, linear models are less likely to overfit and thus promote
extrapolation. In contrast, black-box models such as neural net-
works and ensemble trees are more likely to overfit and make less
accurate predictions for unseen data. For iterative learning meth-
ods, BO is slightly (5 percentage points) better than Gil and Gil+

because black-box models generally have higher prediction accu-
racy than linear models. Overall, iterative learning methods are
better than non-iterative ones because they encourage extrapo-
lation in the iterative process. These results demonstrate that Gil

and Gil+’s iterative learning can provide performance comparable

to the best black-box methods and overcome faulty (or extremely

low-performance) configurations.

5.2 RQ2: How good are Gil and Gil+ at

extrapolating from configurations of

modest performance to high performance?

We examine the extrapolation results from configurations of modest
performance to high performance in mod2high setting. Figure 6, 7,
and 8 show the relative performance (RP) for each method on three
target hardware platforms, respectively. In each figure, the strip
label on the right for each row of bar charts represents the hardware
platform where the starting configurations are from. The x-axis
represents each workload, and the y-axis represents RP for the
target hardware. Lower is better (closer to optimal). The last column,
HarMean, shows the harmonic mean results over all workloads,
which are also quantified in Table 6.

Table 6: Harmonic mean results over all workloads of each

hardware for mod2high. The last columnHarMean is the har-

monic mean over three hardware.

Skylake Haswell Storage HarMean

DEFAULT 43% 29% 25% 31%
RS 17% 10% 9% 11%
NN 19% 13% 9% 13%
DAC 22% 14% 10% 14%
BO 7% 1% 2% 2%

GIL 2% 2% 6% 2%
GIL+ 7% 6% 3% 4%

The results analyzed in the low2high setting almost hold for the
mod2high setting. RS is better than NN and DAC, and BO is almost
comparable to Gil and Gil+. Overall, BO, Gil and Gil+ are better
than RS, NN, and DAC due to their iterative learning paradigm.
These results demonstrate that Gil and Gil+ are comparable to the

best black-box learners. Different from prior methods, Gil and Gil+

can benefit from starting from user suggested configurations, which

is evidence that incorporating human knowledge is beneficialÐit gets

Gil and Gil+ on par with the best black-box learner.

5.3 RQ3: Does incorporating prior knowledge

improve extrapolation performance

compared to starting from scratch?

As further evidence of the benefits of extrapolating from prior
knowledge, we compare starting from scratch with random sam-
pling to incorporating prior knowledge for initial training. Fig-
ure 9 shows the aggregated improvements from incorporating prior
knowledge over starting with random sampling across all work-
loads in the mod2high setting (higher is better). Overall, all learners
benefit from incorporating prior knowledge with improvements
from 2% to 15% in harmonic mean, where Gil and Gil+ both have
3% improvement. Starting from scratch achieves lower performance
because random sampling over the whole space loses initial direc-
tion for extrapolation, while a tighter cluster of samples provides a
clearer direction to pursue next, and reduces the chance of getting
stuck in local optima. These results demonstrate the efficacy of Gil

and Gil+ by incorporating prior knowledge for initial training.

735









ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Yi Ding, Ahsan Pervaiz, Michael Carbin, and Henry Hoffmann

[4] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785ś794. https://doi.org/10.1145/2939672.2939785

[5] David Culler, Jaswinder Pal Singh, and Anoop Gupta. 1999. Parallel computer
architecture: a hardware/software approach. Gulf Professional Publishing.

[6] Tom Dietterich. 1995. Overfitting and undercomputing in machine learning.
ACM computing surveys (CSUR) 27, 3 (1995), 326ś327. https://doi.org/10.1145/
212094.212114

[7] Yi Ding, Risi Kondor, and Jonathan Eskreis-Winkler. 2017. Multiresolution Ker-
nel Approximation for Gaussian Process Regression. In Proceedings of the 31st
International Conference on Neural Information Processing Systems (Long Beach,
California, USA) (NIPS’17). CurranAssociates Inc., RedHook, NY, USA, 3743ś3751.
https://doi.org/10.5555/3294996.3295131

[8] Yi Ding, Nikita Mishra, and Henry Hoffmann. 2019. Generative and multi-
phase learning for computer systems optimization. In Proceedings of the 46th
International Symposium on Computer Architecture. 39ś52. https://doi.org/10.
1145/3307650.3326633

[9] Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of inter-
pretable machine learning. arXiv preprint arXiv:1702.08608 (2017).

[10] Julian J Faraway. 2014. Linear models with R. CRC press. https://doi.org/10.4324/
9780203507278

[11] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D Sculley. 2017. Google vizier: A service for black-box optimization.
In Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. 1487ś1495. https://doi.org/10.1145/3097983.3098043

[12] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep
learning. Vol. 1. MIT press Cambridge. https://doi.org/10.5555/3086952

[13] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej
Wąsowski. 2013. Variability-aware performance prediction: A statistical learning
approach. In 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 301ś311. https://doi.org/10.1109/ASE.2013.6693089

[14] Shengsheng Huang, Jie Huang, Yan Liu, Lan Yi, and Jinquan Dai. 2010. Hibench:
A representative and comprehensive hadoop benchmark suite. In Proc. ICDE
Workshops. 41ś51.

[15] Connor Imes, Steven A. Hofmeyr, and Henry Hoffmann. 2018. Energy-efficient
Application Resource Scheduling using Machine Learning Classifiers. In Proceed-
ings of the 47th International Conference on Parallel Processing, ICPP 2018, Eugene,
OR, USA, August 13-16, 2018. ACM, 45:1ś45:11. https://doi.org/10.1145/3225058.
3225088

[16] Engin Ïpek, Sally A McKee, Rich Caruana, Bronis R de Supinski, and Martin
Schulz. 2006. Efficiently exploring architectural design spaces via predictive
modeling. ACM SIGOPS Operating Systems Review 40, 5 (2006), 195ś206. https:
//doi.org/10.1145/1168917.1168882

[17] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay
Patel, and Yuvraj Agarwal. 2017. Transfer learning for performance modeling
of configurable systems: An exploratory analysis. In 2017 32nd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). IEEE, 497ś508.
https://doi.org/10.1109/ASE.2017.8115661

[18] Pooyan Jamshidi, Miguel Velez, Christian Kästner, and Norbert Siegmund. 2018.
Learning to sample: Exploiting similarities across environments to learn perfor-
mance models for configurable systems. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering. 71ś82. https://doi.org/10.1145/3236024.3236074

[19] Pooyan Jamshidi, Miguel Velez, Christian Kästner, Norbert Siegmund, and Prasad
Kawthekar. 2017. Transfer learning for improving model predictions in highly
configurable software. In 2017 IEEE/ACM 12th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE, 31ś41.
https://doi.org/10.1109/SEAMS.2017.11

[20] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, and Sven Apel.
2020. The interplay of sampling and machine learning for software performance
prediction. IEEE Software 37, 4 (2020), 58ś66. https://doi.org/10.1109/MS.2020.
2987024

[21] Kate Keahey, JasonAnderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,
Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,
Alexander Barnes, François Halbach, Alex Rocha, and Joe Stubbs. 2020. Lessons
Learned from the Chameleon Testbed. In Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC ’20). USENIX Association. https://doi.org/10.
1145/3355738.3355750

[22] Rahul Krishna, Vivek Nair, Pooyan Jamshidi, and Tim Menzies. 2020. Whence to
Learn? Transferring Knowledge in Configurable Systems using BEETLE. IEEE
Transactions on Software Engineering (2020). https://doi.org/10.1109/TSE.2020.
2983927

[23] Rahul Krishna, Chong Tang, Kevin Sullivan, and Baishakhi Ray. 2020. ConEx:
Efficient Exploration of Big-Data System Configurations for Better Performance.
IEEE Transactions on Software Engineering (2020). https://doi.org/10.1109/TSE.
2020.3007560

[24] Benjamin C Lee and David M Brooks. 2006. Accurate and efficient regression
modeling for microarchitectural performance and power prediction. ACM SIGOPS

operating systems review 40, 5 (2006), 185ś194. https://doi.org/10.1145/1168917.
1168881

[25] Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu. 2020. Statically inferring
performance properties of software configurations. In EuroSys ’20: Fifteenth
EuroSys Conference 2020, Heraklion, Greece, April 27-30, 2020, Angelos Bilas, Kostas
Magoutis, Evangelos P. Markatos, Dejan Kostic, and Margo I. Seltzer (Eds.). ACM,
10:1ś10:16. https://doi.org/10.1145/3342195.3387520

[26] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. Hyperband: A novel bandit-based approach to hyperparameter
optimization. The Journal of Machine Learning Research 18, 1 (2017), 6765ś6816.
https://doi.org/10.5555/3122009.3242042

[27] Weiyang Liu, Bo Dai, Ahmad Humayun, Charlene Tay, Chen Yu, Linda B Smith,
James M Rehg, and Le Song. 2017. Iterative machine teaching. In International
Conference on Machine Learning. PMLR, 2149ś2158. https://doi.org/10.5555/
3305890.3305903

[28] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. A Comparison of 10 Sampling Algorithms for Configurable Systems. In
Proceedings of the 38th International Conference on Software Engineering (Austin,
Texas) (ICSE ’16). Association for Computing Machinery, New York, NY, USA,
643ś654. https://doi.org/10.1145/2884781.2884793

[29] Atefeh Mehrabi, Aninda Manocha, Benjamin C Lee, and Daniel J Sorin. 2020.
Bayesian Optimization for Efficient Accelerator Synthesis. ACM Transactions on
Architecture and Code Optimization (TACO) 18, 1 (2020), 1ś25.

[30] Nikita Mishra, Connor Imes, John D. Lafferty, and Henry Hoffmann. 2018.
CALOREE: Learning Control for Predictable Latency and Low Energy. In Pro-
ceedings of the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems (Williamsburg, VA, USA) (ASP-
LOS’18). New York, NY, USA, 184ś198. https://doi.org/10.1145/3173162.3173184

[31] Nikita Mishra, Huazhe Zhang, John D. Lafferty, and Henry Hoffmann. 2015. A
Probabilistic Graphical Model-Based Approach for Minimizing Energy Under
Performance Constraints. In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating Systems
(Istanbul, Turkey) (ASPLOS’15). New York, NY, USA, 267ś281. https://doi.org/10.
1145/2775054.2694373

[32] Christoph Molnar. 2020. Interpretable machine learning. Lulu. com.
[33] L. Nardi, A. Souza, D. Koeplinger, and K. Olukotun. 2019. HyperMapper: a

Practical Design Space Exploration Framework. In 2019 IEEE 27th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems (MASCOTS). IEEE Computer Society, Los Alamitos, CA, USA,
425ś426. https://doi.org/10.1109/MASCOTS.2019.00053

[34] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2009), 1345ś1359. https:
//doi.org/10.1109/TKDE.2009.191

[35] Carl Edward Rasmussen. 2003. Gaussian processes in machine learning. In
Summer school on machine learning. Springer, 63ś71.

[36] Cynthia Rudin. 2019. Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nature Machine
Intelligence 1, 5 (2019), 206ś215. https://doi.org/10.1038/s42256-019-0048-x

[37] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof Czarnecki.
2015. Cost-Efficient Sampling for Performance Prediction of Configurable Sys-
tems (T). In 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 342ś352. https://doi.org/10.1109/ASE.2015.45

[38] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Fre-
itas. 2015. Taking the human out of the loop: A review of Bayesian optimization.
Proc. IEEE 104, 1 (2015), 148ś175. https://doi.org/10.1109/JPROC.2015.2494218

[39] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. 2015.
Performance-influence models for highly configurable systems. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. 284ś294.
https://doi.org/10.1145/2786805.2786845

[40] Norbert Siegmund, Sergiy S Kolesnikov, Christian Kästner, Sven Apel, Don Ba-
tory, Marko Rosenmüller, and Gunter Saake. 2012. Predicting performance via
automated feature-interaction detection. In 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 167ś177. https://doi.org/10.1109/ICSE.2012.
6227196

[41] Pavel Valov, Jean-Christophe Petkovich, Jianmei Guo, Sebastian Fischmeister, and
Krzysztof Czarnecki. 2017. Transferring performance prediction models across
different hardware platforms. In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering. 39ś50. https://doi.org/10.1145/3030207.
3030216

[42] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017.
Automatic database management system tuning through large-scale machine
learning. In Proceedings of the 2017 ACM International Conference on Management
of Data. 1009ś1024. https://doi.org/10.1145/3035918.3064029

[43] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel
Emer. 2012. Scheduling heterogeneous multi-cores through performance impact
estimation (PIE). In 2012 39th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 213ś224. https://doi.org/10.1145/2366231.2337184

739



Generalizable and Interpretable Learning for Configuration Extrapolation ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

[44] Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian Käst-
ner. 2021. White-Box Analysis over Machine Learning: Modeling Performance of
Configurable Systems. Proceedings of the 43rd International Conference on Software
Engineering (ICSE 21) (2021). https://doi.org/10.1109/ICSE43902.2021.00100

[45] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. 2010. Characterizing
cloud computing hardware reliability. In Proceedings of the 1st ACM symposium
on Cloud computing. 193ś204. https://doi.org/10.1145/1807128.1807161

[46] Chengcheng Wan, Muhammad Husni Santriaji, Eri Rogers, Henry Hoffmann,
Michael Maire, and Shan Lu. 2020. ALERT: Accurate Learning for Energy and
Timeliness. In 2020 USENIX Annual Technical Conference, USENIX ATC 2020, July
15-17, 2020, Ada Gavrilovska and Erez Zadok (Eds.). USENIX Association, 353ś369.
https://www.usenix.org/conference/atc20/presentation/wan

[47] Zhiyuan Wan, Xin Xia, David Lo, and Gail C Murphy. 2019. How does machine
learning change software development practices? IEEE Transactions on Software
Engineering (2019). https://doi.org/10.1109/TSE.2019.2937083

[48] ShuWang, Chi Li, HenryHoffmann, Shan Lu,William Sentosa, andAchmad Imam
Kistijantoro. 2018. Understanding and auto-adjusting performance-sensitive
configurations. ACM SIGPLAN Notices 53, 2 (2018), 154ś168. https://doi.org/10.
1145/3173162.3173206

[49] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. 2015. Hey, you have givenme toomany knobs!: understanding
and dealing with over-designed configuration in system software. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. 307ś319.
https://doi.org/10.1145/2786805.2786852

[50] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. 2016. Early detection of configuration errors to reduce
failure damage. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). 619ś634. https://doi.org/10.5555/3026877.3026925

[51] Tianyin Xu, Vineet Pandey, and Scott Klemmer. 2016. An HCI view of configura-
tion problems. arXiv preprint arXiv:1601.01747 (2016).

[52] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi
Bairavasundaram. 2011. How do fixes become bugs?. In Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering. 26ś36. https://doi.org/10.1145/2025113.2025121

[53] Zhibin Yu, Zhendong Bei, and Xuehai Qian. 2018. Datasize-aware high dimen-
sional configurations auto-tuning of in-memory cluster computing. In Proceedings
of the Twenty-Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems. 564ś577. https://doi.org/10.1145/3173162.
3173187

[54] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion
Stoica, et al. 2010. Spark: Cluster computing with working sets. HotCloud 10,
10-10 (2010), 95. https://doi.org/10.5555/1863103.1863113

[55] Huazhe Zhang and Henry Hoffmann. 2019. PoDD: power-capping dependent
distributed applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2019, Denver, Col-
orado, USA, November 17-19, 2019, Michela Taufer, Pavan Balaji, and Antonio J.
Peña (Eds.). ACM, 28:1ś28:23. https://doi.org/10.1145/3295500.3356174

740


	Abstract
	1 Introduction
	2 Motivational Example
	3 Proposed Tools
	3.1 Definitions
	3.2 Gil Performance Model
	3.3 Gil+ Performance Model
	3.4 Interpretation by Visualization
	3.5 Discussion and Limitations

	4 Experimental Methodology
	4.1 Systems
	4.2 Workloads
	4.3 Points of Comparisons
	4.4 Evaluation Metric
	4.5 Evaluation Methodology

	5 Experimental Evaluation
	5.1 RQ1: How good are Gil and Gil+ at extrapolation from configurations of low performance to high performance? 
	5.2 RQ2: How good are Gil and Gil+ at extrapolating from configurations of modest performance to high performance?
	5.3 RQ3: Does incorporating prior knowledge improve extrapolation performance compared to starting from scratch?
	5.4 RQ4: What can we interpret from visualization in case studies?

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

